
KLayout 0.28 Documentation

2022-03-28, Matthias Köfferlein
This document is published under Creative Commons Attribution–Share Alike License (CC BY-SA)

https://www.klayout.org

https://www.klayout.org

KLayout 0.28 Table of Contents

Table of Contents
Main Index .. 11

1. KLayout User Manual ... 12

1.1. KLayout Basics .. 13

1.1.1. The Main Window ... 15

1.1.2. Loading A File .. 18

1.1.3. Managing The Panels And Loaded Layouts .. 19

1.1.4. Choosing A Cell .. 20

1.1.5. Choosing A Hierarchy Depth .. 21

1.1.6. Configuring The Cell List .. 22

1.1.7. The Library View .. 23

1.1.8. Hiding Cells .. 24

1.1.9. Zooming Into The Layout ... 25

1.1.10. Global Rotation and Flip ... 26

1.1.11. Returning To A Previous View ... 27

1.1.12. Bookmarking Views .. 28

1.1.13. Descending Into A Cell With Context ... 29

1.1.14. The Layer List (Layer Views) ... 30

1.1.15. Choosing A Layer Color ... 31

1.1.16. Telling Used From Unused Layers .. 32

1.1.17. Choosing A Line Style .. 33

1.1.18. Animating Layers .. 34

1.1.19. Changing The Display Style ... 35

1.1.20. Changing The Layer Visibility ... 36

1.1.21. Valid And Invalid Layers ... 37

1.1.22. Organizing Layers Hierarchically .. 38

1.1.23. Using Multiple Layer Setups With Tabs ... 39

1.1.24. Removing And Adding Layers To The Layer Set .. 40

1.1.25. Transforming Views And Property Selectors .. 41

1.1.26. Specifying Explicit Hierarchy Levels For One Layer Or A Layer Group .. 42

1.1.27. Loading And Saving The Layer Sets ... 43

1.1.28. Creating A Screenshot ... 44

1.1.29. Doing Measurements .. 45

1.1.30. Ruler Properties .. 46

1.1.31. Adding Images .. 47

1.1.32. Using Landmarks To Align Images .. 48

1.1.33. Browsing Shapes .. 49

1.1.34. Browsing Instances ... 50

1.1.35. The Marker Browser ... 51

1.1.36. Technology Management ... 52

1.1.37. Selecting Rulers, Shapes Or Instances ... 53

1.1.38. More Configuration Options .. 54

For more details visit
https://www.klayout.org

Page 2 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 Table of Contents

1.1.39. Undo And Redo .. 56

1.1.40. Saving A Layout Or Parts Of It .. 57

1.1.41. Saving And Restoring A Session ... 58

1.1.42. Further View Options .. 59

1.2. Editing Functions ... 60

1.2.1. Edit Mode ... 61

1.2.2. Basic Principles Of Editor Mode .. 62

1.2.2.1. Pick And Drop Principle .. 63

1.2.2.2. Basic Editor Options .. 64

1.2.2.3. Background combination modes ... 65

1.2.2.4. Selection .. 66

1.2.2.5. Partial Mode ... 67

1.2.3. Basic Editing Operations .. 68

1.2.3.1. Creating A Layout From Scratch ... 69

1.2.3.2. Creating A New Layer ... 70

1.2.3.3. Creating A New Cell .. 71

1.2.3.4. Creating A Polygon ... 72

1.2.3.5. Creating A Box .. 73

1.2.3.6. Creating A Text Object .. 74

1.2.3.7. Creating A Cell Instance ... 75

1.2.3.8. Moving The Selection .. 76

1.2.3.9. Other Transformations Of The Selection .. 77

1.2.3.10. Partial Editing ... 78

1.2.3.11. Moving Shapes To A Different Layer .. 79

1.2.3.12. Other Layer Operations ... 80

1.2.3.13. Copy And Paste Of The Selection .. 81

1.2.3.14. Delete A Cell ... 82

1.2.3.15. Rename A Cell .. 83

1.2.3.16. Copy And Paste Of Cells .. 84

1.2.4. Advanced Editing Operations ... 85

1.2.4.1. Layout Transformations ... 86

1.2.4.2. Search and Replace .. 87

1.2.4.3. Hierarchical Operations: Flatten Instances, Make Cell From Selection, Move Up In Hierarchy .. 89

1.2.4.4. Creating Clips .. 90

1.2.4.5. Flatten Cells ... 91

1.2.4.6. Resolving Arrays .. 92

1.2.4.7. PCell Operations .. 93

1.2.4.8. Layer Boolean Operations ... 94

1.2.4.9. Layer Sizing ... 96

1.2.4.10. Shapewise Boolean Operations .. 97

1.2.4.11. Shapewise Sizing .. 98

1.2.4.12. Object Alignment ... 99

1.2.4.13. Corner Rounding ... 100

For more details visit
https://www.klayout.org

Page 3 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 Table of Contents

1.2.4.14. Cell Origin Adjustment ... 101

1.2.4.15. Create Cell Variants .. 102

1.3. Advanced Topics ... 107

1.3.1. The XOR Tool .. 108

1.3.2. The Diff Tool ... 109

1.3.3. The Fill (Tiling) Utility .. 110

1.3.4. Import Gerber PCB Files .. 113

1.3.5. Import Other Layout Files ... 120

1.3.6. The Net Tracing Feature .. 121

1.4. Design Rule Check (DRC) .. 123

1.4.1. Design Rule Checks (DRC) Basics .. 124

1.4.2. DRC Runsets .. 128

1.5. Layout vs. Schematic (LVS) .. 142

1.5.1. Layout vs. Schematic (LVS) Overview ... 143

1.5.2. LVS Introduction ... 146

1.5.3. LVS Devices ... 156

1.5.4. LVS Device Classes ... 157

1.5.5. LVS Device Extractors ... 163

1.5.6. LVS Input/Output .. 178

1.5.7. LVS Connectivity .. 182

1.5.8. LVS Compare ... 186

1.5.9. LVS Netlist Tweaks .. 191

2. Various Topics .. 195

2.1. Layer Mapping Tables ... 196

2.2. About Layer Specifications .. 198

2.3. Transformations in KLayout ... 199

2.4. About Expressions ... 202

2.5. About Variant Notation .. 207

2.6. About LEF/DEF Import .. 208

2.7. Connectivity ... 212

2.8. The 2.5d View ... 213

2.9. Symbolic Connectivity Layers .. 218

2.10. About Layer Sources ... 219

2.11. About Macro Development .. 221

2.12. Macros in Menus ... 228

2.13. About Libraries ... 229

2.14. About PCells .. 230

2.15. About The Basic Library .. 231

2.16. About Packages ... 237

2.17. About Technology Management .. 239

2.18. About Custom Layout Queries .. 241

2.19. Notation used in Ruby API documentation ... 249

2.20. DRC Reference ... 251

For more details visit
https://www.klayout.org

Page 4 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 Table of Contents

2.20.1. DRC Reference: DRC expressions .. 252

2.20.2. DRC Reference: Layer Object .. 267

2.20.3. DRC Reference: Netter object .. 364

2.20.4. DRC Reference: Source Object ... 370

2.20.5. DRC Reference: Global Functions ... 376

2.21. LVS Reference .. 414

2.21.1. LVS Reference: Netter object ... 415

2.21.2. LVS Reference: Global Functions .. 422

3. Programming scripts ... 426

3.1. Introduction .. 427

3.2. Using Python ... 430

3.3. The Application API ... 434

3.4. The Database API ... 448

3.5. The Geometry API ... 461

3.6. Events And Callbacks ... 471

3.7. The Ruby Language Binding ... 474

3.8. Coding PCells In Ruby .. 481

3.9. The Qt Binding .. 488

4. Class Index ... 492

4.1. API reference - Class EmptyClass .. 501

4.2. API reference - Class Value ... 504

4.3. API reference - Class Interpreter .. 508

4.4. API reference - Class Logger ... 512

4.5. API reference - Class Timer ... 516

4.6. API reference - Class Progress .. 520

4.7. API reference - Class AbstractProgress ... 523

4.8. API reference - Class RelativeProgress .. 525

4.9. API reference - Class AbsoluteProgress ... 529

4.10. API reference - Class ExpressionContext ... 533

4.11. API reference - Class Expression ... 537

4.12. API reference - Class GlobPattern .. 540

4.13. API reference - Class Executable ... 544

4.14. API reference - Class Recipe .. 548

4.15. API reference - Class Box .. 552

4.16. API reference - Class DBox .. 565

4.17. API reference - Class Cell .. 578

4.18. API reference - Class Instance ... 616

4.19. API reference - Class ParentInstArray .. 635

4.20. API reference - Class CellInstArray .. 639

4.21. API reference - Class DCellInstArray .. 650

4.22. API reference - Class CellMapping ... 660

4.23. API reference - Class CompoundRegionOperationNode .. 668

4.24. API reference - Class CompoundRegionOperationNode::LogicalOp .. 687

For more details visit
https://www.klayout.org

Page 5 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 Table of Contents

4.25. API reference - Class CompoundRegionOperationNode::GeometricalOp .. 689

4.26. API reference - Class CompoundRegionOperationNode::ResultType .. 691

4.27. API reference - Class CompoundRegionOperationNode::ParameterType .. 693

4.28. API reference - Class CompoundRegionOperationNode::RatioParameterType ... 696

4.29. API reference - Class TrapezoidDecompositionMode ... 698

4.30. API reference - Class PreferredOrientation .. 702

4.31. API reference - Class Edge .. 707

4.32. API reference - Class DEdge .. 722

4.33. API reference - Class EdgePair .. 737

4.34. API reference - Class DEdgePair ... 745

4.35. API reference - Class EdgePairs .. 753

4.36. API reference - Class EdgeProcessor .. 771

4.37. API reference - Class Edges ... 792

4.38. API reference - Class InstElement .. 826

4.39. API reference - Class LayerMapping .. 832

4.40. API reference - Class LayerInfo .. 837

4.41. API reference - Class LayoutMetaInfo .. 844

4.42. API reference - Class Layout .. 848

4.43. API reference - Class SaveLayoutOptions .. 884

4.44. API reference - Class LayoutQueryIterator ... 903

4.45. API reference - Class LayoutQuery .. 908

4.46. API reference - Class Library .. 912

4.47. API reference - Class PCellDeclaration .. 919

4.48. API reference - Class PCellParameterDeclaration .. 926

4.49. API reference - Class Manager ... 934

4.50. API reference - Class Matrix2d ... 939

4.51. API reference - Class IMatrix2d .. 948

4.52. API reference - Class Matrix3d ... 957

4.53. API reference - Class IMatrix3d .. 968

4.54. API reference - Class Path ... 978

4.55. API reference - Class DPath ... 989

4.56. API reference - Class DPoint .. 1000

4.57. API reference - Class Point ... 1007

4.58. API reference - Class SimplePolygon ... 1014

4.59. API reference - Class DSimplePolygon .. 1028

4.60. API reference - Class Polygon .. 1040

4.61. API reference - Class DPolygon ... 1061

4.62. API reference - Class LayerMap ... 1078

4.63. API reference - Class LoadLayoutOptions .. 1087

4.64. API reference - Class LoadLayoutOptions::CellConflictResolution ... 1116

4.65. API reference - Class RecursiveInstanceIterator .. 1119

4.66. API reference - Class RecursiveShapeIterator ... 1132

4.67. API reference - Class Region ... 1147

For more details visit
https://www.klayout.org

Page 6 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 Table of Contents

4.68. API reference - Class Region::Metrics .. 1211

4.69. API reference - Class Region::RectFilter .. 1214

4.70. API reference - Class Region::OppositeFilter ... 1217

4.71. API reference - Class Shape .. 1219

4.72. API reference - Class ShapeProcessor .. 1258

4.73. API reference - Class Shapes ... 1269

4.74. API reference - Class TechnologyComponent .. 1299

4.75. API reference - Class Technology .. 1302

4.76. API reference - Class Text .. 1311

4.77. API reference - Class DText ... 1322

4.78. API reference - Class HAlign .. 1333

4.79. API reference - Class VAlign .. 1337

4.80. API reference - Class TileOutputReceiver .. 1341

4.81. API reference - Class TilingProcessor .. 1346

4.82. API reference - Class Trans .. 1359

4.83. API reference - Class DTrans ... 1373

4.84. API reference - Class DCplxTrans .. 1387

4.85. API reference - Class CplxTrans .. 1404

4.86. API reference - Class ICplxTrans ... 1421

4.87. API reference - Class VCplxTrans .. 1438

4.88. API reference - Class Utils .. 1454

4.89. API reference - Class DVector .. 1458

4.90. API reference - Class Vector .. 1466

4.91. API reference - Class LayoutDiff ... 1474

4.92. API reference - Class TextGenerator .. 1489

4.93. API reference - Class NetlistObject ... 1497

4.94. API reference - Class Pin ... 1500

4.95. API reference - Class DeviceReconnectedTerminal ... 1502

4.96. API reference - Class DeviceAbstractRef ... 1506

4.97. API reference - Class Device .. 1510

4.98. API reference - Class DeviceAbstract ... 1516

4.99. API reference - Class SubCircuit .. 1520

4.100. API reference - Class NetTerminalRef .. 1525

4.101. API reference - Class NetPinRef .. 1529

4.102. API reference - Class NetSubcircuitPinRef ... 1533

4.103. API reference - Class Net ... 1537

4.104. API reference - Class DeviceTerminalDefinition ... 1542

4.105. API reference - Class DeviceParameterDefinition ... 1546

4.106. API reference - Class EqualDeviceParameters .. 1551

4.107. API reference - Class GenericDeviceParameterCompare .. 1555

4.108. API reference - Class GenericDeviceCombiner .. 1558

4.109. API reference - Class DeviceClass ... 1561

4.110. API reference - Class Circuit ... 1570

For more details visit
https://www.klayout.org

Page 7 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 Table of Contents

4.111. API reference - Class Netlist ... 1582

4.112. API reference - Class NetlistSpiceWriterDelegate .. 1591

4.113. API reference - Class NetlistWriter ... 1595

4.114. API reference - Class NetlistSpiceWriter .. 1598

4.115. API reference - Class NetlistReader ... 1602

4.116. API reference - Class ParseElementComponentsData ... 1605

4.117. API reference - Class ParseElementData ... 1609

4.118. API reference - Class NetlistSpiceReaderDelegate .. 1613

4.119. API reference - Class NetlistSpiceReader .. 1618

4.120. API reference - Class DeviceClassResistor .. 1621

4.121. API reference - Class DeviceClassResistorWithBulk .. 1624

4.122. API reference - Class DeviceClassCapacitor .. 1626

4.123. API reference - Class DeviceClassCapacitorWithBulk .. 1629

4.124. API reference - Class DeviceClassInductor .. 1631

4.125. API reference - Class DeviceClassDiode .. 1634

4.126. API reference - Class DeviceClassBJT3Transistor ... 1637

4.127. API reference - Class DeviceClassBJT4Transistor ... 1640

4.128. API reference - Class DeviceClassMOS3Transistor ... 1642

4.129. API reference - Class DeviceClassMOS4Transistor ... 1645

4.130. API reference - Class DeviceClassFactory ... 1647

4.131. API reference - Class NetlistDeviceExtractorError .. 1651

4.132. API reference - Class NetlistDeviceExtractorLayerDefinition .. 1656

4.133. API reference - Class DeviceExtractorBase .. 1660

4.134. API reference - Class GenericDeviceExtractor ... 1663

4.135. API reference - Class DeviceExtractorMOS3Transistor .. 1669

4.136. API reference - Class DeviceExtractorMOS4Transistor .. 1672

4.137. API reference - Class DeviceExtractorResistor ... 1674

4.138. API reference - Class DeviceExtractorResistorWithBulk ... 1677

4.139. API reference - Class DeviceExtractorCapacitor .. 1680

4.140. API reference - Class DeviceExtractorCapacitorWithBulk ... 1683

4.141. API reference - Class DeviceExtractorBJT3Transistor .. 1686

4.142. API reference - Class DeviceExtractorBJT4Transistor .. 1689

4.143. API reference - Class DeviceExtractorDiode .. 1691

4.144. API reference - Class Connectivity ... 1694

4.145. API reference - Class LayoutToNetlist .. 1698

4.146. API reference - Class LayoutToNetlist::BuildNetHierarchyMode ... 1719

4.147. API reference - Class DeepShapeStore ... 1721

4.148. API reference - Class NetlistCompareLogger ... 1728

4.149. API reference - Class GenericNetlistCompareLogger ... 1731

4.150. API reference - Class NetlistComparer ... 1736

4.151. API reference - Class NetlistCrossReference ... 1743

4.152. API reference - Class NetlistCrossReference::NetPairData .. 1749

4.153. API reference - Class NetlistCrossReference::DevicePairData ... 1750

For more details visit
https://www.klayout.org

Page 8 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 Table of Contents

4.154. API reference - Class NetlistCrossReference::PinPairData .. 1751

4.155. API reference - Class NetlistCrossReference::SubCircuitPairData ... 1752

4.156. API reference - Class NetlistCrossReference::CircuitPairData ... 1753

4.157. API reference - Class NetlistCrossReference::NetTerminalRefPair .. 1754

4.158. API reference - Class NetlistCrossReference::NetPinRefPair ... 1755

4.159. API reference - Class NetlistCrossReference::NetSubcircuitPinRefPair ... 1756

4.160. API reference - Class NetlistCrossReference::Status ... 1757

4.161. API reference - Class LayoutVsSchematic ... 1760

4.162. API reference - Class Texts .. 1764

4.163. API reference - Class ShapeCollection ... 1778

4.164. API reference - Class RdbReference .. 1781

4.165. API reference - Class RdbCell .. 1785

4.166. API reference - Class RdbCategory .. 1789

4.167. API reference - Class RdbItemValue .. 1795

4.168. API reference - Class RdbItem ... 1802

4.169. API reference - Class ReportDatabase ... 1808

4.170. API reference - Class MacroExecutionContext ... 1822

4.171. API reference - Class MacroInterpreter .. 1826

4.172. API reference - Class Macro ... 1833

4.173. API reference - Class Macro::Format .. 1845

4.174. API reference - Class Macro::Interpreter .. 1847

4.175. API reference - Class BrowserDialog .. 1850

4.176. API reference - Class BrowserSource .. 1856

4.177. API reference - Class BrowserPanel ... 1860

4.178. API reference - Class InputDialog ... 1864

4.179. API reference - Class FileDialog ... 1872

4.180. API reference - Class MessageBox .. 1878

4.181. API reference - Class LayerProperties .. 1883

4.182. API reference - Class LayerPropertiesNode ... 1907

4.183. API reference - Class LayerPropertiesNodeRef .. 1911

4.184. API reference - Class LayerPropertiesIterator .. 1914

4.185. API reference - Class LayoutView .. 1920

4.186. API reference - Class LayoutView::SelectionMode ... 1969

4.187. API reference - Class CellView ... 1971

4.188. API reference - Class Marker .. 1981

4.189. API reference - Class AbstractMenu ... 1989

4.190. API reference - Class Action ... 1995

4.191. API reference - Class PluginFactory ... 2003

4.192. API reference - Class Plugin ... 2011

4.193. API reference - Class Cursor .. 2018

4.194. API reference - Class ButtonState .. 2023

4.195. API reference - Class Dispatcher .. 2027

4.196. API reference - Class NetlistObjectPath ... 2031

For more details visit
https://www.klayout.org

Page 9 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 Table of Contents

4.197. API reference - Class NetlistObjectsPath ... 2036

4.198. API reference - Class NetlistBrowserDialog .. 2039

4.199. API reference - Class ObjectInstPath ... 2043

4.200. API reference - Class ImageDataMapping .. 2053

4.201. API reference - Class Image ... 2060

4.202. API reference - Class Annotation .. 2076

4.203. API reference - Class HelpDialog ... 2099

4.204. API reference - Class HelpSource .. 2101

4.205. API reference - Class MainWindow .. 2104

4.206. API reference - Class Application ... 2136

4.207. API reference - Class LEFDEFReaderConfiguration .. 2141

4.208. API reference - Class MEBESFracturedData .. 2171

4.209. API reference - Class MEBESWriter ... 2174

4.210. API reference - Class NetTracerTechnology ... 2179

4.211. API reference - Class NetElement .. 2182

4.212. API reference - Class NetTracer ... 2186

4.213. API reference - Class D25View .. 2192

4.214. API reference - Class PCellDeclarationHelper .. 2195

4.215. Class Index for Module db .. 2199

4.216. Class Index for Module lay .. 2205

4.217. Class Index for Module mebes ... 2207

4.218. Class Index for Module rdb ... 2208

4.219. Class Index for Module tl .. 2209

For more details visit
https://www.klayout.org

Page 10 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 Main Index

Main Index
Welcome to KLayout's documentation

The documentation is organized in chapters. For a brief introduction read the User Manual. 'Various Topics' is a collection of brief articles
about specific topics. For Ruby programming see the 'Programming Ruby Scripts' chapter and for a complete Ruby class reference see the
'Class Index'.

• KLayout User Manual

• Various Topics

• Programming scripts

• Class Index

For more details visit
https://www.klayout.org

Page 11 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1. KLayout User Manual

1. KLayout User Manual
This is KLayout's main user manual. The manual is organised in major topics:

• KLayout Basics

• Editing Functions

• Advanced Topics

• Design Rule Check (DRC)

• Layout vs. Schematic (LVS)

For more details visit
https://www.klayout.org

Page 12 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1. KLayout Basics

1.1. KLayout Basics
Welcome to KLayout's user manual. This is the manual chapter covering the basic features of KLayout. The following subtopics are
available:

• The Main Window

• Loading A File

• Managing The Panels And Loaded Layouts

• Choosing A Cell

• Choosing A Hierarchy Depth

• Configuring The Cell List

• The Library View

• Hiding Cells

• Zooming Into The Layout

• Global Rotation and Flip

• Returning To A Previous View

• Bookmarking Views

• Descending Into A Cell With Context

• The Layer List (Layer Views)

• Choosing A Layer Color

• Telling Used From Unused Layers

• Choosing A Line Style

• Animating Layers

• Changing The Display Style

• Changing The Layer Visibility

• Valid And Invalid Layers

• Organizing Layers Hierarchically

• Using Multiple Layer Setups With Tabs

• Removing And Adding Layers To The Layer Set

• Transforming Views And Property Selectors

• Specifying Explicit Hierarchy Levels For One Layer Or A Layer Group

• Loading And Saving The Layer Sets

• Creating A Screenshot

• Doing Measurements

For more details visit
https://www.klayout.org

Page 13 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1. KLayout Basics

• Ruler Properties

• Adding Images

• Using Landmarks To Align Images

• Browsing Shapes

• Browsing Instances

• The Marker Browser

• Technology Management

• Selecting Rulers, Shapes Or Instances

• More Configuration Options

• Undo And Redo

• Saving A Layout Or Parts Of It

• Saving And Restoring A Session

• Further View Options

For more details visit
https://www.klayout.org

Page 14 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.1. The Main Window

1.1.1. The Main Window
The main window is divided into three parts: the left area is the hierarchy browser and navigator, the center part of the canvas and the right
part is the layer list with the layer toolbox. The individual components can be rearranged, so the arrangement described is just the default
arrangement. You can move a component to a new place by dragging it with its title bar to some other place or detach it from the main
window to form a floating separate window.

Left Part - The Hierarchy Browser, Library View and Navigator

The left panel is the hierarchy browser which shows the cell hierarchy and - optionally - the navigator window that shows an overview over
the whole layout.

In the hierarchy browser, cell nodes can be expanded showing the child nodes. The "current cell" is the one shown in the center panel. It is
drawn in bold font. One or multiple cells can be selected. The selected cells are the ones, the various functions act on. The "context cell" is
the cell which is the "active cell" on which drawing happens. The context usually is the same than the current cell, but by descending into
the hierarchy, the child cell of the current cell can be made the context cell. It is shown in underlined font.

In the following example, "TOPTOP_BIG" is selected, "TOPTOP" is the current cell and "TOP" is the context cell:

For more details visit
https://www.klayout.org

Page 15 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.1. The Main Window

The sub-panel below the hierarchy browser is the library view. This view shows the libraries registered in the system and their content:

The library view is used to browse and place library cells, which can be normal cells or PCells. Read more about the library view here: The
Library View.

The navigator is invisible by default but can be activated by checking the "Navigator" menu item in the "View" menu. The navigator shows
an overview image of the whole cell and a box indicating the clip shown in the center panel:

For more details visit
https://www.klayout.org

Page 16 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.1. The Main Window

Center Part - The Canvas

The center panel is the actual canvas. There, the layout is drawn. To zoom in, click with the right mouse button and drag a rectangle that
will become the new area shown. Select items by left-clicking or dragging a selection rectangle with the left mouse button pressed. A
variety of edit and display modification feature is supplied, for example the ability to add rulers or background images.

Right Part - The Layer List and Layer Style Controls

The right panel is shows the layer list or layer tree. By default, it shows a plain layer list, but the are manifold ways to configure the list, i.e.
grouping, styling, adding tabs to easily switch between different setups etc.

The layer tree specifies what and how layout is drawn. Entries can be deleted or configured freely - this does not affect the layout itself.
Essentially, the layer list can be entirely independent from the layout and omit layers from the layout or add (empty) layers that are
not actually part of the layout. In this scenario, a layer list typically reflects a set of drawing layers with a certain technology-dependent
meaning. This list provides a styled layer view for an otherwise undecorated layout file. The layers can be reordered, so their drawing
priority is changed. The top layer will be drawn first, while others will be drawn later. Hence the first layer is likely to become obscured by
following layers.

Modification operators can be attached to layers - for example, the drawn layout can be transformed geometrical (i.e. translated, rotated,
scaled, mirrored) and layout can be selectively drawn when certain conditions for user properties apply.

Below the layer list, a set of control panels is located. The control panels are minimized per default. They can be expanded by clicking on
the header bar. These controls form the "Layer Toolbox" where you can modify the layer styles. The styles selected in the layer toolbox will
affect the layers selected in the layer list.

Multiple layouts can be shown together. Either they can be overlayed or they can be shown in separate views. In this case, a tab panel
appears at top of the main window. Selecting a tab switches between the layouts. Layers for different layouts appear as annotated layers in
the layer list - for example "1/0@1" for layer 1, datatype 0, first layout and "1/0@2" for layer 1, datatype 0 and second layout.

For more details visit
https://www.klayout.org

Page 17 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.2. Loading A File

1.1.2. Loading A File
In the "File" menu, choose

• "Open" to close the current view and open a new layout instead of the currently loaded one

• "Open in Same Panel" to open a new layout in addition to the currently loaded one

• "Open in New Panel" to open a new layout in a new view

Either way, a file selection dialog will appear where a file can be chosen for loading. After choosing the file and clicking "Ok", the file is
loaded.

The program will automatically determine the type of the file. Currently, OASIS, GDS2, DXF, CIF, LEF/DEF and a text version of GDS2 are
supported. Gerber PCB data can be read with some preparations too (see Import Gerber PCB Files). If the file is gzip/zlib compressed, it
will be uncompressed automatically.

Certain options can be specified for the file loader using the reader option pages. To open the reader options dialog, choose "Reader
Options" from the "File" menu. This dialog allows specification of certain options for all "Open" actions, for example:

• Confine the reader to a certain set of layers. All other layers are not read.

• Disable reading of text objects. Text objects don't carry geometrical information for masks and can be discarded this way.

• Disable reading of user properties. If properties are not required, the memory consumption can be reduced by disabling properties.

• Certain GDS specific options which mainly control the level of compatibility with other tools.

• Other formats may offer other options too. Specifically rich formats such as DXF or LEF/DEF can be configured in manifold ways.
Different tabs show options for different formats or format groups.

Using "File/Reload", the currently loaded file can be re-read from disk. Usually this is not required, because KLayout will automatically
check whether the file has changed and offer to load it.

By picking a file from the "Open Recent" list in the "File" menu, a previous file can be loaded again.

Files can be given to KLayout on the command line and are loaded automatically. Multiple files can be specified. They are shown in
different pages by default. To load multiple files into the same page, add a "-s" option to the command line. "http:" or "https:" can be
specified on the command line as well. In this case, KLayout will download the files from the given URL.

Files and URL's can be dragged and dropped on the KLayout main window. KLayout will then load and show these files.

Layout files can be associated with technologies. Technologies allow associating a layout with additional data, such as libraries, macros,
net tracer settings, layer properties etc. Read About Technology Management for details.

For more details visit
https://www.klayout.org

Page 18 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.3. Managing The Panels And Loaded Layouts

1.1.3. Managing The Panels And Loaded Layouts
Choose "Close" in the "File" menu to remove a layout of a panel and close the panel unless there are still layouts loaded. If multiple layouts
are loaded into the current panel, a dialog appears. This allows selecting one or many layouts for closing. "Close All" will close all panels.

Choose "Clone" from the "File" menu to duplicate a panel. A new panel will be created that is an exact copy of the current one. Both, the
current and the new panel are views to the same layout. This way, only one copy of the layout is held in memory.

Choose "Pull In Other Layout" to combine other layouts already loaded into the current panel. Basically, KLayout allows viewsing a layout
in multiple panels, either on its own in different configurations or together with other layouts. "Pull In Other Layout" allows configuration of
a panel to show another layout which has been loaded into another panel. In that sense it's the reverse of closing one layout from a panel
showing multiple layouts.

For more details visit
https://www.klayout.org

Page 19 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.4. Choosing A Cell

1.1.4. Choosing A Cell
To show a certain cell, select the cell in the cell hierarchy in hierarchy browser to the left. Then, right-click in the cell tree to bring up the
context menu and choose "Show as top" or simply select the cell with the middle mouse button.

To select a cell by name, choose "Select Cell" in the "Display" menu. A dialog will appear that allows selecting a cell by name or choosing it
from an alphabetically sorted list. Additionally, this dialog allows navigating the cell tree by moving to one of the child or parent cells.

For more details visit
https://www.klayout.org

Page 20 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.5. Choosing A Hierarchy Depth

1.1.5. Choosing A Hierarchy Depth
By default, only the bounding box of the cell selected is shown. This corresponds to zero hierarchy levels being shown. If you select one
more level of hierarchy (Levels 0 to 1), this content of the child cells of the current cell are drawn, but grandchildren (children of child cells)
are drawn as boxes. Increasing the hierarchy levels will draw more and more details of child cells until all cells below the current cell are
drawn in detail.

To select more hierarchy levels

• Select "Full Hierarchy" from the "Display" menu or press the "*" key to show all hierarchy levels

• Select "Box Only" from the "Display" menu or press the "0" key to show only the bounding box (the default)

• Select "Top Level Only" from the "Display" menu or press the "1" key to show the top level elements

• Select "Increment Hierarchy" from the "Display" menu or press the "+" key to show one more hierarchy level

• Select "Decrement Hierarchy" from the "Display" menu or press the "-" key to show one hierarchy level less

• Use the hierarchy level entry fields below the cell list to change the current minimum or maximum level

For more details visit
https://www.klayout.org

Page 21 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.6. Configuring The Cell List

1.1.6. Configuring The Cell List
Two modes are provided for the cell list: a tree view (the default) and a flat cell list. To switch to flat mode, check the "Flat Cell List" option
in the cell panel's context menu.

If multiple layouts are loaded, the cell lists of the individual layouts are shown separately. The drop-down box above the cell lists will select
the current cell tree to show. An alternative mode is available in which the cell lists are shown beside each other in the cell tree panel.
This mode is enabled by choosing the "Split Mode" option in the cell panel's context menu. In split mode, you can click on the headers to
select the current cell tree. The current cell tree plays a role in some cases, for example for the layout operations available in the "Layout"
submenu of the "Edit" menu.

In addition, three sorting modes are provided: alphabetically by name and by cell size (bounding box area), descending and ascending.
The cell size is supposed to reflect the design level: library and leaf cells are usually small which macro blocks are usually large. By using
cell size sorting in ascending order, the leaf cells will be shown first. To change the sorting, check the corresponding option in the "Sorting"
submenu of the cell panel's context menu.

For more details visit
https://www.klayout.org

Page 22 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.7. The Library View

1.1.7. The Library View
Beside the cell list, a library view is provided as a support view for the layout panel. This sub-panel displays the libraries available and
allows browsing the cells and PCells inside a library.

By default, the library view is shown below the cell tree. You can rearrange the views by dragging them at their title bar and docking them
in other places of the main window. To reset the window arrangement to the default configuration, use "Restore Window" from the "View"
menu.

The library view shows the cells and PCells of one library. To select a library, choose it from the selection box at the top of the library view.

PCells are shown with a small "gear" icon in the library view. If PCells are instantiated, the variants in use are shown as entries below the
PCell entry.

In edit mode, cells can conveniently be placed by dragging them from the library view to the layout canvas. If a PCell variant is dragged,
another instance of this PCell variant is created. If a PCell master is dragged, KLayout will pop up the PCell parameter definition dialog on
drop.

For more details visit
https://www.klayout.org

Page 23 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.8. Hiding Cells

1.1.8. Hiding Cells
Independent of the hierarchy levels shown, cells can be hidden. In this case, the cell is now shown but rather the bounding box is shown.
To do so, select the cell from the cell list and choose "Hide" from the context menu. To show a cell again, choose "Show". To make all cells
visible again, choose "Show All".

For more details visit
https://www.klayout.org

Page 24 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.9. Zooming Into The Layout

1.1.9. Zooming Into The Layout
Select the zoom area with the right mouse button in the layout canvas.

Press the button, drag the box to the desired position and release the button.

To zoom in (enlarge) drag the box right and down. To zoom out (shrink) drag the box up and left. To choose a new center, single-click the
new center point with the right mouse button.

Additionally, these functions are available from the menu or by hotkeys:

• Pan to the left, right, top or bottom using the arrow keys or choosing one of these functions from the "Display" menu.

• Fill the whole selected cell into the window by pressing "F2" or choosing "Zoom Fit" from the "Display" menu

• Zoom in or out by a fixed amount by pressing "Enter" or "Shift+Enter" or choosing "Zoom In" or "Zoom Out" from the "Display" menu

• Zoom in and out by using the mouse wheel if available. The current mouse location will stay fixed, while the surrounding layout will be
enlarged or reduced in size

• Press "Shift" while dragging the mouse with the right mouse button pressed will drag the layout similar to what happens in recent
map service web applications

For more details visit
https://www.klayout.org

Page 25 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.10. Global Rotation and Flip

1.1.10. Global Rotation and Flip
KLayout offers an option to flip or rotate the whole window. This is a useful option for example to view mask data which a mirrored image of
the chip.

To access this option, choose the desired transformation from one of the options available in the "Global Transformation" submenu of the
"Display" menu.

For more details visit
https://www.klayout.org

Page 26 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.11. Returning To A Previous View

1.1.11. Returning To A Previous View
Choose "Last State" from the "Display" menu to return to the last window shown. Choose "Next state" to switch to a more recent state
again.

For more details visit
https://www.klayout.org

Page 27 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.12. Bookmarking Views

1.1.12. Bookmarking Views
Views (window, cell) can be bookmarked for later retrieval. Choose "Bookmark This View" from the "Bookmarks" menu. A name is required
to be entered for the bookmark. The bookmark will then appear in the "Goto Bookmarks" list.

The list of bookmarks defined can be loaded or saved by using the "Load Bookmarks" and "Save Bookmarks" functions from the
"Bookmarks" menu.

The bookmark list is available as a dockable tool window as well: check the "View/Bookmark List" option to enable this dock window. The
bookmark list by default is shown at the bottom right side of the layout view.

Dockable Bookmark List

To navigate to a bookmark from the dockable bookmark list, double-click the entry. From the context menu (right mouse click) you can
select these functions:

• Follow Selection: if this option is checked, the selected bookmark will immediately change the view accordingly. With this option,
you can browse the bookmark list with the arrow keys while the view updates automatically.

• Manage bookmarks: opens the bookmark management dialog (same as from the "Bookmarks" menu).

• Load bookmarks and Save bookmarks: loads or saves the bookmarks to a file (same function as from the "Bookmarks" menu).

For more details visit
https://www.klayout.org

Page 28 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.13. Descending Into A Cell With Context

1.1.13. Descending Into A Cell With Context
A cell can be shown either isolated (this is the default, if the cell is the current cell), embedded (as a subcell of the current cell) or as the
current cell in the context of another direct or indirect parent cell. In the latter mode, the cell is highlighted while the context cell is shown in
dimmed or another, user-defined color.

To highlight a cell in a context, first choose the context cell. Then select a shape or a cell instance within the cell to show in the context and
choose "Descend" from the "Display" menu or press "Ctrl+D". Now, the first child cell leading to the selected shape is highlighted, while
the surrounding shapes of the parent cell (the previous current cell) is shown in dimmed colors. Choose "Descend" repeatedly to descend
further into the hierarchy until the selected shape or instance is on the level of the current cell. The current cell is show underlined in the cell
tree, while the context cell is shown in bold font in the cell tree as usual.

The reverse of this operation is "Ascend" (or "Ctrl+A") available from the "Display" menu.

The way how the context layout is shown can be adjusted in the setup dialog on the "Background" tab.

For more details visit
https://www.klayout.org

Page 29 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.14. The Layer List (Layer Views)

1.1.14. The Layer List (Layer Views)
An important concept in KLayout are the layer views. KLayout displays the layers of a layout by default in a list on the right side of the main
window. This list however, does not directly reflect the layers in the layout database. Instead this list is a collection of "views". A view is a
description of what is to be displayed and how.

Essentially, the entries in the layer list are pointers to layers in the database, together with a description how to paint the shapes on these
layers (the "layer properties").

The pointer is the "source" of a layer view. This is typically a GDS layer and datatype, but can be a layer name (for DXF for example).
There are also abstract sources (such as cell boundaries) and the sources can include selectors or modifiers. Selectors are used to only
display shapes with certain user properties or from certain hierarchy levels. Modifiers transform the shapes before they are drawn for
example. The source is defined by a "source specification" - this is a string describing the database layer and selectors and modifiers. A
simple source string is "1/0" which is for GDS layer 1, datatype 0 without and selectors or modifiers. To change the source, use "Change
Source" from the layer list's context menu.

See Transforming Views And Property Selectors for some source specification string applications and more details.

Beside the source, a layer entry has a display name. This is an arbitrary text providing a description for the user. By default - when no such
name is present - the source of the layer will be displayed. To change the display name, use "Rename" from the layer list's context menu.

Plus of course, the layer views have many options to specify the drawing style, animations and decorations.

The concept of separating views from the database layers opens some interesting options:

• Layer views can refer to individual layouts from multi-layout views (through the "@1", "@2", ... notation in the source). Hence,
multiple layouts can be mixed in a single layer list.

• Layers can be present in the list which do not need to be present in the database. Such a layer is shown as empty. This is important
as in GDS an empty layer is equivalent to non-existing. Still you may want to have it shown in the layer list - the views offer this
option.

• Vice versa, database layer may not be listed in the layer list if no corresponding layer view is present. This way, auxiliary or debug
layers can be omitted from the layer list. A "wildcard specification" is available to make sure, all layers are shown if you need to see
all.

• Multiple tabs can be present to provide multiple views on the same layouts. This is just an alternative set of layer views.

• Layer grouping, sorting etc. are just operations on the views, no database change is involved.

The concept on the other hand is slightly counter-intuitive at first. Here are some hints:

• Renaming a layer does not change the source - if you rename a layer to something like "1/0", you are likely to fool yourself thinking
this is layer 1, datatype 0.

• Changing a layer view's source does not change the database too - it will just change the pointer. To change a layer's information in
the database, use Edit/Layer/Edit Layer Specification.

• Deleting a layer from the layer list does not delete the layer from the database. Use Edit/Layer/Delete Layer instead.

• Additing a new layer does not immediately create the layer in the database. Only once you draw something on that layer, it is
generated in the database.

For more details visit
https://www.klayout.org

Page 30 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.15. Choosing A Layer Color

1.1.15. Choosing A Layer Color
Select the layer or the layers for which to change the color and open the color chooser panel in the layer panel to the right. If the color
chooser is not visible, select the small check box in the "Color" header bar. Then the color chooser is expanded.

To change the color, click on the desired color. To select a color not offered in the list, select the "More Colors" button. A color choose
dialog will open.

To choose the color of the frame to draw around the shapes, without changing the fill color, use the "Frame Color" chooser panel.

Layers can be "dimmed" by making their color darker or brighter so they contrast less with the background. To do so, choose "Dark" or
"Bright" from the color panel. Pressing the button multiple times makes the colors darker or brighter each time. The brightness or darkness
can be reset with the "Reset" button.

For more details visit
https://www.klayout.org

Page 31 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.16. Telling Used From Unused Layers

1.1.16. Telling Used From Unused Layers
In some applications, the layer list will grow very large and keeping track of the important layers may be hard. KLayout provides support for
that task in two ways: KLayout checks whether a layer carries any information and displays the layers in a different way in the layer list, if it
is empty.

Two ways of checking the information content of a layer are provided: either a layer is said to be empty if the current cell does not have any
shapes on it. Alternatively, a layer can be identified to be empty by checking if any shape is shown in the current view (more precisely if any
shape's bounding box overlaps with the current view rectangle). The latter mode can be selected in the layer list's context menu with the
option "Test For Shapes in View".

If a layer is determined to be empty, it is either grayed out or it is now shown at all. The latter option keeps the layer list short and is
selected with "Hide Empty Layers" from the layer list's context menu.

For more details visit
https://www.klayout.org

Page 32 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.17. Choosing A Line Style

1.1.17. Choosing A Line Style
Line styles control how the outline of the shapes is drawn. The default is a solid line. Available line styles are dotted lines, dashes lines and
custom styles. To choose a certain line style, select the layer or the layers for which to change the style and choose the line style from the
"Style" panel.

New styles can be created with the "Custom Style" button. A line style editor will come up that allows creating and editing of new styles.
The predefined pattern cannot be changed. To apply a new style, select "More" from the style selection panel and choose the new style
from the list. The custom styles are saved with the layer display properties.

For more details visit
https://www.klayout.org

Page 33 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.18. Animating Layers

1.1.18. Animating Layers
Layers can be animated, i.e. made blinking or the fill pattern scroll. Select the layer or the layers for which to change the animation style
and choose the animation style from the "Animation" panel. For blinking mode, two phases can be selected: "Blink" and "/Blink". Choosing
different phases for two layers makes the layers appear alternatively.

For more details visit
https://www.klayout.org

Page 34 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.19. Changing The Display Style

1.1.19. Changing The Display Style
The line width of the element's frame can be changed by using the width buttons on the "Style" panel after having selected the layers to
apply the change on. "0px" removes the line, "1px" draws a single-pixel wide line (the default), "2px" a somewhat thicker line and so on.

"Simple" is the normal draw mode while "Marked" draws a cross on each vertex of the element. The cross size is constant so the shapes
stay visible even on large scale where the elements would otherwise become single pixels.

A layer can be configured to draw a diagonal cross on rectangles. To enable this style, select "Cross" from the "Styles" toolbox. To disable
it, choose "No Cross". The cross drawing will add to the fill pattern and applies to rectangles only.

For more details visit
https://www.klayout.org

Page 35 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.20. Changing The Layer Visibility

1.1.20. Changing The Layer Visibility
The selected layers can be made invisible by choosing the "Hide" option on the "Visibility" panel. Choosing "Show" makes the layers visible
again.

Also, double-clicking a visible layer in the layer list toggles the layer's visibility.

To make a layer "transparent" (i.e. let the other layers show through), select "Transp." on the "Visibility" panel. To make it opaque again,
select "Opaque" (the default).

For more details visit
https://www.klayout.org

Page 36 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.21. Valid And Invalid Layers

1.1.21. Valid And Invalid Layers
Starting with version 0.23, KLayout offers "invalid" layers: invalid layers can be visible, but don't participate in selection and snapping. They
just act as some kind of background drawing.

Layers can be made invalid by choosing "Make invalid" from the layer's context menu. Layers can be made valid again by choosing "Make
valid". Invalid layers are marked with a small "x" in the layer list.

For more details visit
https://www.klayout.org

Page 37 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.22. Organizing Layers Hierarchically

1.1.22. Organizing Layers Hierarchically
Layers can be organized hierarchically. For example, certain layers can be grouped together. Choose "Group" in the context menu of the
layer list (right-click the layer list). The selected layers will be replaced by a tree node that represents these layers. Click on the tree node to
expand or collapse this group.

Once layers are grouped, they can be hidden or made visible with a single double-click on the node representative. The node
representative also controls the appearance of the layers in the group: if a color or style is assigned to the representative, it overrides the
respective style of all layers contained in the group. This way for example, the color of the layers contained in the group can be changed at
once. To remove a color override of a node representative, set the color to "None".

To resolve a group, select the group representative and choose "Ungroup" from the context menu.

A variety of automatic grouping methods is provided. For example, the "Regroup views by layout index" from the layer context menu will
collect all layers and put them into one group per layout shown in the panel.

For more details visit
https://www.klayout.org

Page 38 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.23. Using Multiple Layer Setups With Tabs

1.1.23. Using Multiple Layer Setups With Tabs
With version 0.21, a new feature was introduced. Using tabs in the layer panel it is very simple to switch between different setups.

A layer tab can be created by choosing "New Tab" from the "Tabs" submenu in the layer panel's context menu (right mouse button click).
A new tab will appear at the top of the layer properties panel. Initially this tab will be a copy of the current setup. Any edits on the layer
properties will apply to this tab only. When switching to a different tab, the layout view will reflect the new tab's settings. That way, different
setups can be prepared and easily exchanged.

When the layer properties are saved, the layer properties file will contain all tabs. Thus, a multi-page setup can easily be stored and
retrieved.

The initial title of the tab will be the tab number. The title can be set with the "Rename Tab" function in the "Tabs" submenu of the layer
panel's context menu. To remove a tab, choose "Remove Tab".

For more details visit
https://www.klayout.org

Page 39 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.24. Removing And Adding Layers To The Layer Set

1.1.24. Removing And Adding Layers To The Layer Set
The layers shown in the layer list are rather "pointers" to the actual layout layers and not representing the actual layers. Because of this,
these layers are more precisely referred to as "views". Layers can be removed and created again without affecting the actual layout data.

To create a layer, choose "Insert View" from the layer context menu (right mouse button click on the layer list). Then, an input dialog
prompts for the source specification. The source specification tells, from which actual data layer to take the displayed data from. The most
simple form of a source specification is "layer/datatype" (i.e. "5/0") or the layer name, if an OASIS layer name is present. This specification
can be enhanced by a layout index. The first layout loaded in the panel is referred to which "@1" or by omitting this specification. The
source specification "10/5@2" therefore refers to layer 10, datatype 5 of the second layout loaded in the panel.

Source specifications can be wildcarded. That means, either layer, datatype or layout index can be specified by "*". In this case, such a
layer must be contained in a group and the group parent must provide the missing specifications. For example, if a layer is specified "10/*"
and the parent is specified "*/5", the effective layer looked for will be "10/5". Unlike the behaviour for the display styles, the children override
(or specialize) the parent's definition in the case of the source specification.

The layer list can be cleaned up to remove layer views that do not correspond to actual layout layers using the function "Clean up views"
from the context menu. Similar, layers that are present in the layout but for which there is no view can be added using the "Add other
views" method.

For more details visit
https://www.klayout.org

Page 40 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.25. Transforming Views And Property Selectors

1.1.25. Transforming Views And Property Selectors
The source specification described in the section before is much more powerful than just allowing to describe the data source. In addition
to that, the layer can be geometrically transformed and the display can be confined to shapes that belong to a certain class described by a
property selector.

A geometrical transformation is specified by appending a transformation in round brackets to the layer/datatype source specification. The
format of this transformation is (in any order):

([<dx>,<dy>] [r<angle> | m<angle>] [*<mag>])

For example, "(r90)" specifies a rotation by 90 degree counter-clockwise. "(0,100.0 m45 *0.5)" will shrink the layout to half the size, flip at
the 45 degree-axis (swap x and y axes) and finally shift the layout by 100 micron upwards.

A detailed explanation of the transformation syntax can be found in Transformations in KLayout.

Transformations accumulate over the layer hierarchy. This means, that if a layer is transformed and the layer is inside a group whose
representative specifies a transformation as well, the resulting transformation is the combination of the layer's transformation (first applied)
and the group representative's transformation.

Multiple transformations can be present. In this case, the layout is shown in multiple instances.

A particular application is to regroup layers by layout index and assign a transformation to the group representative belonging to a certain
layout such that the layouts get aligned.

The property selector is specified in square brackets. A selector combines several expressions of the form "<property>==value>" or
"<property>!=<value>" with operators "&&", "||", "!" and allows usage to round brackets to prioritize the evaluation of these operators:

[<expr>]

In GDS2 files, the property is always named with a integer value which is written with a single hash characters (i.e. "#43". The value of a
GDS property is always a string. A string is either written as a text atom or can be enclosed in single or double quotes. The following is an
example for a valid property selector for GDS files:

10/5 [#43==X]

With this source specification, the layer will show all shapes from layer 10, datatype 5 which have a user property with number 43 and
value string "X". A more complex example is this:

10/5 [!(#43==X&&(#2==Y||#2==U))]

With OASIS files, the properties can be named with a string. In this case, the property selector can be "[prop==X]" for example. In addition,
the value can be a an integer or a double value. This is reflected by the choice of the value: "[prop==#200]" will check, if the property
named "prop" has an integer value which is 200. In the same fashion, "[prop==##0.5]" checks, if the property "prop" has a double value and
this is 0.5.

Property selectors combine over a layer hierarchy. This means, that if a group representative specifies a property selector and a layer in
this group specifies a selector as well, only those shapes will be shown that meet both criteria.

A general description for the source notation is found here: About Layer Sources.

For more details visit
https://www.klayout.org

Page 41 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.26. Specifying Explicit Hierarchy Levels For One Layer Or A Layer Group

1.1.26. Specifying Explicit Hierarchy Levels For One Layer Or A Layer Group
By default, only the hierarchy levels that are selected in the hierarchy level selection boxes are shown, i.e. if levels 0 to 1 are selected,
just the top level shapes and instances are shown. This selection can be modified for certain layers or layer groups. To specify a different
hierarchy selection for a certain layer, use an optional source specification element, the hierarchy level selector:

#[<lower-level>][.. <upper-level>]

Upper and lower level can be omitted. In this case, the respective level is not overridden. The upper level can be '*' which means: every
level that is available. If just one level and no ".." is given, it is taken as upper level and the lower level is set to zero.

Some examples might illustrate this:

#* Display all hierarchy levels

#0..1 Display top level only

#..5 Override upper level with 5

#2.. Override lower level with 2

#..* Override upper level setting by "all levels"

Modifications of this notation are provide in order to support more use cases. Instead of specifying a single number for the level, the
following alternative notations are supported:

(1) Relative specification: Hierarchy level 1 related to the current cell's level. The effective specification
differs in "Descend" mode where the current cell is on a lower hierarchy level than the context cell which
is the top cell drawn.

<1 Constrained specification: Hierarchy level 1 or less if the upper or lower default level set in the user
interface is less.

>1 Constrained specification: Hierarchy level 1 or greater if the upper or lower default level set in the user
interface is greater.

(>1) Combined specification: Hierarchy level 1 related to the current cell's level or less.

>* Equals the currently set maximum hierarchy level.

For example:

#(0)..(1) The top level of the current cell (works also in "Descend" mode).

#>0..<1 Everything exactly on top level unless the top level is not selected in the controls.

#>1..<* Everything below the context cell's top level unless not selected by the user interface
controls.

#(>1)..<* Same than before but related to the current cell, not the context cell.

For more details visit
https://www.klayout.org

Page 42 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.27. Loading And Saving The Layer Sets

1.1.27. Loading And Saving The Layer Sets
The visual layer properties can be saved to a file using the "Save Layer Properties" function from the "File" menu. This list can be loaded
again using the "Load Layer Properties" function.

For more details visit
https://www.klayout.org

Page 43 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.28. Creating A Screenshot

1.1.28. Creating A Screenshot
To save the canvas as a PNG file, choose "Screenshot" from the "File" menu or press the "Print" key. A file dialog box will appear in which
the file can be specified where the screenshot is saved to.

For more details visit
https://www.klayout.org

Page 44 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.29. Doing Measurements

1.1.29. Doing Measurements
A measurement can be performed by clicking on the ruler icon in the toolbar and selecting "Ruler" from the drop-down options. Left-click on
a point in the layout and then left-click again to specify the second point. A ruler will be shown that indicates the distance measured.

A more convenient way is provided with the single-click measurement ruler. Select "Measure" from the drop-down options of the ruler
symbol. In this mode, a single click will set a ruler to the specified position. This feature will look for edges in the vicinity of the ruler and set
the ruler to connect the neighboring edges. The ruler is attached perpendicular to the edge next to the initial point.

Rulers can be configured in manifold ways. Use "Rulers And Annotations Setup" in the "Edit" menu to open the ruler configuration dialog.
A ruler can be made to snap to edges of objects by selecting "Snap to edge/vertex". Ruler orientations can be constrained by using the
"Angle Constraint" options. The number of rulers can be limited using the "Limit number of annotations" setting.

While drawing or moving one point of a ruler, the direction constraint can be overridden with the Shift and Ctrl keys: pressing Shift while
moving the mouse will enforce orthogonal constraint, Ctrl will enforce diagonal constraint while pressing both will release any direction
constraint.

All rulers can be cleared using the "Clear all rulers" function from the "Edit" menu.

Ruler dragging can be canceled with the "Esc" key or using the "Cancel" function from the "Edit" menu.

Rulers can be moved by selecting "Move" mode with the speedbar buttons in the toolbar or "Move" from the "Mode" submenu in the "Edit"
menu. Then left-click and drag the ruler or the ruler end point that should be changed.

Rulers can be deleted selectively by selecting a ruler in "Select" mode and pressing "Delete".

Rulers can be modified in a variety of ways. For example, rulers can be shown as arrows. To edit the properties of a ruler, double-click the
ruler or select it and use "Properties" from the "Edit" menu. See Ruler Properties for a description of the properties.

Multiple templates can be configured to be available for rulers. Each template defined will be shown in the "Ruler" mode toolbar button's
drop-down menu. If a template is selected, new rulers produced from this template will inherit the template's properties. Templates are
managed in the ruler setup page ("Setup" from the "File" menu) or "Ruler And Annotation Setup" from the "Edit" menu.

For more details visit
https://www.klayout.org

Page 45 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.30. Ruler Properties

1.1.30. Ruler Properties
These are the properties that can be configured for rulers:

• Labels: depending on the outline of the ruler, up to three labels an be present. Each label can be configure individually to either
show a text or the measurement values. The main label is always present, X and Y labels are only present, if the ruler has an explicit
vertical or horizontal component (all outline styles except "diagonal"). For the main label the position of the label can be specified ("P"
setting): the label can be made to appear on the first or the second point or in the middle of the ruler. The Alignment of the labels can
be specified too: whether the appear left or right-aligned or centered.

• Style: the style determines how the ruler or its components are drawn. This can be "ruler-like" (with ticks), arrow style, a plain line or
with cross markers at the end.

• Outline: the outline determines how the two points forming the ruler are connected to render the ruler shape. This is either just one
line ("diagonal"), a horizontal and a vertical line (in some outline styles combined with the diagonal line) or a box given by the two
points of the ruler. A special outline is the ellipse which draws an ellipse inside the box defined by the ruler.

• Angle constraint: the orientation of the ruler can be restricted in several ways, i.e. just being horizontal. By default, the ruler uses
the global setting. It can however be configured to provide its own constraint.

• Object snapping: each ruler can be configure to snap to the closest object edge or vertex. By default, the rulers use the global
setting. It may be disabled however for each ruler.

• Mode: in normal mode, two clicks are required to define a ruler: to set the first point and to set the second one. In "Single click"
mode, a single click will set both points to the same. In "Auto measure" mode, the points will be determined by looking for edges in
the vicinity of the click point and adjusting the points accordingly.

The "Label format" is an arbitrary text with embedded expressions that may represent a measurement value. Each such expression starts
with a dollar sign, followed by the expression string. The expression syntax supportis the basic operations ("*", "/", "+", "-" ..), bitwise
operations ("|", "&", ..), the conditional operator ("x:y?z") as well as some functions, i.e. "abs", "sqrt", "exp". It includes a "sprintf" function.
These are some examples:

• $X: The value of the X variable (the horizontal distance, see below for a complete list of variables).

• $(sprintf('%.2f',X)): The value of the 'X' variable formatted as two digit fixed precision value.

• $(abs(X)+abs(Y)): The manhattan distance of the ruler.

• $min(X,Y): The minimum of X and Y.

A description of the expression syntax and the functions available can be found in About Expressions.

This is a list of all variables available:

• D: The length of the ruler in micron units.

• L: The manhattan length of the ruler in micron units.

• U: The x-position of the ruler's first point in micron units.

• V: The y-position of the ruler's first point in micron units.

• P: The x-position of the ruler's second point in micron units.

• Q: The y-position of the ruler's second point in micron units.

• X: The horizontal extension of the ruler in micron units.

• Y: The vertical extension of the ruler in micron units.

• A: The area enclosed by the ruler (if it was a box) in square millimeters.

For more details visit
https://www.klayout.org

Page 46 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.31. Adding Images

1.1.31. Adding Images
For some applications it is necessary to show flat pixel data together with the layout. That can either be a SEM image taken or some output
of a simulation tool. KLayout provides a way to add images to the display and show them below the drawn layout.

Currently, images can be read from any commonly used image format available in Qt (i.e. PNG, JPG, TIF ...). Color and monochrome
images are supported. Internally an image is stored as a matrix of float values and it is possible to write custom importers using RBA.

To add an image, use the "Add Image" function from the "Edit" menu. An image property dialog will appear where the image can be
specified. Choose an image using the "Browse" button next to the file name box.

An image has a variety of properties which mainly affect the way it is displayed:

• Pixel size: The size of one pixel in micron units. This affects the total size of the image.

• Center: This is the point where the center of the image is placed (in micron units).

• Rotation: An arbitrary angle by which the image is rotated.

• Shear/Perspective Tilt: shear and perspective tilt angles. Although it is possible to specify these angles explicitly it is far easiert to
use the landmark adjustment feature to align an image with a layout.

• Mirror flag: If this option is checked, the image is mirrored at the bottom edge before it is rotated.

• Pixel value range: The pixel value corresponding to minimum and maximum. For normal 8 bit image formats, these values are 0 and
255. They can be adjusted which allows brighten or darken images. For float images (i.e. simulation data), this value should reflect
the bounds of the output values, i.e. 0.0 and 1.0 for normalized data.

• Color mapping: For monochrome images, the values are converted to colors with a mapping function. The image properties page
contains a tab for specifying an arbitrary mapping of data values to colors. This is achieved by placing color sample points on the
data range axis and assigning colors to them. Double click at the axis to set new points, click on them to select them and adjust their
color with the color box. Select and press "Del" to delete a sample point.

• Brightness, Contrast and Gamma: Three sliders for changing these values are provided on the respective tab.

• RGB channel gains: Additionally, each color channel can be weighted with a given factor on the respective tab.

Once an image is placed, it can be moved and resized using the "Move" function. The images properties can be adjusted using the
"Properties" function from the Edit menu or double-clicking at the image.

With KLayout 0.22, it is possible to define landmarks which can be set at arbitrary positions in the image and aligned with corresponding
layout features by dragging them to the desired target location. See Using Landmarks To Align Images for details.

An arbitrary number of images can be placed on the layout view. To store the setup, save the session using the "File/Save Session"
function.

For more details visit
https://www.klayout.org

Page 47 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.32. Using Landmarks To Align Images

1.1.32. Using Landmarks To Align Images
"Landmarks" are arbitrary positions in the image. You can define such positions graphically in an image and then, within the layout view,
use the defined landmarks as handles to align an image with a layout. Depending on the number of landmarks defined, you can use this
feature to compensate the shift of an image, rotation, shear or even perspective distortion.

Landmarks are defined in the landmark editor. Open the landmark editor by pressing the "Define" button in the image properties dialogs.

The landmarks editor shows the image in the left panel and a list of the landmarks already defined int the right panel. You can zoom around
the image view using the same methods than in KLayout's layout view (mouse wheel, middle mouse button, zoom box with right mouse
button).

To add a landmark choose "Add" mode. Then click at the desired position of the new landmark. It will be shown in the image as a small
target cross symbol. To delete a landmark, choose "Delete" mode and click on the landmark to delete. You can also select a landmark from
the list and enter Delete mode. In that case, the currently selected landmarks are deleted.

To move a landmark, enter "Move" mode and move the landmark. Please note that the move operations follows KLayouts "pick and place"
philosophy, so you have to click with the mouse twice: once to pick the landmark and second to drop it. The advantage of this approach is
that you can zoom while dragging the landmark.

It does not make much sense to define more than 4 landmarks because for more the transformation derived from the landmarks is
overdetermined. For best accuracy it is important to select landmark positions that span a large region. In particular, landmarks should not
be too close and three landmarks should not form a line.

Dependent on the number of landmarks, KLayout can adjust the following parameters of the image:

• 1 Landmark: displacement

• 2 Landmarks: displacement, rotation and magnification

• 3 Landmarks: displacement, rotation, magnification and shear

• 4 Landmarks: displacement, rotation, magnification, shear and perspective distortion

Once the landmarks are defined, they can be used to adjust the image's display transformation. To do so, enter "Move" move in KLayout.
When the mouse is over the image, the landmark symbols are shown and can be picked with the mouse. When you pick up a landmark
and move the mouse, KLayout will adjust the image transformation and display the image frame according to the new transformation.
When you drop the landmark, the image will be transformed accordingly.

Depending on the number of landmarks, KLayout can adjust either some or all transformation parameters such as displacement, angle
etc. such that the other landmarks stay on the same position. In some cases that may not be desired. For example, if four landmarks are
defined and one of them is moved, the result may be an extreme perspective distortion. Usually one would do a coarse adjustment by
roughly adjusting the position and magnification and use the perspective transformation only to fine-adjust the image finally.

Hence, KLayout allows reduction of the degree of freedom it has when adjusting the transformation. While you drag a landmark, you can
use these modifier keys:

• Shift: Only adjust displacement

• Ctrl: Adjust displacement, rotation and magnification

• Shift+Ctrl: Adjust displacement, rotation, magnification and shear

For more details visit
https://www.klayout.org

Page 48 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.33. Browsing Shapes

1.1.33. Browsing Shapes
A simple shape browser allows browsing all shapes on a layer. To do so, select the layer or layers to browse in the layer list and choose
"Browse shapes" from the "Tools" menu.

A browser dialog will appear that lists the cells, shapes and cell instances. Selecting a cell will display all shapes in the cell in the middle list
and the cell's instances with respect to the top cell in the right list.

If a shape is selected, the layout canvas highlights this shape by drawing a marker box around the shape and zooming to the shape. How
the shape is shown can be configured on the "Configure" tab of the shape browser dialog or on the respective page in the "Setup" dialog.

Another feature that among many other things allows inspection of shapes is the "Search and replace" function (see Search and Replace).

For more details visit
https://www.klayout.org

Page 49 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.34. Browsing Instances

1.1.34. Browsing Instances
All instances of a cell can be browsed by selecting the cell in the cell list (not making it the new top), and choosing "Browse instances"
from the "Tools" menu. A simple instance browser comes up that shows all cells that the given cell is instantiated in and how the cell is
instantiated.

Another feature that among many other things allows inspection of instances is the "Search and replace" function (see Search and
Replace).

For more details visit
https://www.klayout.org

Page 50 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.35. The Marker Browser

1.1.35. The Marker Browser
KLayout offers a generic concept of storing error markers or related information. This concept is called the "Report database" (RDB). An
arbitrary number of report databases can be associated with a layout view. Usually, each database refers to a certain layout but that is not
a strict requirement.

A report database primarily is a generic collection of "values", which can be strings or other items. Usually, a value is a collection of
geometrical objects which somehow flag some position or drawn geometry. Multiple of such values comprise a "marker item". The report
database associates these marker items with additional information:

• Tags: Flags that indicate certain conditions. The marker browser uses a couple of predefined tags like "important", "waived" and
"visited" which can be set or reset by the user indicating whether a marker item is considered important or an error has been waived.

• Image: A marker can be assigned a screenshot image which serves for documentation purposes.

Marker items are organized into categories. Each marker item must be associated with a category. Categories themselves can be
organized hierarchically, i.e. categories can be split into sub-categories. This offers a way of improving the organisation of such categories.

Marker items are usually associated with a cell, i.e. where a error was detected. By default, a marker item is simply associated with the top
cell.

The report database uses a proprietary format based on XML which is capable of storing the annotations provided by the database. It is
possible however to import Calibre DRC ASCII format files.

The marker browser is a tool to browse a report database associated with a view. The marker browser can be started using the "Marker
Browser" function in the "Tools" menu. The marker browser tracks whether a marker has already been visited similar to the "read" flag in a
mail client. This allows tracking of a review session. The "visited" state is reflected in the database file.

In the marker browser, use the "Open" button to load a XML database file or import files from other formats. Choose "Reload" to reload a
file and "Save As" to write a database in XML format.

The marker browser offers three panels:

• Directory: This panel lists the categories and cells of the database. Categories or cells with unvisited markers will be shown in bold
font. Such with no markers at all are shown in green color. It is possible to suppress these categories or cells by deselecting "Show
All" in the directory's context menu. To have the lists sorted by marker count, click at the header of the count column.
Multiple categories or cells can be selected. In that case, the markers panel will show the markers of all selected cells or categories.

• Markers: This panel lists the markers in the selected category and/or cell. A length of the list is limited and can be changed on the
configuration page ("Configure" button on the marker browser or in the setup dialog). Various tags are shown in this panel as well.
The list can be sorted in various ways by clicking at the respective header.
When a marker is selected in this list, it will be highlighted in the layout, provided a suitable layout is associated. The way a marker is
highlighted and how the view is adjusted can be specified on the configuration page.

• Info: This panel summarizes the information for the selected marker. If a screenshot was associated with the marker it is shown here.
Click on the thumbnail image to show it in a separate window in the original size.

Similar to the shape and instance browsers, the marker browser offers navigation buttons to select the next marker, category or cell.

The marker browser supports "tagged values": each marker can be associated with a value that has a name. Such values can be imported
from RVE files where they are called properties. Tagged values are generated by certain generators and can represent measurement
values or similar. When tagged values are present, they will be shown in the markers list. The markers can be sorted by these values by
clicking on the appropriate header.

For more details visit
https://www.klayout.org

Page 51 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.36. Technology Management

1.1.36. Technology Management
A new feature of KLayout 0.22 is technology management. Technology management summarizes features which require a certain
interpretation of a layout. In particular, layout layers are assigned a physical meaning, for example via layers or active area layers in CMOS
technologies. Since that interpretation often is depending on the technology the product will be fabricated with, the ability to provide multiple
setups is summarized as "technology management".

The "Technology Manager" in the "Tools" menu is the user interface that allows creating, deleting and editing of technology setups. Read
more about the technology manager in About Technology Management

For more details visit
https://www.klayout.org

Page 52 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.37. Selecting Rulers, Shapes Or Instances

1.1.37. Selecting Rulers, Shapes Or Instances
Rulers, images, shapes or instances can be selected by either clicking on the shape, instance, ruler or image in "Select" mode or by
dragging a selection rectangle with the left mouse button pressed. In this case, all objects inside the selection rectangle will be selected.

Pressing the Shift key in addition to selecting shapes, instances or other objects will extend the current selection. Pressing Ctrl key will
remove the given objects from the selection.

For layout objects (shapes and instances), it is possible to select the objects through the hierarchy or on the level of the current cell only
(top level objects only). By default, objects are selected through the hierarchy. That means, objects in child cells can be selected. By
extending the selection over multiple instances of a cell, the same object can be selected multiple times. While editing objects inside a child
cell may be a desirable feature, this can lead to confusing effects in the end. Hence, it may to more intuitive to only work on top level, i.e.
on the current cell. To enable this mode, check the "Select Top Level Objects Only" menu item in the "View" menu or the same in the edit
mode options dialog (F3).

In top-level only mode, instances of cells are selected only if the cells have a visual appearance. This is the case, if they contain at least
one shape on a visible layer for example. If they are empty with respect to the visible layers, they cannot be selected. If the cell's box is
shown, because the hierarchy levels shown are confined a sufficiently small interval, the cell instances will always be selected.

Images and rulers are simple objects not embedded in a hierarchy and can be selected by clicking at them or enclosing them in the
selection box.

Object properties can be inspected or edited (if allowed) by opening the properties dialog. To edit or inspect the properties of selected
objects, choose "Properties" from the "Edit" menu. A dialog will open which shows the properties for the first selected object. To proceed to
the next object push the "Next" button, to go back to the previous object push the "Previous" button.

Depending on the application mode, the properties of the selected objects may be edited too. To apply changes to the current object,
choose "Apply". To apply the changes and close the dialog, choose "Ok". To apply the changes to the current object and all other selected
objects of the same kind, choose "Apply To All" (if applicable). To close the dialog without applying any changes, choose "Cancel".

"Apply To All" will try to apply the changes in some smart way to other objects. For example, for boxes, and change of the box dimensions
will be applied in the same way (same shift in the four directions) than for the current object. If the width of a path has been changed, the
same width will be applied to all other paths and so forth.

For shapes and instances, the "User properties" can be edited too. "User properties" are arbitrary properties attached to shapes and
instances. They consist of a key (preferably a number for GDS2 compatibility) and a value (preferably a string in GDS2). Multiple properties
of that kind can be attached to one object. User properties can be edited by pushing the "User Properties" button which will open a dialog
that allows editing of the properties. If this dialog is closed with "Ok", the user properties will be kept, but applied to the layout object only
after pressing "Apply"/"Ok" or "Apply To All". The latter will apply the new properties to all other shapes of the same kind.

Finally, for shapes and instances, the "Instantiation" button will show the instantiation path of the shapes or instances.

The layer of a shape cannot be changed through the properties dialog. To move a shape to a different layer, use "Change Layer" from the
"Selection" sub-menu in "Edit".

For more details visit
https://www.klayout.org

Page 53 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.38. More Configuration Options

1.1.38. More Configuration Options
The option dialog available with the "Setup" function from the "File" menu offers numerous configuration options from background to rulers
configuration.

In this dialog for example, the color palette can be edited, so that different colors are available or the stipple palette can be configured. In
addition, it is possible to define the order how these colors or stipples are assigned to layers initially and which colors are not used for layer
coloring.

A particular useful feature is the oversampling scheme. Oversampling is provided as an option to enhance the image quality. The image
is rendered at a higher resolution and then downsampled to the screen resolution. In effect, lines appear thinner and more details can be
resolved. As a negative side effect currently the stipple pattern becomes finer and the crosses in marker mode are smaller. On the other
hand the resolution effect can be quite impressive.

Oversampling can be enabled on the "Display/General" page in the setup dialog. 2x and 3x oversampling is provided. The following
screenshots illustrate the effect of oversampling:

Normal (1x)

For more details visit
https://www.klayout.org

Page 54 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.38. More Configuration Options

2x oversampling

3x oversampling

For more details visit
https://www.klayout.org

Page 55 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.39. Undo And Redo

1.1.39. Undo And Redo
Most operations such as changing of layer colors can be undone using the "Undo" function from the "Edit" menu. Analogous, the
operations can be redone again using the "Redo" function from the "Edit" menu.

For more details visit
https://www.klayout.org

Page 56 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.40. Saving A Layout Or Parts Of It

1.1.40. Saving A Layout Or Parts Of It
A layout or a subcell of it can be saved to either GDS2 or OASIS. To save a layout, choose "Save As" from the "File" menu. To save just a
cell, select the cell in the cell tree (it does not need to be the currently shown one) and select "Save Current Cell As" from the context menu
(right mouse button) of the cell tree.

A file dialog will pop up to select the file name to which to write the cell or layout. After a file has been selected, an option dialog will
be shown to specify further options. In this dialog, it is possible to constrain saving to a subset of layers, i.e. just visible ones. Also, the
database unit can be changed or the layout can be scaled by a given factor.

For OASIS, a compression level can be specified. At a level of 0, no particular attempt is made to compress shapes. At higher levels,
shapes are classified and array compression is tried. The higher the level, the more attempts are made to compress shapes into arrays. In
particular for flat layouts, compression of shapes requires some memory and slows down OASIS writing considerably.

For more details visit
https://www.klayout.org

Page 57 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.41. Saving And Restoring A Session

1.1.41. Saving And Restoring A Session
A session can be saved and restored later. A "session" involves the files loaded, bookmarks, annotations, layer settings, hierarchy settings,
images and application setup. Sessions are stored as XML files with the suffix ".lys".

To save a session, choose "Save Session" from the "File" menu. To restore a session, choose "Restore Session". KLayout can be started
with a certain session using the "-u" option from the command line followed by the session file. On Windows installations, session files are
registered as being opened automatically by KLayout.

For more details visit
https://www.klayout.org

Page 58 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.1.42. Further View Options

1.1.42. Further View Options
The "View" menu offers some more options to tune the display:

• Show Grid: This is a fast access method for the respective configuration option. Unchecking this menu entry hides the grid lines and
the scale bar.

• Grids: this submenu allows fast access to the current grid setting. You can choose from one of the default grids that are configured
on the "Default Grids" page in the "Application" section of the setup dialog. Grids are mainly used for editing geometry but also for
snapping rulers if they are configured to do so.

• Show Texts: when this option is unchecked, texts are not drawn. That applies to text objects and user properties. Drawing is
somewhat faster when texts are not drawn.

• Show Cell Frames: when this option is unchecked, cell frames from hidden cells or cell below the hierarchy levels selected are not
drawn.

• Show Layers Without Fill: when this option is checked, the shapes are drawn without fill. Hence the layout is shown in a kind of wire
frame. This option is intended to temporarily disabling the fill pattern. Keeping this option checked may be confusing because setting
a fill pattern may not have any effect then.

• Synchronized Views: with this option, all views (tabs) in the main window are synchronized, i.e. they show the same region of the
layout. This option can be useful if two layouts are loaded in different views for clarity, but identical regions need to be inspected.

• Select Top Level Objects: this menu item gives a quick access to the respective editor option. If this option is checked, only objects
from the top level are selected. This is in particular important for editing because editing a subcell can cause effects in other places
there that cell is instantiated but no edit is intended.

• Toolbar, Navigator, ...: disable or enable the respective tool windows.

• Highlight Object Under Mouse: with this option checked, the object under the mouse is highlighted temporarily if the mouse hovers
over that object. Since that can be confusing in some (rare) cases, this menu item provides quick access to that configuration option.

For more details visit
https://www.klayout.org

Page 59 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2. Editing Functions

1.2. Editing Functions
Welcome to KLayout's user manual. This is the manual chapter covering the editing features of KLayout. The editor features are available
only if KLayout is started in editor mode. The following subtopics are available:

• Edit Mode

• Basic Principles Of Editor Mode

• Basic Editing Operations

• Advanced Editing Operations

For more details visit
https://www.klayout.org

Page 60 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.1. Edit Mode

1.2.1. Edit Mode
Editor functions can only be used if KLayout runs in edit mode. KLayout can be put into editing mode by simply supplying the "-e" option on
the command line:

klayout -e [<input file>] [-l <layer properties file>]

Accordingly, with the command line option "-ne", non-editable mode can be enforced.

On Windows, there are start menu entries for editor and viewer mode. Klayout can be configured to use editing mode as default when
started. To enable editing by default, check the "Edit mode" check box on the "Application" tab in the setup dialog ("File/Setup").

In editing mode, some optimizations are disabled. This results in somewhat longer loading times and a somewhat higher memory
consumption. The actual increase strongly depends on the nature of the input file: for example, OASIS shape arrays are not kept as such in
editing mode and resolved into individual shapes.

For more details visit
https://www.klayout.org

Page 61 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.2. Basic Principles Of Editor Mode

1.2.2. Basic Principles Of Editor Mode
This section covers the basic working principles of editor mode.

• Pick And Drop Principle

• Basic Editor Options

• Background combination modes

• Selection

• Partial Mode

For more details visit
https://www.klayout.org

Page 62 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.2.1. Pick And Drop Principle

1.2.2.1. Pick And Drop Principle
Most drawing programs employ the click-and-drag paradigm: left-click on an element and drag it to the destination keeping the mouse
button pressed. Although being pretty intuitive, this principle has one disadvantage: it is hard to do something other than dragging, while
you keep the mouse button pressed. In particular this means: no zooming (or would you like to press the right mouse button as well, draw
the zoom box and then release just the right mouse button ...?). In order to allow zoom and potentially other operations, KLayout employs
the pick-and-drop-principle.

In pick-and-drop, you pick an element by clicking at it with the left mouse button, move it (without any mouse button pressed) and drop it
(by left-clicking at the target position). Since the mouse button is not pressed, the mouse is free for other operations: just the dragged item
is "sticking" to the mouse cursor.

In addition, while dragging the object, Shift and Ctrl keys can be used to force certain direction constraints or override the ones specified
in the options (i.e. "move" or "edit" options): The Shift key forces KLayout into orthogonal mode: movements are restricted to horizontal
or vertical unless not applicable. The Ctrl key forces KLayout into diagonal mode: movements are restricted to horizontal, vertical or the
diagonal axes. Ctrl plus Shift will release all directional constraints - movements will be allowed in any direction.

For more details visit
https://www.klayout.org

Page 63 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.2.2. Basic Editor Options

1.2.2.2. Basic Editor Options
Most tools being using in editing mode have certain options, i.e. when drawing a path, the width and extension mode has to be specified.
There exists a general setup dialog for editing options. It can be opened using "Editor Options" from the "Edit" menu or using the F3
shortcut (unless overridden).

In the dialog there is always a generic settings tab and - depending on the tool chosen - a tool specific tab. On the generic tab, these
settings can be changed:

• Editor grid: Every editing operation is confined to that grid. It can be either disabled, aligned with the global grid (used i.e. for rulers
and display) or specified explicitly. It can even be anisotropic - i.e. there can be a different grid in y than in x direction.

• Connection angle constraint: When a connection is drawing, i.e. a segment of a path or an edge of a polygon, this mode
determines, if the segment or edge is confined to certain directions. In "Any Angle" mode, there is no such confinement. In "Diagonal"
mode, the edge or segment can be vertical, horizontal or in one of the two diagonal directions. In "Manhattan" mode, only horizontal
and vertical edges or segments are allowed.

• Movement direction constraint: When something a dragged (i.e. moved), this mode determines if the movement is confined
to certain directions. In "Any Direction" mode, there is no such confinement. In "Diagonal" mode, the movement can be vertical,
horizontal or in one of the two diagonal directions. In "Manhattan" mode, only horizontal and vertical movements are allowed.

• Top level selection mode: In top level selection mode (when the check box is checked), only elements on the level of the currently
shown cell are selected ("top level" refers to the top level of the currently shown cell here). That means, that if shapes from a subcell
are selected, the whole instance of this subcell is selected.
In hierarchical selection mode (when the check box is not checked), elements are selected from subcells are well. This mode allows
in-place editing of subcells which is a powerful feature but also creates strange side effects if other instances of this cell changes as
well.

Whenever you change something in the settings dialog, use "Apply" or "Ok" to apply your changes.

For more details visit
https://www.klayout.org

Page 64 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.2.3. Background combination modes

1.2.2.3. Background combination modes
KLayout offers several ways to combine the shapes drawn with shapes that are already there. The mode can be selected with the "Select
background combination mode" tool button in the tool bar:

These are the modes available:

• Add: this is the default mode: the drawn shape will simply be added to the existing shapes.

• Merge: in this mode, the drawn shape will be merged with the existing shapes. This operation will always render a polygon that is
the drawn shape merged with any polygons that touch or overlap the drawn shape. Paths will be converted to polygons always. This
mode is equivalent to a boolean "OR" operation.

• Erase: in this mode, the drawn shape will be subtracted from the existing shapes. This mode can be used to create notches or
slits in shapes touching or overlapping the drawn shape. The drawn shape will vanish. This mode is equivalent to a boolean "NOT"
operation.

• Mask: in this mode, the drawn shape will act as a mask for existing shapes. Only the parts overlapping the drawn shape will remain.
This mode is equivalent to a boolean "AND" operation.

• Diff: finally, in this mode, the drawn shape will invert existing shape. This mode is equivalent to a boolean "XOR" operation.

For more details visit
https://www.klayout.org

Page 65 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.2.4. Selection

1.2.2.4. Selection
The basic entity that some operations work with is the "selection". This is basically a set of shapes of instances on which an operation
should be applied. A selection can be established by either clicking on a element in "Select" mode or by dragging a selection rectangle.
When the mouse is released, all elements inside the selection rectangle are selected.

The selection set can be modified by adding elements (press the Shift button in addition to selecting elements), by removing elements
(press Ctrl in addition) or by toggling the selecting (press Shift and Ctrl in addition: remove already selected ones and add new ones).

For more details visit
https://www.klayout.org

Page 66 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.2.5. Partial Mode

1.2.2.5. Partial Mode
"Partial editing" is a powerful feature that allows modification of shapes. Edges or segments of polygons resp. paths can be moved,
vertices, edges or segments from polygons or paths can be deleted and new points can be inserted into polygons and paths. "Partial
editing" can be applied to a complex partial selection: Multiple edges or vertices can be selected and deleted or moved.

The normal selection works "full element". In this mode, the whole shape is being moved or deleted. Only in full element mode, shapes or
instances can be sent to the clipboard.

For more details visit
https://www.klayout.org

Page 67 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.3. Basic Editing Operations

1.2.3. Basic Editing Operations
This section covers some basic operations when editing layout.

• Creating A Layout From Scratch

• Creating A New Layer

• Creating A New Cell

• Creating A Polygon

• Creating A Box

• Creating A Text Object

• Creating A Cell Instance

• Moving The Selection

• Other Transformations Of The Selection

• Partial Editing

• Moving Shapes To A Different Layer

• Other Layer Operations

• Copy And Paste Of The Selection

• Delete A Cell

• Rename A Cell

• Copy And Paste Of Cells

For more details visit
https://www.klayout.org

Page 68 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.3.1. Creating A Layout From Scratch

1.2.3.1. Creating A Layout From Scratch
To start with a fresh, empty layout, choose "New" from the "File" menu. A form is opened that requires you to specify some basic
parameters. These are:

• Top cell: this is the name of the first (and only) cell that will be present in the layout.

• Database unit: this is the database unit (the conversion factor between integer coordinates and micron units. This is basically the
"resolution" of the layout.

• Initial window size: this is the size of the initial window shown, when the top cell is opened the first time. Since the initial view is
empty, there is no geometrical guidance. By specifying an initial size, at least the "canvas" dimensions are known.

If a default layer properties file is specified in the setup dialog ("Application" tab), this is loaded into the layer view list automatically. Without
such a file, the layer list is empty at the beginning and layers must be created with "Layer/New" from the "Edit" menu, before any shapes
can be drawn.

For more details visit
https://www.klayout.org

Page 69 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.3.2. Creating A New Layer

1.2.3.2. Creating A New Layer
You can create new layers using the "Layer/New Layer" function from the "Edit" menu. You are prompted to enter GDS layer and datatype
numbers and optionally an OASIS layer name. On "Ok", the layer will be created and will be inserted into the layer panel.

For more details visit
https://www.klayout.org

Page 70 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.3.3. Creating A New Cell

1.2.3.3. Creating A New Cell
You can create new cells using the "New Cell" function from the hierarchy panel's context menu (right mouse click on the cell hierarchy
panel). You are prompted to enter the new cell's name (a cell with that name must not exists yet) and a window size. The window size is
the initial dimension of the view when the new cell is shown. Apart from that it does not have any meaning.

For more details visit
https://www.klayout.org

Page 71 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.3.4. Creating A Polygon

1.2.3.4. Creating A Polygon
Select "Polygon" mode from the toolbar. Choose a layer from the layer panel in which to create a new polygon. Left-click at the first vertex
of the polygon. Move the mouse to the next vertex and place a new one with a left mouse button click. Move to the next vertex. Depending
on the connection mode, the edges created are confined to certain directions. See Basic Editor Options for a detailed description of the
modes. Use the "editor options" dialog (F3 shortcut) to change the mode, even during editing.

Double-click at the final point to finish the polygon. Press the ESC key to cancel the operation.

A polygon will never be "open": there are always edges connecting the current vertex with the initial one. Depending on the mode, this
final connection is either a straight line or a combination of edges. In "diagonal mode", there are manifold possibilities to create a final
connection in a more or less smart way. The program uses some heuristics to determine one feasible combination. Although this heuristics
is not infinite smart, it should be easy to lead the algorithm to the desired solution, by pointing the mouse into the desired direction.

For more details visit
https://www.klayout.org

Page 72 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.3.5. Creating A Box

1.2.3.5. Creating A Box
Select "Box" mode from the toolbar. Choose a layer from the layer panel in which to create a new box. Left click at the first point, move the
mouse to the second point and finish the box by left-clicking at the second point. Press the ESC key to cancel the operation.

Hint: A box, once created, will remain a box. For example, it is not possible to delete one vertex of it, thus forming a triangle. This is only
possible for polygons.

For more details visit
https://www.klayout.org

Page 73 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.3.6. Creating A Text Object

1.2.3.6. Creating A Text Object
Select "Text" mode from the toolbar. The editor options dialog will open that additionally prompts for the text string. Don't forget to click
"Apply" to take over the current string. If the dialog has been closed unintentionally, it can be reopened with the F3 shortcut.

To actually draw the text, move the mouse to the desired location and left-click to place it.

A text can be given a size which is stored in a GDS2 file (OASIS files do not provide this feature). The size of the text is only shown in the
layout if a scalable text font is selected (the "Default" font is not scalable) and text scaling is enabled. In order to do so, choose a scalable
font from the "Text font" selection box in the "Display" tab of the setup dialog and check the "Apply text scaling and rotation" box in the
same tab.

The text can also be rotated, which is shown as well only if text scaling and rotation is enabled. To rotate a text while placing it, click the
right mouse button. This will rotate the text by 90 degree counterclockwise.

For more details visit
https://www.klayout.org

Page 74 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.3.7. Creating A Cell Instance

1.2.3.7. Creating A Cell Instance
Select "Instance" mode from the toolbar. The editor options dialog will open that additionally prompts for some instance parameters. The
most important one of course is the cell that shall be placed. Geometrically, the rotation angle can be specified, the mirror option can be
set and the instance may be specified as a regular array. As an array, the instance represents multiple placements of the cell, arranged in
regular grid which is specified by the two axis vectors and instance counts in each direction. Don't forget to click "Apply" to take over the
current settings. If the dialog has been closed unintentionally, it can be reopened with the F3 shortcut.

To place the instance, move the mouse to the desired location and left-click to place it. While moving, the right mouse button can be used
to rotate the instance by 90 degree counterclockwise. Press the ESC key to cancel the operation.

Starting with version 0.22, KLayout supports libraries. Libraries provide cells from the outside of the layout. These cells are imported into
the layout and a copy is stored inside the layout. Still, KLayout maintains the reference to the original layout, so if the library changes, the
cell will be replaced when the layout is loaded again. Cells imported from a library appear as "Library.Cell" in the cell tree and the layout.
Here, "Library" is the library name and "Cell" is the cell name.

The library is selected from the pull-down box to the right of the cell name. You can use the "..." button to browse the cells available in the
selected library.

Libraries are a convenient way to provide common layout building blocks. In addition, KLayout now also supports PCells (parametrized
cells). Such cells do not have a static content, but instead they are created dynamically from a piece of code using a set of parameters
specific for the PCell type. For example, a circle has two parameters: the layer where the circle should appear and the radius of the circle.

PCells are provided by libraries. If a PCell is selected from a library, the instance properties page also offers a panel to edit the PCell
parameters. What parameters are available depends on the type of PCell.

KLayout comes with a standard library "Basic" which offers some basic curved shape types and a text generator.

KLayout offers a unique feature for the PCell implementation: a PCell can employ "guiding shapes". "Guiding shapes" are shapes that do
not appear as layout themselves but are used by the PCell to derive its geometry from. For example the "rounded path" PCell of the "Basic"
library uses a path as a guiding shape. This path is manipulated to obtain the final shape.

Guiding shapes are drawn on the cell box layer and can be manipulated with the normal shape manipulation functions (in particular move
and partial edit). Also, the shape properties can be edited via the "Edit/Properties" function.

To learn more about libraries, read About Libraries. Read About PCells for details about PCells.

For more details visit
https://www.klayout.org

Page 75 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.3.8. Moving The Selection

1.2.3.8. Moving The Selection
The whole selection can be moved in "Move" mode. If some elements are already selected, choose "Move" mode and select a reference
point by left-clicking at the position. The reference point will be used as the "dragging handle" - each element is moved relative to this
position. In no elements are selected when entering move mode, simply click at the element to move and place it somewhere else with a
left mouse click.

While moving, the whole selection can be rotated by 90 degree counterclockwise with a right mouse button click. The ESC key will cancel
the operation.

For movements, the movement direction constraint apply. See Basic Editor Options for details about the modes available. For example, in
manhattan mode, only horizontal and vertical movements are allowed. The global movement constraint can be overridden by pressing Shift
(orthogonal), Ctrl (diagonal) or both Shift and Ctrl (any angle) while moving the mouse.

If a move distance and direction is known numerically, "Move By" from the "Edit/Selection" menu can be used. A dialog will open that allows
specification of the horizontal and vertical move distance in micrometers. Positive values move to the top or right and negative ones to the
bottom or left. This dialog also applies to partial mode, so that edges or parts of a layout can be moved precisely by a certain distance in a
certain direction.

In the same way, "Move To" allows one to reposition the selection to a certain point. The point which is positioned can be chosen relative
to the bounding box of the selection. If first example, the lower-left corner of the selection is picked as the reference point and a certain
position is given in the dialog, the selection is moved such that the lower left position of its bounding box will match the given coordinate.

For more details visit
https://www.klayout.org

Page 76 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.3.9. Other Transformations Of The Selection

1.2.3.9. Other Transformations Of The Selection
The selection can be flipped at x- or y-axis, rotated as a whole or moved by a certain distance using the functions available in the
"Selection" submenu of the "Edit" menu. For example, "Flip Vertically" flips the selection at the x-axis. A selection can be rotated by an
arbitrary angle using the "Rotation By Angle" function from the "Selection" submenu.

For more details visit
https://www.klayout.org

Page 77 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.3.10. Partial Editing

1.2.3.10. Partial Editing
When objects have to be modified after the have been created, partial editing comes into play. "Partial" refers to the fact that just parts of a
polygon or path are edited. For example, just one vertex or an edge of a polygon can be moved. Partial editing mode also allows deleting
single vertices or edges or to insert new ones. In partial editing mode, multiple edges or vertices can be selected, even a whole shape can
be selected and can then be moved or deleted.

When moving the selected parts, the movement direction constraint applies. See Basic Editor Options for details about the modes
available. For example, in manhattan mode, only horizontal and vertical movements of parts are allowed. Again, the global movement
constraint can be overridden by pressing Shift (orthogonal), Ctrl (diagonal) or both Shift and Ctrl (any angle) while moving the mouse.

To enter partial mode, click on the "Partial" button in the toolbar. Parts (edges or vertices) can then be selected either by simply clicking at
them or by dragging a selection rectangle. As in normal selection mode, the modifier buttons Shift and Ctrl can be used to add a selection
to the existing one or to remove elements from the existing selection. Partial selection is subject to the "top level only" constraint (see Basic
Editor Options for a description of the top level selection mode).

Simply clicking at an item immediately enters "move" mode. In this mode, you can position the element at the desired target location
and place it there by left-clicking at the position. Press "ESC" to cancel the operation. When a complex selection is made, move mode is
entered by clicking at one of the selected items (the edges or vertices, not the shape to which they belong).

When moving parts, certain constraints apply, i.e. single edges can only be moved perpendicular to their current position. In addition, the
movement is confined to the editing grid.

The selected items can be deleted by using the "Delete" function from the "Edit" menu or pressing the "Delete" key. If not enough vertices
remain to form a valid object, the object is deleted (i.e. a polygon with less then 3 points).

By double-clicking at an edge or path segment, an additional point is created on this edge at the cursor's position. You can create a "bend"
on a path by placing two new vertices on that segment and moving the connecting segment between these vertices away from the former
center line. This basically requires two double-clicks on the path's centerline, a single click on the newly formed segment and a single click
to drop it at the new position.

For more details visit
https://www.klayout.org

Page 78 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.3.11. Moving Shapes To A Different Layer

1.2.3.11. Moving Shapes To A Different Layer
The selected shapes can be moved to a different layer as a whole. For this, choose "Change Layer" from the "Selection" submenu of the
"Edit" menu. All selected shapes are moved to the layer that is the current one (marked with a rectangle) in the layer list. The shapes will
not be moved across the hierarchy but just inside their cell.

All layers (source and target) must be located in the same layout. To move shapes to a different layout, use copy & paste.

For more details visit
https://www.klayout.org

Page 79 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.3.12. Other Layer Operations

1.2.3.12. Other Layer Operations
The layer specification can be edited using the "Edit Layer Specification" method from the "Layer" submenu inside the "Edit" menu. A dialog
is shown in which the layer, datatype and (OASIS) name of the layer currently selected in the layer panel can be edited. On save, the
shapes are then mapped to the new layer.

A layer can be cleared (either cellwise, on a cell's hierarchy or for all cells) using the "Clear Layer" method from the "Layer" submenu inside
the "Edit" menu.

Layers can be copied (duplicated) using "Copy Layer" from the "Layer" submenu inside the "Edit" menu and deleted completely using
"Delete Layer".

For more details visit
https://www.klayout.org

Page 80 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.3.13. Copy And Paste Of The Selection

1.2.3.13. Copy And Paste Of The Selection
Of course, copy and paste is supported as usual. Shapes can be copied between layouts: by opening two layouts, shapes can be moved
from one layout to another. The shapes are mapped to the same layer than they have been on in the source layout. If a layer does not exist
yet in the target layout, it is created.

Shapes in the selection are simply copied to the clipboard in the way they appear in the current cell. This means, if the shapes are pasted
into a different layout they are put on the same position, but flat into the current cell. This provides a way to flatten a hierarchy: choose
"hierarchical selection mode" in the editor options dialog (deselect "top level only"), select the shapes to flatten and copy everything to a
different cell.

In non-hierarchical selection mode ("top level only" selection mode) or by clicking on a cell frame when the hierarchy levels are limited,
instances can be selected as well. When copying instances to the clipboard, two possible methods exist:

• Shallow copy: In this mode, just the instance is copied. When it is pasted into any target layout, the target cell of the instance is
looked up and instantiated.

• Deep copy: Not only the instance but the instantiated cell is copied as well. When pasting that into a different layout, the target cell
will be created as well. If a cell with that name already exists, a variant is created and instantiated.

For more details visit
https://www.klayout.org

Page 81 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.3.14. Delete A Cell

1.2.3.14. Delete A Cell
To delete a whole cell, select the cell in the hierarchy browser and choose "Delete Cell" from the context menu (right mouse button). This
time, three possible modes are offered:

• Shallow delete: Just the cell (its shapes and instances) are deleted, not any cells referenced by this cell. Since cells might no longer
be referenced after that, they may appear as new top cells in the layout.

• Deep delete: The cell and all its subcells are deleted, unless the subcells are referenced otherwise (by cells that are not deleted). In
this delete mode a complete hierarchy of cells can be removed without side effects.

• Complete delete: The cell and all its subcells are deleted, even if other cells would reference these subcells.

For more details visit
https://www.klayout.org

Page 82 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.3.15. Rename A Cell

1.2.3.15. Rename A Cell
To rename a cell, select the cell in the hierarchy browser and choose "Rename Cell" from the context menu (right mouse button). You are
prompted for a new name which must not exist yet.

For more details visit
https://www.klayout.org

Page 83 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.3.16. Copy And Paste Of Cells

1.2.3.16. Copy And Paste Of Cells
Whole cells can be copied to the clipboard as well. To copy a whole cell, select the cell in the hierarchy browser (make sure the focus is
in that window) and choose "Copy" or "Cut" from the "Edit" menu. To paste such a cell into a target layout, choose "Paste" from the "Edit"
menu.

Two copy modes are provided: deep and shallow copy. When "copy" or "cut" is chosen and the cell instantiates other cells, a dialog will
been shown in which the mode can be selected:

• Shallow copy: In shallow mode, only the cell itself will be copied. No copies of the child cells will be created. If a cell copy is created,
the cell will call the same cells than the original cell. If a cell is copied to another layout (in a different tab), the child cells will not be
carried along and "ghost" cells will be created or existing cells with the same name will be used as child cells.

• Deep copy: In deep copy mode, the cell plus its child cells are copied. All cells will be carried along and when pasting the cell, copies
of all children will be created as well.

When a cell is pasted into another layout and there is a "ghost cell" with that name, the pasted cell will replace the ghost cell. If there is a
normal cell with that name, a new cell variant will be created and the name of the pasted cell will be changed by adding a suffix to create a
unique name.

Copying a cell in deep copy mode from one layout to another provides a way to merge two layouts into one: simply copy the top cell of the
first layout into the second one and instantiate both in a new top cell for example.

For more details visit
https://www.klayout.org

Page 84 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4. Advanced Editing Operations

1.2.4. Advanced Editing Operations
This section covers the more advanced features of editor mode.

• Layout Transformations

• Search and Replace

• Hierarchical Operations: Flatten Instances, Make Cell From Selection, Move Up In Hierarchy

• Creating Clips

• Flatten Cells

• Resolving Arrays

• PCell Operations

• Layer Boolean Operations

• Layer Sizing

• Shapewise Boolean Operations

• Shapewise Sizing

• Object Alignment

• Corner Rounding

• Cell Origin Adjustment

• Create Cell Variants

For more details visit
https://www.klayout.org

Page 85 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.1. Layout Transformations

1.2.4.1. Layout Transformations
Some functions are available to transform a whole layout. Whole-layout transformations are applied to all cells in a way that every cell will
be modified in the same way. This feature is specifically useful for scaling layouts. It is worth noting that scaling a layout this way does not
produce instances with magnifications.

The layout transformation functions are available in "Edit/Layout" (flip, rotate, scale, move).

For more details visit
https://www.klayout.org

Page 86 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.2. Search and Replace

1.2.4.2. Search and Replace
KLayout offers a "search and replace" function which provides a basic search and search+replace, but also a very generic and powerful
extended feature called "custom queries" (see below for that). The search and replace dialog can be found in the "Edit" menu under
"Search and replace".

The dialog provides four tabs in the left panel: "Find", "Delete", "Replace" and "Custom". The functionality of these four tabs is explained
below.

The left side of the dialog will hold results for operations which deliver a result, for example the "Find" operation. The result is a list which
displays various items, depending on the nature and parameters of the operation. If the item represents a layout object, for example a
shape or a cell instance, the items selected in the list are highlighted in the layout to indicate their position. The length of the list is limited to
avoid performance degradation for very long lists. The number of items shown can be configured on the configuration page.

The configuration page which allows configuration of the search and replace dialog's behavior is shown when the "Configure" button at the
left bottom corner is pressed. It can be found as well in the setup dialog under "Browsers", "Search Result Browser".

Find

The functionality of the "Find" tab is simple: Various conditions can be specified and all objects matching that condition are listed when the
"Find" button is pressed.

The parameters of that function involve: Object type, cell scope and object specific conditions. The object type is either "Instances" or a
shape object. For shapes, the shape type can be confined to "Box", "Polygon", "Path" or "Text" which enables specific features.

The cell context can be one of:

• Current cell: look in the current cell and none else. Child cells are ignored.

• Current cell and below: look into the current cell and all child cells, where all instances of the children are considered.

• All cells: look into every cell individually, but don't consider the way the cells are instantiated.

Depending on the object type various parameters are available to be included in the condition. Each condition applies to one specific
parameter and is usually composed of an operator (less, less than, equal ...) and a value against which the value of the parameter is
checked. Length and area values are given in micron or square micron units.

String values can be matched against glob pattern using the tilde ("~") match and non-match ("!~") operators. Glob pattern are the ones
used for file names on the command line and use "*" for an arbitrary sequence of characters and "?" for a single arbitrary character. Here
are some examples for glob pattern:

A* The string must start with a capital "A"

A The string must contain a capital "A" somewhere

ABC? "ABC" followed by any character

N{AND,OR} "NAND" or "NOR"

A[0-9] "A" followed by a digit

A[^0-9] "A" followed by a non-digit

If the value field is left empty, no check is made on that parameter. All conditions which are checked must be fulfilled to make the object
listed on the results page.

Delete

Similar to the find page, this function asks for an object type, a cell context and object specific conditions.

If the "Delete All" button is pressed, all selected objects are deleted.

If the "Select+Delete" button is pressed, the selected objects will first be shown in the result page, similar to the "Find" function. Then, some
or all of them can be selected and deleted by pressing the "Delete" button below the list.

For more details visit
https://www.klayout.org

Page 87 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.2. Search and Replace

Replace

Similar to the find page, this function asks for an object type, a cell context and object specific conditions. In addition, the function allows
specification of replacement values for the parameters. If an entry field is left empty for the replacement value, no replacement is made.

For strings with glob pattern matching, name parts can be reused in the replacement string. For example, if the operator is "~" on a text's
string and the match string is "A(*)", the replacement string can be set to "B\1". "\1" means the value of the first bracket in the match string,
hence this setup replaces all leading "A"'s by "B".

If the "Replace All" button is pressed, the replacement parameters are set on all selected objects.

If the "Select+Replace" button is pressed, the selected objects will first be shown in the result page, similar to the "Find" function. Then,
some or all of them can be selected and the replacement is made on them the "Replace" button is pressed below the list.

Custom queries

The full power of this dialog is unleashed when using that page. Custom queries are not only able to provide the functionality of the three
other pages (find, delete and replace), but provide functionality far beyond that simple scenarios.

Custom queries are statements resembling SQL statements with embedded expressions and a rich language to describe shape or cell
instantiation details. A in-depth description can be found here: About Custom Layout Queries.

The custom query dialog page offers an entry field to enter the query and below an "Execute" button to run it. The most recently used
queries can be pulled back into the edit field using the drop-down box below the edit field. Custom queries can be saved under a given
name and reused. The list of saved queries can be manipulated with the buttons right to it. See the button's tooltips for a description of the
button's functionality.

If the tab is switched to another tab and back, the custom query will be updated reflecting the query corresponding to the current
functionality selected on the other tab.

For more details visit
https://www.klayout.org

Page 88 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28
1.2.4.3. Hierarchical Operations: Flatten Instances, Make Cell From Selection, Move

Up In Hierarchy

1.2.4.3. Hierarchical Operations: Flatten Instances, Make Cell From Selection, Move Up
In Hierarchy
Klayout provides several operations that move shapes or instances up and down in hierarchy. All these operations are accessible through
the "Edit" menu in the "Selection" sub-menu.

• Flatten instances: Replace the selected instances by the contents of the instantiated cell. KLayout will ask, if all levels or just the
first level of the cell should be expanded. If all levels are expanded, the cell will be resolved into a set of shapes in the current cell's
hierarchy.

• Move up in hierarchy: Applies only to selections inside child cells of the current cell (thus does not make sense if 'top level only'
selection mode is active). The selected shapes and instances are brought up to the current cell's level and removed from the original
cell.
A non-destructive way of moving a shape up in the hierarchy is to copy and paste the shape. This does an explicit flattening of the
shapes selected when inserting them.
Hint: the current implementation removes the selected object from its original cell. Since it only creates new copies for the selected
instances, the object ist lost for all other instances of the cell. This may create undesired side effects and it is likely that this behaviour
will change in future implementations.

• Make cell from selection: Removes the currently selected objects and places them into a new cell whose name can be specified.

For more details visit
https://www.klayout.org

Page 89 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.4. Creating Clips

1.2.4.4. Creating Clips
KLayout provides a utility to create rectangular clips from a given cell. One or more rectangles can be specified. The current cell is cut
along the edges of these rectangles. For each rectangle, a new cell is created containing the clipped content for the rectangle. Finally, if
more than one rectangle is specified, all the clips are combined into a master top cell which appears as a new top cell in the cell hierarchy.

The clips can be either specified by coordinates, taken from another layer (which must contain boxes which then are copied into the output
as well) or taken from the rulers. In the latter case, the rulers' start and end points are taken as the corners of the clip rectangles. It is
convenient therefore to create a new ruler type with a box appearance for this purpose.

Clips are done hierarchically: child cells are clipped as well, potentially creating variants (which may be shared by several clips). This way,
large clips can be created from large layouts in an efficient way. Hint: Clipping will not work exactly if the layout contains cell instances with
arbitrary rotation angles such as 45 degree.

For more details visit
https://www.klayout.org

Page 90 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.5. Flatten Cells

1.2.4.5. Flatten Cells
The "flatten cell" operation flattens a cell into all of its parents. This basically removes a cell by promoting her shapes and instances up in
the hierarchy.

Cell flattening can be applied to single instances or cells as a whole. When applied to an instance, the individual instance is resolved into
shapes. The instantiated cell will still exist afterwards. When applied to a cell, the cell will disappear and replaced by its contents in all
places it is used.

Instance-wise flattening is available by choosing "Edit/Selection/Flatten Instances". Cell-wise flattening is available by choosing "Edit/Cell/
Flatten Cell" or "Flatten Cell" from the cell list's context menu.

The flatten operation offers some options, i.e. the number of hierarchy levels to flatten and how to deal with child cells which become
obsolete through this operation. By enabling this "prune" option, all child cells are removed when they are no longer needed. Otherwise,
new top level cells will appear - these are the cells which are not longer instantiated.

For more details visit
https://www.klayout.org

Page 91 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.6. Resolving Arrays

1.2.4.6. Resolving Arrays
Instance arrays are handy to produce large regular arrangements of cells. Sometimes it is necessary to resolve these arrays - for example
to remove or modify a single instance from the array. One way to achieve that is to create cell variants (see Create Cell Variants, but this
feature will also create a copy of the instantiated cell.

The "Resolve Arrays" function available in "Edit/Selection" allows resolving of an array into individual instances which then can be edited
individually.

For more details visit
https://www.klayout.org

Page 92 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.7. PCell Operations

1.2.4.7. PCell Operations
PCells can be created from shapes if the PCell is derived from a "guiding shape". Specifically the Basic library PCells support derivation
from guiding shapes with a few exceptions. So for example, a round-cornered polygon can be created from a normal polygon by selecting
the polygons, choosing "Edit/Selection/Convert To PCell" and selecting the "Basic.ROUND_POLYGON" for the PCell.

PCells can be converted to normal cells by choosing "Edit/Cell/Convert Cell To Static" or "Edit/Layout/Convert All Cells To Static". Normal
(static) cells can be edited individually but do no longer offer parameters to control the look of the cell.

For more details visit
https://www.klayout.org

Page 93 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.8. Layer Boolean Operations

1.2.4.8. Layer Boolean Operations
KLayout now comes with a set of boolean operations. These operations are available in the "Layers" submenu of the "Edit" menu ("Boolean
Operations" and "Merge" functions). A dialog will open that allows specification of mode, input layer(s), output layer and certain other
options.

• AND: intersection. The output layer will contain all areas where shapes from layer A and layer B overlap.

• A NOT B: difference. The output layer will contain all areas where shapes from layer A are not overlapping with shapes from layer B.

• B NOT A: difference. The output layer will contain all areas where shapes from layer B are not overlapping with shapes from layer A.

• XOR: symmetric difference. The output layer will contain all areas where shapes from layer A are not overlapping with shapes from
layer B and vice versa.

In addition, a MERGE operation is provided, which is a single-layer operation that joins (merges) all shapes on the layer. As a special
feature, this operation allows selecting a minimum overlap count: 0 means that output is produced when at least one shape is present. 1
means that two shapes have to overlap to produce an output and so on. This does not apply for single polygons: self-overlaps of polygons
are not detected in this mode.

All operations can be performed in three hierarchical modes:

• Flat: Both layers are flattened and the results are put into the current top cell.

• Top cell: perform the operation on shapes in the top cell only.

• Cellwise: perform the operation on shapes of all cells below the current top cell individually. This mode is allowed only if the layouts
of both inputs and output are the same.

For the first two modes, the source and target layout can be different, provided that all layouts are loaded into the same view. This allows
combining layers of different layouts. For example to compare them using a XOR function.

As a special feature, KLayout's boolean implementation allows choosing how "kissing corner" situations are resolved. KLayout allows two
modes:

• Maximum coherence: the output will contain as few, coherent polygons as possible. These polygons may contain points multiple
times, since the contour may return to the same point without closing the contour.

• Minimum coherence: the output will contain as much, potentially touching polygons as possible.

The following screenshots illustrate the maximum coherence (left) and minimum coherence (right) modes for a XOR operation between two
rectangles.

For more details visit
https://www.klayout.org

Page 94 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.8. Layer Boolean Operations

The boolean operations are currently implemented flat and based on a full-level edge representation. This means, that the complete layer
is flattened (if "flat" mode is requested) and converted into a set of edges which the processor runs on. This will lead to huge resource
requirements for very large layouts and is not recommended for such applications currently.

The boolean processor is based on an iterative approach to cover grid snap effects which makes it highly accurate but somewhat slower
than a single-pass scanline implementation. Performance penalty is about 2x (two times slower) compared to an efficiently implemented
single-pass algorithm.

For more details visit
https://www.klayout.org

Page 95 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.9. Layer Sizing

1.2.4.9. Layer Sizing
A sizing operation allows growing or shrinking of the shapes of a layer by a given offset, which is applied per edge. Positive values will
enlarge the shapes while negative values will shrink the shapes. The offset can be given separately for horizontal and vertical direction.
However, the sign of both values must be identical (i.e. "0.5,0" or "1.0,0.2", but not "0.2,-0.2").

The sizing function can be found in the "Layers" submenu of the "Edit" menu. A dialog will open that allows specification of input and output
layers, sizing value in micron: a single value for same sizing in x and y direction or comma-separated list of two values (i.e. "0.2,0.1").

As for the boolean operations, hierarchical mode and kissing corner resolution can be specified (see Layer Boolean Operations for a
description of these modes). In addition, the cutoff strategy for sharp edges can be chosen from strict to virtually unlimited. The following
screenshot demonstrates the effect for "strict" (red) to "weak" (purple) cutoff modes.

For more details visit
https://www.klayout.org

Page 96 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.10. Shapewise Boolean Operations

1.2.4.10. Shapewise Boolean Operations
Boolean operations are also available on selected shape sets. These operations use the concept of "primary" and "secondary" selection.
The primary selection contains all shapes that are selected in the first step. The secondary selection contains all shapes that are selected
in additional steps using the "Shift" modifier key.

The following operations are available in the "Selection" submenu of the "Edit" menu:

• Merge: merge all shapes in the primary and secondary selection and write the results to the layer of the primary selection.

• Intersection: Compute the intersection (AND) of primary and secondary selection and write the results to the layer of the primary
selection.

• Subtraction: Compute the difference (A NOT B) of primary (A) and secondary (B) selection and write the results to the layer of the
primary selection.

For more details visit
https://www.klayout.org

Page 97 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.11. Shapewise Sizing

1.2.4.11. Shapewise Sizing
The selected shapes can be sized with a given enlargement and shrink distance, similar to the layer operation but with less options. The
sizing function can be found in the "Selection" submenu of the "Edit" menu. A dialog will open that prompts for the sizing value (one value
for same sizing in x and y direction in micron or two comma-separated values for different sizing in x and y direction).

For more details visit
https://www.klayout.org

Page 98 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.12. Object Alignment

1.2.4.12. Object Alignment
This operation use the concept of "primary" and "secondary" selection. The primary selection contains all shapes that are selected in the
first step. The secondary selection contains all shapes that are selected in additional steps using the "Shift" modifier key.

The object alignment function allows aligning of all objects in the secondary selection to the objects in the primary selection (i.e. objects in
the primary selection define the reference points but are not moved). An "object" can be a shape or an instance of a cell. Cell instances are
referred to by their bounding box which can be either computed from the visible layers alone or from all layers.

Alignment can be specified differently in horizontal and vertical direction. Horizontal alignment can be "none" (no change), "left" (align left
sides), "center" (align centers) or "right" (align right sides). Vertical alignment can be "none", "bottom", "center" or "top".

The alignment function can be found in the "Selection" submenu of the "Edit" menu. A dialog will open which allows specification of the
alignment mode and bounding box computation mode for cell instances.

For more details visit
https://www.klayout.org

Page 99 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.13. Corner Rounding

1.2.4.13. Corner Rounding
In some applications, i.e. power devices, it is desirable to have round corners instead of sharp corners to limit the electrical field. Klayout
now offers a convenient way to create such structures. The basic idea is to draw the structures with sharp, 90 degree corners and then
"soften" the corners by rounding them to a given radius. The resulting polygons can then be written to GDS files, even though GDS does
not have the concept of "soft" (or circular) geometries.

The interesting part is: the corner rounding function can be re-applied on such geometries on a polygon basic. That means, that
even if such a modified polygons are saved to GDS or otherwise modified, the original geometry can be reconstructed and the corner
radius can be changed. No special geometrical objects or special GDS annotation is required to achieve this. This requirement imposes
some (probably weak) limitations:

• The number of points per corner must not be too small (currently at least 32 on the full circle)

• The original geometry must not exhibit sharp corners and the original segments must be at least twice the corner radius in length.

• The corner segments must be perceivable as such, i.e the angle between adjacent edges must be "nearly" 180 degree. This imposes
some restrictions on the minimum length of such a segment and on the accuracy by which they can be expressed in database units.
This boils down to a certain length limit in terms of database units.

The following screenshot illustrates the round corners function. As can be seen in this example, it is necessary to allow a different radius
specification for "inner" and "outer" corners.

The corner rounding function operates on selected shapes. It can be found in the "Selection" submenu of the "Edit" menu. A dialog will
open which allows specification of the radius values and the desired resolution. If the selected polygon already has rounded corners, the
corner rounding will be removed and the original polygon reconstructed before the new corner rounding is applied. By specifying "0" for the
radius, the original sharp corners will be recovered.

For more details visit
https://www.klayout.org

Page 100 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.14. Cell Origin Adjustment

1.2.4.14. Cell Origin Adjustment
The cell origin is important for a cell because this point is the instantiation anchor for cell instances. The cell origin adjustment function
allows shifting the origin to a certain place relative to a cell's bounding box. This can be either the center, a corner or the middle of an edge
of the bounding box. The bounding box can either be computed from all or just from the visible layers.

If the "Adjust instances in parents" check box is clicked, the instances of the cell will be adjusted in the opposite direction. Hence, the cell
effectively does not change, but locally the origin of the layout will be shifted.

The cell origin adjustment function can be found in the "Cell" submenu of the "Edit" menu.

For more details visit
https://www.klayout.org

Page 101 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.15. Create Cell Variants

1.2.4.15. Create Cell Variants
KLayout offers a feature that is very useful when you want to edit a single instance of a cell rather the cell itself. Editing a cell means that
the changes applied to the cell appear at all places where this cell is placed. That may not be desired - if you want to modify a layout in one
particular place you may not want to have side effects at other places.

The usual way of achieving that is to copy a cell, replace a particular instance by the new cell and edit the new cell. This can be tedious, in
particular if there is an array instance where just one instance must be modified. In that case, the array has to be split so the single instance
is isolated before it can be replaced with a new cell.

KLayout offers a feature that automates this task. It is found in the "Edit/Selection/Make Cell Variants" menu. It basically works like this: For
all selected objects it will follow the hierarchy up to the current cell. It will create new cell copies for all cells found along that path and use
these new cells instead of the original ones.

The effect is, that after using "Make Cell Variants", the selection can be modified (i.e. deleted) without having any undesired side effects.

This feature can also transform array instances and isolate certain instances of the array. The following screenshots demonstrate that
feature.

This is the initial situation: a cell is instantiated 9 times in a 3x3 array and one shape inside one of these instances is selected. The two
following screenshots show the full-level hierarchy view and just the top level hierarchy to demonstrate that the cell is placed 9 times.

For more details visit
https://www.klayout.org

Page 102 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.15. Create Cell Variants

For more details visit
https://www.klayout.org

Page 103 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.15. Create Cell Variants

If that shape would be deleted, it would disappear in all instances. Imagine that is not intended. You can now use the "Make Cell Variants"
feature to create a cell variant for the one instance that we have selected the shape in. After we did so, one instance is replaced by a copy
of the cell which is called "INV2$1". The picture looks like this:

For more details visit
https://www.klayout.org

Page 104 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.15. Create Cell Variants

We can now delete the single shape without any side effect on the other instances:

For more details visit
https://www.klayout.org

Page 105 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.2.4.15. Create Cell Variants

For more details visit
https://www.klayout.org

Page 106 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.3. Advanced Topics

1.3. Advanced Topics
This section describes some more advanced features of KLayout:

• The XOR Tool

• The Diff Tool

• The Fill (Tiling) Utility

• Import Gerber PCB Files

• Import Other Layout Files

• The Net Tracing Feature

For more details visit
https://www.klayout.org

Page 107 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.3.1. The XOR Tool

1.3.1. The XOR Tool
The XOR tool performs a geometrical XOR (also ANOTB and BNOTA for asymmetric differences) on two layouts by performing the
respective boolean operations layer by layer. The XOR tool is started using "XOR Tool" from the "Tools" menu). Currently, the tool
compares all or just the visible layers. Currently, it compares layers from one layout vs. the identical layers from the other layout.

The current implementation employs a flat XOR processor. This limits the application somewhat to small and medium sized layouts and
does not make use of hierarchy, which basically excludes applications for very hierarchical layouts (i.e. memory arrays). The memory
footprint associated with the flat approach can be mitigated by using the tiling feature which performs the operation on a tile with limited
size. This does not reduce the run times but the memory requirements.

The XOR tool allows specification of tolerances. Basically a tolerance is an undersizing step following the boolean operation. This way,
small markers can be suppressed. This is particular useful to remove markers resulting from tiny differences between the layouts being
compared. Multiple tolerances can be specified. In that case, multiple undersize steps are performed to create sets of layers with different
tolerances each. For example, a tolerance specification of "0,0.001,0.005,0.010" will create four sets (marker categories) containing all
difference markers and others for markers indicating differences larger than 1nm, 5nm and 10nm.

Tiling can be enabled by entering a tile size into the entry box. For semi-flat layouts such as standard cell blocks, a tile size of 1000 micron
is a good starting point. The choice of the tile size mainly determines memory requirements.

The XOR tool allows sending the output either to a marker database or to another or one of the input layouts. The mode can be selected
with the "Output" drop-down box. If output is sent to one of the original inputs, it is mandatory to specify a layer offset which maps the
original layer to a new layer. An offset of "1000/0" for example means, that differences between shapes on layer "16/0" will be sent to
"1016/0" for the first tolerance category and "2016/0" for the second.

Finally, the XOR can be confined to a region. This saves time if differences in parts of the layout are of interest. To select a region use the
drop-down box next to "From region":

• All: Do an XOR on the whole area (default)

• Visible region: Confine the XOR to the visible part of the layouts

• Clipped to ruler: Draw one or many rulers to specify the region to which the XOR shall be confined. Each ruler specifies a region
given be the extension of the ruler. If you use a box-type ruler, the ruler gives a better visualization of the region

For more details visit
https://www.klayout.org

Page 108 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.3.2. The Diff Tool

1.3.2. The Diff Tool
As the XOR tool, the Diff tool performs a comparison of two layouts. In contrast to the XOR tool, it does a cell-by-cell and object-by-object
comparison and reports differing cells, instances and geometrical objects. In effect, the comparison is more strict and not purely geometry-
related. It does not verify the identity of the layouts on mask level but rather the exact identity of the objects that comprise the layout file. On
the other hand, the Diff tool usually detects the actual changes rather than their effect on geometry.

Usually, that kind of comparison is very sensitive to "cosmetic" changes, i.e. cell renaming. KLayout's Diff tool tries to mitigate this effect
with these features:

• Before it does the cell-by-cell comparison it tries to detect cells which have been renamed by comparing their instantiation. That way,
it can compare the right cells even though their names may be different. The basis of that functionality is a cell matching algorithm.
This algorithm compares cells by taking into account their bounding boxes, shape counts per layer, number of instances and other
parameters. The algorithm will choose a partner cell which matches closest with respect to these parameters. If that scheme fails, it is
possible to revert to name matching by unchecking the option "Don't use names to match cells".

• It allows some level of control over the strictness of the compare. For example, cell arrays can be expanded before the individual
instances are compared. By default, some second-order information like users properties or certain text properties is not compared.

• The diff tool can also work in "XOR" more. In that mode, the differences found are used to provide input for a subsequent, polygon-
only XOR step. The result is a fair approximation of a true, as-if-flat XOR which delivers a superset of the true XOR's results. It may
report some locations as being different which if fact are not, but it will not fail to report differences where there are some. Compared
with the XOR tool's functionality, some options are missing (i.e. tolerance), but the performance is much better.

The Diff tool is found in the "Tools" menu. In this dialog:

• Select layout A and B in the "Input" section.

• Uncheck "Don't use names to match cells" to revert to pure name matching. Cells which have been renamed will not be compared
against then.

• Check "Run XOR on differences" to select the "XOR mode".

• Check "Summarize missing layers" to have missing layers reported as one difference instead of one per shape.

• Check "Detailed information" to receive detailed information about every difference. Without that option, only the number of differing
shapes or instances is reported.

• Check "Expand cell arrays" to compare individual instances of array instances.

• Check "Exact compare" to include second-order information (i.e. user properties, text orientation) in the compare.

The Diff tool will create a marker database and show the results in the marker database browser.

For more details visit
https://www.klayout.org

Page 109 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.3.3. The Fill (Tiling) Utility

1.3.3. The Fill (Tiling) Utility
The fill utility creates a regular pattern of fill unit cell instances in certain areas of a layout. This feature is usually referred to as "tiling" or
"fill". It is based on a rectangular unit cell which is repeated in x- and y-direction to fill the available space. In most cases, the intention is to
fill empty areas in the layout to enhance the layout uniformity for a better process performance.

Before the fill utility can be used, a fill cell must be prepared in the layout that is filled. The dimension of the cell are defined by a box drawn
on an arbitrary layer. This box must represent the "footprint" of the cell. This is the space that one instance will cover in the region to be
filled.

The fill utility is found in the "Utilities" sub-menu of the "edit" menu and is available in edit mode only. To use this utility, open the dialog and

• Select the outer boundary of the fill region ("what to fill"). Available choices are: Full cell, the interior or the polygons on a given layer,
the interior of all selected polygons, a single box or an area defined by a ruler.

• Specify if the fill area should keep a certain minimum distance to the border of the fill region.

• Specify the regions within the fill region which must not be filled. Available choices are: All layers (don't create fill over any polygon
drawn), all visible layers (don't create fill over any polygon visible), all selected layers or don't exclude anything.

• If the fill tiles must keep a certain minimum distance from the exclude regions, specify that distance in the "Spacing around exclude
areas" entry field.

• Specify the fill cell and the boundary layer which defines the cell's footprint in the "Fill Cell" group.

By default, the fill utility operates on a fixed raster. This can lead to a poor fill efficiency in some cases. The fill utility offers a "Enhanced
fill" option, where it tries to find a cell arrangement which is not necessarily on a common raster but provides a better fill performance. In
addition, second-order fill is supported. In that case, a second - usually smaller - fill cell can be specified which is used to fill the remaining
areas of the layout.

The following screenshots show the effect of the different fill modes for some artificial fill problem.

Default:

For more details visit
https://www.klayout.org

Page 110 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.3.3. The Fill (Tiling) Utility

Enhanced:

For more details visit
https://www.klayout.org

Page 111 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.3.3. The Fill (Tiling) Utility

Enhanced
plus
second
order:

For more details visit
https://www.klayout.org

Page 112 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.3.4. Import Gerber PCB Files

1.3.4. Import Gerber PCB Files
Gerber PCB import allows creating GDS layout data from Gerber PCB files or to add Gerber files to GDS files as new layers. The import
function supports a majority of the RS274X features for artwork files and a couple of different formats for the drill files. The importer will
take a set of files and convert them to layout geometry. The importer offers some functionality to adjust the data appropriately, i.e. to define
output layers and apply geometrical transformations. Another basic capability is to merge the geometry of a layer to remove overlaps and
join paths into larger polygons.

Because of the manifold options, the import specification can become pretty complex. Therefore, it can be saved into a file (suggested
suffix is ".pcb") in XML format which contains the importer specifications. Once such a file is created, KLayout can read this file like usual
stream files (i.e. it can be specified on the command line) and use it as a recipe to import the associated Gerber files.

The PCB import function is available in the "File" menu ("Import/Gerber PCB"). Different entry points are provided that start a new project,
open an existing project or to continue with the last project.

The basic workflow to import PCB data is:

• Specify the directory where the PCB data files are located (the "base" directory).

• Specify the import mode (the destination of the layout data).

• Decide about the layer mapping mode: free layer mapping or metal stack mapping. Free layer mapping allows an arbitrary mapping
between PCB layers and GDS layers. This specification is the most flexible one but is tedious to enter. Metal stack mapping is easier
to specify but confined to mapping a set of PCB files to a metal/via/metal stack scheme.

• Specify the files, GDS layers and PCB to GDS layer mapping.

• Specify a transformation if desired, either by specifying mapping points or a transformation directly.

• Decide about further options (i.e. merging, database unit, top cell name etc.).

The basic decision is how to specify the layer mapping. In free mode, the specification requires these steps:

• Specify the files to load (in the dialog on the "Files" page).

• Specify a list of output layers.

• Fill the input to output mapping matrix which assigns one or many output layers to each input file.

In layer stack mode, the specification workflow consists of these steps:

• Specify the GDS layer stack (the complete stack available for mapping PCB data into). The idea is basically to put another set of
series of metal/via/metal layers on top of the GDS layer stack. The PCB layer closest to the die surface is placed into the first metal
layer which is supposed to be the first above the on-chip layers.

• When the GDS layers are set, specify how many metal and drill hole files the PCB file set contains and whether the chip will be
mounted on the top or bottom of the PCB. The latter decides in which order the PCB layers are assigned to GDS layers (remember,
the first GDS layer will be the PCB layer closest to the die surface).

• Enter file names for the artwork files corresponding to metal layers.

• Specify file names for the drill files and what metal layers are connected by the (plated) drill holes. Since a drill hole can connect
multiple layers in the stack, a connection information is always of the type "from metal, to metal" with the drill holes connecting all
metal layers between "from" and "to".

The import dialog

The import dialog is organized in multiple pages that reflect the workflow for the import specification. On every page, the "File" menu button
allows saving the current settings as a PCB import project, to open an existing project or to create a new project and to restart from scratch.

For more details visit
https://www.klayout.org

Page 113 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.3.4. Import Gerber PCB Files

The first page offers some basic options:

• Base directory: this is the directory where all the PCB files are found. Not necessarily all files must be located there but are looked
for relative to this directory. If all files are moved, just the base directory must change. The base directory is not stored in a project
file. Instead, the base directory is the directory where the project file is stored. Basically this implies, that all data files will be referred
to relative to the project file.

• Import mode: PCB data can be imported into the current layout (into the current cell). Usually, it this case, layers will be added to the
current layout. Alternatively, a layout can be created which will be either placed into a new panel or added to the current panel.

• Layer mapping mode: Specify here whether to use free or layer stack mode. Check the box to use free layer mapping mode.

The layer stack flow

For more details visit
https://www.klayout.org

Page 114 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.3.4. Import Gerber PCB Files

In the layer stack flow, on the first page, a sequence of metal and via layers must be specified. The assignment of metal and via layers is
done automatically. The sequence is always a metal layer followed by a via layer. The number of layers must be odd so the last layer is a
metal layer again. Via layers will connect the adjacent metal layers only.

Use the "+" button to add new layers. Move layers by selecting them and moving them up or down with the arrow buttons. Use the "X"
button to remove all selected layers.

On the next page, the number of artwork and drill files needs to be specified. Later, the actual files need to be entered and assigned to
metal or via layers. In addition the chip mounting position needs to be specified. In "top mounting" mode, it is assumed that the chip is
placed surface down on the top (first) PCB layer. Thus the first metal above the chip stack will be the top PCB layer. In "bottom mounting"
mode, the last PCB metal layer will be the first metal layer above the chip stack.

On the "Artwork Files" page, the artfile file names must be entered. They are automatically assigned to the respective metal layers. The
assignment order depends on the mounting mode.

For more details visit
https://www.klayout.org

Page 115 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.3.4. Import Gerber PCB Files

On the "Drill Files" page, the drill file names must be entered. Each drill file describes a certain drill step, which can connect multiple metal
layers. On this page, this specification must be made. The first and last metal layer connected by the plated hole must be specified. The
corresponding via layers will then be used to create via shapes.

The free layer mapping flow

On the "Files" page, all PCB data files must be specified. This includes artwork and drill files. The order is not important but it is
recommended to follow the physical stacking. This simplifies the assignment to GDS layers later. Use the arrow buttons to move the
selected entries up or down. Use the "X" button to delete files from the list and use the "+" button to add new files.

For more details visit
https://www.klayout.org

Page 116 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.3.4. Import Gerber PCB Files

On the "Layout Layers" page all target layers must be specified. Provide a list with all layers that are used as target layers for the import.
Again, the order is not important but maintaining a technological order will simplify the assignment in the next step. As on the previous page
use the arrow buttons to move selected entries and the "+" and "X" button to add new entries and deleted the selected ones.

On the "Layer Mapping" page, each file can be assigned to one or may GDS layers. The assignment is described in form of a matrix where
an "x" means that the file or layer given by the row is imported into the layer given by the column. A file can be imported into multiple layers
which basically will duplicate the shapes. Click at the boxes to set or reset the mark. Use the "X" button on the left to reset all marks for the
rows selected.

For more details visit
https://www.klayout.org

Page 117 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.3.4. Import Gerber PCB Files

General options

The "Coordinate Mapping" page allows specification of the transformation of the PCB data into the GDS space. Since PCB and GDS rarely
share the origin, a transformation can be specified which is applied to the shapes when importing them.

A specification can be made in two ways:

• By specifying matching points: The transformation will be computed such that the given PCB coordinates are mapped to the
given GDS coordinates. Up to three coordinate pairs can be given. If one coordinate pair is given, a displacement is derived. If two
coordinate pairs are given, the rotation is computed as well (only multiples of 90 degree are supported currently). If three coordinate
pairs are give, the algorithm can derive mirroring as well.

• By explicitly specifying the transformation: The transformation can be specified explicitly in the lower entry field. The format is
"x,y" for a simple translation (x, y are given in micron units), "rx" or "mx" for a rotation by the angle "x" or mirroring at the line with
angle "x" and "*x" for a magnification of "x". All specifications can be combined, i.e. "r90 170,-5100" specifies a rotation by 90 degree
and displacement by 170 micron in horizontal and -5.1 mm in vertical direction.
For a comprehensive description of that string, see Transformations in KLayout.

Hint: Both specifications can be combined, i.e. one coordinate pair can be given to define the displacement and the rotation can be
specified explicitly.

For more details visit
https://www.klayout.org

Page 118 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.3.4. Import Gerber PCB Files

Finally, on the "Options" page, various options can be set:

• Layer properties file: If specified, this layer properties file will be loaded after the layers have been imported. The file is specified
relative to the base directory.

• Number of points per circle: KLayout resolves the circular apertures commonly used in PCB layout into polygons to perform
geometrical operations. This options allows choosing how many points will be used for the approximation of a full circle. Less points
will mean less accurate representation but smaller polygons hence better performance on boolean operations used to compute clear
areas for example.

• Merge polygons: If this option is set, all polygons will be joined if they overlap or touch. Note, that merging also happens implicitly
if clear layers are used because the boolean operations used to cut out clear regions will implicitly merge the previous layout. This
implicit merging cannot be disabled.

• Database unit and top cell name: This option allows choosing the database unit and top cell name for new layouts. This applies
only, if the import mode implies a new layout.

For more details visit
https://www.klayout.org

Page 119 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.3.5. Import Other Layout Files

1.3.5. Import Other Layout Files
This function can merge other layouts into the layout loaded. Merging means that the hierarchy of the specified layout is inserted into the
given layout. Different modes are available that control the way how the hierarchy is merged. This function is available in the "File" menu as
"Import/Other File Into Current".

The workflow for importing a different layout is this:

• Specify the file to input. At least the file name is required. Additionally, a cell can be specified. In that case, only the cells referred to
by the given cell (directly or indirectly) are imported. Reader options can be specified separately for the import. Reader options are
applied the same way than the reader options are used for the standard load function.

• Specify the import mode. The modes are described below.

• Specify the layer mapping. Either the shapes are imported on their original layer or an offset can be used that will be added to the
layer to form the target layer of the import. An offset of "1000/0" for example specifies to add 1000 to the layer and use the original
datatype.

• Specify an optional transformation. The imported layout will be transformed accordingly. The transformation can be specified
explicitly or with up to three points which are mapped onto each other.

Four import modes are available that control how the hierarchy of the imported layout is inserted into the existing layout:

• Merge: in this mode, the contents of the imported cell will be put into the current cell and the child hierarchy is added below the
current cell.

• Extra: in this mode, new top level cells containing the hierarchy tree of the imported cell or cells will be created. In this mode, multiple
cells can be imported if the imported layout contains multiple top cells. Leave the cell specification empty for this.

• Instantiate: the imported cell will be instantiated into the current cell as a separate hierarchy.

• Merge hierarchy: The fourth mode is a little bit more complex. Basically it works like "Merge", but identifies corresponding cells
and merges the contents for the corresponding imported cells into the original cells. The algorithm identifies corresponding cells by
requiring that the flat instances of the imported child cell exactly equal the flat instances of the corresponding original cell (where flat
refers to the instances of a cell in the context of the current cell). This is done by selectively thinning out the candidate list and finally
employing a name similarity measure to resolve ambiguities.

The import function will create new cell names using the "$x" suffix to avoid name ambiguities.

For more details visit
https://www.klayout.org

Page 120 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.3.6. The Net Tracing Feature

1.3.6. The Net Tracing Feature
The net tracing function allows tracing of a net by detecting touching shapes that together form a conductive region. It features specification
of a stack of metal (or in general "conductive") layers optionally connected through via shapes. The net tracing algorithm will follow
connections over the via shapes to form connections to other metal layers. The material footprint can be derived from single layout layers
or a boolean combination of several layers. For example, this allows selecting source and drain regions of transistors by subtracting the
poly region from the active area region.

Single net tracing

This algorithm is intended for extracting single nets and employs an incremental extraction approach. Therefore extraction of a single
small net is comparatively fast while extraction of large nets such as power nets is considerably slower compared to hierarchical LVS tools
currently.

The net tracing function can be found in the "Tools" menu. The user interface allows tracing of multiple nets which are stored in a list of
nets extracted. If labels are found on the nets, these are used to derive a net name. Beside that, the cells which are traversed in the net
extraction are listed, so the cells being connected by this net can be identified.

Before nets can be extracted, a layer stack must be specified. Press "Layer Stack" on the user interface to open the layer stack dialog.
Layers must be specified in the "layer/datatype" notation. The via specification is optional. If no via layer is specified, both metal layer
shapes are required to touch in order to form a connection. If a via layer is specified, a via shape must be present to form the connection.

KLayout allows specification of symbolic layers and to use boolean expressions. That way it is possible to assign meaningful names to
layers (i.e. "POLY" or "VIA1") and to use derived layers (i.e. "ACTIVE-POLY" for the source and drain regions of a CMOS transistor). Read
more about these features in Connectivity and Symbolic Connectivity Layers.

If a layer stack has been defined, a net can be traced by pressing the "Trace Net" button and clicking on a point in the layout. Starting from
shapes found under this point, the net is extracted and listed in the net list on the left side of the net tracing dialog. If "Lock" is checked,
another net can be traced by clicking at another point without having to press the "Trace Net" button again.

Sometimes you encounter large nets (e.g. power nets). When you click on such a net, the tracer will start running and the extraction will
take a long time. If you're not interested in the details of such nets, you can limit the depth of the net tracing. This means, after a specified
number of shapes is encountered, the tracer will stop and report the shapes collected so far as an incomplete net.

To configure the depth, enter the desired number of shapes in the "Trace depth" box at the bottom of the trace dialog. NOTE: the actual
number of shapes in the net may be a litte less than the specified depth due to internal marker shapes which are taken into account, but
are not delivered as parts of the net.

The "Trace Path" function works similar but allows specification of two points and let the algorithm find the shortest connection (in terms of
shape count, not geometrical length) between those points. If the points are not connected, a message is given which indicates that no path
leads from one point to the other.

The display of the nets can be configured in many ways. The configuration dialog is opened when "Configure" is pressed in the trace net
dialog. Beside the color and style of the markers used to display the net it can be specified if and how the window is changed to fit the net.

Tracing all nets

This algorithm is borrowed from the LVS feature, where the scenario is extended by device recognition and netlist formation. In the context
of the net tracer, nets consist of the connected shapes but don't attach to devices. As LVS extracts all nets in one sweep, using this feature
in the net tracer will deliver all nets at once. Although this is a richer information output, the tracing of all nets is typically faster then tracing
a single, big net such as power nets. The LVS net extractor also supports hierarchical processing which gives a considerable performance
improvement and more compact net representations.

To extract all nets, use "Trace All Nets" from the "Tools" menu. It will start extracting the nets immediately. It will take the connectivity
definition from the standard, single-net net tracer. You can edit this layer stack either from the single net tracer UI, from the technology
manager or "Edit Layer Stack" from the "Tools" menu.

After the net tracer has finished, the netlist browser dialog opens. In this dialog you can:

• Browser the circuit hierarchy (taken from the cell hierarchy) in the left half of the central view.

• Browse the nets of the circuits in the right half of the view. Clicking on a net will highlight the net.

• Configure the net highlighting behavior. Use the "Configure" button.

For more details visit
https://www.klayout.org

Page 121 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.3.6. The Net Tracing Feature

• Export all or selected nets to layout, save the netlist (with shapes) to a file, load it back from a file and manage the netlist database.
Use the "File" menu button in the right upper corner.

• Search for net names (if labeled) and circuits using the search edit box.

• Navigate through the history using the "back" and "forward" buttons at the top left.

Extracted nets are written and read in a KLayout-specific format called "L2N" ("layout to netlist"). This format contains both the nets and the
shapes that make up a net. This way, the traced nets can be saved and retrieved later.

For more details visit
https://www.klayout.org

Page 122 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4. Design Rule Check (DRC)

1.4. Design Rule Check (DRC)
The DRC feature of KLayout is described here. The "Basics" section describes the basic concepts and the "Runsets" section the DRC
language.

• Design Rule Checks (DRC) Basics

• DRC Runsets

Further information about the DRC features can be found here: DRC Reference.

For more details visit
https://www.klayout.org

Page 123 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4.1. Design Rule Checks (DRC) Basics

1.4.1. Design Rule Checks (DRC) Basics
KLayout supports design rule checks beginning with version 0.23. The capabilities of the DRC feature include:

• Basic DRC checks such as checks for minimum width and space.

• Layer-generation methods such as boolean operations and sizing.

• Extended geometrical checks such as overlap, enclosure and inside and outside checks.

• Support for edge objects derived from polygons or as output from other functions. Edge objects are useful to implement edge-related
operations, for example selective sizing.

• The capability the work with multiple input layouts.

• Support for text object layers. Text objects are convenient for tagging polygons or labelling nets.

• Cell filtering, local (region-constrained) operation.

• A tiling approach for large layouts which can be configured to make use of multiple CPU cores.

• A hierarchical option.

The DRC functionality is controlled by a DRC script. A DRC script is basically a piece of code which is executed in the context of the DRC
engine. The script language is based on KLayout's integrated Ruby interpreter and wraps the underlying object model into a lean and
expressive language. Script execution is immediate. That means, that it is possible to embed conditional statements or loops based on the
result of a previous operation. It is also possible to code low-level operations on shapes inside the script, although this will be considerably
slower than using the functions provided.

Output of the DRC script can be sent to a layout layer or a report database. The report database is visualized in the marker database
browser.

Basic scripts

Runset writing is described in detail in DRC Runsets. Here is a simple example for a DRC script:

report("A simple script")

active = input(1, 0)
poly = input(6, 0)
gate = active & poly
gate.width(0.3).output("gate_width", "Gate width violations")

metal1 = input(17, 0)
metal1.width(0.7).output("m1_width", "M1 width violations")
metal1.space(0.4).output("m1_space", "M1 spacing violations")

This script will compute the gate poly shapes from the active and poly layers using a boolean "AND". The active layer has GDS layer 1,
while the poly layer has GDS layer 6. On this computed gate layer, the script will perform a width check for 0.3 micrometer. In addition a
width and space check is performed on the first metal layer, which is on GDS layer 17.

Let's take the script apart:

• report("A simple script")
This line will instruct the script to send output to a report database. The report database is shown in the marker database browser.
The description text of the report database is given in brackets.

• active = input(1, 0)
This line will create an input layer. "Layers" are basically collections of shapes, edges or edge pairs (edge pairs are objects created
as output of check methods). "input" is a function which delivers a layer object. Checks and other functions are performed on those

For more details visit
https://www.klayout.org

Page 124 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4.1. Design Rule Checks (DRC) Basics

layer objects in the spirit of object-oriented programming and the underlying Ruby interpreter. "active" will be a variable that holds
such an object.
The parameters of the "input" method specify where to take the input from, in that case GDS layer 1 and database 0. In that simple
form, the first layout loaded into the current view is used for input.

• poly = input(6, 0)
This line will create another input layer for poly silicon (from GDS layer 6, datatype 0).

• gate = active & poly
This line will compute the boolean "AND" of active and poly layers. The "&" is the operator for the boolean "AND" operation which
computes the intersection of active and poly. The result will be sent to a new layer and a new layer object is created and put into the
"gate" variable. This layer object is a temporary one and will not appear in the output but can be used in subsequent operations.

• gate.width(0.3).output("gate_width", "Gate width violations")
This line combines two operations into one statement: first is performs a width check against a minimum width of 0.3 micrometer
using the width method on the "gate" layer. A "method" is a function performed on a specific object and the notation used in the DRC
script is the ".". "gate.width(0.3)" will perform a width check on the gate layer and create a new layer object with "edge pairs" for each
violation. "Edge pairs" are marker objects consisting of two edges or partial edges which describe where two edges violate the check
condition. In the simple geometrical checks, there are always two edges involved in such a violation - hence such a violation is best
described by a pair of edges.
The result of the check is sent to a report database category using the "output" method. Again this is a method called on an object,
in that case the edge pair collection returned by the width check. The parameters of the output method describe a formal name and a
readable description of the category.

• metal1 = input(17, 0)
As before, this statement will fetch input from GDS layer 17 and datatype 0 and create a layer object representing that input.

• metal1.width(0.7).output("m1_width", "M1 width violations")
As for the gate, this statement will perform a width check (this time for 0.7 micrometer) and output the violation markers to a report
database category.

• metal1.space(0.4).output("m1_space", "M1 spacing violations")
And again a geometrical check: this time a space check for minimum space of 0.4 micrometer.

The script can be written in several alternative forms. Here for example is a very brief version of the gate width check:

(input(1, 0)*input(6, 0)).width(0.3).output("gate_width", "Gate width violations")

Some aliases are provided for the boolean operation, so if you prefer object-oriented notation, you can use the "and" method:

input(1, 0).and(input(6, 0)).width(0.3).output("gate_width", "Gate width violations")

or the functional notation:

and(input(1, 0), input(6, 0)).width(0.3).output("gate_width", "Gate width violations")

Dimensions can be given in different ways:

floating-point (will default to micrometer)
gate.width(0.3).output("gate_width", "Gate width violations")

floating-point with unit
gate.width(0.3.micron).output("gate_width", "Gate width violations")
gate.width(300.nm).output("gate_width", "Gate width violations")

integer values will give dimensions in database units!

For more details visit
https://www.klayout.org

Page 125 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4.1. Design Rule Checks (DRC) Basics

gate.width(300).output("gate_width", "Gate width violations")

as variable
min_width = 300.nm
gate.width(min_width).output("gate_width", "Gate width violations")

Installing and running scripts

To create a DRC script, choose "Tools/DRC/New DRC Script". KLayout will open the Macro development IDE and create a new script. The
first thing to do is to give the script a proper name. The cursor is already on the name - just enter a new name and press "Enter".

The next step is to give the DRC script some description. Press the "Properties" button in the macro editor's toolbar and enter a description
text - this is the text that will appear in the menu entry.

The DRC script will now appear in "Tools/DRC" with the description and selecting that entry will run the script.

To edit the DRC script, choose "Edit DRC Scripts" from "Tools/DRC" or enter the macro editor IDE and select the DRC category (the tab
above the macro list).

DRC scripts can be shared or installed globally like normal macros. They can be put into the "macros" folders, but the preferred way is to
deploy them in a folder called "drc" beside the "macros" folder. KLayout will scan various places for DRC scripts or macros, including the
installation path and the application folder (usually in the home directory). Both places can be used to store DRC scripts.

For the more experienced user, DRC scripts are basically just macros bound to a DRC interpreter instead of the plain Ruby interpreter. You
can create and run DRC scripts like ordinary macros. Use "Macros/Macro Development" to enter the macro IDE and create a DRC scripts
with the "add macro" function (the "+" button). Choose "DRC scripts" as the template to use (in the "General" section). DRC scripts are by
default bound to the DRC menu, but that can be changed in the same way than for any ordinary macro.

See About Macro Development for more details about the macro development facility.

By default, DRC scripts are put into the DRC category of the macro IDE. Macro categories are a way to organize macros, but do not imply
a certain runtime behavior. Hence, DRC scripts can be put into any other location beside the "drc" folders selected by the DRC category.

DRC scripts can be executed in the debugger like ordinary macros and breakpoints or single-stepping can be used to debug DRC scripts.
Behind the scene, the DRC commands are mapped to Ruby functions, so stepping into such commands will reveal the code behind the
DRC functions.

DRC scripts are stored in ".lydrc" files in KLayout's macro format. Those are XML files containing the script code in the text element.
KLayout also recognizes plain text files with the extension ".drc", but those files are usually lacking the necessary meta-information that
allow KLayout to bind them to a menu entry. Hence such files can only be run from the macro IDE.

Using KLayout as a standalone DRC engine

KLayout can be used as a non-interactive DRC engine using a specific kind of DRC scripts. Since there is no "current layout" in standalong
engine mode, those DRC scripts have to specify input explicitly using the "source" function. The same way, output has to be specified
explicitly using either "target" to create an output layout or "report" to create an output report database (see DRC Reference: Global
Functions for details about these functions).

Here is an example. It reads layer 1, datatype 0 from "input.gds", sizes it by 200 nanometers and writes the output to "out.gds", layer 10,
datatype 0:

source("input.gds")
target("out.gds")
input(1, 0).sized(200.nm).output(10, 0)

Here is another example which saves the results to category "sized" of the report database file "out.lyrdb":

source("input.gds")
report("out.lyrdb")
input(1, 0).sized(200.nm).output("sized")

To run these DRC scripts, save the scripts to a file with suffix ".drc" and run it like shown below (replace "my.drc" by your file). It is
recommended to disable some of the features not used in that case and put KLayout into non-interactive batch mode with "-b":

For more details visit
https://www.klayout.org

Page 126 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4.1. Design Rule Checks (DRC) Basics

klayout -b -r my.drc

"-b" will disable all of the user interface functionality and puts KLayout in engine mode in which no display connection is required on Unix.
Implicit loading of macros from the various search locations is disabled (you can still load some with "-rm") and the configuration file is
neither read nor written, which causes less I/O and avoids write conflicts between different instances of KLayout.

For more details visit
https://www.klayout.org

Page 127 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4.2. DRC Runsets

1.4.2. DRC Runsets
This document will give a detailed introduction into the writing of DRC runsets. See also DRC Reference for a full reference of the DRC
functions.

Runset basics

Runsets are basically Ruby scripts running in the context of a DRC runset interpreter. On that level, DRC runsets work with very few
classes, specifically:

• Layers ("DRC::DRCLayer" class): layers represent input from the original layout or are created by functions generating information.
Layers can be used as input for other methods or methods can be called in layers.

• Sources ("DRC::DRCSource" class): sources represent layout objects from where input is taken from. One default source is always
provided - the default layout from where the data is taken from. More layout sources can be created to specify input from other
layouts. Sources also carry information how to filter the input - for example cell filters or the working region (a rectangular region from
which the input is taken).

Some functions are provided on global level and can be used without any object.

The basic elements of runsets are input and output specifications. Input is specified through "input" method calls. "input" will create a layer
object that contains the shapes of specified layer. The results are output by calling the "output" method on a layer object with a specification
where the output shall be sent to.

In general, the runset language is rich in alternatives - often there are more than one way to achieve the same result.

The script is executed in immediate mode. That is, each function will immediately be executed and the results of the operations can be
used in conditional expressions and loops. Specifically it is possible to query whether a layer is empty and abort a loop or skip some block
in that case.

Being Ruby scripts running in KLayout's scripting engine environment, runsets can make use of KLayout's full database access layer. It is
possible to manipulate geometrical data on a per-shape basis. For that purpose, methods are provided to interface between the database
access layer ("RBA::..." objects) and the DRC objects ("DRC::..." objects). Typically however it is faster and easier to work with the DRC
objects and methods.

Including other files

The DRC script language is based on Ruby which delivers many native language features. Basically, inside a script you can include
another script through "load". This will read a file and execute the content of this file in the context of the script it is loaded into.

Unfortunately, "load" creates a local context for variables. Hence it's not possible for example to use "load" to read a file that defines
variables for further use in the DRC script.

To overcome this problem, KLayout offers a specific extension which embeds another file into the source by employing some kind of
preprocessing. This way, a file can be included into another one like it was pasted at this place.

The notation is this:

%include to_include.drc

which will include "include.drc". If no absolute path is given, this file is looked up relative to the file it is included in.

The file name can be put in quotes as well. Expression interpolation is supported (for the notation see About Expressions). Hence it is
possible to access environment variables for example like this:

%include $(env("HOME"))/to_include.drc

Because Ruby does not see the original files, some internals (e.g. introspection) will report wrong file names and line numbers. In most
cases - for example when using "__FILE__" or "__LINE__" or when receiving stack traces and errors - the file names and line numbers will
correctly refer to the source files before include file processing.

For more details visit
https://www.klayout.org

Page 128 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4.2. DRC Runsets

Input and output

Input is specified with the "input" method or global function. "input" is basically a method of a source object. There is always one source
object which is the first layout loaded into the current view. Using "input" without and source object is calling that method on that default
source object. As source is basically a collection of multiple layers and "input" will select one of them.

"input" will create a layer object representing the shapes of the specified input layer. There are multiple ways to specify the layer from which
the input is taken. One of them is by GDS layer and datatype specification:

GDS layer 17, datatype 0
l = input(17)

GDS layer 17, datatype 10
l = input(17, 10)

By expression (here: GDS layers 1-10, datatype 0 plus layer 21, datatype 10)
All shapes are combined into one layer
l = input("1-10/0", "21/10")

Input can be obtained from other layouts than the default one. To do so, create a source object using the "layout" global function:

layer 17 from second layout loaded
l = layout("@2").input(17)

layer 100, datatype 1 and 2 from "other_layout.gds"
other_layout = layout("other_layout.gds")
l1 = other_layout.input(100, 1)
l2 = other_layout.input(100, 2)

Output is by default sent to the default layout - the first one loaded into the current view. The output specification includes the layer and
datatype or the layer name:

send output to the default layout: layer 17, datatype 0
l.output(17, 0)

send output to the default layout: layer named "OUT"
l.output("OUT")

send output to the default layout: layer 17, datatype 0, named "OUT"
l.output(17, 0, "OUT")

Output can be sent to other layouts using the "target" function:

send output to the second layout loaded:
target("@2")

send output to "out.gds", cell "OUT_TOP"
target("out.gds", "OUT_TOP")

Output can also be sent to a report database:

send output to a report database with description "Output database"
- after the runset has finished this database will be shown
report("Output database")

send output to a report database saved to "drc.lyrdb"

For more details visit
https://www.klayout.org

Page 129 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4.2. DRC Runsets

report("Output database", "drc.lyrdb")

When output is sent to a report database, the specification must include a formal name and optionally a description. The output method will
create a new category inside the report database and use the name and description for that:

specify report database for output
report("The output database")
...
Send data from layer l to new category "check1"
l.output("check1", "The first check")

The report and target specification must appear before the actual output statements. Multiple report and target specifications can be
present sending output to various layouts or report databases. Note that each report or target specification will close the previous one.
Using the same file name for subsequent reports will not append data to the file but rather overwrite the previous file.

Layers that have been created using "output" can be used for input again, but care should be taken to place the input statement after the
output statement. Otherwise the results will be unpredictable.

Dimension specifications

Dimension specifications are used in many places: for coordinates, for spacing and width values and as length values. In all places, the
following rules apply:

• Floating-point numbers are interpreted as micron values by default.

• Integer number are interpreted as database units by default (Not integer micron values!).

• To make explicitly clear what dimensions to use, you can add a unit.

Units are added using the unit methods:

• 0.1: 0.1 micrometer

• 200: 200 database units

• 200.dbu: 200 database units

• 200.nm: 200 nm

• 2.um or 2.micron: 2 micrometer

• 0.2.mm: 0.2 millimeter

• 1e-5.m: 1e-5 meter (10 micrometer)

Area units are usually square micrometers. You can use units as well to indicate an area value in some specific measurement units:

• 0.1.um2 or 0.1.micron2: 0.1 square micron

• 0.1.mm2: 0.1 square millimeter

Angles are always given in degree units. You can make clear that you want to use degree by adding the degree unit method:

• 45.degree: 45 degree

Objects and methods

Runsets are basically scripts written in an object-oriented language. It is possible to write runsets that don't make much use of that fact, but
having a notion of the underlying concepts will result in better understanding of the features and how to make full use of the capabilities.

For more details visit
https://www.klayout.org

Page 130 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4.2. DRC Runsets

In KLayout's DRC language, a layer is an object that provides a couple of methods. The boolean operations are methods, the DRC
functions are methods and so on. Method are called "on" an object using the notation "object.method(arguments)". Many methods produce
new layer objects and other methods can be called on those. The following code creates a sized version of the input layer and outputs it.
Two method calls are involved: one sized call on the input layer returning a new layer object and one output call on that object.

input(1, 0).sized(0.1).output(100, 0)

The size method like other methods is available in two flavors: an in-place method and an out-of-place method. "sized" is out-of-place,
meaning that the method will return a new object with the new content but not modify the object. The in-place version is "size" which
modifies the object. Only the layer object is modified, not the original layer.

The following is the above code written with the in-place version:

layer = input(1, 0)
layer.size(0.1)
layout.output(100, 0)

Using the in-place versions is slightly more efficient in terms of memory since with the out-of-place version, KLayout will keep the
unmodified copy as long as there is a chance it may be required. On the other hand the in-place version may cause strange side effects
since because of the definition of the copy operation: a simple copy will just copy a reference to a layer object, not the object itself:

layer = input(1, 0)
layer2 = layer
layer.size(0.0)
layer.output(100, 0)
layer2.output(101, 0)

This code will produce the same sized output for layer 100 and 101, because the copy operation "layer2 = layer" will not copy the content
but just a reference: after sizing "layer", "layer2" will also point to that sized layer.

That problem can be solved by either using the out-of-place version or by creating a deep copy with the "dup" function:

out-of-place size:
layer = input(1, 0)
layer2 = layer
layer = layer.sized(0.0)
layer.output(100, 0)
layer2.output(101, 0)

deep copy before size:
layer = input(1, 0)
layer2 = layer.dup
layer.size(0.0)
layer.output(100, 0)
layer2.output(101, 0)

Some methods are provided in different flavors including function-style calls. For example the width check can be written in two ways:

method style:
layer.width(0.2).output("width violations")

function style:
w = width(layer, 0.2)
output(w, "width violations")

The function style is intended for users not familiar with the object-oriented style who prefer a function notation.

For more details visit
https://www.klayout.org

Page 131 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4.2. DRC Runsets

Here is a brief overview over some of the methods available:

• Source, input and output:
source, layout, cell, select, clip, input, labels, polygons, output, report, target

• DRC functions:
width, space, separation (sep), notch, isolated (iso), enclosure (enc), overlap

• Universal DRC (see below):
drc

• Boolean operations:
& (and), | (or), - (not), ^ (xor), + (xor), join

• Sizing:
size, sized

• Merging:
merge, merged

• Shape selections:
in, inside, interacting, pull_interacting, outside, touching, overlapping
These methods are available as in-place operations as well:
select_interacting, select_inside, select_outside, select_touching, select_overlapping

• Filters:
rectangles, rectilinear, with_area, with_bbox_height, with_bbox_width, with_bbox_max, with_bbox_min, with_perimeter
with_angle, with_length
These methods are available as version selecting the opposite:
non_rectangles, non_rectilinear, without_area, without_bbox_height, without_bbox_width, without_bbox_max, without_bbox_min,
without_perimeter without_angle, without_length

• Text filters:
texts, texts_not,

• Transformations:
moved, rotated, scaled, transformed
These methods are available as in-place versions as well: move, rotate, scale, transform

• Polygon manipulations:
extents, hulls, holes

• Edge manipulations:
centers, end_segments, start_segments, extended, extended_in, extended_out

• Information:
length, perimeter, area, polygons?, edges?, edge_pairs?, is_box?, is_clean?, is_empty?, is_merged?, is_raw?

• Layer mode:
raw, clean

• Layer type conversions:
edges, first_edges, second_edges, polygons

Polygon and edge layers

KLayout knows four layer types: polygon, edge, edge pair and text layers. Polygon and edge layers are the basic layer types for
geometrical operations.

Polygon layers are created from original layers using input or polygons. "input" will also turn texts into small polygons with a size of 2x2
DBU while "polygons" will skip texts. For handling texts, the labels method is recommended which renders a true text layer. Text layers are
described below.

For more details visit
https://www.klayout.org

Page 132 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4.2. DRC Runsets

Polygon layers describe objects having an area ("filled objects" in the drawing view). Such objects can be processed with boolean
operations, sized, decomposed into holes and hull, filtered by area and perimeter and so on. DRC methods such as width and spacing
checks can be applied to polygons in a different way than between different polygons (see space, separation and notch for example).

Polygons can be raw or merged. Merged polygons consist of a hull contour and zero to many hole contours inside the hull. Merging can be
ensured by putting a layer into "clean" mode (see clean, clean mode is the default). Raw polygons usually don't have such a representation
and consist of a single contour folding inside to form the holes. Raw polygons are formed in "raw" mode (see raw).

Egde layers can be derived from polygon layers and allow the description is individual edges ("sides") of a polygon. Edge layers offer DRC
functions similar for polygons but in a slightly different fashion - edges are checked individually, non considering the polygons they belong
to. Neither do other parts of the polygons shield interactions, hence the results may be different.

Edges can be filtered by length and angle. extended allows erecting polygons (typically rectangles) on the edges. Edge layers are useful to
perform operations on specific parts of polygons, for example width or space checks confined to certain edge lengths.

Edges do not differentiate whether they originate from holes or hulls of the polygon. The direction of edges is always following a certain
convention: when looking from the start to the end point of an edge, the "inside" of the polygons from which the edges were derived, is to
the right. In other words: the edges run along the hull in clockwise direction and counterclockwise along the holes.

Merged edges are joined, i.e. collinear edges are merged into single edges and degenerate edges (single-point edges are removed).
Merged edges are present in "clean" mode (see clean, clean mode is the default).

Polygons can be decomposed into edges with the edges method. Another way to generate edges is to take edges from edge pair objects
which are generated by the DRC check functions.

Text collections

Starting with version 0.27, KLayout offers support for text layers. "Texts" are basically locations with a label, i.e. a dot with an arbitrary
string attached. "Text collections" are collections of such objects.

Texts can be used to select polygons or as net names in net extractions.

Text collections are kept in "text layers". These are created using the labels methods instead of "input".

These operations are supported for text layers:

• Boolean AND with a polygon layer: will select those texts which are inside or at the border of a polygon. interact is a synonym for this
operation.

• Boolean NOT with a polygon layer: will select those texts which are outside of any polygon. not_interact is a synonym for this
operation.

• As second layer for region interact: this way, polygons can be selected which are tagged with certain texts.

• Text filtering by string: texts can be filtered either by matching against a fixed text or a glob pattern. The methods provided for this
purpose are: texts and texts_not

• flatten will flatten the hierarchy of a text layer.

• Polygon or edge generation around the text's location: polygons and edges

Edge pairs and edge pair collections

Edge pairs are objects consisting of two edges. Edge pairs are handy when discribing a DRC check violation, because a violation occurs
between two edges. The edge pair generated for such a violation consists of the parts of both edges violation the condition. For two-layer
checks, the edges originate from the original layers - edge 1 is related to input 1 and edge 2 is related to input 2.

Edge pair collections act like normal layers, but very few methods are defined for those. Edge pairs can be decomposed into single edges
(see edges, first_edges and second_edges).

Edge pairs can be converted to polygons using polygons. Edge pairs can have a vanishing area, for example if both edges are coincident.
In order to handle such edge pairs properly, an enlargement can be applied optionally. With such an enlargement, the polygon will cover a
region bigger than the original edge pair by the given enlargement.

Raw and clean layer mode

KLayout's DRC engine supports two basic ways to interpret geometrical information on a layer: in clean mode, polygons or edges are
joined if they touch. If regions are drawn in separate pieces they are effectively joined before they are used. In raw mode, every polygon

For more details visit
https://www.klayout.org

Page 133 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4.2. DRC Runsets

or shape on the input layer is considered a separate part. There are applications for both ways of looking at a set of input shapes, and
KLayout supports both ways.

Clean mode is the default - every layer generated or taken from input will be used in clean mode. To switch to raw mode, use the "raw"
method. "raw mode" is basically a flag set on the layer object which instructs the engine not the merge polygons prior to use. The raw mode
flag can be reset with the "clean" method.

Most functions implicitly merge polygons and edges in clean mode. In the documentation this fact is referred to as "merged semantics":
if merged semantics applies for the function, coherent polygons or edges are considered one object in clean mode. In raw mode, every
polygon or edge is treated as an individual object.

One application is the detection of overlapping areas after a size step:

overlaps = layer.size(0.2).raw.merged(2)

That statement has the following effect:

The "merged" method with an argument of 2 will produce output where more than two polygons overlap. The size function by default
creates a clean layer, but separate polygons for each input polygon, so by using "raw", the layer is switched into raw mode that makes the
individual polygons accessible without merging them into one bigger polygon.

Please note that the raw or clean methods modify the state of a layer so beware of the following pitfall:

 layer = input(1, 0)
 layer.raw.sized(0.1).output(100, 0)

 # this check will now be done on a raw layer, since the
 # previous raw call was putting the layer into raw mode

For more details visit
https://www.klayout.org

Page 134 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4.2. DRC Runsets

 layer.width(0.2).ouput(101, 0)

The following two images show the effect of raw and clean mode:

Shielding

"Shielding" is a concept where DRC measurements do not "look through" layout features. With shielding, a DRC violation is skipped when
another feature would (fully) block the violation marker's path. Shielding is available and enabled by default for the (internal or external)
distance-based DRC functions: width, space, separation (sep), notch, isolated (iso), enclosure (enc) or overlap. Shielding is turned off using
the "transparent" option or turned on using "shielded". The latter is only for clarity, but is not required as shielding is enabled by default.

The following examples demonstrate the effect of shielding: in the right example, shielding is turned off. Hence, the violation between the
upper box on the right and the lower bar is no longer shielded by the small bar between them and this additional violation is reported too.

For more details visit
https://www.klayout.org

Page 135 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4.2. DRC Runsets

Although shielding feels more natural, it can have an adverse effect as it is effective at zero distance already. In the following example, the
second layer is a subset of the first. When testing the distance between second and first, the overlapping first layer shapes will block the
separation measurement in shielded mode. Hence, only transparent mode will render the actual distance violation. The bottom right blue
box is not shielded by the overlaying red box:

For more details visit
https://www.klayout.org

Page 136 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4.2. DRC Runsets

Universal DRC

Starting with version 0.27, the DRC language got a new feature which is "universal DRC".

On one hand, this is a more convenient way to write DRC checks because it allows specifications using natural compare operators. For
example, the following plain width check

 ...
 drc_w = input(1, 0).width(0.2)
 ...

can be written as:

 ...
 drc_w = input(1, 0).drc(width < 0.2)
 ...

The drc method is the "universal DRC" method. It takes an operator. In the simple case, this operator is a simple constraint of the form
"measurement < value", but it supports a number of different variants:

• drc(measurement != value): renders markers where the dimension is not matching the value

For more details visit
https://www.klayout.org

Page 137 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4.2. DRC Runsets

• drc(measurement == value): renders markers where the dimension is matching the given value

• drc(measurement less_op value): ("less_op" is < or <=) renders markers where the dimension is less than or less or equal to the
given value

• drc(measurement greater_op value): ("greater_op" is > or >=) renders markers where the dimension is greater than or greater or
equal to the given value

• drc(lower_value less_op measurement greater_op upper_value): renders markers where the dimension is between the lower and
upper value

"measurement" is "width", "notch", "isolated" ("iso"), "separation" ("sep"), "overlap" or "enclosure" ("enc"). The last three checks are two-
layer checks which require a second layer. The second layer is specified together with the measurement like this:

 ...
 l1 = input(1, 0)
 l2 = input(2, 0)
 drc_sep = l1.drc(separation(l2) <= 0.5)
 ...

Options are also specified together with the measurement and follow the same notation as the plain methods. For example to specify
"projection" metrics, use:

 ...
 drc_w = input(1, 0).drc(width(projection) < 0.2)
 ...

However, the universal DRC is much more than a convenient way to write checks: it offers a number of options to further process the
results. The functionality behind the universal DRC function is basically a kind of loop over all primary shapes (the ones from the layer
the "drc" function is called on). The operations in the drc function's brackets is executed on each of the primary shapes where the
neighborhood of that single shape is considered. This scheme is more efficient and enables applications beyond the capabilities of the plain
layer methods.

For example, the boolean "&" operator implements a "local" boolean AND inside this loop. This allows to efficiently check for both space
and width violations:

 ...
 drc_ws = input(1, 0).drc((width < 0.2) & (space < 0.3))
 ...

The boolean AND is computed between the edges on the primary shape and returns the parts where both space and width violations are
flagged. The boolean operation is more efficient than the plain alternative:

 ...
 drc_ws1 = input(1, 0).width(0.2).edges
 drc_ws2 = input(1, 0).space(0.3).edges
 drc_ws = drc_ws1 & drc_ws2
 ...

The reason is that performing the boolean computation in the local loop can be shortcut if one inputs is empty. It does not need to store a
(potentially big) edge set with edges as produced by the plain-method implementation. Instead it will work with a temporary and local edge
set only and free the memory space as soon as it moves on to the next primary shape.

For more details visit
https://www.klayout.org

Page 138 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4.2. DRC Runsets

Overall, the universal DRC function is a rich feature and offers filters based on polygons or edge properties, polygon or edge manipulation
operators, conditionals and a lot more. For more details see the drc function documentation.

Logging and verbosity

While the runset is executed, a log is written that lists the methods and their execution times. The log is enabled using the verbose function.
The log and info functions allows entering additional information into the log. "info" will enter the message if verbose mode is enabled. "log"
will enter the message always. silent is equivalent to "verbose(false)".

The log is shown in the log window or - if the log window is not open - on the terminal on Linux-like systems.

The log function is useful to print result counts during processing of the runset:

 ...
 drc_w = input(1, 0).width(0.2)
 log("Number of width violations: #{drc_w.data.size}")
 ...

The error function can be used to output error messages unconditionally, formatted as an error. The log can be sent to a file instead of the
log window or terminal output, using the log_file function:

 log_file("drc_log.txt")
 verbose(true)
 info("This message will be sent to the log file")
 ...

The tiling option

Tiling is a method to reduce the memory requirements for an operation. For big layouts, pulling a whole layer into the engine is not a good
idea - huge layouts will require a lot of memory. The tiling method cuts the layout into tiles with a given width and height and processes
them individually. The tiling implementation of KLayout can make use of multiple CPU cores by distributing the jobs on different cores.

Tiling does not come for free: some operations have a potentially infinite range. For example, selecting edges by their length in clean mode
basically requires to collect all pieces of the edge before the full length can be computed. An edge running over a long length however may
cross multiple tiles, so that the pieces within one tile don't sum up to the correct length.

Fortunately, many operations don't have an infinite range, so that tiling can be applied successfully. These are the boolean operations,
sizing and DRC functions. For those operations, a border is added to the tile which extends the region inside which the shapes are
collected. That way, all shapes potentially participating in an operation are collected. After performing the operation, polygons and edges
extending beyond the tile's original boundary are clipped. Edge pairs are retained if they touch or overlap the original tile's border. That
preserves the outline of the edge pairs, but may render redundant markers in the tile's border region.

For non-local operations such as the edge length example, a finite range can be deduced in some cases. For example, if small edges are
supposed to be selected, the range of the operation is limited: longer edges don't contribute to the output, so it does not matter whether to
take into account potential extensions of the edge in neighboring tiles. Hence, the range is limited and a tile border can be given.

To enable tiling use the tiles function. The threads function specifies the number of CPU cores to use in tiling mode. flat will disable tiling
mode:

Use a tile size of 1mm
tiles(1.mm)
Use 4 CPU cores
threads(4)

... tiled operations ...

Disable tiling
flat

For more details visit
https://www.klayout.org

Page 139 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4.2. DRC Runsets

... non-tiled operations ...

Some operations implicitly specify a tile border. If the tile border is known (see length example above), explicit borders can be set with the
tile_borders function. no_borders will reset the borders (the implicit borders will still be in place):

Use a tile border of 10 micron:
tile_borders(10.um)

... tile operations with a 10 micron border ...

Disable the border
no_borders

A word about the tile size: typically tile dimensions in the order of millimeters is sufficient. Leading-edge technologies may require smaller
tiles. The tile border should not be bigger than a few percent of the tile's dimension to reduce the redundant tile overlap region. In general
using tiles is a compromise between safe function and performance. Very small tiles imply some performance overhead do to shape
collection and potentially clipping. In addition, the clipping at the tile's borders may introduce artificial polygon nodes and related snapping
to the database unit grid. That may not be desired in some applications requiring a high structure fidelity. Hence, small tiles should be
avoided in that sense too.

Hierarchical mode

Alternatively to the tiling option, hierarchical mode is available. In hierarchical mode, the DRC functions operate on subcells if their
configuration allows this. The algorithm will automatically detect whether an operation can be performed in a subcell. For example, a sizing
operation can be done inside a subcell, if the cell's content is not connected to anything outside the cell.

To enable hierarchical operations, use the "deep" statement:

report("deep 2")

enable deep (hierarchical) operations
deep

poly = input(3)

spc = poly.space(0.5)
spc.output("poly space >0.5")

"deep" is not compatible with tiling. "tiles" will disable "deep" and vice versa. To disable deep mode, use "flat".

Deep processing is a layer property. After "deep" has been specified, layers derived with "input" are declared to be deep - i.e. hierarchical
operations are enabled on them. Operations on deep layers will usually render other deep layers. This is also true for edge and edge pair
layers. For example, the "space" operation above will render a hierarchical edge pair layer.

In binary operations such as boolean operations, the operation is performed hierarchically, if both involved layers are deep. A layer can be
explicitly converted to a flat layer using "flatten".

To check whether a layer is deep, use "is_deep?".

report("deep 2")

enable deep (hierarchical) operations
deep

poly = input(3)
puts poly.is_deep? # -> true
poly.flatten
puts poly.is_deep? # -> false

For more details visit
https://www.klayout.org

Page 140 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.4.2. DRC Runsets

Most operations are hierarchy enabled, with a few exceptions. Some operations - specifically the transformation operations such
as "move", "rotate" and the anisotropic sizing or the grid snap operations will generate cell variants. Such variants reflect different
configurations of cells with respect to the requested operation. For example, with anisotropy (x != y), rotated cells need to be treated
differently from non-rotated ones. In the "snap" feature, cell variants are created if the cell's instances are not all on-grid. Most functions
need to create variants only when the same cell is instantiated with different magnification factors.

When writing back a layout with cell variants, new versions of cells will appear.

When sending the output of hierarchical operations to a report database, the markers will be listed under the cell name they appear. A
sample cell instance is provided within the marker database to allow visualizing the marker in at least one context.

Limitations

Functions which require merged polygons utilize the net clustering algorithm to form the merged polygons. All connected shapes are
collected and merged into a bigger polygon. This happens in the lowest possible level on the hierarchy where the shape clusters are
complete. In some cases - when the shapes come from big coherent regions - this may happen on the top cell level and the resulting
polygon will be very big. This will lead to poor performance.

The DRC's hierarchical mode will - except for cell variants in the cases mentioned - not modify the cell hierarchy. This hierarchy-preserving
nature is good for certain applications, but leads to a compromise in terms of resolving hierarchically different configurations. As the
algorithm is not allowed to create variants in most cases, the only remaining option is to propagate results from such cases into the parent
cells. In the worst case this will lead to flattening of the layout and loss of hierarchy.

For more details visit
https://www.klayout.org

Page 141 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5. Layout vs. Schematic (LVS)

1.5. Layout vs. Schematic (LVS)
LVS is a verification step which checks whether a layout matches the circuit from the schematic. The LVS feature is described in the
following topic chapters:

• Layout vs. Schematic (LVS) Overview

• LVS Introduction

• LVS Devices

• LVS Device Classes

• LVS Device Extractors

• LVS Input/Output

• LVS Connectivity

• LVS Compare

• LVS Netlist Tweaks

A reference for the functions and objects available for LVS scripts can be found here: LVS Reference.

For more details visit
https://www.klayout.org

Page 142 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.1. Layout vs. Schematic (LVS) Overview

1.5.1. Layout vs. Schematic (LVS) Overview

Basic usage of LVS scripts

Starting with version 0.26, KLayout supports LVS as a built-in feature. LVS is an important step in the verification of a layout: it ensures the
drawn circuit matches the desired schematic.

The basic functionality is simply to analyze the input layout and derive a netlist from this. Then compare this netlist against a reference
netlist (schematic). If both netlist are equivalent, the circuit is likely to work in the intended fashion.

Beside the layout, a LVS script will also need a schematic netlist. Currently, KLayout can read SPICE-format netlists. The reader can be
configured to some extent, so the hope is that a useful range of SPICE netlists can be digested.

While the basic idea is simple, the details become pretty complex. This documentation tries to cover the solutions KLayout offers to
implement LVS as well as the constraints imposed by this process.

KLayout's LVS is integrated into the Macro Development IDE the same way as DRC scripts. In fact, LVS is an add-on to DRC scripts.
All DRC functions are available within LVS scripts. Netlist extraction is performed in the DRC framework which was given the ability to
recognize devices and connections and turn them into a netlist. Although DRC does not really benefit from these extensions, they are still
useful for implementing Antenna checks for example. As it happens, the majority of features required for LVS is documented in the DRC
Reference, while the few add-ons required specifically for LVS are documented in LVS Reference.

LVS scripts are created, edited and debugged in the Macro Editor IDE. They are managed in the "LVS" tab. For more details about the IDE,
see About Macro Development. For an introduction about how to work with DRC scripts see Design Rule Checks (DRC) Basics.

LVS scripts carry the ".lylvs" extension for the XML form (in analogy to ".lydrc" for DRC) and ".lvs" for the plain text form (same as ".drc").
Like DRC scripts, LVS scripts can be executed standalone in batch mode like DRC scripts. See "Using KLayout as a standalone DRC
engine" in Design Rule Checks (DRC) Basics.

KLayout's LVS implementation

The LVS implementation inside KLayout is designed to be highly flexible in terms of connectivity, device recognition and input/output
channels. Here are some highlights:

• Agnostic approach: KLayout tries to make as few assumptions as possible. It does not require labels (although they are helpful), a
specific hierarchy, specific cell names or specific geometries. Netlist extraction is done purely from the polygons of the layout. Labels
and the cell hierarchy add merely useful hints which simplify debugging and pin assignment, but no strict requirement.

• Hierarchical analysis: KLayout got a hierarchical layout processing engine to support hierarchical LVS. Hierarchical processing
means that boolean operations happen inside the local cell environment as far as possible. As a consequence, devices are
recognized inside their layout cell and layout cells are turned into respective subcircuits in the netlist. The netlist compare will benefit
as it is able follow the circuit hierarchy. This is more efficient and gives better debugging information in case of mismatches. As a
positive side effect of hierarchical layout processing the runtimes for some boolean and other operations is significantly reduced in
most cases.

• Hierarchically stable: KLayout won't modify the layout's hierarchy nor will it introduce variants - at least for boolean and some
other operations. This way, matching between layout and schematic hierarchy is maintained even after hierarchical DRC operations.
Variants are introduced only for some anisotropic operations, the grid snap method and some other features which require
differentiation of cells in terms of location and orientation.

• Flexible engine: The netlist formation engine is highly flexible with respect to device recognition and connectivity extraction. First,
almost all DRC features can be used to derive intermediate layers for device formation and connectivity extraction. Second, the
device recognition can be scripted to implement custom device extractors. Five built-in device extractors are available for MOS and
bipolar transistors, resistors, capacitors and diodes.

• Flexible I/O: Netlists are KLayout object trees and their components (nets, devices, circuits, subcircuits ...) are fully mapped to script
objects (for the main class see Netlist in the API documentation). Netlists can therefore be analyzed and manipulated within LVS
scripts or in other contexts. It should be possible to fully script readers and writers for custom formats. Netlists plus the corresponding
layout elements (sometimes called "annotated layout") can be persisted in a KLayout-specific, yet open format. SPICE format is
available to read and write pure netlist information. The SPICE reader and writer is customizable through delegate classes which
allow tailoring of the way devices are read and written.

For more details visit
https://www.klayout.org

Page 143 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.1. Layout vs. Schematic (LVS) Overview

• User interface integration: KLayout offers a browser for the netlist extraction results and LVS reports (cross-reference, errors).

Terminology

KLayout employs a specific terminology which is explained here:

• Circuit: A graph of connected elements as there are: devices, pins and subcircuits. The nodes of the graph are the nets connecting
at least two elements. If derived from a layout, a circuit corresponds to a specific layout cell.

• Abstract circuits: Abstract circuits are circuits which are cleared from their inner structure. Such circuits don't have nets and define
pins only. Abstract circuits are basically "black boxes" and LVS is required to consider their inner structure as "don't care". Abstract
circuits are useful to reduce the netlist complexity by taking out big IP blocks verified separately (e.g. RAM blocks).

• Pin: A point at which a circuit makes a connection to the outside. Circuits can embed other circuits as "subcircuits". Nets connecting
to the pins of these subcircuits will propagate into the subcircuit and connect further elements there. Pins are usually attached to one
net - in some cases, pins can be unattached (circuits abstracts). Pins can be named. Upon extraction, the pin name is derived from
the name of the net attached to the pin.

• Subcircuit: A circuit embedded into another circuit. One circuit can be used multiple times, hence many subcircuits can reference
the same circuit. If derived from a layout, a subcircuit corresponds to a specific cell instance.

• Device: A device is a n-terminal entity describing an atomic functional unit. Devices are passive devices (resistors, capacitors) or
active devices such as transistors.

• Device class: A device class is a type of device. Device classes are of a certain kind and there can be multiple classes per type. For
example for MOS transistors, the kind is "MOS4" (a four-terminal MOS transistor) and there is usually "NMOS" and "PMOS" classes
at least in a CMOS process. A device class typically corresponds to a model in SPICE.

• Device extraction: Device extraction is the process of detecting devices and forming links between conductive areas and the device
bodies. These links will eventually form the device terminals.

• Device combination: Device combination is the process of forming single devices from combinations of multiple devices of the same
class. For example, serial resistors can be combined into one. More importantly, parallel MOS transistors ("fingered" transistors) are
combined into a single device. Device combination is a step explicitly requested in the LVS script.

• Terminal: A "terminal" is a pin of a device. Terminals are typically named after their function (e.g. "G" for the gate of a MOS
transistor).

• Connectivity: The connectivity is a description of conductive regions in the technology stack. A layer has intra-layer and intra-
layer connectivity: "Intra-layer connectivity" means that polygons on the same layer touching other polygons form a connected - i.e.
conductive - region. "Inter-layer connectivity" means that two layers form a connection where their polygons overlap. The sum of
these rules forms the "connectivity graph".

• Netlist: A hierarchical structure of circuits and subcircuits. A netlist typically has a top circuit from which other circuits are called
through subcircuits.

• Extracted netlist: The extracted netlist is the netlist derived from the layout. Sometimes, "extracted netlist" describes the netlist
enriched with parasitic elements such as resistors and capacitors derived from the wire geometries. In the context of KLayout's LVS,
"extracted netlist" is the pure connectivity without parasitic elements.

• Schematic: The "schematic" is a netlist taken as reference for LVS. The "schematic" is thought of the "drawn" netlist that is turned
into a layout by the physical implementation process. In LVS, the layout is turned back into the "extracted netlist" which is compared
to the schematic.

• Annotated layout, Net geometry: The collection of polygons belonging to the individual nets. Each net inside a circuit is
represented by a bunch of polygons representing the original wire geometry and the device terminals. As nets can propagate to
subcircuits through pins, nets and therefore annotated layout carries a per-net hierarchy. The per-net hierarchy consists of the
subcircuits attached to one net and the nets within these subcircuits that connect to the outer net. Subcircuits can instantiate other
subcircuits, so the hierarchy may extend over many levels.

For more details visit
https://www.klayout.org

Page 144 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.1. Layout vs. Schematic (LVS) Overview

• Layout to netlist database (L2N DB): This is a data structure combining the information from the extracted netlist and the annotated
layout into a single entity. The L2N database can be used to visualize nets, probe nets from known locations and perform other
analysis and manipulation steps. An API for handling L2N databases is available.

• Cross reference: The cross reference is a list of matching objects from the two netlists involved in a LVS netlist compare ("pairing").
The cross-reference also lists non-matching items and inexact pairs. "Inexact pairs" are pairs of objects which do not match precisely,
but still are likely to be paired. The cross reference also keeps track of the compare status - i.e. whether the netlists match and if not,
where a mismatch originates from.

• LVS database: The "LVS database" is the combination of L2N database, the schematic netlist and the cross-reference. It's a
complete image of the LVS results. An API is available to access the elements of the LVS database.

• Labels: "Labels" are text objects drawn in a layout to mark certain locations on certain layers with a text. Typically, labels are used to
assign net names - if included in the connectivity, nets formed from such labels get a name according to the text string of the label.

For more details visit
https://www.klayout.org

Page 145 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.2. LVS Introduction

1.5.2. LVS Introduction

LVS introduction

For introducing the LVS feature we consider the most simple CMOS structure there is: the two-transistor inverter.

Layout

The inverter consists of two MOS transistors. A single transistor is made from an active region (a rectangle on the ACTIVE layer) and a
gate (POLY layer) crossing the active region. The gate forms the channel from source to drain regions (left and right of gate). Contacts
(CONTACT) provide connections from the first metal layer (METAL1) to the gate polysilicon (POLY) and to source/drain regions (where
over ACTIVE). Via holes (VIA1) provide connections from the first (METAL1) to the second metal (METAL2). Finally, specific devices are
formed by the source/drain implants which is n+ (NPLUS marker) for NMOS and p+ (PPLUS marker) for PMOS devices. PMOS devices sit
in a n implant region (n-well) which forms the p-channel region. NMOS devices are built over substrate which is p doped to supply the n-
channel region.

The actual layout is made as a standard cell. Multiple standard cells can be arrayed horizontally in a row. The power rails are formed in the
second metal for VDD at the top and VSS at the bottom. The n-well extends over the top of the cell and is supposed to connect to neighbor
well regions:

Schematic

For the inverter we can draw a schematic in a simplified form (left) and in a more realistic form (right) which also includes the bulk potentials
of the transistors. It is important to keep the bulk of of the transistors at a defined potential to avoid latch-up. Hence we need pins for
these terminals too. This makes a total of six pins: for input (IN) and output (OUT), for the power (VDD, VSS) and the two bulk potentials
(NWELL, SUBSTRATE):

For more details visit
https://www.klayout.org

Page 146 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.2. LVS Introduction

For LVS we first need a reference schematic. This is the SPICE netlist corresponding to the schematic with the bulk connections:

* Simple CMOS inverer circuit (inv.cir)
.SUBCKT INVERTER VSS IN OUT NWELL SUBSTRATE VDD
Mp VDD IN OUT NWELL PMOS W=1.5U L=0.25U
Mn OUT IN VSS SUBSTRATE NMOS W=0.9U L=0.25U
.ENDS

The circuit we are going to analyze is a cell which is embedded in bigger circuits. Hence it makes sense to describe the inverter as a
subcircuit. If the netlist consists of a subcircuit only, KLayout will consider this circuit. Otherwise it will consider the global definitions as the
main circuit. In the latter case, pins cannot be defined while with subcircuits pins can be listed as given names too.

Sample LVS script

The LVS script to compare the layout above and the schematic now is this (for more details see LVS Reference):

LVS script (demo technology, KLayout manual)

Preamble:

deep

Reports generated:

report_lvs # LVS report window

Drawing layers:

nwell = input(1, 0)

For more details visit
https://www.klayout.org

Page 147 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.2. LVS Introduction

active = input(2, 0)
pplus = input(3, 0)
nplus = input(4, 0)
poly = input(5, 0)
contact = input(6, 0)
metal1 = input(7, 0)
metal1_lbl = labels(7, 1)
via1 = input(8, 0)
metal2 = input(9, 0)
metal2_lbl = labels(9, 1)

Bulk layer for terminal provisioning:

bulk = polygon_layer

Computed layers:

active_in_nwell = active & nwell
pactive = active_in_nwell & pplus
pgate = pactive & poly
psd = pactive - pgate

active_outside_nwell = active - nwell
nactive = active_outside_nwell & nplus
ngate = nactive & poly
nsd = nactive - ngate

Device extraction

PMOS transistor device extraction
extract_devices(mos4("PMOS"), { "SD" => psd, "G" => pgate, "W" => nwell,
 "tS" => psd, "tD" => psd, "tG" => poly, "tW" => nwell })

NMOS transistor device extraction
extract_devices(mos4("NMOS"), { "SD" => nsd, "G" => ngate, "W" => bulk,
 "tS" => nsd, "tD" => nsd, "tG" => poly, "tW" => bulk })

Define connectivity for netlist extraction

Inter-layer
connect(psd, contact)
connect(nsd, contact)
connect(poly, contact)
connect(contact, metal1)
connect(metal1, metal1_lbl) # attaches labels
connect(metal1, via1)
connect(via1, metal2)
connect(metal2, metal2_lbl) # attaches labels

Global
connect_global(bulk, "SUBSTRATE")
connect_global(nwell, "NWELL")

Compare section

schematic("inv.cir")

align # flattens unpaired circuits
netlist.simplify # removes floating nets, combines devices

compare

For trying this script, load the inverter layout from "testdata/lvs/inv.oas" (KLayout sources) and open the Macro Editor IDE (Tools/Macro
Development). Create a new script in the LVS tab and paste the text from above. Then run the script. The LVS report browser will open and
show everything in green. This indicates the compare was successful:

For more details visit
https://www.klayout.org

Page 148 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.2. LVS Introduction

Anatomy of the LVS script

The first and important statement of a LVS script should be the "deep" switch which enables hierarchical mode. Without hierarchical mode,
the netlist is produced without subcircuits. Such flat netlist are inefficient to compare and hard to debug. Hence we switch to hierarchical
mode with the "deep" statement (see deep):

deep

We also instruct LVS to create a report and open it in the report browser once LVS has finished:

report_lvs

We can also write the report to a file if we want (see report_lvs):

report_lvs("inv.lvsdb")

The next step is the declaration of the input layers:

nwell = input(1, 0)
active = input(2, 0)
pplus = input(3, 0)
nplus = input(4, 0)
poly = input(5, 0)
contact = input(6, 0)
metal1 = input(7, 0)
metal1_lbl = labels(7, 1)
via1 = input(8, 0)
metal2 = input(9, 0)
metal2_lbl = labels(9, 1)

For more details visit
https://www.klayout.org

Page 149 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.2. LVS Introduction

"input" and "labels" are functions which pull layout layers from the layout source (the layout source is - as in DRC - usually the current
layout). While "input" pulls all kind of shapes, "labels" will only pull texts. We use "labels" to pull labels for first metal from GDS layer 7,
datatype 1 and labels for second metal from GDS layer 9, datatype 1. For details see input and labels.

In addition, we create an empty layer which we will need to represent the "substrate". This layer does not constitute a closed region but
rather a heap of shapes which will all connect to the same (global) net later:

bulk = polygon_layer

The names we give to the layers are actually variables which represent a layout layer. As in DRC, we can use these to compute some
derived layers:

active_in_nwell = active & nwell
pactive = active_in_nwell & pplus
pgate = pactive & poly
psd = pactive - pgate

active_outside_nwell = active - nwell
nactive = active_outside_nwell & nplus
ngate = nactive & poly
nsd = nactive - ngate

These formulas are all boolean operations. "&" is the boolean AND operation and "-" is the boolean NOT. Hence "active_in_nwell" is
the part of "ACTIVE" which is inside "NWELL" while "active_outside_nwell" is the part of "ACTIVE" outside it. The main purpose of
these formulas is to separate source and drain regions but cutting away the gate area from the "ACTIVE" area. This renders "psd"
and "nsd" (PMOS and NMOS source/drain). The boolean operations are part of the DRC feature set. For more functions and detailed
descriptions see DRC Reference: Layer Object.

We also separate gate regions for PMOS (pgate) and NMOS transistors (ngate) and with these ingredients we are ready to move to device
extraction:

extract_devices(mos4("PMOS"), { "SD" => psd, "G" => pgate, "W" => nwell,
 "tS" => psd, "tD" => psd, "tG" => poly, "tW" => nwell })

The first argument of "extract_devices" (see extract_devices) is the device extractor. The device extractor is an object responsible for
the actual extraction of a certain device type. In our case the template is "MOS4" and we want to produce a new class of devices called
"PMOS". mos4("PMOS") will create a new device extractor which produces devices of "MOS4" kind with class name "PMOS".

The second argument is a hash of layer symbols and layers. Each device extractor type defines a specific set of layer symbols. For
all devices, two sets of the layers are required: the input layers which the extractor employs to recognize the device and the terminal
connection layers which the extractor uses to place "magic" terminal shapes on. These polygons will create connections to the devices
produced by the extractor.

The input layers are designated by upper-case letters, while the terminal output layers are designated with a lower-case "t" followed by the
terminal name. The specification above is complete, but because "tW" defaults to "W" and "tS" and "tD" default to "SD", it can be written
shorter as:

extract_devices(mos4("PMOS"), { "SD" => psd, "G" => pgate, "W" => nwell, "tG" => poly })

We also need an extractor for the "NMOS" class. It's built exactly the same way than the PMOS extractor:

extract_devices(mos4("NMOS"), { "SD" => nsd, "G" => ngate, "W" => bulk,
 "tS" => nsd, "tD" => nsd, "tG" => poly, "tW" => bulk })

Having the devices is already half the work. We now need to supply the connectivity (see connect):

connect(psd, contact)
connect(nsd, contact)
connect(poly, contact)
connect(contact, metal1)
connect(metal1, metal1_lbl) # attaches labels

For more details visit
https://www.klayout.org

Page 150 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.2. LVS Introduction

connect(metal1, via1)
connect(via1, metal2)
connect(metal2, metal2_lbl) # attaches labels

These statements will connect PMOS source/drain regions (psd) with CONTACT regions (contact), NMOS source/drain regions (nsd) also
with CONTACT. POLY will also connect to CONTACT. Remember that we specified psd, nsd and poly as terminal outputs "tS", "TD" and
"tG" in the device extraction. By including these layers into the connectivity, we establish device terminal connections to the nets formed by
these layers.

The metal stack is trivial (CONTACT to METAL1, METAL1 to METAL2 via VIA1). The labels are attached to nets simply by including the
label layers into the connectivity. The net extractor will pull the text strings from these connected text objects and assign them to the nets as
net names.

Furthermore, two special connections need to be made (see connect_global):

connect_global(bulk, "SUBSTRATE")
connect_global(nwell, "NWELL")

Global connections basically say that all shapes on a certain layer belong to the same net - even if they do not touch - and this net is
always shared between circuits and subcircuits. This is certainly true for the bulk layer, but not necessarily for the NWELL layer. Isolated
NWELL patches do not connect together. We will correct this small error later when it comes to extraction with tie-down diodes.

We have now provided all the essential inputs for the netlist formation. We now have to specify the reference netlist:

schematic("inv.cir")

Two optional, but recommended steps are hierarchy alignment and extracted netlist simplification:

align # flattens unpaired circuits
netlist.simplify # removes floating nets, combines devices

"align" will remove circuits which are not present in the other netlist by integrating their content into the parent cell. This will remove
auxiliary cells which are usually present in a layout but don't map to a schematic cell (e.g. device PCells). "netlist.simplify" reduces the
netlist by floating nets, performs device combination (e.g. fingered transistors). This method will also create pins from labeled nets in the
top level circuit.

The order should be "align", then "netlist.simplify". Both have to happen before "compare" to be effective. "align" is described in LVS
Compare, "netlist.simplify" in LVS Netlist Tweaks.

Finally after having set this up, we can trigger the compare step:

compare

If we insert a netlist write statement (see target_netlist) at the beginning of the script, we can obtain a SPICE version of the extracted
netlist:

SPICE output statement (insert at beginning of script):
target_netlist("inv_extracted.cir", write_spice, "Extracted by KLayout")

Since we have a LVS match, the extracted netlist is pretty much the same than the reference netlist, but enhanced by some geometrical
parameters such as source and drain area and perimeter:

* Extracted by KLayout

* cell INVERTER
.SUBCKT INVERTER
* net 1 IN
* net 2 VSS
* net 3 VDD
* net 4 OUT

For more details visit
https://www.klayout.org

Page 151 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.2. LVS Introduction

* net 5 NWELL
* net 6 SUBSTRATE
* device instance $1 r0 *1 1.025,4.95 PMOS
M$1 3 1 4 5 PMOS L=0.25U W=1.5U AS=0.675P AD=0.675P PS=3.9U PD=3.9U
* device instance $2 r0 *1 1.025,0.65 NMOS
M$2 2 1 4 6 NMOS L=0.25U W=0.9U AS=0.405P AD=0.405P PS=2.7U PD=2.7U
.ENDS INVERTER

Inverter with tie-down diodes

The inverter cell above is not useful by itself as it lacks features to tie the n well and the substrate to a defined potential. This is achieved
with tie-down diodes.

Tie-down diodes are contacts over active regions. The active regions are implanted p+ on the substrate and n+ within the n well (the
opposite implant type of transistors). With this doping profile, the metal contact won't form a Schottky barrier to the Silicon bulk and behave
like an ohmic contact. So in fact, the "diode" isn't a real diode in the sense of a rectifier.

The modified layout is this one:

The corresponding schematic is this:

For more details visit
https://www.klayout.org

Page 152 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.2. LVS Introduction

With this circuit, the n well is always at VDD potential and the substrate is tied at VSS:

* Simple CMOS inverer circuit
.SUBCKT INVERTER_WITH_DIODES VSS IN OUT VDD
Mp VDD IN OUT VDD PMOS W=1.5U L=0.25U
Mn OUT IN VSS VSS NMOS W=0.9U L=0.25U
.ENDS

The LVS script is slightly longer when extraction of tie-down diodes is included:

LVS script (demo technology, KLayout manual)

Preamble:

deep

Reports generated:

report_lvs # LVS report window

Drawing layers:

nwell = input(1, 0)
active = input(2, 0)
pplus = input(3, 0)
nplus = input(4, 0)
poly = input(5, 0)
contact = input(6, 0)
metal1 = input(7, 0)
metal1_lbl = labels(7, 1)

For more details visit
https://www.klayout.org

Page 153 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.2. LVS Introduction

via1 = input(8, 0)
metal2 = input(9, 0)
metal2_lbl = labels(9, 1)

Bulk layer for terminal provisioning

bulk = polygon_layer

Computed layers

active_in_nwell = active & nwell
pactive = active_in_nwell & pplus
pgate = pactive & poly
psd = pactive - pgate
ntie = active_in_nwell & nplus

active_outside_nwell = active - nwell
nactive = active_outside_nwell & nplus
ngate = nactive & poly
nsd = nactive - ngate
ptie = active_outside_nwell & pplus

Device extraction

PMOS transistor device extraction
extract_devices(mos4("PMOS"), { "SD" => psd, "G" => pgate, "W" => nwell,
 "tS" => psd, "tD" => psd, "tG" => poly, "tW" => nwell })

NMOS transistor device extraction
extract_devices(mos4("NMOS"), { "SD" => nsd, "G" => ngate, "W" => bulk,
 "tS" => nsd, "tD" => nsd, "tG" => poly, "tW" => bulk })

Define connectivity for netlist extraction

Inter-layer
connect(psd, contact)
connect(nsd, contact)
connect(poly, contact)
connect(ntie, contact)
connect(nwell, ntie)
connect(ptie, contact)
connect(contact, metal1)
connect(metal1, metal1_lbl) # attaches labels
connect(metal1, via1)
connect(via1, metal2)
connect(metal2, metal2_lbl) # attaches labels

Global
connect_global(bulk, "SUBSTRATE")
connect_global(ptie, "SUBSTRATE")

Compare section

schematic("inv2.cir")

align
netlist.simplify

compare

The main difference is the computation of the regions for n tie-down (inside n well) and p tie-down. This is pretty straightforward:

ntie = active_in_nwell & nplus
ptie = active_outside_nwell & pplus

Device extraction does not change, but we need to include the tie-down regions into the connectivity:

For more details visit
https://www.klayout.org

Page 154 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.2. LVS Introduction

connect(ntie, contact)
connect(nwell, ntie)
connect(ptie, contact)

By connecting ntie to contact and nwell, we readily establish a connection to n well which behaves then like a conductive layer (although
the resistance will be very high). Remember the the device extractors for PMOS will put the bulk terminals on nwell too, so the transistor is
automatically connected to the nwell net.

ptie cannot be simply connected as there are no polygons for "substrate". But we can include ptie in the global connections:

connect_global(bulk, "SUBSTRATE")
connect_global(ptie, "SUBSTRATE")

nwell is no longer included in the global connections, hence we do no longer and incorrectly consider all nwell regions to be connected.

The extracted netlist shows the bulk terminals of NMOS and PMOS connected to source (drain and source are equivalent):

* Extracted by KLayout

* cell INVERTER_WITH_DIODES
.SUBCKT INVERTER_WITH_DIODES
* net 1 IN
* net 2 VDD
* net 3 OUT
* net 4 VSS
* device instance $1 r0 *1 1.025,4.95 PMOS
M$1 2 1 3 2 PMOS L=0.25U W=1.5U AS=0.675P AD=0.675P PS=3.9U PD=3.9U
* device instance $2 r0 *1 1.025,0.65 NMOS
M$2 4 1 3 4 NMOS L=0.25U W=0.9U AS=0.405P AD=0.405P PS=2.7U PD=2.7U
.ENDS INVERTER_WITH_DIODES

For more details visit
https://www.klayout.org

Page 155 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.3. LVS Devices

1.5.3. LVS Devices

Device extractors and device classes

KLayout provides two concepts for handling device variety:

Device classes are device categories. There are general categories such as resistors or MOS transistors. Specific categories can be
created to represent specific incarnations - e.g. NMOS and PMOS devices. Device classes also determine how devices combine.

Device classes are documented here: LVS Device Classes.

Device extractors are the actual worker objects that analyze layout and produce devices. As for device classes, there are general device
extractors. Each device extractor produces devices from a specific class.

Device extractors are documented here: LVS Device Extractors.

For more details visit
https://www.klayout.org

Page 156 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.4. LVS Device Classes

1.5.4. LVS Device Classes
KLayout implements a variety of standard device classes. These device classes are the basis for forming particular incarnations of device
classes. For example, the MOS4 class is the basis for the specific device classes for NMOS and PMOS transistors.

Resistor

The plain resistor has two terminals, A and B. It features the following parameters:

• R : The resistance value in Ohm

• L : The length in µm

• W : The width in µm

• A : The area of the resistor area in µm²

• P : The perimeter of the resistor area in µm

Resistors can combine in parallel or serial fashion.

In SPICE, plain resistors are represented by the "R" element. The API class is DeviceClassResistor.

For more details visit
https://www.klayout.org

Page 157 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.4. LVS Device Classes

Resistor with bulk terminal

The resistor with bulk terminal is an extension of the plain resistor. If has the same parameters, but one additional terminal (W) which
connects to the area the resistor sits in (e.g. well or substrate).

Resistors with bulk can combine in parallel or serial fashion if their bulk terminals are connected to the same net.

The API class of the resistor with bulk is DeviceClassResistorWithBulk.

Capacitor

The plain capacitor has two terminals, A and B. It features the following parameters:

• C : The capacitance value in Farad

• A : The area of the capacitor area in µm²

• P : The perimeter of the capacitor area in µm

In SPICE, plain capacitors are represented by the "C" element. The API class is DeviceClassCapacitor.

For more details visit
https://www.klayout.org

Page 158 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.4. LVS Device Classes

Capacitor with bulk terminal

The capacitor with bulk terminal is an extension of the plain capacitor. If has the same parameters, but one additional terminal (W) which
connects to the area the capacitor sits in (e.g. well or substrate).

Capacitors with bulk can combine in parallel or serial fashion if their bulk terminals are connected to the same net.

The API class of the capacitor with bulk is DeviceClassCapacitorWithBulk.

Diode

Diodes have two terminals, A and C for anode and cathode. Diodes feature the following parameters:

• A : The area of the diode in µm²

• P : The perimeter of the diode in µm

Diodes combine in parallel (A to A and C to C). In this case their areas and perimeters will add.

In SPICE, diodes are represented by the "D" element using the device class name as the model name. The API class is DeviceClassDiode.

For more details visit
https://www.klayout.org

Page 159 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.4. LVS Device Classes

MOS transistor

Three-terminal MOS transistors have terminals S, G and D for source, gate and drain. S and D are commutable. They feature the following
parameters:

• W : The gate width in µm

• L : The gate (channel) length in µm

• AS : The source area in µm²

• PS : The source perimeter in µm

• AD : The drain area in µm²

• PD : The drain perimeter in µm

MOS3 transistors combine in parallel when the source/drains and gates are connected and their gate lengths are identical. In this case their
widths, areas and perimeters will add.

MOS transistor with bulk

The API class of the three-terminal MOS transistor is DeviceClassMOS3Transistor.

For more details visit
https://www.klayout.org

Page 160 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.4. LVS Device Classes

The four-terminal transistor is an extension of the three-terminal one and offers an additional bulk terminal (B). It is probably the most
prominent transistor device as the four-terminal version is compatible with the SPICE "M" element.

MOS transistors with bulk can combine in parallel the same way the three-terminal versions do if their bulk terminals are connected to the
same net.

In SPICE, MOS4 devices are represented by the "M" element with the device class name as the model name. The API class is
DeviceClassDiode.

Bipolar transistor

The three-terminal bipolar transistor can be either NPN or PNP type. In KLayout, this device type can represent both lateral and vertical
types. The parameters are:

• AE : The emitter area in µm²

• PE : The emitter perimeter in µm

• NE : The emitter count (initially 1)

• AB : The base area in µm²

• PB : The base perimeter in µm

• AC : The collector area in µm²

• PC : The collector perimeter in µm

Upon extraction, multi-emitter versions are extracted as multiple devices - one for each emitter area - and NE = 1. Bipolar transistors
combine when in parallel. In this case, their emitter parameters AE, PE and NE are added.

In SPICE, BJT3 devices are represented by the "Q" element with the device class name as the model name. The API class is
DeviceClassBJT3Transistor.

For more details visit
https://www.klayout.org

Page 161 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.4. LVS Device Classes

Bipolar transistor with substrate

The four-terminal transistor is an extension of the three-terminal one and offers an additional bulk terminal (S).

Bipolar transistors with bulk can combine in parallel the same way the three-terminal versions do if their bulk terminals are connected to the
same net.

In SPICE, BJT4 devices are represented by the "Q" element with four nodes and the device class name as the model name. The API class
is DeviceClassBJT4Transistor.

For more details visit
https://www.klayout.org

Page 162 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.5. LVS Device Extractors

1.5.5. LVS Device Extractors
Device extractors and the actual "workers" of the device extraction process. KLayout comes with a variety of pre-built device extractors. It's
possible to implement custom device extractors in the framework of LVS scripts (speaking Ruby).

Resistor extractors (resistor and resistor_with_bulk)

The resistor extractor assumes a layout which consists of a resistor "wire" and two caps (contacts). The wire is specified with the layer
symbol "R", the caps are specified with the layer symbol "C":

The extractor will compute the resistance from the number of squares and the sheet resistance. The sheet resistance needs to be given
when creating the extractor:

sheet_rho = 0.5
model_name = "RES"
extract_devices(resistor(model_name, sheet_rho), { "R" => res_layer, "C" => contact_layer })

The plain resistor offers two terminals which it outputs on "tA" and "tB" terminal layers. If "tA" or "tB" is not specified, "A" or "B" terminals will
be written on the "C" layer. respectively.

For more details visit
https://www.klayout.org

Page 163 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.5. LVS Device Extractors

For the resistor with bulk, the wire area is output on the "tW" terminal layer as the "W" terminal:

For more details visit
https://www.klayout.org

Page 164 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.5. LVS Device Extractors

Note: The resistance computation is based on a simple approximation. It computes the number of squares by tracing the perimeter of the
"R" polygon. The perimeter length is separated in parts where the perimeter touches the "C" layer and parts where it does not. The number
of squares is computed from the non-touching length divided by the touching length.

Capacitor extractors (capacitor and capacitor_with_bulk)

Capacitors are assumed to consist of two "plates" (vertical capacitors). The plates are on layers P1 and P2. The capacitor is extracted from
the area where these two layers overlap.

The extractor will compute the capacitance from the area of the overlap and the capacitance per area (F/µm²) value.

area_cap = 1.5e-15
model_name = "CAP"
extract_devices(capacitor(model_name, area_cap), { "P1" => metal1, "P2" => metal2 })

The plain capacitor offers two terminals which it outputs on "tA" and "tB" terminal layers. If "tA" or "tB" is not specified, "A" or "B" terminals
will be written on the "P1" and "P2" layers respectively.

For more details visit
https://www.klayout.org

Page 165 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.5. LVS Device Extractors

For the capacitor with bulk, the capacitor area is output on the "tW" terminal layer as the "W" terminal:

For more details visit
https://www.klayout.org

Page 166 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.5. LVS Device Extractors

Diode extractor (diode)

Diodes are assumed to consist of two vertical implant regions (wells, diffusion). One of the regions is p type ("P" layer) and the other "n"
type ("N" layer). These layers also form the anode (p) and cathode (n) of the diode.

model_name = "DIODE"
extract_devices(diode(model_name), { "P" => pplus, "N" => nwell })

The diode offers two terminals which it outputs on "tA" and "tC" terminal layers. If "tA" is not specified, "A" terminals will be written on the
"P" layer. If "tC" is not specified, "C" terminals will be written on the "N" layer.

For more details visit
https://www.klayout.org

Page 167 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.5. LVS Device Extractors

MOS transistor extractor (mos3 and mos4)

MOS transistors are recognized by their gate ("G" input) and source/drain ("SD" input) regions. Source and drain needs to be separated
from the gate shape. The touching edges of gate and source/drain regions define the width of the device, the perpendicular dimension the
gate length. Because the separation of source/drain, the computation of gates and the separation of these for NMOS and PMOS devices,
the "G" and "SD" layers are usually derived layers. As these usually won't participate in the connectivity, it's important to specify the "tS",
"tD", "tG" and "tB" (for MOS4) layers explicitly and redirect the terminal shapes to layers that really participate in connections.

For more details visit
https://www.klayout.org

Page 168 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.5. LVS Device Extractors

model_name = "PMOS"
extract_devices(mos4(model_name), { "SD" => (active - poly) & pplus, "G" => (active & poly), "W" => nwell,
 "tS" => active, "tD" => active, "tG" => poly, "tB" => nwell })

The MOS3 device produces three terminals which it outputs on "tS", "tG" and "tD" terminal layers (source, gate and drain respectively):

For more details visit
https://www.klayout.org

Page 169 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.5. LVS Device Extractors

The MOS4 device offers one more terminal (bulk) which it writes on "tB".

For more details visit
https://www.klayout.org

Page 170 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.5. LVS Device Extractors

Diffusion MOS transistor extractor (dmos3 and dmos4)

DMOS devices are basically identical to MOS devices, but for those source and drain are separated. This is often the case for diffusion
MOS transistory, hence this name.

DMOS and MOS devices share the same device class. DMOS devices are configured such that source and drain cannot be swapped. The
netlist compare will report source/drain swapping as errors for such devices.

DMOS transistors are recognized by their gate ("G" input), source ("S" input) and drain ("D" input) regions. Source and drain needs to be
separated from the gate shape. The touching edges of gate and source/drain regions define the width of the device, the perpendicular
dimension the gate length. The terminal output layers for DMOS devices are the same than for MOS devices: "tS" for source, "tD" for drain,
"tG" for gate, "tB" for bulk (4-terminal version).

Bipolar transistor extractor (bjt3 and bjt4)

There are basically two kind of bipolar transistors: vertical and lateral ones.

Lateral transistors are formed by implant or diffusion wells creating a intermittent n/p structure on the wafer. The basic recognition region
is the base region. The collector and emitter regions are inside or overlapping the base region and use the opposite doping than base:
if the base region is n doped, then collector and emitter regions have to be p doped. The structure then forms a PNP transistor. KLayout
recognizes lateral transistors when the base is partially covered by the collector region. For lateral transistors, the emitter is defined by the
emitter region inside base. The collector region is defined by collector inside base and outside emitter.

 (lateral NPN transistor)

For more details visit
https://www.klayout.org

Page 171 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.5. LVS Device Extractors

Vertical transistors are formed by a stack of n/p wells. Sometimes vertical transistors are formed as parasitic devices in standard CMOS
processes. A PNP transistor can be formed by taking the collector as the substrate, nwell for the base and pplus implant for the emitter.
KLayout recognizes a vertical bipolar transistor when the base is covered entirely by the collector or has no collector at all - this means
the collector region can be empty (e.g. bulk).

 (vertical NPN transistor)

In both cases, there can be multiple emitter regions inside a base island. In this case, one transistor is extracted for each emitter region.

Vertical bipolar transistors

Vertical bipolar transistors take their inputs from "B" (base), "C" (collector) and "E" (emitter). "C" is optional:

Especially for bipolar devices it's important to device useful terminal output layers. Typically, the wells and diffusion areas will be connected
through "contact", (not considering the Schottky diodes for now). So it's a good idea to send the terminals to the contact layer:

model_name = "PNP"
extract_devices(bjt3(model_name), { "C" => collector, "B" => base, "E" => emitter,
 "tC" => contact, "tB" => contact, "tE" => contact })

The BJT3 device produces three terminals which it outputs on "tC", "tB" and "tE" terminal layers (collector, base and emitter respectively):

For more details visit
https://www.klayout.org

Page 172 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.5. LVS Device Extractors

For more details visit
https://www.klayout.org

Page 173 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.5. LVS Device Extractors

If the collector region is empty (e.g. p substrate), the base shape is copied to the "tC" output layer for the collector terminal.

The BJT4 device offers one more terminal (substrate) which it writes on "tS". "tS" is a copy of the emitter shape but connected to the
substrate terminal:

Lateral bipolar transistors

Lateral bipolar transistors also take their inputs from "B" (base), "C" (collector) and "E" (emitter). For lateral transistors, "C" is not optional
and must not fully cover the base region. Apart from this, the use model for BJT3 and BJT4 extractors is identical for vertical and lateral
transistors.

A typical lateral transistor is formed by a collector ring and emitter island inside the base region:

For more details visit
https://www.klayout.org

Page 174 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.5. LVS Device Extractors

The terminals produced by the bipolar transistor extractor in the lateral case are the same than for the vertical case, but with a different
geometry:

For more details visit
https://www.klayout.org

Page 175 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.5. LVS Device Extractors

Again, for BJT4, "tS" is a copy of the emitter shape but connected to the substrate terminal:

For more details visit
https://www.klayout.org

Page 176 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.5. LVS Device Extractors

Device extractors and device classes

"extract_devices" will return the DeviceClass object of the devices generated. This object can be useful to apply some basic modifications.
The most important of them is enabling or disabling certain parameters.

Most device extractors extract more parameters than they give you by default. For example, the resistor extractor will not just extract
the resistance, but also the length (L) and width (W) of the resistor stripe and its area (A) and perimeter (P). By default these additional
parameters are declared "secondary" - i.e. they will not participate in the device compare and will not be netlisted.

Parameters can be fully enabled by using enable_parameter or disabled using disable_parameter. tolerance can be used to enable a
parameter for compare and to specify a compare tolerance. ignore_parameter can be used to ignore a parameter in the compare step.

Another way of customizing the built-in device extractors is to supply a custom device class. The following code creates a new resistor
class which changes the preconfigured device parameter definitions to enable "W" and "L".

class MyResistor < RBA::DeviceClassResistor
 def initialize
 super
 enable_parameter("W", true)
 enable_parameter("L", true)
 end
end

...

extract_devices(resistor("RES", 1, MyResistor), ...)

Using a custom device class opens the option to supply additional parameters for example or to implement some entirely new device while
using the extraction mechanics of the resistor extractor. The only requirement is compatibility of the parameter and terminal definitions.

For more details visit
https://www.klayout.org

Page 177 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.6. LVS Input/Output

1.5.6. LVS Input/Output
LVS (and also DRC as far as netlist extraction is concerned) provides interfaces to write and read netlists/schematics, annotated layout and
LVS results. There are three major categories of I/O:

• Netlist: this is the plain circuit information. With subcircuit this forms a hierarchical netlist. Currently, the format available to import
and export netlists is a certain SPICE netlist flavor. It's possible to customize the reading and writing process to achieve some
flexibility.

• Layout-to-netlist database (L2N DB): also called extracted netlist or annotated layout. This is the netlist taken from the original
layout together with the corresponding shapes. This database allows reconstructing a net geometrically as far as non-device shapes
are involved. Devices are abstracted by their terminal geometries.

• LVS result database (LVS DB): this is the L2N database plus the reference netlist and a "cross reference": a list of paired circuits,
nets, devices, pins and subcircuits and status information. The cross-reference is both a lookup table and a debugging aid.

Writing netlists

You can write a netlist file to supply netlists for (functional) simulators for example. Within LVS scripts, the global "target_netlist" statement
triggers writing of a netlist (see target_netlist for details).

target_netlist("output.cir", write_spice, "Created by KLayout")

This statement can basically appear anywhere in the LVS script. The netlist will written after the script has executed successfully. The
first argument is the file's path (by default relative to the original layout file). The second argument is the "writer". "write_spice" creates a
netlist writer writing SPICE format with a limited degree of flexbility. See below for customizing the writer. The third argument finally is an
(optional) comment which will be written into the netlist as a header.

The "write_spice" configuration function has two options:

write_spice(use_net_names, with_comments)

Both options are boolean values. If true and present, the first option will make the writer use the real net's names instead of numerical IDs.
If true and present, "with_comments" will embed debug comments into the netlist showing instance locations, pin names etc.

Further customization can be achieved by providing an explicit SPICE writer with a delegate (see NetlistSpiceWriterDelegate). For doing
so, subclass NetlistSpiceWriterDelegate and reimplement one or several of the methods provided for reimplementation. Those are
NetlistSpiceWriterDelegate#write_device, NetlistSpiceWriterDelegate#write_device_intro and NetlistSpiceWriterDelegate#write_header.

Here is an example that supplied subcircuit models rather than device elements:

Write extracted netlist to extracted.cir using a special
writer delegate

This delegate makes the writer emit subcicuit calls instead of
standard elements for the devices
class SubcircuitModels < RBA::NetlistSpiceWriterDelegate

 def write_header
 emit_line(".INCLUDE 'models.cir'")
 end

 def write_device(device)
 str = "X" + device.expanded_name
 device_class = device.device_class
 device_class.terminal_definitions.each do |td|
 str += " " + net_to_string(device.net_for_terminal(td.id))
 end
 str += " " + device_class.name
 str += " PARAMS:"
 device_class.parameter_definitions.each do |pd|
 str += " " + pd.name + ("=%.12g" % device.parameter(pd.id))

For more details visit
https://www.klayout.org

Page 178 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.6. LVS Input/Output

 end
 emit_line(str)
 end

end

Prepare a writer using the new delegate
custom_spice_writer = RBA::NetlistSpiceWriter::new(SubcircuitModels::new)
custom_spice_writer.use_net_names= true
custom_spice_writer.with_comments = false

The declaration of netlist production using the new custom writer
target_netlist("extracted.cir", custom_spice_writer, "Extracted by KLayout")

This script will produce the following netlist for the simple inverter from the LVS introduction. Instead of printing "M" elements - which is the
default - subcircuit calls are produced. This allows putting more elaborate models into subcircuits. The device class name addresses these
model subcircuits:

* Extracted by KLayout
.INCLUDE 'models.cir'

.SUBCKT INVERTER
X$1 VDD IN OUT NWELL PMOS PARAMS: L=0.25 W=1.5 AS=0.675 AD=0.675 PS=3.9 PD=3.9
X$2 VSS IN OUT SUBSTRATE NMOS PARAMS: L=0.25 W=0.9 AS=0.405 AD=0.405 PS=2.7
+ PD=2.7
.ENDS INVERTER

Netlists can be written directly from the netlist object. Within the script, the netlist object can be obtained with the netlist function. This
function will first trigger a netlist extraction unless this was done already and return a Netlist object. Use Netlist#write to write this netlist
object then. Unlike "target_netlist", this method is executed immediately and this way, a single netlist can be written to multiple files in
different flavours.

Reading netlists

The main use case for reading netlists is for comparison in LVS. Reference netlists are read with the "schematic" function (see schematic):

schematic("inverter.cir")

Currently SPICE is understood with some limitations:

• Parametrized circuits are not permitted except for device subcircuits (with a delegate)

• Only a subset of elements is implemented by default. These are "M" (gives "MOS4" device classes), "Q" (gives BJT3 or BJT4 device
classes), "R" (gives Resistor device classes), "C" (gives Capacitor device classes) and "D" (gives diode device classes).

As for the SPICE reader, a delegate can be provided to customize the reader. For doing so, subclass the
NetlistSpiceReaderDelegate class and reimplement the methods provided. These are: NetlistSpiceReaderDelegate#wants_subcircuit,
NetlistSpiceReaderDelegate#element, NetlistSpiceReaderDelegate#finish and NetlistSpiceReaderDelegate#start

This example customizes a reader to pull MOS devices from subcircuit models rather than from "M" elements. Basically this customization
does the opposite part of the writer customization before (only for MOS devices).

Provides a SPICE netlist reader delegate which turns
some subcircuit models (for subcircuits NMOS and PMOS)
into devices

class SubcircuitModelsReader < RBA::NetlistSpiceReaderDelegate

 # implements the delegate interface:
 # says we want to catch these subcircuits as devices
 def wants_subcircuit(name)
 name == "NMOS" || name == "PMOS"
 end

For more details visit
https://www.klayout.org

Page 179 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.6. LVS Input/Output

 # implements the delegate interface:
 # take and translate the element
 def element(circuit, el, name, model, value, nets, params)

 if el != "X"
 # all other elements are left to the standard implementation
 return super
 end

 if nets.size != 4
 error("Subcircuit #{model} needs four nodes")
 end

 # provide a device class
 cls = circuit.netlist.device_class_by_name(model)
 if ! cls
 cls = RBA::DeviceClassMOS4Transistor::new
 cls.name = model
 circuit.netlist.add(cls)
 end

 # create a device
 device = circuit.create_device(cls, name)

 # and configure the device
 ["S", "G", "D", "B"].each_with_index do |t,index|
 device.connect_terminal(t, nets[index])
 end

 # parameters in the model are given in micrometer units, so
 # we need to translate the parameter values from SI to um values:
 device.set_parameter("W", (params["W"] || 0.0) * 1e6)
 device.set_parameter("L", (params["L"] || 0.0) * 1e6)

 return true

 end

end

Instantiate a reader using the new delegate
reader = RBA::NetlistSpiceReader::new(SubcircuitModelsReader::new)

Import the schematic with this reader
schematic("inv_xmodels.cir", reader)

Layout-to-Netlist database/report

The layout-to-netlist database (L2N DB) is written using the global report_netlist function. This function can be put anywhere in the script.
Writing will happen after the script executed successfully:

report_netlist("extracted.l2n")

Without the filename, only the netlist browser will be opened but no file will be written. The layout-to-netlist database is a KLayout-specific
format. It contains the netlist information plus the shape and instance information from the layout. L2N databases can be read into the
netlist browser for example. Hence exchange of extracted netlists is possible.

Layout-vs-Schematic database/report

The Layout-vs-schematic database (LVS DB) is written using the global report_lvs function. This function can be put anywhere in the script.
Writing will happen after the script executed successfully:

For more details visit
https://www.klayout.org

Page 180 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.6. LVS Input/Output

report_lvs("extracted.lvsdb")

Without the filename, only the netlist browser will be opened but no file will be written. The LVS database is a KLayout-specific format. It
contains the extracted netlist information, the reference netlist and the cross-reference table. LVS databases can be read into the netlist
browser for example. Hence exchange of LVS reports is possible.

For more details visit
https://www.klayout.org

Page 181 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.7. LVS Connectivity

1.5.7. LVS Connectivity

Intra- and inter-layer connections

The connectivity setup of a LVS script determines how the connections are made. Connections are usually made through conductive
materials such as Aluminium or Copper. The polygons representing such a material form a connection. Connections can be made across
multiple polygons - touching polygons form connected islands of conductive material. This "intra-layer" connectivity is implicit: in LVS scripts
connections are always made between polygons on the same layer.

Connections often cross layers. A via for example is a hole in the insulator sheet which connects two metal layers. This connection is
modelled using a "connect" statement (see connect):

connect(layer1, layer2)

A connect statement will specify an electrical connection when the polygons from layer1 and layer2 overlap. layer1 and layer2 are original
or derived layers. "connect" statements should appear in the script before the netlist is required - i.e. before "compare" or any other netlist-
related statement inside the LVS script. The order of the connect statements is not relevant. Neigther is the order of the arguments in
"connect": connections are always bidirectional.

This is an example for a vertical cross section through a simple 3-metal layer stack with the corresponding "connect" statements:

Labels can be included in the connectivity too. Typically labels are placed on metal layers. If the labels are drawn on the same layer
than the metal shapes they are automatically included when using "input" to read the layer. If only labels shall be read from a layer, use
"labels" (see labels).

To attach labels to metal layers, simply connect the label and metal layers:

metal1_labels = labels(10, 0)
metal1 = input(11, 0)
via1 = input(12, 0)
metal2_labels = labels(13, 0)
metal2 = input(14, 0)

connect(metal1, metal1_labels)
connect(metal1, via1)
connect(via1, metal2)
connect(metal2, metal2_labels)

If labels are connected to metal layers, their text strings will be used to assign net names to the resulting nets. Ideally, one net is labeled
with a single text or with texts with the same text string. In this case, the net name will be non-ambiguous. If multiple labels with different
strings are present on a net, the net name will be made from a combination of these names.

For more details visit
https://www.klayout.org

Page 182 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.7. LVS Connectivity

Global connections

KLayout supports implicit connections made across all polygons on a layer, regardless whether they connect or not. A typical case for
such a connection is the substrate (aka "bulk"). This connection represents the (lightly conductive) substrate material. There is no polygon
representing the wafer. Instead, a layer is defined which makes a global connection with "connect_global" (see connect_global):

connect_global(bulk, "VSS")

The arguments to "connect_global" is the globally connected layer and the name of the global net to create. The function will make all
shapes on "bulk" being connected to a single net "VSS". Every circuit will at least have the "VSS" net. In addition, each circuit will be given
a pin called "VSS" which propagates this net to parent circuits.

Implicit connections

Implicit connections can be useful to supply preliminary connections which are supposed to be created higher up in the hierarchy: Imagine
a circuit which a big power net for example. When the layout is made, the power net may not be completely connected yet because the
plan is to connect all parts of this power net later when the cell is integrated. In this situation, the subcircuit cell itself won't be LVS clean
because the power net is a single net schematic-wise, but exist as multiple nets layout-wise. This prevents bottom-up verification - a very
useful technique to achieve LVS clean layouts.

To allow verification of such a cell, "implicit connections" can be made by giving the net parts the same name through labels and assume
these parts are connected: for example to specify implicit connections between all parts of a "VDD" net, place a label "VDD" on each part
and include the following statement in the script:

connect_implicit("VDD")

"connect_implicit" (see connect_implicit) can be present multiple times to make many of such connections. Implicit connections will only
be made on the topmost circuit to prevent false verification results. Be careful not to use this option in a final verification of a full design as
power net opens may pass unnoticed.

You can include labels of a certain class in a "connect_implicit" statement using glob-style pattern:

connect_implicit("VDD*")

This will connect all nets labelled with "VDD1" for example or those labelled with "VDD_5V". However, this statement will only connect
"VDD1" with "VDD1", not nets with different labels. I.e. it will not connect "VDD1" with "VDD2" labels.

"connect_implicit" can be present multiple times. Each statement extends the choice of labels which will be connected.

The standard method "connect_implicit" will only act on top-level cells. However, sometimes the construction of certain library cells requires
connecting nets inside subcells. For example, memory cells are often made in a way that their common rails are exposed on different sides
but not connected internally. Formally, those cells need to be described by circuits with multiple pins in the schematic. As the cells are only
used in certain contexts where these rails are connected, it's sufficient to specify a single pin and connect the rails inside the subcells if
labelled properly. The following statement will connect all nets labelled with "VDD" from the "MEMCELL" subcell:

connect_implicit("MEMCELL", "VDD")

If MEMCELL is the top cell, the single-argument, unspecific "connect_implicit" rule is applied, unless no such rule is given. In other words:
the unspecific rule has priority for the top cell.

The cell argument can be a glob-style pattern. In this case, the rule is applied to all matching cells. Again, the "connect_implicit" rule may
be given multiple times. In this case, all matching occurances act together.

The "connect_implicit" statements must be given before the netlist is extracted. Typically this happens before or shortly after "connect"
statements.

Explicit connections

Explicit connections can be useful to enforce a connection in the layout which is made in the schematic, but not physically on the level of
the cell. For example consider the following layout for an inverter:

For more details visit
https://www.klayout.org

Page 183 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.7. LVS Connectivity

In the layout there are no tie-down diodes, hence there is no physical connection to the n-well region and no physical connection to the bulk
substrate. This saves space, but these diodes need to be added by other ways. Usually this is done when the standard cells are combined
into macros. Filler cells will be added which include these substrate and well contacts.

On the inverter level however, there is no such connection. Therefore the inverter has separate bulk and n-well pins. The schematic
sometimes is a simplified version which does not offer these pins. Hence there is an intrinsic mismatch between layout and schematic.

For more details visit
https://www.klayout.org

Page 184 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.7. LVS Connectivity

To align layout and schematics, bulk and VSS pins can be connected explicitly. Same for n-well and VDD. There is a certain risk to forget
making these connections later. But this risk can be mitigated by implementing DRC rules which demand at least one tie-down diode for
each isolated n-well island or the bulk.

To establish an explicit connection, make sure that n-well and bulk have proper names. For the n-well this can be done by creating
labels on the n-well islands giving them a proper name - e.g. "NWELL". The bulk isn't a real layout layer with polygons on it. Using
"connect_global" will both connect everthing on this layer and give it a name.

The following code will connect the bulk net with "VSS" inside the cell "INV":

connect_global(bulk, "BULK")
...
connect_explicit("INV", ["BULK", "VSS"])

The cell name can be a pattern. For example "INV*" will apply this rule on all cells starting with "INV". The cell is not mandatory: if it is
omitted, the rule is applied to top level only to avoid introducing rules in subcells where they would mask layout errors.

An explicit connection will also imply implicit connections on the nets listed in the net names. So in the example above, different pieces of
"VSS" are connected even if they are not physically connected.

For more details visit
https://www.klayout.org

Page 185 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.8. LVS Compare

1.5.8. LVS Compare
The actual compare step is rather simple. Provided you have set up the extraction (extract_devices), the connectivity (connect,
connect_global, connect_implicit) and provided a reference netlist (schematic), this function will perform the actual compare:

compare

This method (compare will extract the netlist (if not already done) and compare it against the schematic. It returns true on success and false
otherwise, in case you like to take specific actions on success or failure.

The compare step can configured by providing hints.

Net equivalence hint

It can be useful to declare two nets as identical, at least for debugging. The compare algorithm will then be able to deduce the real causes
for mismatches. It is helpful for example to provide equivalence for the power nets, because netlist compare fails will often cause the power
nets no to be mapped. This in turn prevents matching of other, good parts of the circuit. To supply a power net equivalence for "VDD" within
a circuit (e.g. "LOGIC"), use this statement:

same_nets("LOGIC", "VDD", "VDD:P")

In this example it is assumed that the power net is labeled "VDD" in the layout and called "VDD:P" in the schematic. Don't leave this
statement in the script for final verification as it may mask real errors.

"same_nets" can also be used to require a matching between specific nets. This is useful on top level to check for matching nets assigned
to specific pads. This allows checking correct pad assignment. For example to check whether the same net is attached to the "VDD" pad,
label the net "VDD" in the layout and specify:

same_nets!("CHIP", "VDD", "VDD")

The exclamation-mark version will report a net mismatch if either there is no "VDD" net in either layout or schematic or if these nets to not
match. The above specification can be abbreviated as layout and schematic net name are identical:

same_nets!("CHIP", "VDD")

It's also possible to specify pattern for circuit names or net names. This example requires all nets starting with "PAD" to have a counterpart
in layout and schematic for circuit "TOP" and each of these pairs has to match:

same_nets!("TOP", "PAD*")

So it is an error if there is a PAD1 net in layout but none in the schematic. It is also an error if a net called PAD2 is there is layout and
schematic but they do not match.

"same_nets" and "same_nets!" can appear anywhere in the LVS script.

For more information about "same_nets" see same_nets and same_nets!.

Circuit equivalence hint

By default, circuits with the same name are considered equivalent. If this is not the case, equivalence can be established using the
same_circuit function:

same_circuits("CIRCUIT_IN_LAYOUT", "CIRCUIT_IN_SCHEMATIC")

Declaring circuits as 'same' means they will still be compared. The function is just a hint where to look for the compare target.

For more details visit
https://www.klayout.org

Page 186 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.8. LVS Compare

Device class equivalence hint

By default, device classes with the same name are considered equivalent. If this is not the case, equivalence can be established using the
same_device_classes function:

same_device_classes("PMOS_IN_LAYOUT", "PMOS_IN_SCHEMATIC")
same_device_classes("NMOS_IN_LAYOUT", "NMOS_IN_SCHEMATIC")

This method can be used also multiple times to establish a many-to-many equivalence:

same_device_classes("POLYRES", "RES")
same_device_classes("WELLRES", "RES")

If one target is "nil", the corresponding devices are basically ignored:

ignores "POLYRES" devices:
same_device_classes("POLYRES", nil)

Tolerances

When comparing device parameters, by default strict equivalence is required. However, when drawing a device like a resistor, it's usually
difficult to match the exact value unless the resistor calibration is consistent with drawing grids and the resistor geometry is not confined by
design rule constraints. So sometimes the target value or a device parameter can only be approximated in the layout. This will by default
lead to a mismatch.

The solution is to specify parameter tolerances. Tolerances can be specified in an absolute or relative fashion. If an absolute tolerance is
given, the layout parameter may deviate from the target value by this tolerance either to lower or higher values. So the unit of the tolerance
is the same than the unit of the parameter.

If a relative tolerance is given, the deviation is computed from the target value times the tolerance. So the relative tolerance is a factor and
a value of 0.05 for example specifies an allowed deviation of plus or minus 5%. Relative tolerances are unit-less.

It's also possible to specify both an absolute and a relative tolerance. In this case, both tolerances add and the allowed deviation becomes
larger.

To specify an absolute tolerance, use the tolerance function:

tolerance("NMOS", "L", 0.05)

The two arguments are the name of the device class and the name of the parameter for which the tolerance will be applied. In the case
above, a tolerance of 50nm (the unit of L is micrometer) is applied to the length parameter of "NMOS" devices.

A relative tolerance is specified as an additional forth parameter. You can set the absolute tolerance to zero to specify only relative
tolerances. This will specify 1% tolerance for the "L" parameter of "NMOS" devices:

tolerance("NMOS", "L", 0.0, 0.01)

There is also a more explicit notation for the tolerance:

tolerance("NMOS", "L", :absolute => 0.05)

or

tolerance("NMOS", "L", :relative => 0.01)

An absolute plus relative tolerance can be specified by giving both. The following calls will give you 50nm absolute and 1% relative
tolerance for the "L" parameter of "NMOS" devices:

For more details visit
https://www.klayout.org

Page 187 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.8. LVS Compare

tolerance("NMOS", "L", 0.05, 0.01)
tolerance("NMOS", "L", :absolute => 0.05, :relative => 0.01)

Ignoring parameters

It is possible to ignore certain parameters from certain devices in the netlist compare. For example, if you don't want to compare the "L"
parameter of the "NMOS" devices, use this statement:

ignore_parameter("NMOS", "L")

This statement can be put into the script anywhere before the "compare" statement.

By default, only "primary" parameters are compared. For a resistor for example, "R" is a primary parameter, the other ones like "L", "W", "A"
and "P" are not. Using "tolerance" will implicitly enable a parameter - even if it is not a primary one - while "ignore_parameter" will disable a
parameter for compare - even if it is a primary one.

Enabling and disabling parameters

As mentioned before, some device parameters are primary while other are not. For example, for the resistor device, "R" (the resistance
value) is a primary parameter while the device length ("L") is not. You can make the "L" parameter primary for a device class called "RES"
by using:

enable_parameter("RES", "L")

This has two effects: first, the "L" parameter is written into the Spice output netlist and in addition it is compared against the schematic "L"
parameter.

Correspondingly, a primary parameter can be disabled using:

disable_parameter("RES", "R")

This behavior is overridden by a "tolerance" or "ignore_parameter" specification for that parameter or if a custom device comparer is
installed. Netlisting is affected only for the elementary devices (R, C and L) and any Spice writer delegate can choose to ignore the primary
flag. A custom device comparer may also ignore this flag. So after all, enabling or disabling a parameter is not a strong concept but rather a
hint.

Pin swapping

Pin swapping can be useful in cases, where a logic element has logically equivalent, but physically different inputs. This is the case for
example for a CMOS NAND gate where the logic inputs are equivalent in function, but not in the circuit and physical implementation. For
such circuits, the compare function needs to be given a degree of freedom and be allowed to swap the inputs. This is achieved with the
equivalent_pins function:

equivalent_pins("NAND_GATE", "A", "B")

The first argument is the name of the circuit in the layout netlist. You can only specify equivalence in layout, not in the reference schematic.
Multiple pins can be listed after the circuit name. All of them will be considered equivalent.

Capacitor and resistor elimination

This feature allows eliminating "open" resistors and capacitors. Serial resistors cannot be elimiated currently (shorted).

To eliminate all resistors with a resistance value above a certain threshold, use the max_res function. This will eliminate all resistors with a
value >= 1kOhm:

max_res(1000)

For more details visit
https://www.klayout.org

Page 188 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.8. LVS Compare

To eliminate all capacitors with a capacitance value below a certain threshold, use the min_caps function. This will eliminate all
capacitances with a value <= 0.1fF:

min_caps(1e-16)

Compare and netlist hierarchy

Good layouts are built hierarchically and the netlist compare can make use of hierarchy. "Hierarchically" means that a circuit is built from
cells which itself map to subcircuits of the schematic netlist. The netlist extractor tries hard to maintain the hierarchy and the netlist compare
will utilize the hierarchy to provide more meaningful reports and enable a bottom-up design approach.

Given a hierarchical layout and schematic netlist, the compare algorithm will work bottom-up: it will first compare the leaf circuits (circuits
without subcircuit calls) and if those match, it will continue with the calling circuits. This approach is more efficient and fosters a clean
relationship between layout and schematic netlist.

To enable hierarchical extraction, you must use "deep" mode (deep). If the deep mode statement is missing, the layout netlist will be flat
(i.e. without subcircuits).

The second useful feature is "align" (align). This statement will remove circuits from the layout or schematic netlist which are unknown in
the other netlist. Often, layouts contain helper cells which are not corresponding to a circuit (e.g. via cells). These are removed in this step.
Eventually, this step will also flatten the schematic netlist if the layout has been extracted in a flat way.

In general, it's a good idea to include "align" before "netlist.simplify" or similar netlist manipulation and the "compare" step.

A very useful side effect of "align" is this: it will remove circuits above the top level circuit of either side. So it will eventually render a sub-
tree from the circuit tree and use that for compare. This enables subcell verification: by selecting a subcell in the layout hierarchy, an
"align"-enabled LVS script will compare this cell against the corresponding subcircuit in the schematic netlist. It will ignore the parent
hierarchy of this subcircuit. This way, you can work yourself upwards in the hierarchy and fix LVS errors cell by cell with the same
schematic netlist.

How the compare algorithm works

The coarse flow of the netlist compare algorithm is this:

foreach circuit bottom up:
 if matching circuit found in reference netlist:
 if all subcircuits have been matched and pin matching has been established for them:
 compare net graph locally from this circuit
 else:
 skip circuit with warning
 else:
 issue a circuit mismatch error

A consequence of this flow is that the compare will stop treating parent circuits when one circuit's pins can't be matched to pins from the
corresponding reference circuit or the corresponding circuit can't be found in the reference netlist. This behaviour fosters a bottom-up
debugging approach: first fix the issues in subcircuits, then proceed to the parent circuits.

The local net graph compare algorithm is a backtracking algorithm with hinting through topological net classification. Topological net
classification is based on nearest-net neighborhood. The following image illustrates this:

For more details visit
https://www.klayout.org

Page 189 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.8. LVS Compare

Here the IN net's neighborhood is VDD via a traversal of gate to source/drain over M1, to OUT via a twofold traversal of gate to source/
drain over M1 and M2 and to VSS via another single traversal of gate to source/drain over M2. This uniquely identifies IN in this simple
circuit. In effect, OUT, VDD and VSS can be identified uniquely because their transitions from the IN net are unambigously identifying them.
The topological neighborhood is a simple metrics which allows identifying matching nets from two netlists and deducing further relations.

In big netlists, the algorithm will first try to match nets unambigously according to their neighborhood metrics and register them as paired
nets. Such pairs often allow deducing further matching pairs. This deduction is continued until all non-ambiguous pairing options are
exhausted. For resolving ambiguities, backtracking is employed: the algorithm proposes a match and tentatively proceeds with this
assumption. If this execution path leads to a mismatch or logical contradiction, the algorith will go back to the beginning and restart with a
new proposal. Backtracking is usually required mainly to match networks with a high symmetry such as clock trees.

For more details visit
https://www.klayout.org

Page 190 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.9. LVS Netlist Tweaks

1.5.9. LVS Netlist Tweaks
Netlist tweaking is important to standardize netlists. Without tweaking, the extracted netlist may contain elements that are redundant or
don't match anything found in the schematic.

Netlist tweaks are applied on the extracted Netlist object. This can be obtained with the netlist function. This function will extract the netlist if
not done already.

Netlist tweaks can also be applied to the schematic netlist. For example to flatten away a model subcircuit called "NMOS", use this
Netlist#flatten_circuit:

schematic.flatten_circuit("NMOS")

Top level pin generation

Circuits extracted don't have pins on the top hierarchy level as the extractor cannot figure out where to connect to this circuit. The compare
function does not try to match pins in this case. But to gain a useful extracted netlists, pins are required. Without pins, a circuit can't be
embedded in a testbench for example.

KLayout offers a function to create top-level pins using a simple heuristics: for every named (i.e. labeled) net in the top level circuit a pin will
be created (Netlist#make_top_level_pins):

netlist.make_top_level_pins

Device combination

Combining devices is important for devices which are not represented as coherent entities in the layout. Examples are:

• Fingered MOS transistors: MOS transistors with a large width are often split into multiple pieces to reduce the parasitic gate and
diffusion resistances and capacitances. In the layout this is equivalent to multiple parallel transistors.

• Serial resistors: Large resistors are often separated into stripes which are then connected in a meander structure. From the device
perspective such resistors consist of several resistors connected in series.

• Array capacitors: Large capacitors are often split into smaller ones which are arranged in an array and connected in parallel. This
helps controlling the parasitic series resistances and inductances and avoids manufacturing issues.

In all these cases, the schematic usually summarizes these devices into a single one with lumped parameter values (total resistance,
capacitance, transistor width). This creates a discrepancy which "device combination" avoids. "Device combination" is a step in which
devices are identified which can be combined into single devices (such as serial or parallel resistors and capacitors). To run device
combination, use Netlist#combine_devices:

netlist.combine_devices

The combination of serial devices might leave floating nets (the net connecting the devices originally. These nets can be removed with
Netlist#purge_nets. See also Netlist#simplify, which is wrapper for several methods related to netlist normalization.

It's recommended to run "make_toplevel_pins" and "purge" before this step (see below).

Circuit flattening (elimination)

It's often required to flatten circuits that do not represent a specific level of organisation but act as a wrapper to something else. In layouts,
devices are often implemented as PCells and appear as specific cells for no other reason than being implemented in a subcell. The same
might happen for schematic subcircuits which wrap a device. "Flattening" means that a circuit is removed and its contents are integrated
into the calling circuits.

To flatten a circuit from the extracted netlist use Netlist#flatten_circuit:

For more details visit
https://www.klayout.org

Page 191 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.9. LVS Netlist Tweaks

netlist.flatten_circuit("CIRCUIT_NAME")

The argument to "flatten_circuit" is a glob pattern (shell-like). For example, "NMOS*" will flatten all circuits starting with "NMOS".

Automatic circuit flattening (netlist alignment)

Instead of flattening circuits explicitly, automatic flattening is provided through the align method.

The "align" step is optional, hence useful: it will identify cells in the layout without a corresponding schematic circuit and flatten them.
"Flatten" means their content is replicated inside their parent circuits and finally the cell's corresponding circuit is removed. This is useful
when the layout contains structural cells: such cells are inserted not because the schematic requires them as circuit building blocks, but
because layout is easier to create with these cells. Such cells can be PCells for devices or replication cells which avoid duplicate layout
work.

The "align" method will also flatten schematic circuits for which there is no layout cell:

align

Black boxing (circuit abstraction)

Circuit abstraction is a technique to reduce the verification overhead. At an early stage it might be useful to replace a cell by a simplified
version or by a raw pin frame. The circuits extracted from such cells is basically empty or are intentionally simplified. But as long as there
is something inside the cell which the parent circuit connects to, pins will be generated. These pins then can be thought of as the circuit's
abstraction.

A useful method in this context is the "blank_circuit" method. It clears a circuit's innards from a netlist. After this, the compare algorithm will
identify both circuits as identical, provided they feature the same number of pins. Named pins are required to match exactly unless declared
equivalent. Unnamed pins are treated as equivalent. To name pins use labels on the pin's nets inside the circuit's layout.

To wipe out the innards of a circuit, use the Netlist#blank_circuit method:

netlist.blank_circuit("CIRCUIT_NAME")
schematic.blank_circuit("CIRCUIT_NAME")

NOTE: In this version, use "blank_circuit" before "purge" or "simplify" (see below). "blank_circuit" sets a flag (Circuit#dont_purge) which
prevents purging of abstract circuits.

There is a short form for this too (blank_circuit). In contrast to netlist-based "blank_circuit", this method can be used anywhere in the LVS
script:

blank_circuit("CIRCUIT_NAME")

The argument to "blank_circuit" in both cases is a glob pattern (shell-like). For example, "MEMORY*" will blank out all circuits starting with
the word "MEMORY".

Joining of symmetric nodes

Sometimes it is possible to omit connections in the layout because these will not carry any current. This might simplify the layout and allow
denser packing, but finally there is a mismatch between schematic and layout. In general, connections can be omitted if they would connect
symmetric nodes. When symmetric nodes are swapped, the circuit will not change. Hence they will always carry the same potential (at
least in theory) and a connection between them will not carry any current. So it can be omitted.

This feature can be used to solve the "split_gates" problem (see "split_gates" below). The internal source/drain nodes are symmetric in the
configuration shown there, so "join_symmetric_nets" can be used to solve make the required connections, e.g.:

join_symmetric_nets("NAND2")

However, there is a more specific feature available ("split_gates") which covers more cases, but is specialized on MOS devices.

For more details visit
https://www.klayout.org

Page 192 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.9. LVS Netlist Tweaks

Split gates

The following picture describes such a situation known as "split gate configuration". In this case, the N1 and N2 are identical: swapping
them will not change the circuit's topology. Hence, they will carry the same potential and the red connection is not required physically.
But without such a connection, the parallel transistors (top pair and bottom pair) will not be recognized as parallel and the pairs will not be
joined into one each:

KLayout provides a feature (split_gates) which will add such connections after extraction of the netlist:

split_gates("NMOS")

This function will analyze all circuits in the extracted netlist with respect to "NMOS" devices and connect all split gates relevant source/drain
nodes inside. If this function is called before "combine_devices" (e.g. through "netlist.simplify"), this connection is already present then and
parallel devices will be recognized and combined.

The device name must denote a MOS3, MOS4, DMOS3 or DMOS4 device. The gate lengths of all involved devices must be identical. For
MOS4 and DMOS4, all devices on one gate net must share the same bulk net.

In addition to the device name, a glob-style circuit pattern can be supplied. In this case, the analysis is restricted to the circuits matching
this pattern.

"split_gates" can be used anywhere in the LVS script.

Purging (elimination of redundancy)

Extracted netlists often contain elements without a functional aspect: via cells for example generate subcircuits with a single pin and no
device. Isolated metal islands (letters, logos, fill/planarisation patches) will create floating nets etc. Two methods are available to purge
those elements.

Netlist#purge will remove all floating nets, all circuits without devices or subcircuits. Netlist#purge_nets will only purge floating nets. Floating
nets are nets which don't connect to any device or subcircuit.

netlist.purge
netlist.purge_nets

For more details visit
https://www.klayout.org

Page 193 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 1.5.9. LVS Netlist Tweaks

Normalization wrapper (simplification)

Netlist#simplify is a wrapper for "make_top_level_pins", "purge", "combine_devices" and "purge_nets" in this recommended order:

netlist.simplify

As a technical detail, "make_top_level_pins" is included in this sequence as with pins, nets are not considered floating. So "purge_nets" will
maintain pins for labeled nets even if these nets are not connected to devices. This allows adding optional pins while maintaining the top
level circuit's interface.

For more details visit
https://www.klayout.org

Page 194 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2. Various Topics

2. Various Topics
This category covers various special topics and provides additional information for certain features in KLayout. The following topics are
available:

• Layer Mapping Tables

• About Layer Specifications

• Transformations in KLayout

• About Expressions

• About Variant Notation

• About LEF/DEF Import

• Connectivity

• The 2.5d View

• Symbolic Connectivity Layers

• About Layer Sources

• About Macro Development

• Macros in Menus

• About Libraries

• About PCells

• About The Basic Library

• About Packages

• About Technology Management

• About Custom Layout Queries

• Notation used in Ruby API documentation

• DRC Reference

• LVS Reference

For more details visit
https://www.klayout.org

Page 195 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.1. Layer Mapping Tables

2.1. Layer Mapping Tables
Layer mapping tables are used to specify the behavior of the layout reader. Specifically, they define what actions are taken when a shape
on a certain layer is encountered. They can be used to

• Filter layers

• Supply layer names for GDS layer and datatype combinations

• Map layers to different ones

• Combine different layers into the same layer

A layer mapping table consists of two specifications: a match expression and an optional target expression. If a shape is encountered,
the reader looks up the shape's layer in the mapping table. If an entry is found whose match expression matches the layer of the shape,
the shape is assigned a new layer given by the target expression if present. By assigning different match expressions the same target
expressions, multiple input layers can be combined into a single one.

If no matching entry is found, the reader can be configured to either store the shape under the original layer or discard it. This option can be
found in the reader options dialog as the "Read all layers" option. If that box is checked, the shapes are stored under their original layer and
discarded if not.

A target expression can be used also to add information, specifically a layer name. In GDS there is no layer name but just a layer and
datatype number. In OASIS, there is a layer name in addition. Other formats just use named layers and don't have the concept of layer
number or datatype number. When the target expression specifies a layer name that name is used. That allows adding of OASIS layer
names to GDS files for example. Layers with names are usually more useful than layers that just have a number.

The layer mapping table consists of lines, each specifying the match expression and optional target expression. The match and target
expressions are separated by a colon. Each expression has the form "layer" (numeric), "layer/datatype" (both numberic), "name" (a string)
or "name(layer)" or "name(layer/datatype)" (all specifications). When name and layer/datatype are specified in a match string, KLayout
will first look for a matching layer/datatype and then for a matching layer name. The name match is case sensitive. For the numerical
specifications, ranges are allowed using a hyphen for an interval and the comma for enumerations (see second example below).

Here are some examples:

1/0 or 1 Matching layer 1, datatype 0

17/1-5,10 Matching layer 17, datatypes 1 to 5 and 10

1/0:22 Matching Layer 1, datatype 0. Shapes are shifted to layer 22, datatype 0

1/0:A Matching layer 1, datatype 0. The name "A" is added to that layer

1/0:A(2/0) Matching Layer 1, datatype 0 mapped. Shapes are shifted to layer 2, datatype 0 and name
"A"

A Matching named layer "A"

A:1/0 Matching named layer "A". Shapes are shifted to layer 1, datatype 0

When the layer mapping is read from a file, each line corresponds to one entry. Blanks are ignored as are empty lines. Comments can be
inserted using the "#" character in front of the comment.

Wildcards

Source layers can be specified using wildcards. A wildcard is a "*" character matching "any layer". Examples for such expressions are:

10-*/0 Matching layer 10 and above, datatype 0

*/10 Matching datatype 10 of every layer

0-5,10-*/* Matching layer 0 to 5 (inclusive) and above 10, all datatypes.

When ranges or wildcards are used as match expressions, the specified layers will be lumped together into a single layer. This layer will
have the least permitted layer and datatype number. For example, with a match expression of "1-10/*", all these layers will be mapped to
"1/0". This behavior can be modified using a target layer specification with wildcards.

For more details visit
https://www.klayout.org

Page 196 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.1. Layer Mapping Tables

Wildcard expansion and relative layer mapping

If the match expression includes a numerical range or wildcards for the layer or datatype number, by default all these layers will be
combined into a single one, where its layer or datatype number is derived from the least permitted number.

This behavior can be modified using wildcard expansion. This is a target layer which includes a "*" wildcard. This wildcard is substituted by
the actual layer or datatype number:

10-*/0 : */10 Maintain layers for layer 10 and above and map datatype to 10

10-*/0 : */* Select layers 10 and above, datatype 0 and maintain these as individual layers

1/* : 2/* Map layer number 1 to 2, maintain all datatypes

Relative layer mapping allows adding an offset to the layer or datatype numbers. This offset can be negative with undefined behavior when
the resulting number goes below zero:

10-20/*: *+1000/* Selects all layers between 10 and 20, all datatypes. These layers will be read into the
original layers plus 1000 for the layer number.

10/10-*: */*-10 Selects layer 10, datatypes 10 plus. The resulting datatypes will be 10 less starting from
0.

Multi-mapping and unmapping

Layer mapping table support an advanced feature which is to duplicate input layers to a number of output layers (1:n) mapping. The feature
is enabled by prepending a "+" to the mapping statement. The following statement will first select layer 5/0 and additionally copy it to layer
1000/0:

5/0
+5/0: 1000/0

Unmapping removes the mapping for a specific layer or range. It is specified by prepending "-" to the mapping expression. The following
statement will map all datatypes of layer 5 to 0 except for datatype 10 which is not considered.

5/*: 5/0
-5/10

Unmapping cancels the mappings specified previously, so the order of statements becomes important when using unmapping and multi-
mapping.

Brackets

Square brackets can be used to imply mapping to the original layer. When putting square brackets around a mapping expression, the
default target is "*/*", which means expansion to the original layer. Hence the following statements are identical:

[1-10/*]
1-10/* : */*

When combining this with "+" for multi-mapping, put "+" in front of the bracket.

You can put round brackets around mapping expressions for visual clarity, specifically when combining them with "-" (unmapping) or
"+" (multi-mapping):

-(1-10/*)
+(17/0 : 1017/0)

For more details visit
https://www.klayout.org

Page 197 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.2. About Layer Specifications

2.2. About Layer Specifications
Layer specifications are used in various places, for example in layer mapping files (Layer Mapping Tables). Layer specifications are used
inside the database to give a layer a name or a number/datatype pair or both. Layer specifications are the text representation of LayerInfo
objects.

Blanks within layer specifications are ignored and can be put between the different components of the specification.

A simple number for the specification will indicate a layer with this layer number and a datatype of zero:

17

will give layer 17, datatype 0.

A number followed by a slash and another number will indicate a layer number and datatype:

17/5

will give layer 17, datatype 5.

Layers can be named. Named layers are present in DXF, CIF or other formats which don't use the GDS layer/datatype number scheme.
Just giving a name will indicate such a layer:

METAL1

will give a named layer called "METAL1".

If you want to use a name that is a number, use quotes:

"17"

will give a named layer called "17".

If you want to use a name that includes blanks, put it into quotes as well:

"METAL 1"

will give a named layer called "METAL 1" (however, such layer names are usually illegal).

Finally, a layer can have both a name and layer/datatype numbers. In this case, add the layer/datatype number to the name in round
brackets:

METAL1 (17)

will give a layer named "METAL1" with layer 17 and datatype 0 and

METAL1 (17/5)

will give a layer named "METAL1" with layer 17 and datatype 5.

Layer specifications as targets

When used in a target context (e.g. for layer mapping), a layer specification can use wildcards and relative layer/datatype specifications.
Using "*" instead of a layer or datatype number means to reuse the source layer or datatype number. Using "+x" or "-x" for layer or datatype
number means to add or subtract "x" from the source layer or datatype number.

For more details visit
https://www.klayout.org

Page 198 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.3. Transformations in KLayout

2.3. Transformations in KLayout
KLayout supports a subset of affine transformations with the following contributions:

• Rotation and/or mirroring: rotation by a given angle or mirroring at a given axis.

• Scaling: magnification by the given factor.

• Translation: a displacement by the given vector.

The execution order is "displacement after rotation, mirroring and scaling". Transformations are used for example to describe the
instantiation of a cell. The content of a cell appears in the parent cell after the given transformation has been applied to the content of the
cell.

The transformations supported by KLayout cover the transformations employed within GDS2, OASIS and other layout formats. KLayout
does not support shearing currently.

The following figure illustrates the effect of the transformation "r90 *2 7,9". This notation specifies a transformation composed of a rotation
by 90 degree, a scaling with factor 2 and a displacement by 7 units in x- and 9 units in y-direction. In that example, the "F" shape is first
rotated by 90 degree around the origin. Because the "F" is already displaced from the origin, this will also move the "F" shape. The shape
then is scaled. Again it will move because every point of the polygon moves away from the origin. Finally it is displaced by the given
displacement vector.

For more details visit
https://www.klayout.org

Page 199 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.3. Transformations in KLayout

The notation shown here is used in many places within KLayout. It is basically composed of the following parts which are combined putting
one or more blanks in between. The order the parts are specified is arbitrary: the displacement is always applied after the rotation.

• <x>,<y>: A displacement (applied after rotation and scaling) in micron units. If no displacement is specified, "0,0" is assumed.

• r<a> or m<a>: A rotation by angle "a" (in degrees) or mirroring at the "a" axis (the x axis rotated by "a" degree). If no rotation or
mirroring is specified, no rotation is assumed.

• *<s>: A scaling by the factor "s". If no scaling is specified, no scaling is assumed.

Here are some examples:

• 0,100: shift 100 units up.

• r90: rotation by 90 degree counterclockwise (positive in the mathematical sense).

For more details visit
https://www.klayout.org

Page 200 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.3. Transformations in KLayout

• m0: mirroring at the x-axis.

• m45 100,-200: swap x and y (mirror at 45 degree axis), shift 100 units to the right and 200 units down.

• r22.5 *1.25: rotate by 22.5 degree and scale by factor 1.25.

The distance units are usually micron. In some cases (i.e. transformations inside a database), the unit is database units and dx and dy are
integer values.

Mirroring and rotation are exclusive and mirroring includes a rotation. In fact, a mirror operation at a certain axis is identical to a mirror
operation at the x-axis, followed by a rotation by twice the angle "a". The following figure illustrates rotation and mirroring with the eight
basic transformations involving rotations by multiples of 90 degree:

KLayout is not restricted to these basic operations. Arbitrary angles are supported (i.e. "r45" or "m22.5"). Usually however, this implies grid
snapping and other issues. This also is true for arbitrary scaling values. KLayout is also more effective when using simple transformations
involving only rotations by multiples of 90 degree and do not use scaling.

For more details visit
https://www.klayout.org

Page 201 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.4. About Expressions

2.4. About Expressions
Beside a ruby programming API, KLayout provides support for simple expressions in some places. In particular this feature is employed to
generate dynamic strings, for example when deriving the label text for a ruler.

String interpolation

The feature of inserting dynamic content into a string is called interpolation. The Syntax KLayout uses for string interpolation is a dollar
character followed by the expression which is evaluated. Simple expressions can be put directly after the dollar character. Others must be
put into brackets.

Every dollar expression is evaluated and the expression is substituted by the result string. For example:

String Evaluates to

An irrational number: $sqrt(2). An irrational number: 1.4142136

1+2 is $(1+2). 1+2 is 3.

String interpolation plays a role where expressions are used to generate dynamic strings. When expressions are used as standalone
features (i.e. as parts of a custom layout query - see About Custom Layout Queries), string interpolation is not supported inside string
constants, but strings can be built dynamically using the "+" operator.

Basic data types

Expressions use different data types to represent strings or numeric values. The following data types are supported currently:

Type Examples

Numeric 1.2
-0.5e-6

String "abc"
'x'

Boolean true
false

Array [1,5,4]

Undefined (no value) nil

Apart from that, all RBA objects are supported with their methods (see Class Index). For example, that is a valid expression which gives a
value of 100:

Box.new(-10, 0, 90, 60).width

In a boolean context (i.e. the conditional evaluation "condition ? expr1 : expr2"), "nil" and the boolean "false" will render false, while all
other values render true. This follows the Ruby convention and in effect, unlike some other languages, a numeric value if 0 is not treated as
"false" but as "true"!

Constants

The following constants are defined currently:

Constant Description

M_PI The mathematical constant 'pi'

M_E The mathematical constant 'e'

false 'false' boolean value

true 'true' boolean value

nil The 'undefined' value

For more details visit
https://www.klayout.org

Page 202 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.4. About Expressions

Operators and precedence

KLayout's expressions support the following operators with the given precedence:

Prec. Operator Data types Result type Description

1 (...) Any Grouping of sub-expressions

2 [...,...] Any Array Array formation

3 !... Boolean Boolean Logical 'not'

3 ~... Numeric Numeric Bitwise 'not' (evaluated as 32 bit
integers)

3 -... Numeric Numeric Negation

4 ...^... Numeric Numeric Bitwise 'xor' (evaluated as 32 bit
integers)

4 ...&... Numeric Numeric Bitwise 'and' (evaluated as 32 bit
integers)

4 ...|... Numeric Numeric Bitwise 'or' (evaluated as 32 bit
integers)

5 ...%... Numeric Numeric Modulo

5 .../... Numeric Numeric Division

5 ...*... Numeric Numeric Product

Numeric*String String String multiplication (n times the
same string)

6 ...-... Numeric Numeric Subtraction

6 ...+... Numeric Numeric Addition

String string Concatenation

7 ...<<... Numeric Numeric Bit shift to left

7 ...>>... Numeric Numeric Bit shift to right

8 ...==... Any Boolean Equality

8 ...!=... Any Boolean Inequality

8 ...<=... Any Boolean Less or equal

8 ...<... Any Boolean Less

8 ...>=... Any Boolean Greater or equal

8 ...>... Any Boolean Greater

8 ...~... String Boolean Match with a glob expression

8 ...!~... String Boolean Non-match with a glob expression

9 ...&&... Boolean Boolean Logical 'and'

9 ...||... Boolean Boolean Logical 'or'

10 ...?...:... Boolean?Any:Any Any Conditional evaluation

The match operators work on strings. They use the glob pattern notation (as used in the shell for example) and support substring matching
with the usual bracket notation. Substrings can be referred to by "$n" later, where n is the nth bracket. For example:

Expression Result

"foo" ~ "f*" true

"foo" ~ "bar" false

"foo" !~ "bar" true

"foo" ~ "f(*)"; $1 "oo"

For more details visit
https://www.klayout.org

Page 203 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.4. About Expressions

Method calls

Expressions support all the objects provided by KLayout for the Ruby API. Objects are values inside expressions like integers or strings
are. Sometimes, objects can be manipulated with the operators as well (like "box1 + box2"). The most important way to work with objects
however are methods.

The dot calls a method on an object. Before the dot an expression must be given which results in an object, or a class name must be given.
In the latter case, static methods will be called. After the dot, a valid method name is expected.

Important note: the method names used inside expressions usually is equivalent to the names mentioned in the class documentation.
Setter methods like "box_with=" can be used as targets in assignments, i.e.

shape.box_width = 20

Boolean predicates (like "is_box?") are used without the question mark because that is reserved for the decision operator (".. ? .. : .."):

shape.is_box

Concatenation of expressions

The semicolon separates two expressions. The value of that compound expression is the value of the last one.

Variables

Depending on the context, some variables may be already defined. For example, when used for generating ruler dimension labels, "D" is a
predefined variable that is the length of the ruler. See the specific documentation on these variables.

Inside expressions, variables can be defined to store intermediate results for example. To define a variable use the "var" keyword followed
by the variable name and an optional initialisation. Assignment of values can be done with the "=" operator. For example, the following
expression gives the result 4:

var x = 3; x = x + 1; x

Special variables

Special variables start with a dollar character. Currently the only special variables available are "$1..9" which is the 1 to 9nth substring
match of the last match expression.

Special constants

In the context of a layout, various additional constant expressions are supported:

Distance and area units

A value with a unit is automatically converted to database units. For example, "0.15 um" will give 150 if the database unit of the layout is 1
nm. See below for a list of units available. Supported units are:

Unit Description

nm Nanometers

um, mic, micron Micrometers

mm Millimeters

m Meters

nm2 Square nanometers

For more details visit
https://www.klayout.org

Page 204 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.4. About Expressions

Unit Description

um2, mic2, micron2 Square micrometers

mm2 Square millimeters

m2 Square meters (for very big chips)

Layer index constants

A layer given in the common notation and enclosed in angle brackets is converted to a layer index. For example: "<16/0>" will be
converted to the layer index of the layer with layer number 16 and datatype 0.

Cell index constants

A cell name enclosed in double angle brackets will be converted to the index of that cell, for example "<<TOP>>".

Functions

KLayout's expressions support the following functions:

Function Data types Result type Description

absolute_file_path(x) String String Convert a relative file path to an absolute one

absolute_path(x) String String Returns the absolute path component of a file
specification

abs(x) Numeric Numeric Returns the absolute value of a number

acos(x) Numeric Numeric Inverse cosine function

asin(x) Numeric Numeric Inverse sine function

atan2(x,y) Numeric Numeric Inverse tangent of x/y

atan(x) Numeric Numeric Inverse tangent function

basename(x) String String Returns the basename component of a file
specification

ceil(x) Numeric Numeric Round up

combine(x,y) String String Combines the path components x and y using the
system specific separator

cosh(x) Numeric Numeric Hyperbolic cosine function

cos(x) Numeric Numeric Cosine function

env(x) String String Access an environment variable

error(x) String Raise an error

exp(x) Numeric Numeric Exponential function

extension(x) String String Returns the extension component of a file
specification

file_exists(x) String Boolean Returns true if the given file exists

find(s,t) String Numeric Finds the first occurrence of a t in s and returns
the position (where 0 is the first character)

floor(x) Numeric Numeric Round down

gsub(s,x,y) String String Substitute all occurrences of a x in s by y

is_array(x) Any Boolean True if the argument is an array

is_dir(x) String Boolean Returns true if the given path is a directory

is_nil(x) Any Boolean True if the argument is undefined

is_numeric(x) Any Boolean True if the argument is numeric

is_string(x) Any Boolean True if the argument is a string

item(a,i) Array Any Access a certain item of an array

For more details visit
https://www.klayout.org

Page 205 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.4. About Expressions

Function Data types Result type Description

join(a,s) Array, String String Join all array members in a into a string using the
separator s

len(x) String Numeric Return the length of a string

log10(x) Numeric Numeric Base 10 logarithm function

log(x) Numeric Numeric Natural logarithm function

max(a,b ...) Numeric Numeric Maximum of the given arguments

min(a,b ...) Numeric Numeric Minimum of the given arguments

path(x) String String Returns the path component of a file specification

pow(x,y) Numeric Numeric Power function (x to the power of y)

rfind(s,t) String Numeric Finds the last occurrence of a t in s and returns
the position (where 0 is the first character)

round(x) Numeric Numeric Round up or down

sinh(x) Numeric Numeric Hyperbolic sine function

sin(x) Numeric Numeric Sine function

split(t,s) String Array Splits t into elements using the separator s

sprintf(f,a ...) String, Any String Implement of 'C' sprintf. Provides not all features
but the most commonly used ones (precision, field
width, alignment, zero padding, 'e', 'g', 'f', 'd', 'x', 'u'
and 's' formats)

sqrt(x) Numeric Numeric Square root

substr(t,f[,l]) String String Return a substring of t (starting from position f with
length l). 'l' is optional. If omitted, the tail of the
string is returned.

sub(s,x,y) String String Substitute the first occurrence of a x in s by y

tanh(x) Numeric Numeric Hyperbolic tangent function

tan(x) Numeric Numeric Tangent function

to_f(x) Any Numeric Convert argument to numeric if possible

to_i(x) Any Numeric (integer) Convert argument to numeric (32 bit integer)

to_s(x) Any String Convert argument to string

For more details visit
https://www.klayout.org

Page 206 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.5. About Variant Notation

2.5. About Variant Notation
KLayout employs a certain notation to enter variant types. Variant types are data items which are either numerical or text information
and are used specifically for property names and values. In that case, the type of information is important, and a simple edit box won't
be sufficient to enter the information. For example, "1" could either be a text "1" or the number 1. To solve that issue, KLayout uses the
following notation:

Notation Description Example

#... An integer value #17

##... A floating-point value ##0.5

'...' or "..." A text string which can contain any character. You can use the
backslash character to escape quotes if you want to use quotes
in your text string. To use the backslash character inside the text,
use a double backslash (\\).

'A text'
'A \'quoted text\''
'A single \\ character'

A word (letters, digits
and the underscore)

Taken as a text string NAME

For more details visit
https://www.klayout.org

Page 207 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.6. About LEF/DEF Import

2.6. About LEF/DEF Import
KLayout supports import of LEF and DEF files. Because LEF and DEF import is substantially different from a single-file reader, this
functionality is wrapped in an import feature rather than a standard file format reader. For example, reading a DEF file without accessing
the library LEF files does not make much sense. Therefore the import feature requires additional information beyond the simple file name,
specifically the list of LEF files to load additionally and the order in which to do so.

You can find the import feature in the "File/Import" submenu. Choose "LEF" to import a single LEF file (plus potentially more LEF files from
the technology specific settings) or "DEF/LEF" to import a DEF file plus additional LEF files.

In the import dialog, the files to import are selected. The top edit box specifies the main file to import (the LEF file in the LEF import case or
the DEF file in the DEF import case. Use the "..." button to browse for the file. In the DEF import case, additional LEF file can be specified
which are imported before the DEF file is read. You can add LEF files to the list using the "+" button and remove the selected LEF files
using the "x" button. The order of LEF files matters - the technology LEF file (if there is one) should be read first. The LEF files are read in
the order they appear in the list. You can move entries up using the "up" button and down using the "down" button.

If you browse for a DEF file, KLayout will automatically fill the list of LEF files with the LEF files found at the location of the DEF file. LEF
files are searched for relative to the DEF file path. Unless an absolute path is specified for the LEF file, KLayout will look relative to the path
of the DEF file.

In both LEF or DEF import case you have the choice to read the layout into the existing view (add to the current layout or overwrite the
current one) or open a new view using the "Import Mode" options.

The following image shows the LEF import dialog:

And this one is the DEF import dialog:

For more details visit
https://www.klayout.org

Page 208 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.6. About LEF/DEF Import

LEF and DEF import can be configured in many ways. The configuration of the LEF/DEF import feature is attached to a technology, so
there can be individual configurations per technology. For a description of the technology feature, see About Technology Management. The
import feature uses the current technology. The current technology can be selected from the main toolbar's technology selector if specific
technology settings exist. Otherwise, the default technology will be used.

You can edit the import settings using the "Options" button from the import dialogs. This will open a dialog for editing the settings attached
to the selected technology. The settings basically consist of three parts: the layer mapping, the LEF files which are always read before the
LEF files specified per DEF file and various import settings. The following image shows the LEF/DEF import options dialog:

For more details visit
https://www.klayout.org

Page 209 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.6. About LEF/DEF Import

Layer Mapping

By default, no layer mapping is specified. Layer mapping can be employed to confine input to certain layers or layer/purpose pairs and to
specify mapping of LEF layers/purposes to GDS layer/datatypes.

In the Options part you will learn how the DEF/LEF importer generates layers. Basically, layers are generated from the LEF/DEF layer
name plus some suffix describing the purpose. For example, pin geometry will be put to "Metal1.PIN" for "Metal1" geometry if the suffix
for the "pin" purpose is set to ".PIN". In addition, the LEF/DEF reader will already assign some GDS layer/datatype, the layer is either the
position of the layer in the layer list if there is a technology LEF file or a consecutive number based on the alphabetic order of the layer
names. The datatype can be specified for each purpose.

However, that may not be sufficient to convert a DEF file to a certain GDS representation. Usually there is a layer mapping table, for
example "Metal1.PIN" should be put to GDS layer 17, datatype 6. In order to facilitate such a use case, KLayout allows specification of a
layer mapping table. The basis for the table is the layer name plus the suffix defined for the particular purpose. In the previous example, the
mapping would be:

Metal1.OBS : 100/22

You can disable all other layer/purpose pairs by unchecking the "Read all layers" option at the top of the layer mapping table. If this option
is enabled, KLayout will generate the GDS layers using the scheme described above for all layers it does not find in the mapping table.

LEF Files

You can specify a list of LEF files to load before any other LEF files. This feature is intended to allow specification of a technology LEF file
containing the layer definitions or any standard library which should be present for every macro built on that technology. You can add and
delete LEF files using the "+" and "x" button respectively. You can move files up and down using the "up" and "down" arrow buttons. The
LEF files are read in the given order, so the technology LEF file must be the first in the list.

Options

On the left side of the option panel, two basic options are provided:

• Produce net names: Check this option to assign user properties with the net name to the net shapes in DEF files. The user property
name used for that purpose can be specified in the edit box below the check box. Use KLayout's variant notation (see About Variant
Notation) to specify value and type of the property name.

• Produce inst names: Check this option to assign user properties with the instance name to the component instances created by
DEF import. The user property name used for the instance name can be specified in the edit box below the check box. Use KLayout's
variant notation (see About Variant Notation) to specify value and type of the property name.

• Produce cell outlines: If this option is checked, outline shapes are produced for the macros and the design (for DEF import). The
layer to be used can be specified in the edit box below. You can use KLayout's usual layer specification notation, i.e. "OUTLINE"
for a named layer without GDS layer/datatype value, "10/0" for GDS layer 10, datatype 0 without a name or "OUTLINE (10/0)" for a
combination of both. The outline layer is subject to layer mapping as well, so the layer map can be used alternatively to assign GDS
layer/datatype numbers.

• Produce blockages: If this option is checked, placement blockages are produced as polygons on the layer given right of the check
box. Use KLayout's layer notation to specify the layer (see "Produce cell outlines").

• Produce regions: If this option is checked, regions are produced as polygons on the layer given right of the check box. Use
KLayout's layer notation to specify the layer (see "Produce cell outlines").

On the right side, the default layer generation for various purposes can be configured. In all cases, a layer suffix can be set which is just
added to the layer name and a default GDS datatype can be set. Please note, that the GDS datatype may be overruled by a layer map if
one is set. All contributions can be disabled individually.

The purposes available are:

• Via geometry: generated for shapes making up a via.

• Pins: generated for shapes making up a pin.

• Obstructions: generated for obstruction area markers.

For more details visit
https://www.klayout.org

Page 210 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.6. About LEF/DEF Import

• Routing: generated for routing geometry.

• Pin labels: generated for pin labels.

• Blockages: generated for (component) blockages.

Note: if the suffix of two purposes is identical, the default GDS datatype should be identical as well. Otherwise it is not defined which layer
will be generated. Vice versa, the GDS datatypes should be different for different layer suffixes.

For more details visit
https://www.klayout.org

Page 211 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.7. Connectivity

2.7. Connectivity
Use the connectivity page to specify the conductor layers and their connections. On a conductor layer, all touching or overlapping shapes
are connected. A connection is made between conductor layer when the shapes of the two conductor layers overlap. Optionally a via layer
can be specified which must be present to make a connection between the two conductor layer.

To specify a conductor layer

• Use "layer/datatype" notation to specify explicit GDS layers and datatypes.

• Enter the layer name to specify either a named layer or a symbolic layer. Symbolic layers must be defined in the symbol table (see
Symbolic Connectivity Layers) and can be computed from boolean expressions.

• Instead of using a symbolic layer, enter a expression directly without defining a symbol (see Symbolic Connectivity Layers). Inside
the expressions

• Use "layer/datatype" notation to specify an original layer with explicit GDS layers and datatypes.

• Use the name to specify a named original layer or to refer to a different symbolic layer defined in a symbol entry.

• Use the operators '+', '*', '-' and '^' to specify logical OR, AND, NOT and XOR respectively. The precedence of evaluation is '^'
and '*' before '+' and '-'.

• Use round brackets to group expressions.

By creating conductor layers with boolean expressions, it is possible for example to separate an active area layer of a CMOS transistor into
source and drain regions by subtracting the gate poly. Symbolic layers are useful to use "speaking" names for layers instead of the numeric
layer/datatype specification. Please note, that the net tracer is considerably slower when using boolean expressions.

For more details visit
https://www.klayout.org

Page 212 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.8. The 2.5d View

2.8. The 2.5d View
The "2.5d view" offers a semi-3d view of the layout. It's not a full 3d view as the layers are only extruded vertically into layers with a certain
thickness. The view cannot model process topology, but it can visualize wiring congestions in a three-dimensional space or the vertical
relative dimensions of features of the process stack.

Currently, the performance is limited, a rough number for a practical limit is around 100k polygons. The 2.5d view is only available, if
KLayout was compiled with OpenGL support.

In order to use the tool, you will need a script generating the material stack. Such a script is a variant of a DRC script (see Design Rule
Check (DRC)). The DRC language is used to import or generate polygon layers which are then extruded and placed on a certain z level.

To create a new script, use "Tools/2.5d View/New 2.5d Script". This will create a new script in the macro editor.

A simple script is this one. It takes two layers - 1/0 and 2/0 - and extrudes then in a stacked fashion, the first with 200nm thickness and the
second one with 300nm:

z(input(1, 0), zstart: 0.1.um, height: 200.nm) # extrudes layer 1/0 to a height of 200nm starting at z=100nm
z(input(2, 0), height: 300.nm) # adds layer 2/0 for the next 300nm

To run the script, use the "Run" button from the macro IDE or pick the script from the script list in the "Tools/2.5d View" menu. If your script
is not shown in that menu, check if it is configured to be bound to a menu item.

After the script was executed, the 2.5d window is displayed. If you closed that window, you can re-open it with "Tools/2.5d View/Open
Window". The window will show the layout section visible in the layout view. To refresh the scene - also after changing the script - either run
the script again from the macro IDE or use the green "re-run" button in the upper left corner of the 2.5d view window.

For more details visit
https://www.klayout.org

Page 213 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.8. The 2.5d View

2.5d Script Anatomy

As mentioned, a 2.5d script is a variant of a DRC script. You can basically use all features of DRC, specifically boolean operations. Some
practical restrictions exist:

• You should not use external sources ("source" statement) as the 2.5d view is related to the loaded layout

• Report generation or "output" statements are permitted, but do not make much sense in the context of 2.5d view scripts.

2.5d scripts utilizes the DRC language with these two additional functions:

• z(layer [, options])

Extrudes the given layer. "layer" is a DRC layer (polygon, edge or even edge pair). "options" declare the z extrusion and display
parameters.

• zz([options]) { block }

Declares a material group which combines multiple "z" statements under a single display group. This allows generating 3d material
geometries which are more than a single extruded plane. The display parameters then are specified within "zz" for all "z" calls inside
the block.

For more details visit
https://www.klayout.org

Page 214 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.8. The 2.5d View

"z" Function (plane extrusion)

The layer argument of the function is a DRC layer which is rendered as an extruded sheet. Further arguments control the height, z location
and colors. When used inside the "zz" block, the color options of the "z" calls are ignored and taken from "zz" instead.

Options for this function are:

• zstart: specifies the bottom coordinate of the extruded sheet. If this option is not given, the top coordinate of the previous "z"
statement is used.

• zstop: specifies the top coordinate of the extruded sheet. Alternatively you can use "height".

• height: specifies the extrusion height. Alternatively you can use "zstop".

• color: specifies the color to use as a 24 bit hex RGB triplet (use "0xrrggbb" to specify the color similar to the HTML notation
"#rrggbb"). A color specification gives a single color with not differentiation of frame and wall colors.

• frame: specifies the frame color to use as a 24 bit hex RGB triplet. If only a frame color is specified, the geometry will be rendered as
wire frame only.

• fill: specifies the fill (wall) color to use as a 24 bit hex RGB triplet. This allows specifying a different color for wall and frame when
used with "frame".

• like: specifies to use the same colors than used for some layer in the layout view. If the layer is an original layer (i.e. taken from
"input"), "like" defaults to the original layer's source. If given, "like" needs to be a string representation of the layer source (e.g. "7/0"
for layer 7, datatype 0).

• name: gives the material a name for displaying in the material list.

Examples for the extrusion options:

z(layer, 0.1 .. 0.2) extrude layer to z = 0.1 to 0.2 um
z(layer, zstart: 0.1, zstop: 0.2) same as above
z(layer, zstart: 0.1, height: 0.1) same as above, but with height instead of zstop
z(layer, height: 200.nm) extrude layer from last z position with a height of 200nm

Examples for display options:

z(..., color: 0xff0000) use bright red for the material color (RGB)
z(..., frame: 0xff0000) use bright red for the frame color (combine with "fill" for the fill
 color)
z(..., fill: 0x00ff00) use bright green for the fill color along (combine with "frame" for the
 frame color)
z(..., like: "7/0") borrow style from layout view's style for layer "7/0"
z(..., name: "M1") assigns a name to show for the material

"zz" Function (material groups)

The "zz" function forms a display group which clusters multiple "z" calls. The basic usage is with a block containing the "z" calls. As DRC
scripts are Ruby, the notation for the block is either "do .. end" or curly brackets immediately after the "zz" call:

zz(display options ...) do
 z(layer1, extrusion options ...)
 z(layer2, extrusion options ...)
 ...
end

For more details visit
https://www.klayout.org

Page 215 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.8. The 2.5d View

The "z" calls do not need to have colors or other display options as they are taken from "zz".

Material groups allow forming more complex, stacked geometries. Here is an example forming a simple FinFET geometry using boolean
and a sizing operation:

poly = input(2, 0)
active = input(1, 0)

z(poly, zstart: 0, height: 20.nm, name: "POLY")

zz(name: "ACTIVE", like: "1/0") do

 poly_sized = poly.sized(10.nm)
 active_over_poly_sized = poly_sized & active

 z(active - poly, zstart: 0, height: 10.nm) # bottom sheet
 z(active_over_poly_sized - poly, height: 10.nm) # center sheet
 z(active_over_poly_sized, height: 10.nm) # top sheet

end

Which renders this result:

For more details visit
https://www.klayout.org

Page 216 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.8. The 2.5d View

Navigating the 2.5d View

The navigation is based on the movement of the camera while the scene is formed by the extruded layout. The scene can be scaled to
provide zoom features. Scaling and rotation is relative to the pivot point which is indicated by the compass icon on the ground plane.

This is a short list of the navigation controls which act on the camera:

• Dragging with the right mouse button down: change azimuth and elevation angle

• Dragging with the middle mouse button down: move the pivot up and down or left and right

• Mouse wheel: moves the pivot forward and backward

• Control key + mouse wheel: magnify or shrink the layout

• Press and hold shift key: switch to top level view (see below)

• Up/down keys: move the pivot forward or backward

• Left/right keys: move the pivot to the left or the right

• Control + up/down keys: change the elevation angle

• Control + left/right keys: change the azimuth angle

In top level view, the navigation is slightly different:

• Dragging with the right mouse button down: change azimuth angle

• mouse wheel: magnify or shrink the layout

• Up/down/left/right keys: move the pivot on the horizontal plane

Note: if the Shift key does not switch to top level view, click into the scene view once.

Colors in the 2.5d View

While the 2.5d view window is open, the layout view is still active. Layer colors are applied also to the 2.5d view. Changing the fill color will
change the 2.5d view's face color. The frame color will be applied to the wire frame. If a hollow stipple is selected, only the wire frame is
shown. If a layer is made invisible in the layout view, the corresponding blocks will also be made invisible in the 2.5d view.

Other Controls

The left zoom slider changes the overall scale factor. The right slider only changes the z (height) axis zoom factor. This is useful as in many
cases, the real height profile will result in a rather flat arrangement. Increasing the z zoom factor will exaggerate the vertical axis hence
making height variations more pronounced.

The edit boxes next to the scale sliders allow entering the scale factors manually.

The button bar at the top right side holds the view presets. Use them to reset the window to front view, top view etc.

Material Visibility

Using the check boxes from the material view right of the scene view you can disable materials, so they are no longer rendered. From the
material list's context menu, you can hide or show all materials or just the selected ones.

For more details visit
https://www.klayout.org

Page 217 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.9. Symbolic Connectivity Layers

2.9. Symbolic Connectivity Layers
Use the symbol table to specify derived layers and to assign names to layer/datatype combinations. A symbolic layer must have a name
which can be used in the connectivity table instead of the original layers. In addition, an expression must be specified that defines the
contents of the layer.

Inside the expressions

• Use "layer/datatype" notation to specify an original layer with explicit GDS layers and datatypes.

• Use the name to specify a named original layer or to refer to a symbolic layer defined in another entry.

• Use the operators '+', '*', '-' and '^' to specify logical OR, AND, NOT and XOR respectively. The precedence of evaluation is '^' and '*'
before '+' and '-'.

• Use round brackets to group expressions.

Examples:

17 Abbreviation for GDS layer 17, datatype 0

2/0*17/0 Logical AND between layer 2 and 17, both datatype 0

2*(5+7) Logical AND between layer 2 and the logical OR combination of 5 and 7

ACTIVE-POLY Logical NOT between the symbolic layer ACTIVE (defined in another entry) and POLY (also
defined in another entry).

For more details visit
https://www.klayout.org

Page 218 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.10. About Layer Sources

2.10. About Layer Sources
KLayout implements a concept of "layer views". The layer list is made up of such layer views. A "view" is basically a specification of what is
shown how. The "how" part is given by the colors, stipples, styles etc. The "what" part is given by the source specification.

The most important part of the source specification is the layer number or name. But the source specification is much more powerful.
Basically the source specification offers the following capabilities:

• Specify the layer where the shapes are taken from, either by layer and datatype or name

• Transform the layout before it is drawn

• Property filter: draw only shapes whose user properties match a given expression

• Override the hierarchy levels on which the shapes are drawn

Specifying the source layer

The source layer specifies from which actual data layer to take the drawn shapes from. The most simple form of a source specification
is "layer/datatype" (i.e. "5/0") or the layer name, if an OASIS layer name (or a named layer in general) is present. This specification can
be enhanced by a layout index. The first layout loaded in the panel is referred to which "@1" or by omitting this specification. The source
specification "10/5@2" therefore refers to layer 10, datatype 5 of the second layout loaded in the panel.

Source specifications can be wildcarded. That means, either layer, datatype or layout index can be specified by "*". In this case, such a
layer view must be contained in a group and the group parent must provide the missing specifications. For example, if a layer is specified
"10/*" and the parent is specified "*/5", the effective layer looked for will be "10/5". Unlike the behaviour for the display styles, the children
override (or specialize) the parent's definition in the case of the source specification.

For more information refer to Removing And Adding Layers To The Layer Set.

Transforming the layout

A geometrical transformation is specified by appending a transformation in round brackets to the layer/datatype source specification.

For example, "(r90)" specifies a rotation by 90 degree counter-clockwise. "(0,100.0 m45 *0.5)" will shrink the layout to half the size, flip at
the 45 degree-axis (swap x and y axes) and finally shift the layout by 100 micron upwards.

Transformations accumulate over the layer hierarchy. This means, that if a layer is transformed and the layer is inside a group whose
representative specifies a transformation as well, the resulting transformation is the combination of the layer's transformation (first applied)
and the group representative's transformation.

Multiple transformations can be present. In this case, the layout is shown in multiple instances.

For more information refer to Transforming Views And Property Selectors.

Property filters

It is possible to specify a property filter. A property filter specifies an expression and only shapes for which that expression applies are
shown. The expression operates on user properties and the syntax allows comparison of properties with a given key against a given value.
Boolean operators are available. That way, complex expressions can be created.

The property filter is specified in square brackets. For example:

10/5 [#43==X]

With this source specification, the layer will show all shapes from layer 10, datatype 5 which have a user property with number 43 and
value string "X".

For more information refer to Transforming Views And Property Selectors.

Overriding the hierarchy levels

By default, only the hierarchy levels that are selected in the hierarchy level selection boxes are shown, i.e. if levels 0 to 1 are selected,
just the top level shapes and instances are shown. This selection can be modified for certain layers or layer groups. To specify a different
hierarchy selection for a certain layer, use an optional source specification element, the hierarchy level selector.

For more details visit
https://www.klayout.org

Page 219 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.10. About Layer Sources

For example:

#* Display all hierarchy levels

#0..1 Display top level only

#..5 Override upper level with 5

#2.. Override lower level with 2

#..* Override upper level setting by "all levels"

For more information refer to Specifying Explicit Hierarchy Levels For One Layer Or A Layer Group.

For more details visit
https://www.klayout.org

Page 220 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.11. About Macro Development

2.11. About Macro Development

Basics

KLayout supports macro programming with the Ruby or Python language. Macros are basically Ruby or Python scripts that are executed
by the integrated interpreter. In order to enable macro programming, the program has to be built with support by either one of those
languages.

As a special kind of macros, DRC and LVS scripts are available for editing and debugging too. These scripts are basically Ruby scripts but
run in a customized environment so that specific functions are provided. For more details on these kind of scripts see Design Rule Check
(DRC) and Layout vs. Schematic (LVS).

In a simple scenario, scripts can be stored in simple text files and loaded by KLayout using the "-rm" or "-r" command-line option. "-rm" will
run a script and then execute the normal application. "-r" will run a script and then exit the application.

In addition, KLayout supports special macro files with the suffix ".lym". Those files are XML files that store the macro code along with
additional information, for example the description text, the interpreter language and certain flags. These flags tell KLayout to run the macro
automatically when starting up for example. In addition, KLayout can present such macros in the "Macros" menu without having to register
a specific menu extension.

Macros can be technology specific. This means, they are packaged with a technology and are associated with the technology in the user
interface: if they provide a menu item, this item will only become visible when the respective technology is active.

KLayout also offers an integrated development environment (IDE) that allows editing and debugging of Ruby and Python scripts. It offers
a simple debugger with the ability to set breakpoints and to interact with the current context while in a breakpoint. An interactive "console"
allows entering and evaluating of expressions. This feature is available also when execution has stopped in a breakpoint, so the console
can be used to evaluate or modify variables in the current context. Watch expressions are supported as well: a series of expressions can
be configured which is evaluated and displayed in a breakpoint. With Python scripts, the local context can be inspected in the "Inspector"
window: the variables available in the local context are listed with their values.

While the debugger is open, execution will slow down somewhat and undesired interactions may happen - specifically when developing UI
components. To mitigate this problem, debugging can be disabled in the macro IDE.

KLayout defines certain folders which it scans for macro files. Each directory is scanned recursively. It can contain subdirectories with
more macros and can also contain support files such as images or additional Ruby or Python modules. That allows organizing macros in
modules where each module contains the root module files and supporting files.

KLayout looks for macros in the following places:

• The "macros" or "pymacros" folders in the installation path. The installation path is where the KLayout binary resides. KLayout cannot
modify macros that are stored in that path. This is the "global" repository. Usually that repository is shared between all users. An
administrator can use this location to install macros globally.

• The "macros" or "pymacros" folders in KLayout's user specific application folder. On Unix that is "~/.klayout/macros". This is the
"local" repository. Any user can store his or her own macros here.

• Plain Ruby or Python files can be kept inside "ruby" and "python" directories next to "macros" and "pymacros". In contrast to "macros"
and "pymacros", the locations of "ruby" and "python" paths are added to the Ruby or Python search paths. This makes those folders
useful for keeping plain Ruby or Python libraries. Generic ".lym" files cannot reside there and those locations are not scanned for
autorun macros.

• DRC and LVS scripts are kept inside "drc" and "lvs" folders respectively.

• In addition, further repositories can be given on the command line with the "-j" option. This allows adding development repositories
which are under configuration management and contain the latest code for the macros. Those repositories are called "project"
repositories.

• Technology folders: each technology folder can carry a "macros" or "pymacros" subfolder where technology-specific macros are kept.
See About Technology Management for details about technologies.

• Macros can be kept in packages and installed from a remote repository. See About Packages for details about packages.

For more details visit
https://www.klayout.org

Page 221 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.11. About Macro Development

The macro IDE will store Python and Ruby macros separately in "macros" and "pymacros" for easier management, but technically these
folders are equivalent. KLayout will automatically derive the interpreter from the context stored in ".lym" files or the file extension (".rb" or
".py").

You can also add custom places using the "Add Location" entry from the repository browser's context menu (right mouse click). These
locations will be added to the tree. That setting is stored in the setup, so it will be available when KLayout is started again. You can remove
places again by using "Remove Location" from the macro tree's context menu.

KLayout will scan these places for files and present them in the macro development IDE's repository browser. You can edit the files and
their properties and run the macros from the IDE. KLayout's IDE supports these file types:

• ".lym": generic KLayout macros.

• ".rb": plain Ruby files. Such files can be imported into KLayout macros by Ruby's "require" or "load" method.

• ".py": plain Python files. Such files can be imported into KLayout macros by Pythons's "import" method.

• ".txt": text files for documentation for example.

Other files can be stored inside the folders (for example Qt ".ui" files), but they won't be shown in the IDE.

The macro development IDE

The macro development IDE consists of three parts: the repository browser, the editor panel and the console. The repository browser
allows browsing of the macro repositories and to add new files, to move files, to delete files, to import plain ruby files as KLayout macros
and to rename files. In the editor panel, the macro or other files can be edited, breakpoints can be set and the macro can be run. In the
console, Ruby expressions can be entered and evaluated. This also works while KLayout is in a breakpoint. That feature evaluating of
expressions in the current context and to modify variables. The console also shows the output of the Ruby scripts when they are run in the
context of the IDE.

The following image shows the IDE with the three main parts:

When the debugger enters a breakpoint, the IDE also shows the call stack. By clicking on an entry in the call stack panel, the editor will
open the respective file and position the cursor at that line. A watch window shows the watch expressions with their evaluated values.

For more details visit
https://www.klayout.org

Page 222 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.11. About Macro Development

Watch expressions are evaluated every time a breakpoint it hit. They can be managed using the "Add", "Edit", "Delete" and "Clear"
functions from the context menu (right click on the watch list). For Python scripts, the local variables of the currently selected stack context
can be browsed in the "Inspector" window in the middle. Currently this feature is not available for Ruby scripts.

The following image shows the IDE in breakpoint mode for Ruby scripts:

The following image shows the IDE in breakpoint mode for Python scripts:

For more details visit
https://www.klayout.org

Page 223 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.11. About Macro Development

The editor panel features a toolbar with several tool buttons. The following image shows the toolbar and the buttons with their function:

Also the repository browser features a toolbar with more tool buttons. The following image shows that toolbar and the buttons with their
function:

For more details visit
https://www.klayout.org

Page 224 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.11. About Macro Development

Finally the console panel allows interactive executing of Ruby or Python expressions. The following image shows the console elements and
their function:

Basic tasks

Creating a new macro

To create a new macro, first open the tab to select a language you want to use. Choose the branch in the repository browser where you
want to create the macro. Press the "+" button above the repository browser. A dialog will come up in which you can select a template. A
template is basically the initial content of the macro plus some default settings. After the macro is created, the new entry is highlighted and
the name can be changed to the desired new name.

Editing the macro

After the macro has been created, it is shown in the editor window. Other macros or files can be opened in the editor by double-clicking at
their name. Depending on the type of file, the editor provides some basic syntax highlighting. Each file is opened in a separate tab. The
tabs can be closed by clicking at the "x" button in the tab.

To save the current edits to the files, press the "Save all files" or the "Save current file" button in the repository browser.

Search and search & replace is available in the editor panel in the search box. The search a text, enter the text in the search box and hit
Return. Use the "Find next" button to find the next occurrence of the text. Click on the "RE" button to enable regular expressions in the
search function. To enable "Replace" mode, open the replace text edit box by clicking on the little arrow right to the search tools. Enter the
text to replace the search text into the edit box and use "Replace all" to replace all occurrences or use "Replace and search" to replace the
current occurrence and highlight the next one.

Running the macro

To run the macro, press the "Run current script" or the "Run script from the current tab" button in the editor panel. "Run current" will run the
script that was run the last time, irregardless if the script is the one currently shown in the editor panel. That way, it is possible to run the
same script while editing support files for example. "Run script from the current tab" will always run the script from the current tab.

When the macro runs, output will be sent to the console below the editor panel. Breakpoints can be set or reset with the "Set breakpoint"
button or the F9 key in the editor panel. Go to the line where you want to change the breakpoint and use "Set breakpoint" to set or reset the
breakpoint on the current line. All breakpoints can be cleared with the "Clear all breakpoints" button.

For more details visit
https://www.klayout.org

Page 225 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.11. About Macro Development

While the macro is running or in a breakpoint, the execution can be aborted with the "Stop script" button. Execution can be interrupted with
the "Pause script" button. In that case, KLayout will interrupt the script execution at the current position.

When in a breakpoint, single-line step-by-step is supported with the "Step into" button or the F11 key. Stepping over a block or procedure
call is supported with the "Step over" button or the F10 key. Please note that "Step over" will also step over blocks.

While KLayout has stopped the execution of the script, the console can be used to examine variables in the current context or to modify
their values. Ruby expressions entered into the console are simply executed in the current context.

When the macro editor window is open, macros will be run under debugger control. This will considerably slow down macro execution and
create issues when you develop macros that integrate deeply into the system (for example macros filtering Qt events from the application).
To avoid issues, debugging can be disabled by selecting or unselecting the "Enable debugging" button in the editor's toolbar. If the button is
checked (shown pressed), debuggin is enabled and breakpoints can be used. If debugging is disabled, breakpoints will be ignored.

Working with the repository browser

The repository browser provides a tab for each category of macros. "DRC" is a special category which provides macros that perform a
DRC. Such macros are basically Ruby scripts that are executed in the context of a DRC engine and hence supply different functionality.
Still, they execute in the usual context and breakpoints, watch expressions and similar can be used. The other categories are macros
executing either in a Ruby or in a Python interpreter.

Within the repository browser, you can add new folders using the "New folder" button. Before you do so, select the branch of the repository
where you want to create the new folder. The new folder will be highlighted and the name can be edited.

To delete files and folders, select the file or folder in the browser and click the "Delete" button (the "x"). Caution: deleting a file or folder
cannot be undone currently.

To rename a file or folder, select the entry in the browser and click on the "Rename" button and enter the new name. To move files or
folder, simply drag and drop them to the desired target location.

Pain ruby scripts can be imported into the repository as KLayout macro files. Select the branch where you want to import the files in the
repository browser, click on the "Import" button and select the file to import. ".rbm" files will automatically be set to "auto-run".

Configuring macros

A macro can be configured in several ways:

• Description: a macro can be given a description text. This text is shown in the repository browser and in the menu if a macro a
configured to be shown in the menu.

• Version: the version will be used in a later stage to check dependencies between packages. Currently the version is not used. When
used, enter a string of the form "v0.v1.v2" where v0 is the major version, v1 the minor version and v2 the patch. For example: "1.7.1".

• Prolog and Epilog: these are statements which are executed before the script is started and after the script has been run respectively.

• Run on start-up: if this flag is set, the macro is automatically run when KLayout starts. This feature is required for macros defining
libraries for example. "Run early on startup" is a special option which makes sure the macro is run at the very beginning of the
process. Such macros can be use to supply classes and features for other macros that use the normal "run on start-up" mode.

• Show in menu: with this flag, KLayout will show the macro in the "Macros" menu. That is a simple way to run macros outside the IDE.

• Bind to a key: with key binding, a macro can be run when a certain key combination is pressed. That is another way to run a macro
outside the IDE.

The macro properties can be edited using the "Edit properties" button in the editor panel.

Migrating code

Before version 0.22, KLayout did not have a concept of macro IDE, macro folders, interpreters and generic macros. Ruby code written
for the pre-0.22 system can be imported into the macro management system of KLayout using the "Import" function from the repository
browser toolbar. ".rbm" files are marked as "autorun" in order to emulate the behavior of KLayout 0.21 and previous versions. ".rb" files are
converted into KLayout macros without any further assumption. ".rb" files can also simply be copied into the macro directories. However,
such files are regarded as secondary sources in KLayout. Typically those are files that are loaded by other macros. Importing a file makes
code a generic source (".lym" file) with enhanced capabilities.

After importing the code the macro can be attached to a menu entry by setting "Show in menu" on the properties page. It is also possible to
assign keyboard shortcuts. If either the menu item is selected or the key specified in the shortcut is pressed, the macro is executed.

For more details visit
https://www.klayout.org

Page 226 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.11. About Macro Development

This feature is more convenient to use than the scheme used previously. Until KLayout 0.22 it was only possible to register a macro
with a specific menu entry by performing the registration in the code. The disadvantage of this approach is that when the macro code
is re-executed, the menu item is registered again and appears in the menu twice. It is therefore more convenient to remove the menu
registration code and let KLayout register the macro in the menu by setting the menu binding properties accordingly.

Hints

The editor and IDE can be configured using the "Setup" button in the editor panel. That dialog allows configuring fonts and colors to be
used in the editor and the behavior of the debugger in some respects.

The documentation of the Ruby and Python classes exposed by KLayout is available in KLayout's online help system here.

For more details visit
https://www.klayout.org

Page 227 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.12. Macros in Menus

2.12. Macros in Menus
KLayout allows installing macros as menu entries. Each time that menu entry is selected, the macro will be executed. To configure a macro
for installation in the menu, open the macro in the macro development environment and open the macro properties dialog.

The macro is configured to be shown in the menu by checking the "Show in menu" check box. That also enables two other fields: the menu
path and the group name.

The menu path specifies the position where the macro shall be put. A macro path is a sequence of symbolic names separated by a dot. For
example:

• edit_menu.end is the end of the "Edit" menu

• edit_menu.undo is the "Undo" entry in the "Edit" menu

To obtain a list of the paths available, have a look at the "Key Bindings" page in the "Application" section of the setup dialog ("File/Setup").

The pseudo element "end" denotes the position after the last entry. The same way "begin" indicates the first entry in the menu. The macro
will be inserted before the entry indicated by the path. Hence:

• edit_menu.end: the macro will be inserted at the end of the "Edit" menu

• edit_menu.undo: the macro will be inserted before the "Undo" entry.

If a plus sign follows the macro path element, the new element is inserted after this element. For example:

• edit_menu.undo+: the macro will be inserted after the "Undo" menu item.

A special form can be used to generate new groups: if the given element does not exist, the menu generator can be instructed to create it
by appending the insert point plus the new text string to the element after a ">" character. For example:

• edit_menu.my_group>end("My Edit Functions").end: will look for "my_group" and add the new element at the end of this
group. If no such group exists, it will be created at the end of the "Edit" menu with the title "My Edit Functions".

If no macro path is specified, the macro is inserted in the "Macros" menu. The description of the macro is used as the menu title. If a
shortcut is specified, that shortcut is used for the macro entry as well.

The group name can be used to group together all menu entries with the same group name. Any text is allowed here. A group is separated
from the other entries in the menu by a separator line. It is recommended to use the group feature in conjunction with a "end"-terminated
menu path which is identical for all entries of the same group. Other uses cases are possible, but the result is not defined.

For more details visit
https://www.klayout.org

Page 228 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.13. About Libraries

2.13. About Libraries
Starting with version 0.22, KLayout offers a library concept. Libraries are a way to import cell layout into a layout from the outside and thus
a convenient way to provide standard building blocks for the layout. Using a cell from a library is easy: when asked for a cell, select the
library where to take the cell from and choose a cell from that library.

Libraries are basically just foreign layouts that are virtually linked to the current layout. When a cell is imported from a library, it is copied
into the current layout, so that the current layout by itself is a valid entity.

When a layout containing library references is saved, KLayout stores some meta information in that file which allows it to restore the library
links and related information. For GDS, that meta information is stored in a separate top cell. For OASIS, the meta information is stored in
special per-cell properties. For other formats, the meta information is not stored currently.

Libraries can be provided in several ways:

• As ordinary layout files: Such libraries are simple layout files (GDS, OASIS or other support format). KLayout looks up those
libraries in the "libraries" subfolders of the search path and gathers all layout files it finds there into the library repository.

The search path usually includes the installation site (where the KLayout executable resides) and the application folder (i.e.
"~/.klayout" on Linux). Hence libraries can be installed locally (i.e. in "~/.klayout/libraries") or globally (at the installation site).

For GDS files, the library name will be the LIBNAME of the GDS file. Otherwise it will be the name of the library file minus the
extension.

• Coded libraries: Such libraries are provided by code, either through shared objects/DLL's or through Ruby code. Basically such
code has to provide a layout object containing the library cells. A coded library can also provide PCells (parametrized cells) as library
components. Sell About PCells for details about parametrized cells.

Starting with version 0.25, libraries can be provides through packages. This means, they can be downloaded from some repository and can
be managed within the package manager. Library installation is very simple this way. Library deinstallation too. See About Packages for
details about packages.

For more details visit
https://www.klayout.org

Page 229 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.14. About PCells

2.14. About PCells
Starting with version 0.22, KLayout offers parametrized cells (PCells). PCells are a feature found in other tools to simplify layout by
providing generators for common layout building blocks. Parametrized cells do not contain static layout but are created dynamically by code
using a given set of parameters.

For example, a circle PCell requires two parameters: the layer where the circle should be produced and the radius of the circle to produce.
The code is responsible for creating the circle from these parameters.

Using a PCell is easy: choose the library and the PCell from that library when asked for the cell in the instance options dialog. For PCells,
KLayout offers an additional parameters page where it asks for the parameter required by the PCell. The placement of the PCell is done as
for simple instances. PCells offer the same instantiation options that normal cells.

KLayout provides a simple library called "Basic" with some useful basic PCells. See About The Basic Library for more details about that
library.

Unlike other tools, KLayout offers the unique feature of "guiding shapes". A guiding shape is some kind of "ghost shape" that is not
produced as real layout but is present as a part of the PCell instance. It is drawn in the style of the cell frame but can be edited as a normal
shape. In particular, a guiding shape can be manipulated with the properties dialog and the partial edit mode. A special case is a point-like
shape which can act as a handle of the PCell. In move mode, these shapes can be moved to change the parameter related to that handle.

Another use case for guiding shapes is the rounded path. This PCell uses a path as the input shape and applies rounding to the path's
spine corners to compute a new path which smoothly bends around the corners. The radius of the bends is a numerical PCell parameter
while the input shape controlling the geometry and the width of the path is the guiding shape.

A PCell implementation consists of at least three parts: a description text, a parameter declaration and a production callback. In addition, a
PCell can provide a method that "fixes" parameters according to the PCells consistency rules (coerce parameters). Technically, a PCell is a
class implementing a certain interface with these methods.

PCells are usually packed in libraries. PCell libraries can be provided as shared objects/DLL's (in C++) or as Ruby scripts. Because PCell
code is only executed if required, performance usually is not the main objective. A Ruby implementation will therefore be sufficient in most
cases and is a much easier to maintain. The Ruby approach also benefits from KLayout's integrated development environment.

For an introduction into PCell programming with Ruby, see Coding PCells In Ruby.

For more details visit
https://www.klayout.org

Page 230 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.15. About The Basic Library

2.15. About The Basic Library

The "Basic" library

The "Basic" Library provides some useful generic PCells. One use model is to draw a shape and convert the shape to one of the provided
PCells. This use model is suitable for creating Circles, Ellipses, Donuts, Texts and rounded and stroked polygons or rounded paths.

To use that feature, draw the shape and choose "Convert To PCells" from the "Edit"/"Selection" menu. A dialog will be shown where the
target PCell can be selected. Only those PCells supporting that shape type will be shown.

The "Basic" library provides the following PCells:

• TEXT: A text generator

• CIRCLE: A circle

• DONUT: A donut (circle with hole)

• ELLIPSE: An ellipse

• PIE: A pie (a segment of a circle)

• ARC: An arc (a segment of a donut)

• ROUND_PATH: A rounded path (a path bending around the corners with a given radius)

• ROUND_POLYGON: A rounded polygon (a polygon with rounded corners)

• STROKED_BOX: A stroked box (the "rim" of a box, optionally with smooth corners)

• STROKED_POLYGON: A stroked polygon (the "rim" of a polygon, optionally with smooth corners)

TEXT

The text generator can produce texts in various forms. The following sample shows inverse text, normal text and text with bias and
enlarged character spacing:

For more details visit
https://www.klayout.org

Page 231 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.15. About The Basic Library

It's even possible to install custom fonts. Fonts are basically GDS files with the following features:

• One cell per character. Cells must be either named like the character "A", "B", "0" etc. or like the ASCII code in 3-digit decimal
notation (i.e. "036" for the dollar character).

• The characters must be drawn in the character cells on layer 1/0. A box defining the extension of the characters (including spacing)
must be drawn on layer 2/0. Optionally a background rectangle for the "inverse font" feature can be drawn on layer 3/0.

• One cell called "COMMENT" with text objects defining the basic text properties through their strings, in particular:

• design_grid=x: specifies the basic grid the characters are designed on. "x" is the grid in database units.

• line_width=x: specifies the line width in database units.

• A comment string which is displayed in the font selection box on the PCell parameters page.

Custom fonts are installed by copying the font file to a folder named "fonts" in one of the places in KLayout's path. The standard font can be
found in "src/std_font.gds" in the source package.

CIRCLE and ELLIPSE

These PCells define a circle and an ellipse. In both cases, the number of interpolation points (per full circle) can be specified. The default is
64 points. A circle features a handle to define the diameter. An ellipse features two handles defining the diameters in x and y direction.

When a shape is converted to a circle or ellipse PCell, the shape's bounding box will be used to define the enclosing box of the circle or
ellipse.

For more details visit
https://www.klayout.org

Page 232 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.15. About The Basic Library

DONUT

The donut PCell creates a circle with a hole. This PCell features the same parameters than the circle but an additional parameter defining
the hole radius. For that, it provides two handles - one for the outer and one for the inner radius.

When a shape is converted to a donut, the shape's bounding box will be used to define the enclosing box of the donut and the hole's
diameter will be chosen to be half of the outer diameter.

PIE and ARC

Both of these PCells are segments of circles or donuts. The PIE PCell features two handles to define the radius and start and end angle.
The ARC PCell also features two handles to define outer and inner radius as well. The following image shows PIE and ARC in action:

Both PCells do not support conversion of shapes.

ROUND_PATH

The round path is a PCell that is based on a path object but is capable of smoothing the path's corners by applying a radius. The following
image gives an example:

For more details visit
https://www.klayout.org

Page 233 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.15. About The Basic Library

The PCell features a parameter that defines the radius. The path itself can be manipulated as usual, in particular with partial edit mode.
Path objects can be converted to ROUND_PATH pcells. In that case, the initial radius will be chosen to be roughly 10 percent of the
minimum bounding box dimensions of the original path.

ROUND_POLYGON

The round polygon is a PCell that is based on a polygon object but is capable of smoothing the polygon's corners by applying a radius. The
following image gives an example:

For more details visit
https://www.klayout.org

Page 234 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.15. About The Basic Library

The PCell features a parameter that defines the radius. The polygon itself can be manipulated as usual, in particular with partial edit mode.
Polygon, box or path objects can be converted to ROUND_POLYGON pcells. In that case, the initial radius will be chosen to be roughly 10
percent of the minimum bounding box dimensions of the original polygon.

STROKED_POLYGON or STROKED_BOX

The stroked polygon or box is a PCell that is based on a polygon object but will produce the "rim" of this polygon. In addition, it can apply
corner rounding with a given radius.

For more details visit
https://www.klayout.org

Page 235 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.15. About The Basic Library

The PCell features two parameters that define the radius and width of the "rim" line. The polygon or box itself can be manipulated as usual.
Polygon, box or path objects can be converted to STROKED_POLYGON or STROKED_BOX pcells. In that case, the initial radius will be
zero. The width of the rim line will be chosen to be roughly 10 percent of the minimum bounding box dimensions of the original polygon. For
STROKED_BOX, the bounding box of the original shape will be used as the basic shape.

For more details visit
https://www.klayout.org

Page 236 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.16. About Packages

2.16. About Packages
"Salt" is KLayout's package manager which allows selecting and installing packages from a global repository. Packages make KLayout
more tasty. Packages (the "grains") may cover a variety of features:

• Ruby or Python macros

• DRC runsets

• Technologies

• Fonts for the Basic.TEXT PCell

• Static layout libraries

• PCell libraries

• Code libraries for Ruby and Python

• Binary extensions

Packages can depend on other packages - these are installed automatically if a package requires them and they are not installed yet.

Packages are identified by name. A package name needs to be unique in the package universe. You can use a prefixed name like
www.mydomain.org/nameofpackage to create a non-ambiguous name. Use a slash to separate the prefix from the actual package
name. The choice of the prefix is entirely up to you as long as it contains letters, digits, underscores, hypthens or dots. You can use
a domain name that is owned by yourself for example. You can use multiple prefixes to further differentiate the packages inside your
namespace.

Packages also come with version information, so KLayout can check for updates and install them if required. KLayout will assume strict
upward compatibility. This specifically applies to packages that other packages are depending on (such as code libraries). If you need to
change them in a non-backward compatible way, you'd need to provide a new package with a different name.

Packages come with some meta data such as authoring information, an optional icon and screen shot image, license information and more.
The more information you provide, the more useful a package will become.

The key component for public package deployment is the "Salt.Mine" package repository service. This is a web service that maintains a
package index. It does not host the packages, but stores links to the actual hosting site. In order to author a package, you need to upload
the package to one of the supported host sites and register your package on the Salt.Mine page. Registration is a simple process and the
only information required is the link to your host site and a mail account for confirmation.

Installing Packages

To install external packages, open the package manager with "Tools/Manage Packages". On the "Install New Packages" page, a list
of available packages is shown. Select the desired packages and mark them using the check mark button. Marked packages will be
downloaded and installed with the "Apply" button.

A filter above the package list allows selecting packages by name. The right panel shows details about the package currently selected.

Updating Packages

To check for updates, use the "Update Packages" tab of the package manager. In the list, those packages for which updates are available
are shown. Mark packages for update using the check mark button. Click "Apply" to apply the selected updates.

Uninstalling Packages

To uninstall packages, open the package manager using "Tools/Manage Packages". Go to the "Current Packages" tab. Select a package
and use the "Remove Package" button to uninstall the package.

Creating Packages

For package development you can utilize KLayout to initialize and edit the files inside the package folder or populate the folder manually.

For more details visit
https://www.klayout.org

Page 237 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.16. About Packages

KLayout offers initialization of new packages from templates. You can modify that package according to your requirements afterwards. To
create a package from a template, open the package manager using "Tools/Manage Packages", go to the "Current Packages" tab and
push the "Create (Edit) Package" button. Chose a template from the list that opens and enter a package name (with prefix, if desired).
Select "Ok" to let KLayout create a new package based on the template you selected.

The package details can be edited with the "pen" button at the top right of the right details panel. Please specify at least some author
information, a license model and a version. If the package needs other packages, the dependencies can be listed in the "Depends on"
table. Those packages will be automatically installed together with the new package. The showcase image can be a screen shot that gives
some idea what the package will do. The package details are kept in a file called "grain.xml" inside the package folder. You can also edit
this file manually. The "grain.xml" is the basic description file for the package.

If the package is a macro or static library package, the macro editor can be used to edit the package files. If the package is a tech package,
the technology manager can be used to edit the technology inside the package. To populate the package folder with other files use your
favorite editor of KLayout itself for layout files.

Deployment inside your organisation

Once a package is finished, it needs to be deployed to make it available to other users. Deployment basically means to put it on some
public place where others can download the package. For local deployment inside an organisation, this can be a web server or a folder on
a file server. KLayout talks WebDAV, so the web server needs to offer WebDAV access. A subversion (SVN) server provides WebDAV by
default, so this is a good choice. Git can be used too, but you'll need to mirror the Git repository to a file system or WebDAV share.

After a package has been made available for download, it needs to be entered in the package index. For local deployment, the index can
be a file hosted on a web server or on the file system. The package index location needs to be specified by the KLAYOUT_SALT_MINE
environment variable which contains the download URL of the package index file.

For public deployment, the Salt.Mine service (http://sami.klayout.org) is used to register new packages in the package index. By
default, KLayout loads the package index from that service, so once your package is registered there, everyone using KLayout will see it.

The Package Index

Public Packages are published on the Salt.Mine server. This is a web service that delivers a packages index with some meta data such as
current version, the icon and a brief description. KLayout uses this list to inform users of packages available for installation and available
updates. For local deployment, the package index can be served by other ways too. The only requirement is to be accessible by a http,
https or file URL.

The basic format of the index is XML with this structure:

<salt-mine>
 <salt-grain>
 <name>name</name>
 <version>Version</version>
 <title>Title of the package</title>
 <doc>A brief description</doc>
 <doc-url>Documentation URL</doc-url>
 <url>Download URL</url>
 <license>License model</license>
 <icon>Icon image: base64-encoded, 64x64 max, PNG preferred</icon>
 </salt-grain>
 ...
 <include>URL to include other index files into this one</include>
 ...
</salt-mine>

You can include other repositories - specifically the default one - into a custom XML file. This allows extending the public index with local
packages.

When the package manager is opened, KLayout will download the index from http://sami.klayout.org/repository.xml. You can
set the KLAYOUT_SALT_MINE environment variable to a different URL which makes KLayout use another dictionary service, i.e. one inside
your own organisation. This service can be any HTTP server that delivers a package list in the same format than the Salt.Mine package
service. The URL can also be a "file:" scheme URL. In this case, KLayout will download the list from the given file location.

When installing a package, KLayout will simply download the files from the URL given in the package list. KLayout employs the WebDAV
protocol to download the files. This protocol is spoken by Subversion and GitHub with the subversion bridge. The latter requires a simple
translation of the original Git URL's to obtain the subversion equivalent.

For more details visit
https://www.klayout.org

Page 238 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.17. About Technology Management

2.17. About Technology Management
Technology management summarizes features which require a certain interpretation of a layout. In particular, layout layers are assigned a
physical meaning, for example via layers or active area layers in CMOS technologies. Since that interpretation often is depending on the
technology the product will be fabricated with, the ability to provide multiple setups is summarized as "technology management".

A technology setup implements the following aspects:

• Layer mapping: when the layout reader loads a file that for a certain technology, it can apply a layer mapping, i.e. apply layer names
to GDS layers, filter layer etc.

• Layer properties: depending on the technology, the layer display can be configured by providing a technology specific layer
properties file.

• Connectivity: the layer stack and the connections made by layers for the net tracer feature.

• Macros: macros associated with the technology. When the corresponding technology is selected (is the one of the current layout),
such macros will show up in the menu if they are bound to a menu entry. Otherwise they will be invisible.

• DRC scripts: in the same way, DRC scripts can be associated with a technology.

• Libraries: if a library is associated with a technology, it is shown in the list of available libraries when an instance is created. Library
association cannot be edited. Instead, a library installed in the system comes with a technology association itself.

• File format options: technology specific file reader or writer options can be given. When a layout is saved, it will use the writer options
from its technology. When loading a layout, the reader options from the active technology will be used.

In the future, more aspects may be added to the technology definition.

There is always one "Default" technology that is used when no technology is specified.

Setting up technologies

Technologies can be set up using the "Technology Manager" in the "Tools" menu. There is always a "Default" technology which provides
the settings when no technology is selected. New technologies can be added or technologies can be deleted using the "+" or "x" buttons
below the technology tree.

A technology has a name (a short string) and a description. The name is used to identify the technology in various places. The description
is the human-readable text that is displayed in the technology selection boxes for example. The short name can be changed by selecting
the technology and pressing the "Rename" button or using "Rename" from the technology tree's context menu (right mouse click). The
description can be edited on the "General" page.

In the technology manager, below each technology, the components are shown that define the various aspects of a technology. Beside the
"General" aspect (names, descriptions) there is a "Layers" component which defines the layer mapping table and layer properties file and
the "Connectivity" component which defines the settings for the net tracer.

Using technologies

When more than the default technology is defined, KLayout provides a drop-down menu in the tool bar to select the current technology.
The current technology is the technology used when new files are loaded. It is also possible to define the technology to be used on the
command line using the "-n" switch (applies to following files and specifies the technology to use by their short name).

The technology of the currently selected layout is shown in the status bar of the main window in the left section. It is possible to switch the
technology of a layout already loaded by using the "Layout Properties" dialog from the "File" menu. After switching the technology, the
layer properties defined in the technology can be applied and the associated macros or DRC scripts are shown in the menu if they are
associated bound to a menu entry or the key binding becomes active if a shortcut is defined for that macro.

Technologies and macros or DRC scripts

Macros or DRC scripts are stored in sub-folders relative to the technology's base path. When no base path is specified or the base path is
invalid, macros or DRC scripts cannot be associated. KLayout will look search for macros, if a directory called "macros" is present in the
base path. If it finds files with a valid macro suffix there it will associate them with this technology. The same way, KLayout will look for DRC
scripts, if a directory called "drc" is present in the base path.

For more details visit
https://www.klayout.org

Page 239 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.17. About Technology Management

Macros and DRC scripts associated with a technology are shown in the technology manager. To edit or debug scripts of macros, use the
macro development environment ("Macros/Macro Development"). If a technology has a macros or DRC scripts folder, the macro or DRC
scripts tree in the development environment will show a corresponding top-level branch for that technology.

Multiple technologies can share the same base path - hence it is possible to share macros or DRC scripts between technologies.

Managing technologies

Technologies can be imported and exported to technology files (suffix ".lyt"). This is mainly useful to exchange technology settings between
users or technologies.

Except for the default technology, technologies are kept in technology folders in KLayout's application path. They are read from subfolders
from the "tech" directories. The technology definition itself is held in a file with extension ".lyt". The technology folder may have subfolders
to hold library files, macros, DRC runsets, LEF files and other pieces of the technology package.

Technologies can be managed using packages. Packages are a convenient way to share add-ons between users. Packages can be
installed from a common repository and allow easy addition and removal of components. Technologies are one aspect of packages, so it's
possible to create packages that contribute one or more technologies. See About Packages for more details.

For more details visit
https://www.klayout.org

Page 240 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.18. About Custom Layout Queries

2.18. About Custom Layout Queries
Layout queries are an advanced feature of KLayout which provides a very generic method to manipulate or search the geometrical or cell
information of a layout. The basic concept of custom queries is borrowed from SQL, the language widely used for accessing databases.
Instead of working on linear tables with rows and columns, KLayout's queries work on the layout structure which basically a cell tree, a
layer set orthogonal to that and per-cell/per-layer geometrical information which itself is divided into shape classes.

Layout queries have a layered structure, like an onion: the core of the query is a cell query which selects one or many cells with or without
their children. The cell query can be wrapped by a shape query which addresses the shapes of the selected cells or instances, optionally
confined to specific layers. The last layer is formed by the action: this is the activity that KLayout will perform on the selected objects. The
default action is simply to report the results. It is also possible to delete the selected objects or to perform a custom operation on them.

On cell and shape level, conditions can be specified which will restrict the operation on a subset of the selected objects. Reports can be
sorted by a arbitrary key derived from the current object.

On cell level three different relationship models are supported:

• Individual cells: no hierarchy is involved

• The cell tree: the cell tree is the parent/child relationship without explicit instantiation information

• The cell instance tree: every individual instance of a cell is considered

Expressions play an important part in layout queries, both as actions (assignment type expressions) as well as conditions or for the
derivation of sorting keys. See About Expressions for details about expressions. Within expressions, RBA objects are used to represent
shapes or instances (see Class Index for a list of classes available). Depending on the context of the query, a variety of functions is
available to access the properties of the current item and context.

The key to layout queries is the "Search and Replace" feature: this dialog uses custom queries to emulate simple search and replace
functionality on the first three tabs of the dialog ("Delete" is regarded as a special kind of "replacement" here). However, the true power is
revealed on the forth page: here you can enter all kind of custom queries. Clicking on "Execute" will run the query and display the results in
the right panel.

If a search or replace action is specified on the first three tabs, the corresponding custom layout query will be shown in the entry box of the
forth one. That way it is very easy to create a first query using the standard functions, switch to the custom query page and adjust it to fit
the specific requirements.

Building queries: cells

The very core of a query is a cell expression. The most simple form of a cell expression is a simple cell name. This expression will select
the cell called "RINGO":

RINGO

Cell expressions can contain wildcard in the "glob" form made popular by the Unix and Windows command line. "*" is for an arbitrary
sequence of zero to many characters, "?" for any single character. "{A,B,C}" is for either the character sequence "A", "B" or "C", "[ABC]" is
any of the characters "A", "B" or "C" and "[^ABC]" is for any character not "A", "B" or "C". Round brackets can be used to group parts of the
string for later reference. If brackets of any kind are used inside a match string, either single or double quotes should be used around match
strings in order to avoid ambiguities with other parts of the query syntax.

This expression will select all cells starting with "T":

T*

Although it is not necessary to do so, it is recommended to mark a cell query explicitly as such using the optional "cells" or "cell" keyword.
This query has the same effect than the previous one but is somewhat more robust if used in nested queries we will learn about later:

cells T*

For more details visit
https://www.klayout.org

Page 241 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.18. About Custom Layout Queries

A cell expression can already be used by its own. The report of such a query will simply contain the cells selected by that expression. If
combined with an action, such expressions already provide useful manipulation functionality.

The "delete ..." action will delete the given cells:

delete cells T*

The "with .. do ..." action can be used to manipulate the cell. This example will rename the cell by replacing the "T" prefix with a "S". The
part after "do" is an expression which is evaluated for each hit. Note that "$1" is used to refer to the first matching bracket in the last match.
"cell.name" is a method call on the object "cell" which is provided by the query in the context of a cell query. "cell" is a "Cell" object (see
Cell) and setting the name will basically rename the cell. The expression used for the assignment will put an "S" in front of the rear part of
the name, hence replace "T" by "S":

with cells "T(*)" do cell.name = "S"+$1

Note the quotes around the "T(*)" match expression. They are necessary to make the brackets part of the match expression rather than the
cell query. It is usually a good idea to put the match expression inside quotes to avoid ambiguities.

The last example already demonstrates how a combination of two simple concepts - simple cell queries and expressions - form a new and
very generic feature. We will soon learn about the power of that concept.

Building queries: cell trees

Cell queries are the most simple form of core queries. The next level is entered by extending the concept to hierarchies. Cell hierarchies
come on two flavors: a parent-to-child relationship tree (the cell tree) and the instantiation tree. In the cell tree, each cell is at most present
once in the context of a parent cell, independent of the number of times a cell is used inside a parent cell. The cell tree just describes the
fact that a cell is a child cell of another, not how the cell is used. The instance tree adds this detailed information as well: how many times a
cell is used and what transformations are applied per such instance.

The cell tree can be accessed within cell queries using the "." operator to separate parent and child cell. The following cell query returns all
cells which are children of a cell "A":

cells A.*

Multiple levels may be nested, for example the following query lists all cells which are second-level children of the "A" cell:

cells A.*.*

Such expressions form a "path" leading from an initial cell to some cell, which is returned by the query. The "." separates the path elements
like the slash or backslash does in a file path.

Top cells can be addressed by a leading "." similar to the leading slash of an absolute file path in Unix. The following query will return all top
cells:

cells .*

Brackets can be used to group parts of the path. That has no immediate effect, but it can be usedful in combination with quantifiers and
branches as we will see soon. The following queries are equivalent:

cells TOP.*.A
cells TOP(.*.A)
cells TOP(.*)(.A)

For more details visit
https://www.klayout.org

Page 242 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.18. About Custom Layout Queries

Please note that brackets can only be put between the dot and the previous element. A query like "cells TOP.(*.A)" is invalid since the
opening bracket is after the dot.

Alternative paths can be specified by separating them with a comma. Such alternatives must be put inside brackets. For example, this
query selects all cells that are children of "TOP" and start with an "A" or which are second-level children and start with an "E":

cells TOP(.A*,.*.E*)

Path elements can be made optional with a "?" symbol and expanded an variable number of times using quantifiers like "*" (0 to many) and
"+" (one to many) or "{n,m}" (n to m times). Note that you'll have to put the expression subject to the quantifier in brackets in order to avoid
ambiguities of the star operator. The following expression will return the A cell in every possible child context of "TOP", i.e. as direct child,
second-level child and so on:

cells TOP(.*)*.A

To understand that query, note that the "*" inside the brackets is forming the match string while the outer star is forming the quantifier. That
query reads in expanded form "TOP.A", "TOP.*.A", "TOP.*.*.A" etc.

There is a useful abbreviation for the above case. The following query will also produce "A" in every child context of "TOP":

cells TOP..A

The double dot operator matches an arbitrary part of the instantiation path before and after a cell even without being anchored at one end.
Used before a cell name, it will return all contexts a cell is used in (including top cells and all child contexts). Used after a cell, it will return
the cell plus all child cells in each possible context. Used before a cell it will deliver all contexts that cell is used in every top cells. The
following query will deliver "TOP" plus all its direct and indirect children:

cells TOP..

Note that the previous query may deliver the same cell multiple times - once for each context (call path from TOP) it is used in. Hence
"TOP.." will basically expand into the cell tree with "TOP" as the root.

In order to get the names of all cells called from a given cell, you can use the "select" action with the cell name and the "sorted by .. unique"
output selector to remove duplicates of cell names:

select cell_name of cells TOP.. sorted by cell_name unique

See below for a description of the "select" action.

Within a path, dynamically computed components can be inserted using the "$(..)" notation which wraps an expression. That expression is
evaluated in the context of the previous path component. For example, the following query selects all child cells which are named like their
parent with an "A" prefix:

cells *.$("A"+cell_name)

Building queries: instances

Cell trees can be expanded into instance trees simply by prepending "instances". This will deliver all direct instances of "TOP":

instances of TOP.*

For more details visit
https://www.klayout.org

Page 243 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.18. About Custom Layout Queries

When asking for instances, more information is available inside the query. For example, the instance's orientation and position is available.
With the "instances" specification, array references are expanded into single instances. To keep arrays as such, use "arrays" instead of
"instances":

arrays of TOP.*

Cell or instance queries can be filtered using the "where" clause. After the "where" an expression is expected with a number of predefined
variables that reflect the context (see below for the variables available). The following query selects all child cells of "A" where the cell
name has a length of 5 characters:

cells A.* where len(cell_name)==5

Building queries: shapes

So far we have dealt with cells and their instantiations. We enter the next level now by introducing shapes.

Shape queries are built atop of the cell/instance level. A simple example selects all shapes of the cell "TOP":

shapes of cell TOP

Shape queries can be confined to certain shape types. For example, this confines the query to boxes:

boxes from cell TOP

Allowed shape type are "boxes", "polygons", "texts" and "paths". In the context of a shape query additional variables are available for
expressions. The most important one is "shape" which is a Shape object (see Shape) That objects provides access to the shape addressed
in a generic way. Specialization to a specific shape type is possible through the shape specific accessor methods (i.e. "shape.box_width")
or the specific objects (i.e. "shape.box").

Multiple shape types can be given with "or" or a comma:

boxes or polygons from cell TOP

Shape queries can be confined to certain layers. This query will report all shapes from layer 8, datatype 0:

shapes on layer 8/0 from cell TOP

Intervals can be specified with the hyphen ("-") and multiple layers or intervals can be listed with a comma or semicolon. The following will
list the shapes from layer 8, datatype 0 to 10 and layer 9, datatype 0 only (note that "no datatype" is interpreted as datatype 0):

shapes on layer 8/0-10, 9 from cell TOP

For formats that support named layers only (i.e. DXF), the layer name can be given. The following query lists shapes from layers METAL
and POLY (case sensitive!):

shapes on layer METAL, POLY from cell TOP

For more details visit
https://www.klayout.org

Page 244 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.18. About Custom Layout Queries

Any kind of cell query can be used inside the shape query. If a cell query renders multiple cells, the shape query will be applied to each
of the cells returned. If instances are selected by the cell query, the shapes will be reported for each instance. Since the cumulated
transformation of a specific instance into the top cell is available through the "path_trans" (database units) or "path_dtrans" (micrometer
units) variable, it is possible to transform each shape into the top cell in the instance case. The following expression combines a "with .. do"
action with a shape query to flatten all shapes below "TOP":

with shapes on layer 6 from instances of TOP.. do
 initial_cell.shapes(<10/0>).insert(shape).transform(path_trans)

That expression reads all shapes of cell "TOP" and its children, inserts them into a new layer 10, datatype 0 and transforms the shape
after it has been inserted. This expression makes use of the variables "initial_cell" (a Cell object representing the root cell of the cell query),
"shape" (a pointer to the currently selected shape and "path_trans" (a Trans object representing the transformation of the current shape
into the root cell of the query). It also employs the angle bracket layer constant notation which specifies a layer in the target notation and
can be used in place of the layer index value usually used inside the API. Note that the target layer must exist already, i.e. must have been
created in "Edit/Layer/New Layer" for example.

Shape queries can be confined with conditions. A condition is entered with a "where" clause plus an expression that selects the shapes.
This condition selects shapes with an area of more than 4 square micron (note that the "um2" unit must be given, since it will cause the
value to be converted into the database units used internally):

shapes from cell TOP where shape.area < 4 um2

Shape conditions can be combined with cell conditions. To avoid ambiguities, the cell query must be put into brackets in that case:

shapes from (cells * where len(cell_name)==4) where shape.area < 4 um2

Actions

Actions specify operations that are to be performed on the results of a query. The default action is to just list the results. In the "Search
and replace" dialog, the results will be listed right to the query entry box as a table. Depending on the context of the query, cell names, cell
names plus parent cell, cell instances or shapes are listed.

"select" action

The "select" action will compute one or more results from each item returned by the query and present the computed value in a table. The
general form is:

select expr1, expr2, ... from query

"expr1", "expr2" ... are expressions. For example this action computes area and perimeter for all shapes of cell "TOP":

select shape.area, shape.perimeter from shapes of cell TOP

The "select" action offers sorting with optional reduction to unique values:

select expr1, expr2, ... from query sorted by sort_key

select expr1, expr2, ... from query sorted by sort_key unique

Here "sort_key" is an expression which delivers the value by which the output will be sorted. If "unique" is specified, items with identical sort
key are reduced to a single output.

"with" action

The "with" action executes an expression on each item returned by the expression. In that sense it is basically equivalent to the "select"
action but the results of the operation are discarded and the intention of the expression is to modify the results. The general form of that
action is this:

For more details visit
https://www.klayout.org

Page 245 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.18. About Custom Layout Queries

with query do expr

For example, this action will move all shapes of cell "TOP" from layer 6 to layer 10, datatype 0:

with shapes on layer 6 of cell TOP do shape.layer = <10/0>

"delete" action

This action will simply delete the objects selected by the query:

delete query

For example, this query deletes all shapes from layer 6, datatype 0 on cell TOP:

delete shapes on layer 6 of cell TOP

Variables available per context

Common variables

The following variables are available in all queries:

Name Value type Description

layout Layout The layout object that this query runs on.

Cell query context

In the plain cell and cell tree context, the following variables are available:

Name Value type Description

path Array Array with the indexes of the cells in that path.
For a plain cell, this array will have length 1 and contain the index of the
selected cell only.

path_names Array Array with the names of the cells in that path.
For a plain cell, this array will have length 1 and contain the name of the
selected cell only.

initial_cell Cell Object representing the initial cell (first of path)

initial_cell_index Integer Index of initial cell (first of path)

initial_cell_name String Name of initial cell (first of path)

cell Cell Object representing the current cell (last of path)

cell_index Integer Index of current cell (last of path)

cell_name String Name of current cell (last of path)

hier_levels Integer Number of hierarchy levels in path (length of path - 1)

references Integer The number of instances of this cell in the parent cell. Array references
count as 1.
For plain cells, this value is 0.

weight Integer The number of instances of this cell in the parent cell. Array references
count as multiple instances.
For plain cells, this value is 0.

tot_weight Integer The number of instances of this cell in the initial cell along the given path.
Array references count as multiple instances.
for plain cells, this value is 0.

For more details visit
https://www.klayout.org

Page 246 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.18. About Custom Layout Queries

Name Value type Description

instances Integer Equivalent to "weight", but also available for plain cells. For plain cells,
the value represents the number of times, the cell is used in all top cells.

bbox Box The cell's bounding box.

dbbox DBox The cell's bounding box in micrometer units.

cell_bbox Box Same as "bbox" (disambiguator from shape and instance bounding
boxes).

cell_dbbox DBox Same as "dbbox" (disambiguator from shape and instance bounding
boxes).

Instance query context

In an instance query context, the properties of the current instance are available as variables in addition to most of the ones provided by
the cell query context. These variables are not available in instance context: "weight", "references" and "tot_weight". Apart from that these
additional variable are provided:

Name Value type Description

path_trans ICplxTrans The transformation of that instance into the top cell. For a plain cell that is a unit
transformation.

path_dtrans DCplxTrans The transformation of that instance into the top cell in micrometer units. For a
plain cell that is a unit transformation.

trans ICplxTrans The transformation of that instance (first instance if an array).

dtrans DCplxTrans The transformation of that instance (first instance if an array) in micrometer units.

inst_bbox Box The instance bounding box in the initial cell.

inst_dbbox DBox The instance bounding box in the initial cell in micrometer units.

inst Instance The instance object of the current instance.

array_a Vector The a vector for an array instance or nil if the instance is not an array.

array_da DVector The a vector for an array instance in micrometer units or nil if the instance is not
an array.

array_na Integer The a axis array dimension or nil if the instance is not an array.

array_b Vector The b vector for an array instance or nil if the instance is not an array.

array_db DVector The b vector for an array instance in micrometer units or nil if the instance is not
an array.

array_nb Integer The b axis array dimension or nil if the instance is not an array.

array_ia Integer The a index when an array is iterated (0 to array_na). Not available with instance
queries with "arrays of ...".

array_ib Integer he b index when an array is iterated (0 to array_nb). Not available with instance
queries with "arrays of ...".

Shape query context

In the context of the shape query, the following variables are available in addition to the variables made available by the inner cell query.
The inner cell query is either a instance query or a cell query:

Name Value type Description

bbox DBox The shape's bounding box

dbbox DBox The shape's bounding box in micrometer units

shape_bbox Box Same as "bbox" (disambiguator for cell or instance bounding boxes)

shape_dbbox DBox Same as "dbbox" (disambiguator for cell or instance bounding boxes)

shape Shape The shape object

layer_info LayerInfo The layer description of the current shape's layer

For more details visit
https://www.klayout.org

Page 247 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.18. About Custom Layout Queries

Name Value type Description

layer_index Integer The layer index of the current shape

For more details visit
https://www.klayout.org

Page 248 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.19. Notation used in Ruby API documentation

2.19. Notation used in Ruby API documentation

Introduction

The documentation of the Ruby API is derived from the C++ declaration of the specific methods. Hence the notation deviates somewhat
from the usual documentation of Ruby methods. In particular the following differences are noteworthy:

• "Static" methods are "class methods":

The C++ term "static" refers to methods available within a class without requiring an object. In Ruby, the term "class method" is
commonly used to refer to such methods.

• Different flavors of object arguments:

In C++ there are references, pointers and objects passed by value. In Ruby there are only references. RBA maps the C++ concepts
to ruby by allowing the "nil" value only for pointer arguments. Pointer arguments are specially marked in the documentation.

• There is "constness":

C++ has the concept of "const" methods and arguments. In C++, an object reference can be "const", which means that the object
behind such a reference cannot be modified. A "const" method is a method which can be called on "const" object reference and such
a method may not alter the state of the object.

A method can have "const" reference arguments which means that objects passed through such arguments are not modified by the
method. Such arguments are also said to have "in" semantics. Hence, "const" references can be passed to such arguments. In Ruby
there is no concept of "constness" or "in" parameters. Every method is allowed to alter the state of the object it is called on and pf
the objects it gets as arguments. In that sense, C++ allows specification of a more constraint "contract" between caller and method
that is called. RBA emulates constness in Ruby to some extent and it may disallow calling non-const methods on const references
or passing const reference to non-const arguments. Return value can also be const pointers which means that the object returned
cannot be modified.

• Strong typing:

In C++, arguments and return values are strongly typed. RBA will check the arguments passed to a method and convert them
properly. Hence the type of argument is important. "int" type arguments may not be passed strings for example.

The type system if C++ is also somewhat more restricted: the value range of an integer argument is limited and for example there are
unsigned types which cannot be passed negative values. Hence the type of an argument is noted in the documentation. A particular
return type is "void" which basically means "no value returned". Strong typing extends to object references and RBA checks if an
argument can be converted to the object required.

• Virtual methods:

In C++, a method must be virtual before it can be reimplemented by a derived class. In Ruby all methods are virtual. Since
reimplementing a non-virtual method does not have any effect in RBA, virtual methods are marked as such.

General layout of the documentatation

The documentation states the following methods (in that order):

• Public constructors

• Public methods

• Public static methods and constants

• Protected methods (static, non-static and constructors)

• Deprecated methods (protected, public, static, non-static and constructors)

Deprecated methods are listed for reference only. Use of such methods or constants is not recommended because they might be removed
in the future.

For more details visit
https://www.klayout.org

Page 249 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.19. Notation used in Ruby API documentation

Examples

Here are some examples for method documentations (signatures):

• [virtual] bool event(QEvent ptr arg1):

A virtual method called "event" returning a boolean value (Ruby "true" or "false") and expecting one argument (a pointer to a QEvent
object). "ptr" indicates that the argument is a pointer, "arg1" is the argument name.

• void add_reference(const RdbReference rdb_ref):

A method without return value which expects one parameter. The parameter must be a reference to the RdbReference object. The
reference must not be nil since it is not a pointer, but can be a reference to a const object. The name of the argument is "rdb_ref".

• [const] unsigned int num_items:

A parameterless const method called "num_items" that delivers the number of items as an unsigned integer value.

• [iter] RdbReference each_reference:

An iterator called "each_reference" delivering RdbReference objects.

• [event] void layoutAboutToBeChanged:

A parameterless event called "layoutAboutToBeChanged".

For more details visit
https://www.klayout.org

Page 250 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20. DRC Reference

2.20. DRC Reference

• DRC Reference: DRC expressions

• DRC Reference: Layer Object

• DRC Reference: Netter object

• DRC Reference: Source Object

• DRC Reference: Global Functions

For more details visit
https://www.klayout.org

Page 251 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.1. DRC Reference: DRC expressions

2.20.1. DRC Reference: DRC expressions
DRC expression objects represent abstract recipes for the Layer#drc universal DRC function. For example, when using a universal DRC
expression like this:

out = in.drc(width < 2.0)

"width < 2.0" forms a DRC expression object. DRC expression objects have methods which manipulate or evaluate the results of this
expression. In addition, DRC expressions have a result type, which is either polygon, edge or edge pair. The result type is defined by the
expression generating it. In the example above, "width < 2.0" is a DRC width check which renders edge pairs. To obtain polygons from
these edge pairs, use the "polygons" method:

out = in.drc((width < 2.0).polygons)

The following global functions are relevant for the DRC expressions:

• angle

• area

• area_ratio

• bbox_area_ratio

• bbox_height

• bbox_max

• bbox_min

• bbox_width

• case

• corners

• covering

• enc

• enclosing

• extent_refs

• extents

• foreign

• holes

• hulls

• if_all

• if_any

• if_none

For more details visit
https://www.klayout.org

Page 252 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.1. DRC Reference: DRC expressions

• inside

• interacting

• iso

• length

• middle

• notch

• outside

• overlap

• overlapping

• perimeter

• primary

• rectangles

• rectilinear

• relative_height

• rounded_corners

• secondary

• separation

• sep

• sized

• smoothed

• space

• squares

• width

• with_holes

The following documentation will list the methods available for DRC expression objects.

"!" - Logical not

Usage:

• ! expression

This operator will evaluate the expression after. If this expression renders an empty result, the operator will return the primary shape.
Otherwise it will return an empty result.

This operator can be used together with predicates such a "rectangles" to invert their meaning. For example, this code selects all primary
shapes which are not rectangles:

For more details visit
https://www.klayout.org

Page 253 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.1. DRC Reference: DRC expressions

out = in.drc(! rectangles)
out = in.drc(! primary.rectangles) # equivalent

"&" - Boolean AND between the results of two expressions

Usage:

• expression & expression

The & operator will compute the boolean AND between the results of two expressions. The expression types need to be edge or polygon.

The following example computes the partial edges where width is less than 0.3 micrometers and space is less than 0.2 micrometers:

out = in.drc((width < 0.3).edges & (space < 0.2).edges)

"+" - Boolean OR between the results of two expressions

Usage:

• expression + expression

The + operator will join the results of two expressions.

"-" - Boolean NOT between the results of two expressions

Usage:

• expression - expression

The - operator will compute the difference between the results of two expressions. The NOT operation is defined for polygons, edges and
polygons subtracted from edges (first argument edge, second argument polygon).

CAUTION: be careful not to take secondary input for the first argument. This will not render the desired results. Remember that the "drc"
function will walk over all primary shapes and present single primaries to the NOT operation together with the secondaries of that single
shape. So when you use secondary shapes as the first argument, they will not see all all the primaries required to compute the correct
result. That's also why a XOR operation cannot be provided in the context of a generic DRC function.

The following example will produce edge markers where the width of is less then 0.3 micron but not inside polygons on the "waive" layer:

out = in.drc((width < 0.3).edges - secondary(waive))

"angle" - Selects edges based on their angle

Usage:

• expression.angle (in condition)

This operation selects edges by their angle, measured against the horizontal axis in the mathematical sense.

For this measurement edges are considered without their direction and straight lines. A horizontal edge has an angle of zero degree. A
vertical one has an angle of 90 degrees. The angle range is from -90 (exclusive) to 90 degree (inclusive).

If the input shapes are not polygons or edge pairs, they are converted to edges before the angle test is made.

For example, the following code selects all edges from the primary shape which are 45 degree (up) or 135 degree (down). The "+" will join
the results:

For more details visit
https://www.klayout.org

Page 254 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.1. DRC Reference: DRC expressions

out = in.drc((angle == 45) + (angle == 135))
out = in.drc((primary.angle == 45) + (primary.angle == 135)) # equivalent

Note that angle checks usually imply the need to rotation variant formation as cells which are placed non-rotated and rotated by 90 degree
cannot be considered identical. This imposes a performance penalty in hierarchical mode. If possible, consider using DRC#rectilinear for
example to detect shapes with non-manhattan geometry instead of using angle checks.

The "angle" method is available as a plain function or as a method on DRC expressions. The plain function is equivalent to "primary.angle".

"area" - Selects the primary shape if the area is meeting the condition

Usage:

• expression.area (in condition)

This operation is used in conditions to select shapes based on their area. It is applicable on polygon expressions. The result will be the
input polygons if the area condition is met.

See Layer#drc for more details about comparison specs.

The following example will select all polygons with an area less than 2.0 square micrometers:

out = in.drc(area < 2.0)
out = in.drc(primary.area < 2.0) # equivalent

The area method is available as a plain function or as a method on DRC expressions. The plain function is equivalent to "primary.area".

"area_ratio" - Selects the input polygon according to its area ratio (bounding box area by
polygon area)

Usage:

• expression.area_ratio (in condition)

This operation is used in conditions to select shapes based on their area ratio. The area ratio is the ratio of bounding box vs. polygon area.
It's a measure how "sparse" the polygons are and how good an approximation the bounding box is. The value is always larger or equal
than 1. Boxes have a value of 1.

This filter is applicable on polygon expressions. The result will be the input polygon if the condition is met.

See Layer#drc for more details about comparison specs.

The following example will select all polygons whose area ratio is larger than 3:

out = in.drc(area_ratio > 3)
out = in.drc(primary.area_ratio > 3) # equivalent

The "area_ratio" method is available as a plain function or as a method on DRC expressions. The plain function is equivalent to
"primary.area_ratio".

"area_sum" - Selects the input polygons if the sum of all areas meets the condition

Usage:

• expression.area_sum (in condition)

For more details visit
https://www.klayout.org

Page 255 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.1. DRC Reference: DRC expressions

Returns the input polygons if the sum of their areas meets the specified condition. This condition is evaluated on the total of all
shapes generated in one step of the "drc" loop. As there is a single primary in each loop iteration, "primary.area_sum" is equivalent to
"primary.area".

See Layer#drc for more details about comparison specs.

"bbox_aspect_ratio" - Selects the input polygon according to the aspect ratio of the bounding
box

Usage:

• expression.bbox_aspect_ratio (in condition)

This operation is used in conditions to select shapes based on aspect ratios of their bounding boxes. The aspect ratio is computed by
dividing the larger of width and height by the smaller of both. The aspect ratio is always larger or equal to 1. Square or square-boxed
shapes have a bounding box aspect ratio of 1.

This filter is applicable on polygon expressions. The result will be the input polygon if the bounding box condition is met.

See Layer#drc for more details about comparison specs.

The following example will select all polygons whose bounding box aspect ratio is larger than 3:

out = in.drc(bbox_aspect_ratio > 3)
out = in.drc(primary.bbox_aspect_ratio > 3) # equivalent

The "bbox_aspect_ratio" method is available as a plain function or as a method on DRC expressions. The plain function is equivalent to
"primary.bbox_aspect_ratio".

"bbox_height" - Selects the input polygon if its bounding box height is meeting the condition

Usage:

• expression.bbox_height (in condition)

This operation acts similar to DRC#bbox_min, but takes the height of the shape's bounding box. In general, it's more advisable to use
DRC#bbox_min or DRC#bbox_max because bbox_height implies a certain orientation. This can imply variant formation in hierarchical
contexts: cells rotated by 90 degree have to be treated differently from ones not rotated. This usually results in a larger computation effort
and larger result files.

The "bbox_height" method is available as a plain function or as a method on DRC expressions. The plain function is equivalent to
"primary.bbox_height".

"bbox_max" - Selects the input polygon if its bounding box larger dimension is meeting the
condition

Usage:

• expression.bbox_max (in condition)

This operation acts similar to DRC#bbox_min, but takes the larger dimension of the shape's bounding box.

The "bbox_max" method is available as a plain function or as a method on DRC expressions. The plain function is equivalent to
"primary.bbox_max".

"bbox_min" - Selects the input polygon if its bounding box smaller dimension is meeting the
condition

Usage:

For more details visit
https://www.klayout.org

Page 256 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.1. DRC Reference: DRC expressions

• expression.bbox_min (in condition)

This operation is used in conditions to select shapes based on smaller dimension of their bounding boxes. It is applicable on polygon
expressions. The result will be the input polygons if the bounding box condition is met.

See Layer#drc for more details about comparison specs.

The following example will select all polygons whose bounding box smaller dimension is larger than 200 nm:

out = in.drc(bbox_min > 200.nm)
out = in.drc(primary.bbox_min > 200.nm) # equivalent

The "bbox_min" method is available as a plain function or as a method on DRC expressions. The plain function is equivalent to
"primary.bbox_min".

"bbox_width" - Selects the input polygon if its bounding box width is meeting the condition

Usage:

• expression.bbox_width (in condition)

This operation acts similar to DRC#bbox_min, but takes the width of the shape's bounding box. In general, it's more advisable to use
DRC#bbox_min or DRC#bbox_max because bbox_width implies a certain orientation. This can imply variant formation in hierarchical
contexts: cells rotated by 90 degree have to be treated differently from ones not rotated. This usually results in a larger computation effort
and larger result files.

The "bbox_width" method is available as a plain function or as a method on DRC expressions. The plain function is equivalent to
"primary.bbox_width".

"centers" - Returns the part at the center of each edge of the input

Usage:

• expression.centers(length)

• expression.end_segments(length, fraction)

This method acts on edge expressions and delivers a specific part of each edge. See layer#centers for details about this functionality.

"corners (in condition)" - Applies smoothing

Usage:

• expression.corners

• expression.corners(as_dots)

• expression.corners(as_boxes)

This operation acts on polygons and selects the corners of the polygons. It can be put into a condition to select corners by their angles. The
angle of a corner is positive for a turn to the left if walking a polygon counterclockwise and negative for the turn to the right. Angles take
values between -180 and 180 degree.

When using "as_dots" for the argument, the operation will return single-point edges at the selected corners. With "as_boxes" (the default),
small (2x2 DBU) rectangles will be produced at each selected corner.

The following example selects all corners:

out = in.drc(corners)

For more details visit
https://www.klayout.org

Page 257 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.1. DRC Reference: DRC expressions

out = in.drc(primary.corners) # equivalent

The following example selects all inner corners:

out = in.drc(corners < 0)
out = in.drc(primary.corners < 0) # equivalent

The "corners" method is available as a plain function or as a method on DRC expressions. The plain function is equivalent to
"primary.corners".

"count" - Selects a expression result based on the number of (local) shapes

Usage:

• expression.count (in condition)

This operation is used in conditions to select expression results based on their count. "count" is used as a method on a expression. It will
evaluate the expression locally and return the original result if the shape count in the result is matching the condition.

See Layer#drc for more details about comparison specs.

Note that the expression is evaluated locally: for each primary shape, the expression is evaluated and the count of the resulting edge, edge
pair or polygon set is taken. As the primary input will always have a single item (the local shape), using "count" on primary does not really
make sense. It can be used on derived expressions however.

The following example selects triangles:

out = in.drc(if_any(corners.count == 3))

Note "if_any" which selects the primary shape if the argument evaluates to a non-empty result. Without "if_any" three corners are returned
for each triangle.

"covering" - Selects shapes entirely covering other shapes

Usage:

• expression.covering(other) (optionally in conditions)

• covering(other) (optionally in conditions)

This method represents the selector of primary shapes which entirely cover shapes from the other layer. This version can be put into a
condition indicating how many shapes of the other layer need to be covered. Use this variant within DRC expressions (also see Layer#drc).

For example, the following statement selects all input shapes which entirely cover shapes from the "other" layer:

out = in.drc(covering(other))

This example selects all input shapes which entire cover shapes from the other layer and there are more than two shapes from "other"
inside primary shapes:

out = in.drc(covering(other) > 2)

For more details visit
https://www.klayout.org

Page 258 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.1. DRC Reference: DRC expressions

"edges" - Converts the input shapes into edges

Usage:

• expression.edges

Polygons will be separated into edges forming their contours. Edge pairs will be decomposed into individual edges.

Contrary most other operations, "edges" does not have a plain function equivalent as this is reserved for the function generating an edges
layer. To generate the edges of the primary shapes, use "primary" explicit as the source for the edges:

out = in.drc(primary.edges)

"end_segments" - Returns the part at the end of each edge of the input

Usage:

• expression.end_segments(length)

• expression.end_segments(length, fraction)

This method acts on edge expressions and delivers a specific part of each edge. See layer#end_segments for details about this
functionality.

"extended" - Returns polygons describing an area along the edges of the input

Usage:

• expression.extended([:begin => b,] [:end => e,] [:out => o,] [:in => i], [:joined => true])

• expression.extended(b, e, o, i)

This method acts on edge expressions. It will create a polygon for each edge tracing the edge with certain offsets to the edge. "o" is the
offset applied to the outer side of the edge, "i" is the offset applied to the inner side of the edge. "b" is the offset applied at the beginning
and "e" is the offset applied at the end.

"extended_in" - Returns polygons describing an area along the edges of the input

Usage:

• expression.extended_in(d)

This method acts on edge expressions. Polygons are generated for each edge describing the edge drawn with a certain width extending
into the "inside" (the right side when looking from start to end). This method is basically equivalent to the extended method: "extended(0, 0,
0, dist)". A version extending to the outside is extended_out.

"extended_out" - Returns polygons describing an area along the edges of the input

Usage:

• expression.extended_out(d)

This method acts on edge expressions. Polygons are generated for each edge describing the edge drawn with a certain width extending
into the "outside" (the left side when looking from start to end). This method is basically equivalent to the extended method: "extended(0, 0,
dist, 0)". A version extending to the inside is extended_in.

For more details visit
https://www.klayout.org

Page 259 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.1. DRC Reference: DRC expressions

"extent_refs" - Returns partial references to the bounding boxes of the polygons

Usage:

• expression.extent_refs([options])

The extent_refs operation acts on polygons and has the same effect than Layer#extent_refs. It takes the same arguments. It is available as
a method on DRC expressions or as plain function, in which case it acts on the primary shapes.

"extents" - Returns the bounding box of each input object

Usage:

• expression.extents([enlargement])

This method provides the same functionality as Layer#extents and takes the same arguments. It returns the bounding boxes of the input
objects. It acts on edge edge pair and polygon expressions.

The "extents" method is available as a plain function or as a method on DRC expressions. The plain function is equivalent to
"primary.extents".

"first_edges" - Returns the first edges of edge pairs

Usage:

• expression.first_edges

This method acts on edge pair expressions and returns the first edges of the edge pairs delivered by the expression.

Some checks deliver symmetric edge pairs (e.g. space, width, etc.) for which the edges are commutable. "first_edges" will deliver both
edges for such edge pairs.

"holes" - Selects all holes from the input polygons

Usage:

• expression.holes

This operation can be used as a plain function in which case it acts on primary shapes or can be used as method on another DRC
expression. The following example selects all holes with an area larger than 2 square micrometers:

out = in.drc(holes.area > 2.um)
out = in.drc(primary.holes.area > 2.um) # equivalent

"hulls" - Selects all hulls from the input polygons

Usage:

• expression.hulls

The hulls are the outer contours of the input polygons. By selecting hulls only, all holes will be closed.

This operation can be used as a plain function in which case it acts on primary shapes or can be used as method on another DRC
expression. The following example closes all holes:

out = in.drc(hulls)

For more details visit
https://www.klayout.org

Page 260 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.1. DRC Reference: DRC expressions

out = in.drc(primary.hulls) # equivalent

"inside" - Selects shapes entirely inside other shapes

Usage:

• expression.inside(other)

• inside(other)

This method represents the selector of primary shapes which are entirely inside shapes from the other layer. Use this variant within DRC
expressions (also see Layer#drc).

"interacting" - Selects shapes interacting with other shapes

Usage:

• expression.interacting(other) (optionally in conditions)

• interacting(other) (optionally in conditions)

See covering for a description of the use cases for this function. When using "interacting", shapes are selected when the interact (overlap,
touch) shapes from the other layer.

When using this method with a count, the operation may not render the correct results if the other input is not merged. By nature of the
generic DRC feature, only those shapes that interact with the primary shape will be selected. If the other input is split into multiple polygons,
not all components may be captured and the computed interaction count may be incorrect.

"length" - Selects edges based on their length

Usage:

• expression.length (in condition)

This operation will select those edges which are meeting the length criterion. Non-edge shapes (polygons, edge pairs) will be converted to
edges before.

For example, this code selects all edges from the primary shape which are longer or equal than 1 micrometer:

out = in.drc(length >= 1.um)
out = in.drc(primary.length >= 1.um) # equivalent

The "length" method is available as a plain function or as a method on DRC expressions. The plain function is equivalent to
"primary.length".

"length_sum" - Selects the input edges if the sum of their lengths meets the condition

Usage:

• expression.length_sum (in condition)

Returns the input edges if the sum of their lengths meets the specified condition. This condition is evaluated on the total of all edges
generated in one step of the "drc" loop.

See Layer#drc for more details about comparison specs.

For more details visit
https://www.klayout.org

Page 261 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.1. DRC Reference: DRC expressions

"merged" - Returns the merged input polygons, optionally selecting multi-overlap

Usage:

• expression.merged

• expression.merged(min_count)

This operation will act on polygons. Without a min_count argument, the merged polygons will be returned.

With a min_count argument, the result will include only those parts where more than the given number of polygons overlap. As the primary
input is merged already, it will always contribute as one.

The "merged" method is available as a plain function or as a method on DRC expressions. The plain function is equivalent to
"primary.merged".

"middle" - Returns the centers of polygon bounding boxes

Usage:

• expression.middle([options])

The middle operation acts on polygons and has the same effect than Layer#middle. It takes the same arguments. It is available as a
method on DRC expressions or as plain function, in which case it acts on the primary shapes.

"outside" - Selects shapes entirely outside other shapes

Usage:

• expression.outside(other)

• outside(other)

This method represents the selector of primary shapes which are entirely outside shapes from the other layer. Use this variant within DRC
expressions (also see Layer#drc).

"overlapping" - Selects shapes overlapping with other shapes

Usage:

• expression.overlapping(other) (optionally in conditions)

• overlapping(other) (optionally in conditions)

See covering for a description of the use cases for this function. When using "overlapping", shapes are selected when the overlap shapes
from the other layer.

When using this method with a count, the operation may not render the correct results if the other input is not merged. By nature of the
generic DRC feature, only those shapes that interact with the primary shape will be selected. If the other input is split into multiple polygons,
not all components may be captured and the computed interaction count may be incorrect.

"perimeter" - Selects the input polygon if the perimeter is meeting the condition

Usage:

• expression.perimeter (in condition)

This operation is used in conditions to select shapes based on their perimeter. It is applicable on polygon expressions. The result will be the
input polygons if the perimeter condition is met.

See Layer#drc for more details about comparison specs.

For more details visit
https://www.klayout.org

Page 262 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.1. DRC Reference: DRC expressions

The following example will select all polygons with a perimeter less than 10 micrometers:

out = in.drc(perimeter < 10.0)
out = in.drc(primary.perimeter < 10.0) # equivalent

The perimeter method is available as a plain function or as a method on DRC expressions. The plain function is equivalent to
"primary.perimeter".

"perimeter_sum" - Selects the input polygons if the sum of all perimeters meets the condition

Usage:

• expression.perimeter_sum (in condition)

Returns the input polygons if the sum of their perimeters meets the specified condition. This condition is evaluated on the total of all
shapes generated in one step of the "drc" loop. As there is a single primary in each loop iteration, "primary.perimeter_sum" is equivalent to
"primary.perimeter".

See Layer#drc for more details about comparison specs.

"polygons" - Converts the input shapes into polygons

Usage:

• expression.polygons([enlargement])

Generates polygons from the input shapes. Polygons stay polygons. Edges and edge pairs are converted to polygons. For this, the
enlargement parameter will specify the edge thickness or augmentation applied to edge pairs. With the default enlargement of zero edges
will not be converted to valid polygons and degenerated edge pairs will not become valid polygons as well.

Contrary most other operations, "polygons" does not have a plain function equivalent as this is reserved for the function generating a
polygon layer.

This method is useful for generating polygons from DRC violation markers as shown in the following example:

out = in.drc((width < 0.5.um).polygons)

"rectangles" - Selects all polygons which are rectangles

Usage:

• expression.rectangles

This operation can be used as a plain function in which case it acts on primary shapes or can be used as method on another DRC
expression. The following example selects all rectangles:

out = in.drc(rectangles)
out = in.drc(primary.rectangles) # equivalent

"rectilinear" - Selects all polygons which are rectilinear

Usage:

For more details visit
https://www.klayout.org

Page 263 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.1. DRC Reference: DRC expressions

• expression.rectilinear

Rectilinear polygons only have vertical and horizontal edges. Such polygons are also called manhattan polygons.

This operation can be used as a plain function in which case it acts on primary shapes or can be used as method on another DRC
expression. The following example selects all manhattan polygons:

out = in.drc(rectilinear)
out = in.drc(primary.rectilinear) # equivalent

"relative_height" - Selects the input polygon according to the height vs. width of the bounding
box

Usage:

• expression.relative_height (in condition)

This operation is used in conditions to select shapes based on the ratio of bounding box height vs. width. The taller the shape, the larger
the value. Wide polygons have a value below 1. A square has a relative height of 1.

This filter is applicable on polygon expressions. The result will be the input polygon if the condition is met.

Don't use this method if you can use bbox_aspect_ratio, because the latter is isotropic and can be used hierarchically without generating
rotation variants.

See Layer#drc for more details about comparison specs.

The following example will select all polygons whose relative height is larger than 3:

out = in.drc(relative_height > 3)
out = in.drc(primary.relative_height > 3) # equivalent

The "relative_height" method is available as a plain function or as a method on DRC expressions. The plain function is equivalent to
"primary.bbox_aspect_ratio".

"rounded_corners" - Applies corner rounding

Usage:

• expression.rounded_corners(inner, outer, n)

This operation acts on polygons and applies corner rounding to the given inner and outer corner radius and the number of points n per full
circle. See Layer#rounded_corners for more details.

The "rounded_corners" method is available as a plain function or as a method on DRC expressions. The plain function is equivalent to
"primary.rounded_corners".

"second_edges" - Returns the second edges of edge pairs

Usage:

• expression.second_edges

This method acts on edge pair expressions and returns the second edges of the edge pairs delivered by the expression.

Some checks deliver symmetric edge pairs (e.g. space, width, etc.) for which the edges are commutable. "second_edges" will not deliver
edges for such edge pairs. Instead, "first_edges" will deliver both.

For more details visit
https://www.klayout.org

Page 264 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.1. DRC Reference: DRC expressions

"sized" - Returns the sized version of the input

Usage:

• expression.sized(d [, mode])

• expression.sized(dx, dy [, mode]))

This method provides the same functionality as Layer#sized and takes the same arguments. It acts on polygon expressions.

The "sized" method is available as a plain function or as a method on DRC expressions. The plain function is equivalent to "primary.sized".

"smoothed" - Applies smoothing

Usage:

• expression.smoothed(d [, keep_hv])

This operation acts on polygons and applies polygon smoothing with the tolerance d. 'keep_hv' indicates whether horizontal and vertical
edges are maintained. Default is 'no' which means such edges may be distorted. See Layer#smoothed for more details.

The "smoothed" method is available as a plain function or as a method on DRC expressions. The plain function is equivalent to
"primary.smoothed".

"squares" - Selects all polygons which are squares

Usage:

• expression.squares

This operation can be used as a plain function in which case it acts on primary shapes or can be used as method on another DRC
expression. The following example selects all squares:

out = in.drc(squares)
out = in.drc(primary.squares) # equivalent

"start_segments" - Returns the part at the beginning of each edge of the input

Usage:

• expression.start_segments(length)

• expression.start_segments(length, fraction)

This method acts on edge expressions and delivers a specific part of each edge. See layer#start_segments for details about this
functionality.

"with_holes" - Selects all input polygons with the specified number of holes

Usage:

• expression.with_holes (in condition)

This operation can be used as a plain function in which case it acts on primary shapes or can be used as method on another DRC
expression. The following example selects all polygons with more than 2 holes:

For more details visit
https://www.klayout.org

Page 265 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.1. DRC Reference: DRC expressions

out = in.drc(with_holes > 2)
out = in.drc(primary.with_holes > 2) # equivalent

"|" - Boolean OR between the results of two expressions

Usage:

• expression | expression

The | operator will compute the boolean OR between the results of two expressions. '+' is basically a synonym. Both expressions must
render the same type.

For more details visit
https://www.klayout.org

Page 266 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

2.20.2. DRC Reference: Layer Object

"&" - Boolean AND operation

Usage:

• self & other

The method computes a boolean AND between self and other.

This method is available for polygon and edge layers. An alias is "and". See there for a description of the function.

"+" - Join layers

Usage:

• self + other

The method includes the edges or polygons from the other layer into this layer. The "+" operator is an alias for the join method.

This method is available for polygon, edge and edge pair layers. An alias is "join". See there for a description of the function.

"-" - Boolean NOT operation

Usage:

• self - other

The method computes a boolean NOT between self and other.

This method is available for polygon and edge layers. An alias is "not". See there for a description of the function.

"^" - Boolean XOR operation

Usage:

• self ^ other

The method computes a boolean XOR between self and other.

This method is available for polygon and edge layers. An alias is "xor". See there for a description of the function.

"and" - Boolean AND operation

Usage:

• layer.and(other)

The method computes a boolean AND between self and other. It is an alias for the "&" operator.

This method is available for polygon and edge layers. If the first operand is an edge layer and the second is a polygon layer, the result will
be the edges of the first operand which are inside or on the borders of the polygons of the second operand.

The following images show the effect of the "and" method on polygons and edges (input1: red, input2: blue):

For more details visit
https://www.klayout.org

Page 267 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

The AND operation can be applied between a text and a polygon layer. In this case, the texts inside or at the border of the polygons will be
written to the output (labels: red, input2: blue):

For more details visit
https://www.klayout.org

Page 268 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"andnot" - Computes Boolean AND and NOT results at the same time

Usage:

• layer.andnot(other)

This method returns a two-element array containing one layer for the AND result and one for the NOT result.

This method is available for polygon layers.

It can be used to initialize two variables with the AND and NOT results:

(and_result, not_result) = l1.andnot(l2)

As the AND and NOT results are computed in the same sweep, calling this method is faster than calling AND and NOT separately.

"area" - Returns the total area of the polygons in the region

Usage:

• layer.area

For more details visit
https://www.klayout.org

Page 269 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

This method requires a polygon layer. It returns the total area of all polygons in square micron. Merged semantics applies, i.e. before
computing the area, the polygons are merged unless raw mode is chosen (see raw). Hence, in clean mode, overlapping polygons are not
counted twice.

The returned value gives the area in square micrometer units.

"bbox" - Returns the overall bounding box of the layer

Usage:

• layer.bbox

The return value is a DBox object giving the bounding box in micrometer units.

"centers" - Returns the center parts of the edges

Usage:

• layer.centers(length)

• layer.centers(length, fraction)

Similar to start_segments and end_segments, this method will return partial edges for each given edge in the input. For the description of
the parameters see start_segments or end_segments.

The following images show the effect of the method:

For more details visit
https://www.klayout.org

Page 270 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"clean" - Marks a layer as clean

Usage:

• layer.clean

A layer marked as clean will provide "merged" semantics, i.e. overlapping or touching polygons are considered as single polygons. Inner
edges are removed and collinear edges are connected. Clean state is the default.

See raw for some remarks about how this state is propagated.

"collect" - Transforms a layer

Usage:

• layer.collect { |object| ... }

This method evaluates the block for each object in the layer and returns a new layer with the objects returned from the block. It is available
for edge, polygon and edge pair layers. The corresponding objects are DPolygon, DEdge or DEdgePair.

If the block evaluates to nil, no object is added to the output layer. If it returns an array, each of the objects in the array is added. The
returned layer is of the original type and will only accept objects of the respective type. Hence, for polygon layers, DPolygon objects need
to be returned. For edge layers those need to be DEdge and for edge pair layers, they need to be DEdgePair objects. For convenience,
Polygon, Edge and EdgePair objects are accepted too and are scaled by the database unit to render micrometer-unit objects. Region,
Edges and EdgePair objects are accepted as well and the corresponding content of that collections is inserted into the output layer.

Other versions are available that allow translation of objects into other types (collect_to_polygons, collect_to_edges and
collect_to_edge_pairs).

Because this method executes inside the interpreter, it's inherently slow. Tiling does not apply to this method.

Here is a slow equivalent of the rotated method

Rotates by 45 degree
t = DCplxTrans(1.0, 45.0, false, DVector::new)
new_layer = layer.collect { |polygon| polygon.transformed(t) }

"collect_to_edge_pairs" - Transforms a layer into edge pair objects

Usage:

• layer.collect_to_edge_pairs { |object| ... }

This method is similar to collect, but creates an edge pair layer. It expects the block to deliver EdgePair, DEdgePair or EdgePairs objects.

"collect_to_edges" - Transforms a layer into edge objects

Usage:

• layer.collect_to_edges { |object| ... }

This method is similar to collect, but creates an edge layer. It expects the block to deliver objects that can be converted into edges. If
polygon-like objects are returned, their contours will be turned into edge sequences.

"collect_to_region" - Transforms a layer into polygon objects

Usage:

For more details visit
https://www.klayout.org

Page 271 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

• layer.collect_to_region { |object| ... }

This method is similar to collect, but creates a polygon layer. It expects the block to deliver objects that can be converted into polygons.
Such objects are of class DPolygon, DBox, DPath, Polygon, Path, Box and Region.

"corners" - Selects corners of polygons

Usage:

• layer.corners([options])

• layer.corners(angle [, options])

• layer.corners(amin .. amax [, options])

This method produces markers on the corners of the polygons. An angle criterion can be given which selects corners based on the angle of
the connecting edges. Positive angles indicate a left turn while negative angles indicate a right turn. Since polygons are oriented clockwise,
positive angles indicate concave corners while negative ones indicate convex corners.

The markers generated can be point-like edges or small 2x2 DBU boxes. The latter is the default.

The options available are:

• as_boxes : with this option, small boxes will be produced as markers

• as_dots : with this option, point-like edges will be produced instead of small boxes

• as_edge_pairs : with this option, an edge pair is produced for each corner selected. The first edge is the incoming edge to the
corner, the second edge the outgoing edge.

The following images show the effect of this method:

For more details visit
https://www.klayout.org

Page 272 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"count" - Returns the number of objects on the layer

Usage:

• layer.count

The count is the number of raw objects, not merged regions or edges. This is the flat count - the number of polygons, edges or edge pairs
seen from the top cell. "count" can be computationally expensive for original layers with clip regions or cell tree filters.

See hier_count for a hierarchical (each cell counts once) count.

"covering" - Selects shapes or regions of self which completely cover (enclose) one or more
shapes from the other region

Usage:

• layer.covering(other)

• layer.covering(other, min_count)

• layer.covering(other, min_count, max_count)

• layer.covering(other, min_count .. max_count)

For more details visit
https://www.klayout.org

Page 273 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

This method selects all shapes or regions from self which completly cover shapes from the other region. Unless self is in raw mode (see
raw), coherent regions are selected from self, otherwise individual shapes are selected. It returns a new layer containing the selected
shapes. A version which modifies self is select_covering.

This method is available for polygons only.

The following image shows the effect of the "covering" method:

A range of counts can be specified. If so, the shape from the primary layer is only selected when covering a given number of shapes from
the other layer. For the interpretation of the count see interacting.

The "covering" attribute is sometimes called "enclosing", but this name is used for the respective DRC function (see enclosing).

"data" - Gets the low-level data object

Usage:

• layer.data

This method returns a Region, Edges or EdgePairs object representing the underlying RBA object for the data. Access to these objects is
provided to support low-level iteration and manipulation of the layer's data.

"drc" - Provides a generic DRC function for use with DRC expressions

Usage:

• layer.drc(expression)

For more details visit
https://www.klayout.org

Page 274 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

This method implements the universal DRC which offers enhanced abilities, improved performance in some applications and better
readability.

The key concept for this method are DRC expressions. DRC expressions are formed by using predefined keywords like "width", operators
like "&" and methods to build an abstract definition of the operations to perform within the DRC.

When the DRC function is executed, it will basically visit all shapes from the input layer (the layer, the "drc" method is called on)). While it
does, it collects the neighbor shapes from all involved other inputs and runs the requested operations on each cluster. Currently, "drc" is
only available for polygon layers.

This way, the nature of the "drc" operation is that of the loop over all (merged) input polygons. Within the operation executed on each
shape, it's possible to make decisions such as "if the shape has an area larger than something, apply this operation" or similar. This often
can be achieved with conventional DRC functions too, but involves potentially complex and heavy operations such as booleans, interact
etc. For this reason, the "drc" function may provide a better performance.

In addition, within the loop a single shape from the input layer is presented to the execution engine which runs the operations. This allows
using operations such as "size" without having to consider neighbor polygons growing into the area of the initial shape. In this sense,
the "drc" function sees the layer as individual polygons rather than a global "sea of polygons". This enables new applications which are
otherwise difficult to implement.

Primaries and secondaries

An important concept in "drc" expressions is the "primary". The primary represents a single shape from the input layer. "Secondaries" are
shapes from other inputs. Primaries guide the operation - secondaries without primaries are not seen. The "drc" operation will look for
secondaries within a certain distance which is determined from the operations from the expression to execute. The secondaries collected
in this step will not be merged, so the secondary polygons may be partial. This is important when using measurement operations like "area"
on secondary polygons.

Checks

Here is an example for a generic DRC operation which performs a width check for less than 0.5.um on the primary shapes. It uses the
"width" operator:

out = in.drc(width < 0.5.um)

Other single or double-bounded conditions are available too, for example:

out = in.drc(width <= 0.5.um)
out = in.drc(width > 0.5.um)
out = in.drc(width == 0.5.um)
out = in.drc(width != 0.5.um)
out = in.drc(0.2.um < width < 0.5.um)

To specify the second input for a two-layer check, add it to the check function. This example shows how to use a two-layer separation
check ("separation"):

l1 = input(1, 0)
l2 = input(2, 0)
out = l1.drc(separation(l2) < 0.5.um)

The second input of this check function can be a computed expression. In this case the local loop will first evaluate the expression for the
second input and then use the result as second input in the check. Note that this computation is performed locally and separately for each
primary and its context.

Options for the checks are also specified inside the brackets. For example, to select projection metrics ("projection") for the "width" check
use:

For more details visit
https://www.klayout.org

Page 275 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

out = in.drc(width(projection) < 0.5.um)

Edges and edge pairs

Although the "drc" function operates on polygon layers, internally it is able to handle edge and edge pair types too. Some operations
generate edge pairs, some other generate edges. As results from one operation can be processed further in the DRC expressions,
methods are available to filter, process and convert these types.

For example, all checks produce edge pairs which can be converted into polygons using the "polygons" method:

out = in.drc((width(projection) < 0.5.um).polygons)

Note a subtle detail: when putting the "polygons" method inside the "drc" brackets, it is executed locally on every visited primary polygon.
The result in this case is identical to the global conversion:

same, but with "global" conversion:
out = in.drc(width(projection) < 0.5.um).polygons

But having the check polygons inside the loop opens new opportunities and is more efficient in general. In the previous example, the local
conversion will keep a few edge pairs after having converted them to polygons. In the global case, all edge pairs are collected first and then
converted. If there are many edge pairs, this requires more memory and a larger computing overhead for managing the bigger number of
shapes.

For the conversion of edges, edge pairs and polygons into other types, these methods are provided:

• "DRC#polygons": converts edge pairs to polygons

• "DRC#extended", "DRC#extended_in", "DRC#extended_out": converts edges to polygons

• "DRC#first_edges", DRC#second_edges": extracts edges from edge pairs

• "DRC#edges": decomposes edge pairs and polygons into edges

• "DRC#corners": can extract corners from polygons

The following example decomposes the primary polygons into edges:

out = in.drc(primary.edges)

(for backward compatibility you cannot abbreviate "primary.edges" simply as "edges" like other functions).

The previous example isn't quite exciting as it is equivalent to

Same as above
out = in.edges

But it gets more interesting, as within the loop, "edges" delivers the edge set for each individual polygon. It's possible to work with this
distinct set, so for example this will give you the edges of polygons with more than four corners:

out = in.drc(primary.edges.count > 4)

For more details visit
https://www.klayout.org

Page 276 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

Explanation: "count" is a "quantifier" which takes any kind of set (edges, edge pairs, polygons) and returns the set if the number of
inhabitants meets the given condition. Otherwise the set is skipped. So it will look at the edges and if there are more than four (per primary
shape), it will forward this set.

The same result can be achieved with classic DRC with "interact" and a figure count, but at a much higher computation cost.

Edge and edge/polygon operations

The "drc" framework supports the following edge and edge/polygon operations:

• Edge vs. edge and edge vs. polygon booleans

• Edge vs. polygon interactions ("DRC#interacting", "DRC#overlapping")

• Edge sampling ("DRC#start_segments", "DRC#centers", "DRC#end_segments")

Filters

Filter operators select input polygons or edges based on their properties. These filters are provided:

• "DRC#area": selects polygons based on their area

• "DRC#perimeter": selects polygons based on their perimeter

• "DRC#area_ratio": selects polygons based on their bounding box to polygon area ratio

• "DRC#bbox_aspect_ratio": selects polygons based on their bounding box aspect ratio

• "DRC#relative_height": selects polygons based on their relative height

• "DRC#bbox_min", "bbox_max", "bbox_width", "bbox_height": selects polygons based on their bounding box properties

• "DRC#length": selects edges based on their length

• "DRC#angle": selects edges based on their orientation

For example, to select polygons with an area larger than one square micrometer, use:

out = in.drc(area > 1.0)

For the condition, use the usual numerical bounds like:

out = in.drc(area == 1.0)
out = in.drc(area <= 1.0)
out = in.drc(0.2 < area < 1.0)

The result of the area operation is the input polygon if the area condition is met.

In the same fashion, "perimeter" applies to the perimeter of the polygon. "bbox_min" etc. will evaluate a particular dimensions of the
polygon's bounding box and use the respective dimension for filtering the polygon.

Note that it's basically possible to use the polygon filters on any input - computed and secondaries. In fact, plain "area" for example is a
shortcut for "primary.area" indicating that the area of primary shapes are supposed to be computed. However, any input other than the
primary is not necessarily complete or it may consist of multiple polygons. Hence the computed values may be too big or too small. It's
recommended therefore to use the measurement functions on primary polygons unless you know what you're doing.

Filter predicates

The "drc" feature also supports some predicates. "predicates" are boolean values indicating a certain condition. A predicate filter works in a
way that it only passes the polygons if the condition is met.

For more details visit
https://www.klayout.org

Page 277 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

The predicates available currently are:

• "rectangles": Filters rectangles

• "squares": Filters squares

• "rectilinear": Filters rectilinear ("Manhattan") polygons

For the same reason as explained above, it's recommended to use these predicates standalone, so they act on primary shapes. It's
possible to use the predicates on computed shapes or secondaries, but that may not render the desired results.

Logical NOT operator

The "!" operator will evaluate the expression behind it and return the current primary shape if the input is empty and return an empty
polygon set if not. Hence the following filter will deliver all polygons which are not rectangles:

out = in.drc(! rectangles)

Logical combination operators

The logical "if_any" or "if_all" functions allow connecting multiple conditions and evaluate to "true" (means: a non-empty shape set) if either
one input is a non-empty shape set ("if_any") or if all inputs are non-empty ("if_all").

For example, this will select all polygons which are rectangles and whose area is larger than 20 square micrometers:

out = in.drc(if_all(rectangles, area > 20.0))

"if_all" delivers the primary shape if all of the input expressions render a non-empty result.

In contrast to this, the "if_any" operation will deliver the primary shape if one of the input expressions renders a non-empty result.

The "switch" function allows selecting one input based on the results of an expression. In the two-input form it's equivalent to "if". The first
expression is the condition. If it evaluates to a non-empty shape set, the result of the second expression is taken. Otherwise, the result is
empty.

Hence the following code delivers all rectangles sized by 100 nm. All other shapes are skipped:

out = in.drc(switch(rectangles, primary.sized(100.nm)))

A third expression will be considered the "else" branch: the result of this expression will be taken if the first one is not taken. So this
example will size all rectangles and leave other shapes untouched:

out = in.drc(switch(rectangles, primary.sized(100.nm), primary))

If more expressions are given, they are considered as a sequence of condition/result chain (c1, e1, c2, e2, ...) in the sense of "if(c1)
return(e1) else if(c2) return(e2) ...". So the e1 is taken if c1 is met, e2 is taken when c1 is not met, but c2 is and so forth. If there is an odd
number of expressions, the last one will be the default expression which is taken if none of the conditions is met.

Polygon manipulations

The "drc" operations feature polygon manipulations where the input is either the primary, secondaries or derived shapes. Manipulations
include sizing ("sized"), corner rounding ("rounded_corners"), smoothing ("smoothed") and boolean operations.

This example computes a boolean AND between two layers before selecting the result polygons with an area larger than 1 square
micrometer. Note that "primary" is a placeholder for the primary shape:

For more details visit
https://www.klayout.org

Page 278 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

l1 = input(1, 0)
l2 = input(2, 0)
out = l1.drc((primary & l2).area > 1.0)

This example demonstrates how the "drc" operation can improve performance: as the boolean operation is computed locally and the result
is discarded when no longer required, less shapes need to be stored hence reducing the memory overhead and CPU time required to
manage these shapes.

Note that the precise form of the example above is

out = l1.drc((primary & secondary(l2)).area > 1.0)

The "secondary" operator indicates that "l2" is to be used as secondary input to the "drc" function. Only in this form, the operators of the
boolean AND can be reversed:

out = l1.drc((secondary(l2) & primary).area > 1.0)

Quantifiers

Some filters operate on properties of the full, local, per-primary shape set. While the loop is executed, the DRC expressions will collect
shapes, either from the primary, it's neighborhood (secondaries) or from deriving shape sets.

Obviously the primary is a simple one: it consists of a single shape, because this is how the loop operates. Derived shape sets however
can be more complex. "Quantifiers" allow assessing properties of the complete, per-primary shape set. A simple one is "DRC#count" which
checks if the number of shapes within a shape set is within a given range.

Obviously, "primary.count == 1" is always true. So using "count" primaries isn't much fun. So it's better to use it on derived sets. The
following condition will select all primary shapes which have more than 13 corners:

out = in.drc(if_any(primary.corners.count > 13))

Note an important detail here: the "if_any" function will make this statement render primary polygons, if the expression inside gives a non-
empty result. Without "if_any", the result would be the output of "count" which is the set of all corners where the corner count is larger than
13.

Expressions as objects

The expression inside the "drc" function is a Ruby object and can be stored in variables. If you need the same expression multiple times, it
can be more efficient to use the same Ruby object. In this example, the same expression is used two times. Hence it's computed two times:

out = l1.drc(((primary & l2).area == 1.0) + ((primary & l2).area == 2.0))

A more efficient version is:

overlap_area = (primary & l2).area
out = l1.drc((overlap_area == 1.0) + (overlap_area == 2.0))

Note that the first line prepares the operation, but does not execute the area computation or the boolean operation. But when the "drc"
function executes the loop over the primaries it will only compute the area once per primary as it is represented by the same Ruby object.

Outlook

For more details visit
https://www.klayout.org

Page 279 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

DRC expressions are quite rich and powerful. They provide a more intuitive way of writing DRC expressions, are more efficient and open
new opportunities. DRC development is likely to focus on this scheme in the future.

More formal details about the bits and pieces can be found in the "DRC" class documentation.

"dup" - Duplicates a layer

Usage:

• layer.dup

Duplicates the layer. This basically will create a copy and modifications of the original layer will not affect the duplicate. Please note that
just assigning the layer to another variable will not create a copy but rather a pointer to the original layer. Hence modifications will then be
visible on the original and derived layer. Using the dup method will avoid that.

However, dup will double the memory required to hold the data and performing the deep copy may be expensive in terms of CPU time.

"each" - Iterates over the objects from the layer

Usage:

• layer.each { |object| ... }

This method evaluates the block on each object of the layer. Depending on the layer type, these objects are of DPolygon, DEdge or
DEdgePair type.

Because this method executes inside the interpreter, it's inherently slow. Tiling does not apply to this method.

"edge_pairs?" - Returns true, if the layer is an edge pair collection

Usage:

• layer.edge_pairs?

"edges" - Decomposes the layer into single edges

Edge pair collections are decomposed into the individual edges that make up the edge pairs. Polygon layers are decomposed into the
edges making up the polygons. This method returns an edge layer but will not modify the layer it is called on.

Merged semantics applies, i.e. the result reflects merged polygons rather than individual ones unless raw mode is chosen.

"edges?" - Returns true, if the layer is an edge layer

Usage:

• layer.edges?

"enc" - An alias for "enclosing"

Usage:

• layer.enc(value [, options])

See enclosing for a description of that method

"enclosed" - An enclosing check (other_layer enclosing layer)

Usage:

For more details visit
https://www.klayout.org

Page 280 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

• layer.enclosed(other_layer, value [, options])

Note: "enclosed" is available as operators for the "universal DRC" function drc within the DRC framework. These variants have more
options and are more intuitive to use. See enclosed for more details.

This method checks whether layer is enclosed by (is inside of) other_layer by not less than the given distance value. Locations, where the
distance is less will be reported in form of edge pair error markers. Locations, where both edges coincide will be reported as errors as well.
Formally such locations form an enclosure with a distance of 0. Locations, where other_layer is inside layer will not be reported as errors.
Such regions can be detected by inside or a boolean "not" operation.

The options are the same as for separation.

This method is available for edge and polygon layers.

As for the other DRC methods, merged semantics applies.

Distance values can be given as floating-point values (in micron) or integer values (in database units). To explicitly specify the unit, use the
unit denominators.

The following images show the effect of two enclosed checks (red: input1, blue: input2):

"enclosing" - An enclosing check (layer enclosing other_layer)

Usage:

• layer.enclosing(other_layer, value [, options])

• layer.enc(other_layer, value [, options])

For more details visit
https://www.klayout.org

Page 281 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

Note: "enclosing" and "enc" are available as operators for the "universal DRC" function drc within the DRC framework. These variants have
more options and are more intuitive to use. See enclosing for more details.

This method checks whether layer encloses (is bigger than) other_layer by not less than the given distance value. Locations, where the
distance is less will be reported in form of edge pair error markers. Locations, where both edges coincide will be reported as errors as well.
Formally such locations form an enclosure with a distance of 0. Locations, where other_layer extends outside layer will not be reported as
errors. Such regions can be detected by not_inside or a boolean "not" operation.

"enc" is the short form of this method.

The options are the same as for separation.

The enclosing method can be applied to both edge or polygon layers. On edge layers the orientation of the edges matters and only edges
looking into the same direction are checked.

As for the other DRC methods, merged semantics applies.

Distance values can be given as floating-point values (in micron) or integer values (in database units). To explicitly specify the unit, use the
unit denominators.

The following images show the effect of two enclosing checks (red: input1, blue: input2):

"end_segments" - Returns the part at the end of each edge

Usage:

• layer.end_segments(length)

• layer.end_segments(length, fraction)

For more details visit
https://www.klayout.org

Page 282 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

This method will return a partial edge for each edge in the input, located and the end of the original edge. The new edges will share the
end point with the original edges, but not necessarily their start point. This method applies to edge layers only. The direction of edges is
defined by the clockwise orientation of a polygon: the end point of the edges will be the terminal point of each edge when walking a polygon
in clockwise direction. Or in other words: when looking from start to the end point of an edge, the filled part of the polygon is to the right.

The length of the new edge can be given in two ways: as a fixed length, or a fraction, or both. In the latter case, the length of the resulting
edge will be either the fraction or the fixed length, whichever is larger. To specify a length only, omit the fraction argument or leave it at 0.
To specify a fraction only, pass 0 to the length argument and specify the fraction in the second parameter. A fraction of 0.5 will result in
edges which cover the end half of the edge.

The following images show the effect of the method:

"extended" - Returns polygons describing an area along the edges of the input

Usage:

• layer.extended([:begin => b,] [:end => e,] [:out => o,] [:in => i], [:joined => true])

• layer.extended(b, e, o, i)

• layer.extended(b, e, o, i, joined)

This method is available for edge layers only. It will create a polygon for each edge tracing the edge with certain offsets to the edge. "o" is
the offset applied to the outer side of the edge, "i" is the offset applied to the inner side of the edge. "b" is the offset applied at the beginning
and "e" is the offset applied at the end.

When looking from start to end point, the "inside" side is to the right, while the "outside" side is to the left.

For more details visit
https://www.klayout.org

Page 283 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"joined" is a flag, which, if present, will make connected edges behave as a continuous line. Start and end offsets are applied to the first
and last unconnected point respectively. Please note that in order to specify joined mode, you'll need to specify "joined" as a keyword in the
third form of the method.

The following images show the effects of some parameters:

For more details visit
https://www.klayout.org

Page 284 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"extended_in" - Returns polygons describing an area along the edges of the input

Usage:

• layer.extended_in(d)

This method applies to edge layers only. Polygons are generated for each edge describing the edge drawn with a certain width extending
into the "inside" (the right side when looking from start to end). This method is basically equivalent to the extended method: "extended(0, 0,
0, dist)". A version extending to the outside is extended_out.

"extended_out" - Returns polygons describing an area along the edges of the input

Usage:

• layer.extended_out(d)

This method applies to edge layers only. Polygons are generated for each edge describing the edge drawn with a certain width extending
into the "outside" (the left side when looking from start to end). This method is basically equivalent to the extended method: "extended(0, 0,
dist, 0)". A version extending to the inside is extended_in.

"extent_refs" - Returns partial references to the boundings boxes of the polygons

Usage:

• layer.extent_refs(fx, fy [, options])

For more details visit
https://www.klayout.org

Page 285 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

• layer.extent_refs(fx1, fy1, fx2, fx2 [, options])

• layer.extent_refs(ref_spec [, options])

This method produces parts of the bounding box of the polygons. It can select either edges, certain points or partial boxes. It can be used
the following ways:

• With a formal specification : This is an identifier like ":center" or ":left" to indicate which part will be produced.

• With two floating-point arguments : These arguments specify a point relative to the bounding box. The first argument is a relative
x coordinate where 0.0 means "left side of the bounding box" and 1.0 is the right side. The second argument is a relative y coordinate
where 0.0 means "bottom" and 1.0 means "top". The results will be small (2x2 DBU) boxes or point-like edges for edge output

• With four floating-point arguments : These arguments specify a box in relative coordinates: a pair of x/y relative coordinate for the
first point and another pair for the second point. The results will be boxes or a tilted edge in case of edge output. If the range specifies
a finite-area box (height and width are not zero), no adjustment of the boxes will happen for polygon output - i.e. the additional
enlargement by 1 DBU which is applied for zero-area boxes does not happen.

The formal specifiers are for points:

• :center or :c : the center point

• :bottom_center or :bc : the bottom center point

• :bottom_left or :bl : the bottom left point

• :bottom_right or :br : the bottom right point

• :left or :l : the left point

• :right or :r : the right point

• :top_center or :tc : the top center point

• :top_left or :tl : the top left point

• :top_right or :tr : the top right point

The formal specifiers for lines are:

• :bottom or :b : the bottom line

• :top or :t : the top line

• :left or :l : the left line

• :right or :r : the right line

Dots are represented by small (2x2 DBU) boxes or point-like edges with edge output. Lines are represented by narrow or flat (2 DBU)
boxes or edges for edge output. Edges will follow the orientation convention for the corresponding edges - i.e. "inside" of the bounding box
is on the right side of the edge.

The following additional option controls the output format:

• as_boxes : with this option, small boxes will be produced as markers

• as_dots or as_edges : with this option, point-like edges will be produced for dots and edges will be produced for line-like selections

The following table shows a few applications:

For more details visit
https://www.klayout.org

Page 286 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

For more details visit
https://www.klayout.org

Page 287 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

For more details visit
https://www.klayout.org

Page 288 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

For more details visit
https://www.klayout.org

Page 289 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"extents" - Returns the bounding box of each input object

Usage:

• layer.extents([enlargement])

Applies to edge layers, polygon layers on edge pair collections. Returns a polygon layer consisting of boxes for each input object. The
boxes enclose the original object.

Merged semantics applies, so the box encloses the merged polygons or edges unless raw mode is chosen (see raw).

The enlargement parameter specifies an optional enlargement which will make zero width/zero height object render valid polygons (i.e.
horizontal/vertical edges).

The following images show the effect of the extents method:

For more details visit
https://www.klayout.org

Page 290 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"fill" - Fills the region with regular pattern of shapes

Usage:

• layer.fill([options])

This method will attempt to fill the polygons of the layer with a regular pattern of shapes.

The fill function currently is not available in deep mode.

Options are:

• hstep(x) or hstep(x, y) : specifies the horizontal step pitch of the pattern. x must be a positive value. A vertical displacement
component can be specified too, which results in a skewed pattern.

• vstep(y) or vstep(x, y) : specifies the vertical step pitch of the pattern. y must be a positive value. A horizontal displacement
component can be specified too, which results in a skewed pattern.

• origin(x, y) : specifies a fixed point to align the pattern with. This point specifies the location of the reference point for one pattern
cell.

• auto_origin : lets the algorithm choose the origin. This may result is a slightly better fill coverage as the algorithm is able to
determine a pattern origin per island to fill.

• multi_origin : lets the algorithm choose the origin and repeats the fill with different origins until no further fill cell can be fitted.

• fill_pattern(..) : specifies the fill pattern.

For more details visit
https://www.klayout.org

Page 291 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"fill_pattern" generates a fill pattern object. This object is used for configuring the fill pattern content. Fill pattern need to be named. The
name will be used for generating the fill cell.

To provide a fill pattern, create a fill pattern object and add shapes to it. The following example creates a fill pattern named "FILL_CELL"
and adds a 1x1 micron box on layer 1/0:

p = fill_pattern("FILL_CELL")
p.shape(1, 0, box(0.0, 0.0, 1.0, 1.0))

See box for details about the box specification. You can also add paths or polygons with path or polygon.

A more compact way of writing this is:

p = fill_pattern("FILL_CELL").shape(1, 0, box(0.0, 0.0, 1.0, 1.0))

The fill pattern can be given a reference point which is used for placing the pattern. The reference point is the one which is aligned with the
pattern origin. The following code will assign (-0.5, -0.5) as the reference point for the 1x1 micron rectangle. Hence the reference point is a
little below and left of the rectangle which in turn shifts the rectangle fill pattern to the right and up:

p = fill_pattern("FILL_CELL")
p.shape(1, 0, box(0.0, 0.0, 1.0, 1.0))
p.origin(-0.5, -0.5)

Without a reference point given, the lower left corner of the fill pattern's bounding box will be used as the reference point. The reference
point will also defined the footprint of the fill cell - more precisely the lower left corner. When step vectors are given, the fill cell's footprint is
taken to be a rectangle having the horizontal and vertical step pitch for width and height respectively. This way the fill cells will be arrange
seamlessly. However, the cell's dimensions can be changed, so that the fill cells can overlap or there is a space between the cells. To
change the dimensions use the "dim" method.

The following example specifies a fill cell with an active area of -0.5 .. 1.5 in both directions (2 micron width and height). With these
dimensions the fill cell's footprint is independent of the step pitch:

p = fill_pattern("FILL_CELL")
p.shape(1, 0, box(0.0, 0.0, 1.0, 1.0))
p.origin(-0.5, -0.5)
p.dim(2.0, 2.0)

With these ingredients will can use the fill function. The first example fills the polygons of "to_fill" with an orthogonal pattern of 1x1 micron
rectangles with a pitch of 2 microns:

pattern = fill_pattern("FILL_CELL").shape(1, 0, box(0.0, 0.0, 1.0, 1.0)).origin(-0.5, -0.5)
to_fill.fill(pattern, hstep(2.0), vstep(2.0))

This second example will create a skewed fill pattern in auto-origin mode:

pattern = fill_pattern("FILL_CELL").shape(1, 0, box(0.0, 0.0, 1.0, 1.0)).origin(-0.5, -0.5)
to_fill.fill(pattern, hstep(2.0, 1.0), vstep(-1.0, 2.0), auto_origin)

The fill function can only work with a target layout for output. It will not work for report output.

The layers generated by the fill cells is only available for input later in the script if the output layout is identical to the input layouts. If you
need the area missed by the fill function, try fill_with_left.

For more details visit
https://www.klayout.org

Page 292 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"fill_with_left" - Fills the region with regular pattern of shapes

Usage:

• layer.fill_with_left([options])

This method has the same call syntax and functionality than fill. Other than this method it will return the area not covered by fill cells as a
DRC layer.

"first_edges" - Returns the first edges of an edge pair collection

Usage:

• layer.first_edges

Applies to edge pair collections only. Returns the first edges of the edge pairs in the collection.

Some checks deliver symmetric edge pairs (e.g. space, width, etc.) for which the edges are commutable. "first_edges" will deliver both
edges for such edge pairs.

"flatten" - Flattens the layer

Usage:

• layer.flatten

If the layer already is a flat one, this method does nothing. If the layer is a hierarchical layer (an original layer or a derived layer in deep
mode), this method will convert it to a flat collection of texts, polygons, edges or edge pairs.

"forget" - Cleans up memory for this layer

Usage:

• forget

KLayout's DRC engine is imperative. This means, every command is executed immediately rather than being compiled and executed
later. The advantage of this approach is that it allows decisions to be taken depending on the content of a layer and to code functions that
operate directly on the layer's content.

However, one drawback is that the engine cannot decide when a layer is no longer required - it may still be used later in the script. So a
layer's data is not cleaned up automatically.

In order to save memory for DRC scripts intended for bigger layouts, the DRC script should clean up layers as soon as they are no longer
required. The "forget" method will free the memory used for the layer's information.

The recommended approach is:

l = ... # compute some layer
...
once you're done with l:
l.forget
l = nil

By setting the layer to nil, it is ensured that it can no longer be accessed.

"hier_count" - Returns the hierarchical number of objects on the layer

Usage:

For more details visit
https://www.klayout.org

Page 293 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

• layer.hier_count

The hier_count is the number of raw objects, not merged regions or edges, with each cell counting once. A high count to hier_count (flat to
hierarchical) ratio is an indication of a good hierarchical compression. "hier_count" applies only to original layers without clip regions or cell
filters and to layers in deep mode. Otherwise, hier_count gives the same value than count.

"holes" - Selects all polygon holes from the input

Usage:

• layer.holes

This method is available for polygon layers. It will create polygons from all holes inside polygons of the input. Although it is possible,
running this method on raw polygon layers will usually not render the expected result, since raw layers do not contain polygons with holes
in most cases.

The following image shows the effects of the holes method:

"hulls" - Selects all polygon hulls from the input

Usage:

• layer.hulls

For more details visit
https://www.klayout.org

Page 294 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

This method is available for polygon layers. It will remove all holes from the input and render the hull polygons only. Although it is possible,
running this method on raw polygon layers will usually not render the expected result, since raw layers do not contain polygons with holes
in most cases.

The following image shows the effects of the hulls method:

"in" - Selects shapes or regions of self which are contained in the other layer

Usage:

• layer.in(other)

This method selects all shapes or regions from self which are contained the other region exactly. It will use individual shapes from self or
other if the respective region is in raw mode. If not, it will use coherent regions or combined edges from self or other.

It will return a new layer containing the selected shapes. A method which selects all shapes not contained in the other layer is not_in.

This method is available for polygon and edge layers.

The following image shows the effect of the "in" method (input1: red, input2: blue):

For more details visit
https://www.klayout.org

Page 295 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"insert" - Inserts one or many objects into the layer

Usage:

• insert(object, object ...)

Objects that can be inserted are Edge objects (into edge layers) or DPolygon, DSimplePolygon, Path, DBox (into polygon layers).
Convenience methods exist to create such objects (edge, polygon, box and path). However, RBA constructors can used as well.

The insert method is useful in combination with the polygon_layer or edge_layer functions:

el = edge_layer
el.insert(edge(0.0, 0.0, 100.0, 0.0)

pl = polygon_layer
pl.insert(box(0.0, 0.0, 100.0, 200.0)

"inside" - Selects shapes or regions of self which are inside the other region

Usage:

• layer.inside(other)

For more details visit
https://www.klayout.org

Page 296 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

This method selects all shapes or regions from self which are inside the other region. completely (completely covered by polygons from the
other region). If self is in raw mode, this method will select individual shapes. Otherwise, this method will select coherent regions and no
part of these regions may be outside the other region. It returns a new layer containing the selected shapes. A version which modifies self
is select_inside.

This method is available for polygon layers.

The following image shows the effect of the "inside" method (input1: red, input2: blue):

"inside_part" - Returns the parts of the edges inside the given region

Usage:

• layer.inside_part(region)

This method returns the parts of the edges which are inside the given region. This is similar to the "&" operator, but this method does not
return edges that are exactly on the boundaries of the polygons of the region.

This method is available for edge layers. The argument must be a polygon layer.

For more details visit
https://www.klayout.org

Page 297 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"interacting" - Selects shapes or regions of self which touch or overlap shapes from the other
region

Usage:

• layer.interacting(other)

• layer.interacting(other, min_count)

• layer.interacting(other, min_count, max_count)

• layer.interacting(other, min_count .. max_count)

This method selects all shapes or regions from self which touch or overlap shapes from the other region. Unless self is in raw mode (see
raw), coherent regions are selected from self, otherwise individual shapes are selected. It returns a new layer containing the selected
shapes. A version which modifies self is select_interacting.

This method is available for polygon, text and edge layers. Edges can be selected with respect to other edges or polygons. Texts can be
selected with respect to polygons. Polygons can be selected with respect to edges, texts and other polygons.

The following image shows the effect of the "interacting" method (input1: red, input2: blue):

For more details visit
https://www.klayout.org

Page 298 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

If a single count is given, shapes from self are selected only if they do interact at least with the given number of (different) shapes from the
other layer. If a min and max count is given, shapes from self are selected only if they interact with min_count or more, but a maximum of
max_count different shapes from the other layer. Two polygons overlapping or touching at two locations are counted as single interactions.

For more details visit
https://www.klayout.org

Page 299 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

For more details visit
https://www.klayout.org

Page 300 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"intersections" - Returns the intersection points of intersecting edge segments for two edge
collections

Usage:

• layer.intersections(edges)

This operation is similar to the "&" operator, but it does also report intersection points between non-colinear, but intersection edges. Such
points are reported as point-like, degenerated edge objects.

This method is available for edge layers. The argument must be an edge layer.

"is_box?" - Returns true, if the region contains a single box

Usage:

• layer.is_box?

The method returns true, if the region consists of a single box only. Merged semantics does not apply - if the region forms a box which is
composed of multiple pieces, this method will not return true.

"is_clean?" - Returns true, if the layer is clean state

Usage:

For more details visit
https://www.klayout.org

Page 301 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

• layer.is_clean?

See clean for a discussion of the clean state.

"is_deep?" - Returns true, if the layer is a deep (hierarchical) layer

Usage:

• layer.is_deep?

"is_empty?" - Returns true, if the layer is empty

Usage:

• layer.is_empty?

"is_merged?" - Returns true, if the polygons of the layer are merged

Usage:

• layer.is_merged?

This method will return true, if the polygons of this layer are merged, i.e. they don't overlap and form single continuous polygons. In clean
mode, this is ensured implicitly. In raw mode (see raw), merging can be achieved by using the merge method. is_merged? tells, whether
calling merge is necessary.

"is_raw?" - Returns true, if the layer is raw state

Usage:

• layer.is_raw?

See clean for a discussion of the raw state.

"iso" - An alias for "isolated"

Usage:

• layer.iso(value [, options])

See isolated for a description of that method

"isolated" - An inter-polygon isolation check

Usage:

• layer.isolated(value [, options])

• layer.iso(value [, options])

Note: "isolated" and "iso" are available as operators for the "universal DRC" function Layer#drc within the DRC framework. These variants
have more options and are more intuitive to use. See isolated for more details.

See space for a description of this method. "isolated" is the space check variant which checks different polygons only. In contrast to space,
the "isolated" method is available for polygon layers only, since only on such layers different polygons can be identified.

"iso" is the short form of this method.

For more details visit
https://www.klayout.org

Page 302 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

The following image shows the effect of the isolated check:

"join" - Joins the layer with another layer

Usage:

• layer.join(other)

The method includes the edges or polygons from the other layer into this layer. It is an alias for the "+" operator.

This method is available for polygon, edge and edge pair layers.

The following images show the effect of the "join" method on polygons and edges (input1: red, input2: blue):

For more details visit
https://www.klayout.org

Page 303 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"length" - Returns the total length of the edges in the edge layer

Usage:

• layer.length

This method requires an edge layer. It returns the total length of all edges in micron. Merged semantics applies, i.e. before computing the
length, the edges are merged unless raw mode is chosen (see raw). Hence in clean mode (see clean), overlapping edges are not counted
twice.

"merge" - Merges the layer (modifies the layer)

Usage:

• layer.merge([overlap_count])

Like merged, but modifies the input and returns a reference to the new layer.

"merged" - Returns the merged layer

Usage:

• layer.merged([overlap_count])

For more details visit
https://www.klayout.org

Page 304 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

Returns the merged input. Usually, merging is done implicitly using the clean state (which is default). However, in raw state, merging can
be enforced by using this method. In addition, this method allows specification of a minimum overlap count, i.e. only where at least the
given number of polygons overlap, output is produced. See sized for an application of that.

This method works both on edge or polygon layers. Edge merging forms single, continuous edges from coincident and connected individual
edges.

A version that modifies the input layer is merge.

The following images show the effect of various forms of the "merged" method:

For more details visit
https://www.klayout.org

Page 305 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"middle" - Returns the center points of the bounding boxes of the polygons

Usage:

• layer.middle([options])

This method produces markers on the centers of the polygon's bounding box centers. These markers can be point-like edges or small 2x2
DBU boxes. The latter is the default. A more generic function is extent_refs. "middle" is basically a synonym for "extent_refs(:center)".

The options available are:

• as_boxes : with this option, small boxes will be produced as markers

• as_dots : with this option, point-like edges will be produced instead of small boxes

The following image shows the effect of this method

For more details visit
https://www.klayout.org

Page 306 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"move" - Moves (shifts, translates) a layer (modifies the layer)

Usage:

• layer.move(dx, dy)

Moved the input by the given distance. The layer that this method is called upon is modified and the modified version is returned for further
processing.

Shift distances can be given as floating-point values (in micron) or integer values (in database units). To explicitly specify the unit, use the
unit denominators.

"moved" - Moves (shifts, translates) a layer

Usage:

• layer.moved(dx, dy)

Moves the input layer by the given distance (x, y) and returns the moved layer. The layer that this method is called upon is not modified.

Shift distances can be given as floating-point values (in micron) or integer values (in database units). To explicitly specify the unit, use the
unit denominators.

The following images shows the effect of the "moved" method:

For more details visit
https://www.klayout.org

Page 307 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"non_rectangles" - Selects all polygons from the input which are not rectangles

Usage:

• layer.non_rectangles

This method is available for polygon layers. By default "merged" semantics applies, i.e. all polygons are merged before non-rectangles are
selected (see clean and raw).

"non_rectilinear" - Selects all non-rectilinear polygons from the input

Usage:

• layer.non_rectilinear

This method is available for polygon layers. By default "merged" semantics applies, i.e. all polygons are merged before non-rectilinear
polygons are selected (see clean and raw).

"non_squares" - Selects all polygons from the input which are not squares

Usage:

• layer.non_rectangles

For more details visit
https://www.klayout.org

Page 308 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

This method is available for polygon layers. By default "merged" semantics applies, i.e. all polygons are merged before non-squares are
selected (see clean and raw).

"non_strict" - Marks a layer for non-strict handling

Usage:

• layer.non_strict

See strict for details about this option.

This feature has been introduced in version 0.23.2.

"not" - Boolean NOT operation

Usage:

• layer.not(other)

The method computes a boolean NOT between self and other. It is an alias for the "-" operator.

This method is available for polygon and edge layers. If the first operand is an edge layer and the second is an edge layer, the result will be
the edges of the first operand which are outside the polygons of the second operand.

The following images show the effect of the "not" method on polygons and edges (input1: red, input2: blue):

The NOT operation can be applied between a text and a polygon layer. In this case, the texts outside the polygons will be written to the
output (labels: red, input2: blue):

For more details visit
https://www.klayout.org

Page 309 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"not_covering" - Selects shapes or regions of self which do not cover (enclose) one or more
shapes from the other region

Usage:

• layer.not_covering(other)

• layer.not_covering(other, min_count)

• layer.not_covering(other, min_count, max_count)

• layer.not_covering(other, min_count .. max_count)

This method selects all shapes or regions from self which do not cover shapes from the other region. Unless self is in raw mode (see raw),
coherent regions are selected from self, otherwise individual shapes are selected. This method returns the inverse of covering and provides
the same options.

The following image shows the effect of the "not_covering" method:

For more details visit
https://www.klayout.org

Page 310 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

This method is available for polygons only. It returns a new layer containing the selected shapes. A version which modifies self is
select_not_covering.

"not_in" - Selects shapes or regions of self which are not contained in the other layer

Usage:

• layer.not_in(other)

This method selects all shapes or regions from self which are not contained the other region exactly. It will use individual shapes from self
or other if the respective region is in raw mode. If not, it will use coherent regions or combined edges from self or other.

It will return a new layer containing the selected shapes. A method which selects all shapes contained in the other layer is in.

This method is available for polygon and edge layers.

The following image shows the effect of the "not_in" method (input1: red, input2: blue):

For more details visit
https://www.klayout.org

Page 311 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"not_inside" - Selects shapes or regions of self which are not inside the other region

Usage:

• layer.not_inside(other)

This method selects all shapes or regions from self which are not inside the other region. completely (completely covered by polygons from
the other region). If self is in raw mode, this method will select individual shapes. Otherwise, this method will select coherent regions and no
part of these regions may be outside the other region. It returns a new layer containing the selected shapes. A version which modifies self
is select_not_inside.

This method is available for polygon layers.

The following image shows the effect of the "not_inside" method (input1: red, input2: blue):

For more details visit
https://www.klayout.org

Page 312 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"not_interacting" - Selects shapes or regions of self which do not touch or overlap shapes from
the other region

Usage:

• layer.not_interacting(other)

• layer.not_interacting(other, min_count)

• layer.not_interacting(other, min_count, max_count)

• layer.not_interacting(other, min_count .. max_count)

This method selects all shapes or regions from self which do not touch or overlap shapes from the other region. Unless self is in raw mode
(see raw), coherent regions are selected from self, otherwise individual shapes are selected. It returns a new layer containing the selected
shapes. A version which modifies self is select_not_interacting.

This method is available for polygon, text and edge layers. Edges can be selected with respect to other edges or polygons. Texts can be
selected with respect to polygons. Polygons can be selected with respect to edges, texts and other polygons.

The following image shows the effect of the "not_interacting" method (input1: red, input2: blue):

For more details visit
https://www.klayout.org

Page 313 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

If a single count is given, shapes from self are selected only if they interact with less than the given number of (different) shapes from
the other layer. If a min and max count is given, shapes from self are selected only if they interact with less than min_count or more than
max_count different shapes from the other layer. Two polygons overlapping or touching at two locations are counted as single interactions.

For more details visit
https://www.klayout.org

Page 314 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

For more details visit
https://www.klayout.org

Page 315 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"not_outside" - Selects shapes or regions of self which are not outside the other region

Usage:

• layer.not_outside(other)

This method selects all shapes or regions from self which are not completely outside the other region (part of these shapes or regions may
be covered by shapes from the other region). If self is in raw mode, this method will select individual shapes. Otherwise, this method will
select coherent regions and no part of these regions may overlap with shapes from the other region. It returns a new layer containing the
selected shapes. A version which modifies self is select_not_outside.

This method is available for polygon layers.

The following image shows the effect of the "not_outside" method (input1: red, input2: blue):

For more details visit
https://www.klayout.org

Page 316 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"not_overlapping" - Selects shapes or regions of self which do not overlap shapes from the
other region

Usage:

• layer.not_overlapping(other)

• layer.not_overlapping(other, min_count)

• layer.not_overlapping(other, min_count, max_count)

• layer.not_overlapping(other, min_count .. max_count)

This method selects all shapes or regions from self which do not overlap shapes from the other region. Unless self is in raw mode (see
raw), coherent regions are selected from self, otherwise individual shapes are selected. This method will return the inverse of overlapping
and provides the same options.

The "not_overlapping" method is similar to the outside method. However, "outside" does not provide the option to specify counts.

This method is available for polygons only. It returns a new layer containing the selected shapes. A version which modifies self is
select_not_overlapping.

"notch" - An intra-polygon spacing check

Usage:

For more details visit
https://www.klayout.org

Page 317 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

• layer.notch(value [, options])

Note: "notch" is available as an operator for the "universal DRC" function Layer#drc within the DRC framework. This variant has more
options and is more intuitive to use. See notch for more details.

See space for a description of this method. "notch" is the space check variant which finds space violations within a single polygon, but not
against other polygons. In contrast to space, the "notch" method is available for polygon layers only, since only on such layers different
polygons can be identified. Also, opposite and rectangle error filtering is not available for this method.

The following image shows the effect of the notch check:

"odd_polygons" - Checks for odd polygons (self-overlapping, non-orientable)

Usage:

• layer.odd_polygons

Returns the parts of the polygons which are not orientable (i.e. "8" configuration) or self-overlapping. Merged semantics does not apply for
this method. Always the raw polygons are taken (see raw).

The odd_polygons check is not available in deep mode currently. See deep_reject_odd_polygons for an alternative.

"ongrid" - Checks for on-grid vertices

Usage:

For more details visit
https://www.klayout.org

Page 318 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

• layer.ongrid(g)

• layer.ongrid(gx, gy)

Returns a single-vertex marker for each vertex whose x coordinate is not a multiple of g or gx or whose y coordinate is not a multiple of g or
gy. The single-vertex markers are edge pair objects which describe a single point. When setting the grid to 0, no grid check is performed in
that specific direction.

This method requires a polygon layer. Merged semantics applies (see raw and clean).

"or" - Boolean OR operation

Usage:

• layer.or(other)

The method computes a boolean OR between self and other. It is an alias for the "|" operator.

This method is available for polygon and edge layers.

The following images show the effect of the "or" method on polygons and edges (input1: red, input2: blue):

"output" - Outputs the content of the layer

Usage:

For more details visit
https://www.klayout.org

Page 319 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

• layer.output(specs)

This method will copy the content of the layer to the specified output.

If a report database is selected for the output, the specification has to include a category name and optionally a category description.

If the layout is selected for the output, the specification can consist of one to three parameters: a layer number, a data type (optional,
default is 0) and a layer name (optional). Alternatively, the output can be specified by a single LayerInfo object.

See report and target on how to configure output to a target layout or report database.

"outside" - Selects shapes or regions of self which are outside the other region

Usage:

• layer.outside(other)

This method selects all shapes or regions from self which are completely outside the other region (no part of these shapes or regions may
be covered by shapes from the other region). If self is in raw mode, this method will select individual shapes. Otherwise, this method will
select coherent regions and no part of these regions may overlap with shapes from the other region. It returns a new layer containing the
selected shapes. A version which modifies self is select_outside.

This method is available for polygon layers.

The following image shows the effect of the "outside" method (input1: red, input2: blue):

For more details visit
https://www.klayout.org

Page 320 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"outside_part" - Returns the parts of the edges outside the given region

Usage:

• layer.outside_part(region)

This method returns the parts of the edges which are outside the given region. This is similar to the "&" operator, but this method does not
remove edges that are exactly on the boundaries of the polygons of the region.

This method is available for edge layers. The argument must be a polygon layer.

"overlap" - An overlap check

Usage:

• layer.overlap(other_layer, value [, options])

Note: "overlap" is available as an operator for the "universal DRC" function drc within the DRC framework. This variant has more options
and is more intuitive to use. See overlap for more details.

This method checks whether layer and other_layer overlap by at least the given length. Locations, where this is not the case will be
reported in form of edge pair error markers. Locations, where both layers touch will be reported as errors as well. Formally such locations
form an overlap with a value of 0. Locations, where both regions do not overlap or touch will not be reported. Such regions can be detected
with outside or by a boolean "not".

The options are the same as for separation.

For more details visit
https://www.klayout.org

Page 321 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

Formally, the overlap method is a two-layer width check. In contrast to the single- layer width method (width), the zero value also triggers
an error and separate polygons are checked against each other, while for the single-layer width, only single polygons are considered.

The overlap method can be applied to both edge or polygon layers. On edge layers the orientation of the edges matters: only edges which
run back to back with their inside side pointing towards each other are checked for distance.

As for the other DRC methods, merged semantics applies.

Distance values can be given as floating-point values (in micron) or integer values (in database units). To explicitly specify the unit, use the
unit denominators.

The following images show the effect of the overlap check (input1: red, input2: blue):

"overlapping" - Selects shapes or regions of self which overlap shapes from the other region

Usage:

• layer.overlapping(other)

• layer.overlapping(other, min_count)

• layer.overlapping(other, min_count, max_count)

• layer.overlapping(other, min_count .. max_count)

This method selects all shapes or regions from self which overlap shapes from the other region. Unless self is in raw mode (see raw),
coherent regions are selected from self, otherwise individual shapes are selected. It returns a new layer containing the selected shapes. A
version which modifies self is select_overlapping.

This method is available for polygons only.

For more details visit
https://www.klayout.org

Page 322 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

The following image shows the effect of the "overlapping" method:

A range of counts can be specified. If so, the shape from the primary layer is only selected when overlapping a given number of shapes
from the other layer. For the interpretation of the count see interacting.

"perimeter" - Returns the total perimeter of the polygons in the region

Usage:

• layer.perimeter

This method requires a polygon layer. It returns the total perimeter of all polygons in micron. Merged semantics applies, i.e. before
computing the perimeter, the polygons are merged unless raw mode is chosen (see raw).

The returned value gives the perimeter in micrometer units.

"polygons" - Returns polygons from edge pairs

Usage:

• layer.polygons([enlargement])

This method applies to edge pair collections. The edge pairs will be converted into polygons connecting the edges the edge pairs are made
of. In order to properly handle special edge pairs (coincident edges, point-like edges etc.) an enlargement parameter can be specified
which will make the resulting polygon somewhat larger than the original edge pair. If the enlargement parameter is 0, special edge pairs
with an area of 0 will be dropped.

For more details visit
https://www.klayout.org

Page 323 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"polygons?" - Returns true, if the layer is a polygon layer

Usage:

• layer.polygons?

"pull_inside" - Selects shapes or regions of other which are inside polygons from the this
region

Usage:

• layer.pull_inside(other)

This method selects all shapes or regions from other which are inside polygons from this region. Unless other is in raw mode (see raw),
coherent regions are selected from other, otherwise individual shapes are selected.

The functionality is similar to select_inside, but chosing shapes from other rather than from self. Because in deep mode the hierarchy
reference comes from self, this method provides a way to pull shapes from other to the hierarchy to self.

This method is available for polygon layers. Other needs to be a polygon layer too.

"pull_interacting" - Selects shapes or edges of other which touch or overlap shapes from the
this region

Usage:

• layer.pull_interacting(other)

This method selects all shapes or regions from other which touch or overlap shapes from this region. Unless other is in raw mode (see
raw), coherent regions are selected from other, otherwise individual shapes are selected.

The functionality is similar to select_interacting, but chosing shapes from other rather than from self. Because in deep mode the hierarchy
reference comes from self, this method provides a way to pull shapes from other to the hierarchy to self.

This method will neither modify self nor other.

This method is available for polygon, edge and text layers, similar to interacting.

"pull_overlapping" - Selects shapes or regions of other which overlap shapes from the this
region

Usage:

• layer.pull_overlapping(other)

This method selects all shapes or regions from other which overlap shapes from this region. Unless other is in raw mode (see raw),
coherent regions are selected from other, otherwise individual shapes are selected.

The functionality is similar to select_overlapping, but chosing shapes from other rather than from self. Because in deep mode the hierarchy
reference comes from self, this method provides a way to pull shapes from other to the hierarchy to self.

This method is available for polygon layers. Other needs to be a polygon layer too.

"raw" - Marks a layer as raw

Usage:

• layer.raw

For more details visit
https://www.klayout.org

Page 324 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

A raw layer basically is the opposite of a "clean" layer (see clean). Polygons on a raw layer are considered "as is", i.e. overlapping polygons
are not connected and inner edges may occur due to cut lines. Holes may not exists if the polygons are derived from a representation that
does not allow holes (i.e. GDS2 files).

Note that this method will set the state of the layer. In combination with the fact, that copied layers are references to the original layer, this
may lead to unexpected results:

l = ...
l2 = l1
... do something
l.raw
now l2 is also a raw layer

To avoid that, use the dup method to create a real (deep) copy.

"rectangles" - Selects all rectangles from the input

Usage:

• layer.rectangles

This method is available for polygon layers. By default "merged" semantics applies, i.e. all polygons are merged before rectangles are
selected (see clean and raw). non_rectangles will select all non-rectangles.

"rectilinear" - Selects all rectilinear polygons from the input

Usage:

• layer.rectilinear

This method is available for polygon layers. By default "merged" semantics applies, i.e. all polygons are merged before rectilinear polygons
are selected (see clean and raw). non_rectilinear will select all non-rectangles.

"rotate" - Rotates a layer (modifies the layer)

Usage:

• layer.rotate(a)

Rotates the input by the given angle (in degree). The layer that this method is called upon is modified and the modified version is returned
for further processing.

"rotated" - Rotates a layer

Usage:

• layer.rotated(a)

Rotates the input layer by the given angle (in degree) and returns the rotated layer. The layer that this method is called upon is not
modified.

The following image shows the effect of the "rotated" method:

For more details visit
https://www.klayout.org

Page 325 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"rounded_corners" - Applies corner rounding to each corner of the polygon

Usage:

• layer.rounded_corners(inner, outer, n)

Inner (concave) corners are replaced by circle segments with a radius given by the "inner" parameter. Outer (convex) corners are relaced
by circle segments with a radius given by the "outer" parameter.

The circles are approximated by polygons. "n" segments are used to approximate a full circle.

This method return a layer wit the modified polygons. Merged semantics applies for this method (see raw and clean). If used with tiling, the
rounded_corners function may render invalid results because in tiling mode, not the whole merged region may be captured. In that case,
inner edges may appear as outer ones and their corners will receive rounding.

The following image shows the effect of the "rounded_corners" method. The upper ends of the vertical bars are rounded with a smaller
radius automatically because their width does not allow a larger radius.

For more details visit
https://www.klayout.org

Page 326 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"scale" - Scales a layer (modifies the layer)

Usage:

• layer.scale(f)

Scales the input. After scaling, features have a f times bigger dimension. The layer that this method is called upon is modified and the
modified version is returned for further processing.

"scaled" - Scales a layer

Usage:

• layer.scaled(f)

Scales the input layer and returns a new layer whose features have a f times bigger dimension. The layer that this method is called upon is
not modified.

The following images shows the effect of the "scaled" method:

For more details visit
https://www.klayout.org

Page 327 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"second_edges" - Returns the second edges of an edge pair collection

Usage:

• layer.second_edges

Applies to edge pair collections only. Returns the second edges of the edge pairs in the collection.

Some checks deliver symmetric edge pairs (e.g. space, width, etc.) for which the edges are commutable. "second_edges" will not deliver
edges for such edge pairs. Instead, "first_edges" will deliver both.

"select" - Selects edges, edge pairs or polygons based on evaluation of a block

Usage:

• layer.select { |object| ... }

This method evaluates the block and returns a new container with those objects for which the block evaluates to true. It is available for
edge, polygon and edge pair layers. The corresponding objects are DPolygon, DEdge or DEdgePair.

Because this method executes inside the interpreter, it's inherently slow. Tiling does not apply to this method.

Here is a (slow) equivalent of the area selection method:

For more details visit
https://www.klayout.org

Page 328 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

new_layer = layer.select { |polygon| polygon.area >= 10.0 }

"select_covering" - Selects shapes or regions of self which completely cover (enclose) one or
more shapes from the other region

Usage:

• layer.select_covering(other)

• layer.select_covering(other, min_count)

• layer.select_covering(other, min_count, max_count)

• layer.select_covering(other, min_count .. max_count)

This method selects all shapes or regions from self which cover shapes from the other region. Unless self is in raw mode (see raw),
coherent regions are selected from self, otherwise individual shapes are selected. It modifies self to contain the selected shapes. A version
which does not modify self is covering.

This method is available for polygons only.

"select_inside" - Selects shapes or regions of self which are inside the other region

Usage:

• layer.select_inside(other)

This method selects all shapes or regions from self which are inside the other region. completely (completely covered by polygons from the
other region). If self is in raw mode, this method will select individual shapes. Otherwise, this method will select coherent regions and no
part of these regions may be outside the other region. It modifies self to contain the selected shapes. A version which does not modify self
is inside.

This method is available for polygon layers.

"select_interacting" - Selects shapes or regions of self which touch or overlap shapes from the
other region

Usage:

• layer.select_interacting(other)

• layer.select_interacting(other, min_count)

• layer.select_interacting(other, min_count, max_count)

• layer.select_interacting(other, min_count .. max_count)

This method selects all shapes or regions from self which touch or overlap shapes from the other layer. Unless self is in raw mode (see
raw), coherent regions are selected from self, otherwise individual shapes are selected. It modifies self to contain the selected shapes. A
version which does not modify self is interacting.

This method is available for polygon, text and edge layers. Edges can be selected with respect to other edges or polygons. Texts can be
selected with respect to polygons. Polygons can be selected with respect to edges, texts and other polygons.

If a single count is given, shapes from self are selected only if they do interact at least with the given number of (different) shapes from the
other layer. If a min and max count is given, shapes from self are selected only if they interact with min_count or more, but a maximum of
max_count different shapes from the other layer. Two polygons overlapping or touching at two locations are counted as single interactions.

For more details visit
https://www.klayout.org

Page 329 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"select_not_covering" - Selects shapes or regions of self which do not cover (enclose) one or
more shapes from the other region

Usage:

• layer.select_not_covering(other)

• layer.select_not_covering(other, min_count)

• layer.select_not_covering(other, min_count, max_count)

• layer.select_not_covering(other, min_count .. max_count)

This method selects all shapes or regions from self which do not cover shapes from the other region. Unless self is in raw mode (see raw),
coherent regions are selected from self, otherwise individual shapes are selected. It modifies self to contain the selected shapes. A version
which does not modify self is not_covering.

This method is available for polygons only.

"select_not_inside" - Selects shapes or regions of self which are not inside the other region

Usage:

• layer.select_not_inside(other)

This method selects all shapes or regions from self which are not inside the other region. completely (completely covered by polygons from
the other region). If self is in raw mode, this method will select individual shapes. Otherwise, this method will select coherent regions and no
part of these regions may be outside the other region. It modifies self to contain the selected shapes. A version which does not modify self
is not_inside.

This method is available for polygon layers.

"select_not_interacting" - Selects shapes or regions of self which do not touch or overlap
shapes from the other region

Usage:

• layer.select_not_interacting(other)

• layer.select_not_interacting(other, min_count)

• layer.select_not_interacting(other, min_count, max_count)

• layer.select_not_interacting(other, min_count .. max_count)

This method selects all shapes or regions from self which do not touch or overlap shapes from the other layer. Unless self is in raw mode
(see raw), coherent regions are selected from self, otherwise individual shapes are selected. It modifies self to contain the selected shapes.
A version which does not modify self is not_interacting.

This method is available for polygon, text and edge layers. Edges can be selected with respect to other edges or polygons. Texts can be
selected with respect to polygons. Polygons can be selected with respect to edges, texts and other polygons.

If a single count is given, shapes from self are selected only if they interact with less than the given number of (different) shapes from
the other layer. If a min and max count is given, shapes from self are selected only if they interact with less than min_count or more than
max_count different shapes from the other layer. Two polygons overlapping or touching at two locations are counted as single interactions.

"select_not_outside" - Selects shapes or regions of self which are not outside the other region

Usage:

For more details visit
https://www.klayout.org

Page 330 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

• layer.select_not_outside(other)

This method selects all shapes or regions from self which are not completely outside the other region (part of these shapes or regions may
be covered by shapes from the other region). If self is in raw mode, this method will select individual shapes. Otherwise, this method will
select coherent regions and no part of these regions may overlap with shapes from the other region. It modifies self to contain the selected
shapes. A version which does not modify self is not_outside.

This method is available for polygon layers.

"select_not_overlapping" - Selects shapes or regions of self which do not overlap shapes from
the other region

Usage:

• layer.select_not_overlapping(other)

• layer.select_not_overlapping(other, min_count)

• layer.select_not_overlapping(other, min_count, max_count)

• layer.select_not_overlapping(other, min_count .. max_count)

This method selects all shapes or regions from self which do not overlap shapes from the other region. Unless self is in raw mode (see
raw), coherent regions are selected from self, otherwise individual shapes are selected. It modifies self to contain the selected shapes. A
version which does not modify self is not_overlapping.

This method is available for polygons only.

"select_outside" - Selects shapes or regions of self which are outside the other region

Usage:

• layer.select_outside(other)

This method selects all shapes or regions from self which are completely outside the other region (no part of these shapes or regions may
be covered by shapes from the other region). If self is in raw mode, this method will select individual shapes. Otherwise, this method will
select coherent regions and no part of these regions may overlap with shapes from the other region. It modifies self to contain the selected
shapes. A version which does not modify self is outside.

This method is available for polygon layers.

"select_overlapping" - Selects shapes or regions of self which overlap shapes from the other
region

Usage:

• layer.select_overlapping(other)

• layer.select_overlapping(other, min_count)

• layer.select_overlapping(other, min_count, max_count)

• layer.select_overlapping(other, min_count .. max_count)

This method selects all shapes or regions from self which overlap shapes from the other region. Unless self is in raw mode (see raw),
coherent regions are selected from self, otherwise individual shapes are selected. It modifies self to contain the selected shapes. A version
which does not modify self is overlapping.

This method is available for polygons only.

For more details visit
https://www.klayout.org

Page 331 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"sep" - An alias for "separation"

Usage:

• layer.sep(value [, options])

See separation for a description of that method

"separation" - A two-layer spacing check

Usage:

• layer.separation(other_layer, value [, options])

• layer.sep(other_layer, value [, options])

Note: "separation" and "sep" are available as operators for the "universal DRC" function drc within the DRC framework. These variants
have more options and are more intuitive to use. See separation for more details.

This method performs a two-layer spacing check. Like space, this method can be applied to edge or polygon layers. Locations where
edges of the layer are closer than the specified distance to the other layer are reported as edge pair error markers.

"sep" is the short form of this method.

In contrast to the space and related methods, locations where both layers touch are also reported. More specifically, the case of zero
spacing will also trigger an error while for space it will not.

As for the other DRC methods, merged semantics applies.

Distance values can be given as floating-point values (in micron) or integer values (in database units). To explicitly specify the unit, use the
unit denominators.

The following image shows the effect of the separation check (input1: red, input2: blue):

For more details visit
https://www.klayout.org

Page 332 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

opposite and rectangle error filtering

The options for the separation check are those available for the width or space method plus opposite and rectangle error filtering.

Opposite error filtering will waive errors that are on opposite sides of the original figure. The inverse is selection of errors only when there is
an error present on the opposite side of the original figure. Opposite error waiving or selection is achieved through these options inside the
DRC function call:

• not_opposite will waive opposite errors

• only_opposite will select errors only if there is an opposite one

These modes imply partial waiving or selection if "opposite" only applies to a section of an error.

The following images shows the effect of these options:

For more details visit
https://www.klayout.org

Page 333 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

For more details visit
https://www.klayout.org

Page 334 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

Rectangle error filtering allows waiving errors based on how they cover the sides of an original rectangular figure. This selection only
applies to errors covering the full edge of the rectangle. Errors covering parts of the rectangle edges are not considered in this scheme.

The rectangle filter option is enabled by these modes:

• one_side_allowed will waive errors when they appear on one side of the rectangle only

• two_sides_allowed will waive errors when they appear on two sides of the rectangle

• two_connected_sides_allowed will waive errors when they appear on two connected sides of the rectangle ("L" configuration)

• two_opposite_sides_allowed will waive errors when they appear on two opposite sides of the rectangle

• three_sides_allowed will waive errors when they appear on three sides of the rectangle

• four_sides_allowed will waive errors when they appear on four sides of the rectangle

Multiple of these options can be given, which will make errors waived if one of these conditions is met.

The following images shows the effect of some rectangle filter modes:

For more details visit
https://www.klayout.org

Page 335 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

For more details visit
https://www.klayout.org

Page 336 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

For more details visit
https://www.klayout.org

Page 337 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

For more details visit
https://www.klayout.org

Page 338 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"size" - Polygon sizing (per-edge biasing, modifies the layer)

Usage:

• layer.size(d [, mode])

• layer.size(dx, dy [, mode]))

See sized. The size method basically does the same but modifies the layer it is called on. The input layer is returned and available for
further processing.

"sized" - Polygon sizing (per-edge biasing)

Usage:

• layer.sized(d [, mode])

• layer.sized(dx, dy [, mode]))

This method requires a polygon layer. It will apply a bias per edge of the polygons and return the biased layer. The layer that this method is
called on is not modified.

In the single-value form, that bias is applied both in horizontal or vertical direction. In the two-value form, the horizontal and vertical bias can
be specified separately.

The mode defines how to handle corners. The following modes are available:

For more details visit
https://www.klayout.org

Page 339 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

• diamond_limit : This mode will connect the shifted edges without corner interpolation

• octagon_limit : This mode will create octagon-shaped corners

• square_limit : This mode will leave 90 degree corners untouched but cut off corners with a sharper angle. This is the default mode.

• acute_limit : This mode will leave 45 degree corners untouched but cut off corners with a sharper angle

• no_limit : This mode will not cut off (only at extremely sharp angles

Merged semantics applies, i.e. polygons will be merged before the sizing is applied unless the layer was put into raw mode (see raw).
On output, the polygons are not merged immediately, so it is possible to detect overlapping regions after a positive sizing using raw and
merged with an overlap count, for example:

layer.sized(300.nm).raw.merged(2)

Bias values can be given as floating-point values (in micron) or integer values (in database units). To explicitly specify the unit, use the unit
denominators.

size is working like sized but modifies the layer it is called on.

The following images show the effect of various forms of the "sized" method:

For more details visit
https://www.klayout.org

Page 340 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

For more details visit
https://www.klayout.org

Page 341 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"smoothed" - Smoothes the polygons of the region

Usage:

• layer.smoothed(d)

• layer.smoothed(d, hv_keep)

"Smoothing" returns a simplified version of the polygons. Simplification is achieved by removing vertices unless the resulting polygon
deviates by more than the given distance d from the original polygon.

"hv_keep" is a boolean parameter which makes the smoothing function maintain horizontal or vertical edges. The default is false, meaning
horizontal or vertical edges may be changed into tilted ones.

This method return a layer wit the modified polygons. Merged semantics applies for this method (see raw and clean).

"snap" - Brings each vertex on the given grid (g or gx/gy for x or y direction)

Usage:

• layer.snap(g)

• layer.snap(gx, gy)

Shifts each off-grid vertex to the nearest on-grid location. If one grid is given, this grid is applied to x and y coordinates. If two grids are
given, gx is applied to the x coordinates and gy is applied to the y coordinates. If 0 is given as a grid, no snapping is performed in that
direction.

For more details visit
https://www.klayout.org

Page 342 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

This method modifies the layer. A version that returns a snapped version of the layer without modifying the layer is snapped.

This method requires a polygon layer. Merged semantics applies (see raw and clean).

"snapped" - Returns a snapped version of the layer

Usage:

• layer.snapped(g)

• layer.snapped(gx, gy)

See snap for a description of the functionality. In contrast to snap, this method does not modify the layer but returns a snapped copy.

"space" - A space check

Usage:

• layer.space(value [, options])

Note: "space" is available as an operator for the "universal DRC" function Layer#drc within the DRC framework. This variant has more
options and is more intuitive to use. See space for more details.

This method performs a space check and returns a collection of edge pairs. A space check can be performed on polygon and edge layers.
On edge layers, all edges are checked against all other edges. If two edges form a "face to face" relation (i.e. their outer sides face each
other) and their distance is less than the specified value, an error shape is generated for that edge pair. On polygon layers, the polygons
on each layer are checked for space against other polygons for locations where their space is less than the specified value. In that case,
an edge pair error shape is generated. The space check will also check the polygons for space violations against themselves, i.e. notches
violating the space condition are reported.

The notch method is similar, but will only report self-space violations. The isolated method will only report space violations to other
polygons. separation is a two-layer space check where space is checked against polygons of another layer.

As for the other DRC methods, merged semantics applies.

Distance values can be given as floating-point values (in micron) or integer values (in database units). To explicitly specify the unit, use the
unit denominators.

For the manifold options of this function see the width method description.

The following image shows the effect of the space check:

For more details visit
https://www.klayout.org

Page 343 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"split_covering" - Returns the results of covering and not_covering at the same time

Usage:

• (a, b) = layer.split_covering(other [, options])

This method returns the polygons covering polygons from the other layer in one layer and all others in a second layer. This method is
equivalent to calling covering and not_covering, but is faster than doing this in separate steps:

(covering, not_covering) = l1.split_covering(l2)

The options of this method are the same than covering.

"split_inside" - Returns the results of inside and not_inside at the same time

Usage:

• (a, b) = layer.split_inside(other)

This method returns the polygons inside of polygons from the other layer in one layer and all others in a second layer. This method is
equivalent to calling inside and not_inside, but is faster than doing this in separate steps:

For more details visit
https://www.klayout.org

Page 344 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

(inside, not_inside) = l1.split_inside(l2)

"split_interacting" - Returns the results of interacting and not_interacting at the same time

Usage:

• (a, b) = layer.split_interacting(other [, options])

This method returns the polygons interacting with objects from the other container in one layer and all others in a second layer. This
method is equivalent to calling interacting and not_interacting, but is faster than doing this in separate steps:

(interacting, not_interacting) = l1.split_interacting(l2)

The options of this method are the same than interacting.

"split_outside" - Returns the results of outside and not_outside at the same time

Usage:

• (a, b) = layer.split_outside(other)

This method returns the polygons outside of polygons from the other layer in one layer and all others in a second layer. This method is
equivalent to calling outside and not_outside, but is faster than doing this in separate steps:

(outside, not_outside) = l1.split_outside(l2)

"split_overlapping" - Returns the results of overlapping and not_overlapping at the same time

Usage:

• (a, b) = layer.split_overlapping(other [, options])

This method returns the polygons overlapping polygons from the other layer in one layer and all others in a second layer. This method is
equivalent to calling overlapping and not_overlapping, but is faster than doing this in separate steps:

(overlapping, not_overlapping) = l1.split_overlapping(l2)

The options of this method are the same than overlapping.

"squares" - Selects all squares from the input

Usage:

• layer.squares

This method is available for polygon layers. By default "merged" semantics applies, i.e. all polygons are merged before squares are
selected (see clean and raw). non_squares will select all non-rectangles.

For more details visit
https://www.klayout.org

Page 345 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"start_segments" - Returns the part at the beginning of each edge

Usage:

• layer.start_segments(length)

• layer.start_segments(length, fraction)

This method will return a partial edge for each edge in the input, located and the end of the original edge. The new edges will share the
start point with the original edges, but not necessarily their end points. For further details about the orientation of edges and the parameters
of this method, see end_segments.

The following images show the effect of the method:

"strict" - Marks a layer for strict handling

Usage:

• layer.strict

If a layer is marked for strict handling, some optimizations are disabled. Specifically for boolean operations, the results will also be merged
if one input is empty. For boolean operations, strict handling should be enabled for both inputs. Strict handling is disabled by default.

See non_strict about how to reset this mode.

This feature has been introduced in version 0.23.2.

For more details visit
https://www.klayout.org

Page 346 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"strict?" - Returns true, if strict handling is enabled for this layer

Usage:

• layer.is_strict?

See strict for a discussion of strict handling.

This feature has been introduced in version 0.23.2.

"texts" - Selects texts from an original layer

Usage:

• layer.texts

• layer.texts(p)

• layer.texts([options])

This method can be applied to original layers - i.e. ones that have been created with input. By default, a small box (2x2 DBU) will be
produced on each selected text. By using the "as_dots" option, degenerated point-like edges will be produced.

The preferred method however is to use true text layers created with labels. In this case, without specifying "as_dots" or "as_boxes" retains
the text objects as such a text filtering is applied. In contrast to this, layers generated with input cannot maintain the text nature of the
selected objects and produce dots or small polygon boxes in the texts method.

Texts can be selected either by exact match string or a pattern match with a glob-style pattern. By default, glob-style pattern are used. The
options available are:

• pattern(p) : Use a pattern to match the string (this is the default)

• text(s) : Select the texts that exactly match the given string

• as_boxes : with this option, small boxes will be produced as markers

• as_dots : with this option, point-like edges will be produced instead of small boxes

Here are some examples:

Selects all texts
t = labels(1, 0).texts
Selects all texts beginning with an "A"
t = labels(1, 0).texts("A*")
t = labels(1, 0).texts(pattern("A*"))
Selects all texts whose string is "ABC"
t = labels(1, 0).texts(text("ABC"))

The effect of the operation is shown in these examples:

For more details visit
https://www.klayout.org

Page 347 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"texts_not" - Selects texts from an original layer not matching a specific selection

Usage:

• layer.texts_not

• layer.texts_not(p)

• layer.texts_not([options])

This method can be applied to true text layers obtained with labels. In this case, without specifying "as_dots" or "as_boxes" retains the text
objects as such. Only text filtering is applied.

Beside that this method acts like texts, but will select the text objects not matching the filter.

"transform" - Transforms a layer (modifies the layer)

Usage:

• layer.transform(t)

Like transform, but modifies the input and returns a reference to it for further processing.

"transformed" - Transforms a layer

Usage:

For more details visit
https://www.klayout.org

Page 348 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

• layer.transformed(t)

Transforms the input layer by the given transformation and returns the moved layer. The layer that this method is called upon is not
modified. This is the most generic method is transform a layer. The transformation is a DCplxTrans object which describes many different
kinds of affine transformations except shear and anisotropic magnification.

The following image shows the effect of the "moved" method:

"width" - A width check

Usage:

• layer.width(value [, options])

Note: "width" is available as an operator for the "universal DRC" function Layer#drc within the DRC framework. This variant has more
options and is more intuitive to use. See width for more details.

This method performs a width check and returns a collection of edge pairs. A width check can be performed on polygon and edge layers.
On edge layers, all edges are checked against all other edges. If two edges form a "back to back" relation (i.e. their inner sides face each
other) and their distance is less than the specified value, an error shape is generated for that edge pair. On polygon layers, the polygons on
each layer are checked for locations where their width is less than the specified value. In that case, an edge pair error shape is generated.

Options

The options available are:

• euclidian : perform the check using Euclidian metrics (this is the default)

For more details visit
https://www.klayout.org

Page 349 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

• square : perform the check using Square metrics

• projection : perform the check using projection metrics

• whole_edges : With this option, the check will return all of the edges, even if the criterion is violated only over a part of the edge

• angle_limit(a) : Specifies the angle above or equal to which no check is performed. The default value is 90, which means that for
edges having an angle of 90 degree or more, no check is performed. Setting this value to 45 will make the check only consider edges
enclosing angles of less than 45 degree.

• projection_limits(min, max) or projection_limits(min .. max) : this option makes the check only consider edge pairs whose
projected length on each other is more or equal than min and less than max

• projecting (in condition) : This specification is equivalent to "projection_limits" but is more intuitive, as "projecting" is written with a
condition, like "projecting < 2.um". Available operators are: "==", "<", "<=", ">" and ">=". Double-bounded ranges are also available,
like: "0.5 <= projecting < 2.0".

• transparent : performs the check without shielding (polygon layers only)

• shielded : performs the check with shielding (polygon layers only)

Note that without the angle_limit, acute corners will always be reported, since two connected edges always violate the width in the corner.
By adjusting the angle_limit, an acute corner check can be implemented.

Merge semantics applies to this method, i.e. disconnected polygons are merged before the width is checked unless "raw" mode is chosen.

The resulting edge pairs can be converted to polygons using the polygons method.

Distance values can be given as floating-point values (in micron) or integer values (in database units). To explicitly specify the unit, use the
unit denominators, i.e.

width check for 1.5 micron:
markers = in.width(1.5)
width check for 2 database units:
markers = in.width(2)
width check for 2 micron:
markers = in.width(2.um)
width check for 20 nanometers:
markers = in.width(20.nm)

Examples

The following images show the effect of various forms of the width check:

For more details visit
https://www.klayout.org

Page 350 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

For more details visit
https://www.klayout.org

Page 351 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

Universal DRC function

There is an alternative notation for the check using the "universal DRC" function ("Layer#drc"). This notation is more intuitive and allows
checking for widths bigger than a certain value or within a certain range. See "width" for details.

Apart from that it provides the same options than the plain width check. Follow this link for the documentation of this feature: width.

Shielding

"shielding" is a concept where an internal or external distance is measured only if the opposite edge is not blocked by other edges
between. Shielded mode makes a difference if very large distances are to be checked and the minimum distance is much smaller: in this
case, a large distance violation may be blocked by features located between the edges which are checked. With shielding, large distance
violations are not reported in this case. Shielding is also effective at zero distance which has an adverse effect: Consider a case, where one
layer A is a subset of another layer B. If you try to check the distance between features of B vs. A, you cannot use shielding, because B
features which are identical to A features will shield those entirely.

Shielding is enabled by default, but can be switched off with the "transparent" option.

"with_angle" - Selects edges by their angle

Usage:

• layer.with_angle(min .. max)

• layer.with_angle(value)

• layer.with_angle(min, max)

For more details visit
https://www.klayout.org

Page 352 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

• edge_pair_layer.with_angle(min, max [, both])

When called on an edge layer, the method selects edges by their angle, measured against the horizontal axis in the mathematical sense.

For this measurement edges are considered without their direction and straight lines. A horizontal edge has an angle of zero degree. A
vertical one has an angle of 90 degee. The angle range is from -90 (exclusive) to 90 degree (inclusive).

The first version of this method selects edges with a angle larger or equal to min and less than max (but not equal). The second version
selects edges with exactly the given angle. The third version is identical to the first one.

When called on an edge pair layer, this method selects edge pairs with one or both edges meeting the angle criterion. In this case an
additional argument is accepted which can be either "both" (plain word) to indicate that both edges have to be within the given interval.
Without this argument, it is sufficient for one edge to meet the criterion.

Here are examples for "with_angle" on edge pair layers:

at least one edge needs to be horizontal
ep1 = edge_pairs.with_angle(0)
both edges need to vertical
ep2 = edge_pairs.with_angle(90, both)

A method delivering all objects not matching the angle criterion is without_angle.

The following images demonstrate some use cases of with_angle and without_angle:

For more details visit
https://www.klayout.org

Page 353 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

Note that in former versions, with_angle could be used on polygon layers selecting corners with specific angles. This feature has been
deprecated. Use corners instead.

"with_area" - Selects polygons or edge pairs by area

Usage:

• layer.with_area(min .. max)

• layer.with_area(value)

• layer.with_area(min, max)

The first form will select all polygons or edge pairs with an area larger or equal to min and less (but not equal to) max. The second form will
select the polygons or edge pairs with exactly the given area. The third form basically is equivalent to the first form, but allows specification
of nil for min or max indicating no lower or upper limit.

This method is available for polygon or edge pair layers.

"with_area_ratio" - Selects polygons by the ratio of the bounding box area vs. polygon area

Usage:

• layer.with_area_ratio(min .. max)

• layer.with_area_ratio(value)

For more details visit
https://www.klayout.org

Page 354 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

• layer.with_area_ratio(min, max)

The area ratio is a measure how far a polygon is approximated by it's bounding box. The value is always larger or equal to 1. Boxes have a
area ratio of 1. Larger values mean more empty area inside the bounding box.

This method is available for polygon layers only.

"with_bbox_aspect_ratio" - Selects polygons by the aspect ratio of their bounding box

Usage:

• layer.with_bbox_aspect_ratio(min .. max)

• layer.with_bbox_aspect_ratio(value)

• layer.with_bbox_aspect_ratio(min, max)

The method selects polygons similar to with_area or with_perimeter. However, the measured value is the aspect ratio of the bounding box.
It is the larger dimensions divided by the smaller one. The "thinner" the polygon, the larger the aspect ratio. A square bounding box gives
an aspect ratio of 1.

This method is available for polygon layers only.

"with_bbox_height" - Selects polygons by the height of the bounding box

Usage:

• layer.with_bbox_height(min .. max)

• layer.with_bbox_height(value)

• layer.with_bbox_height(min, max)

The method selects polygons similar to with_area or with_perimeter. However, the measured dimension is the width of the bounding box.

This method is available for polygon layers only.

"with_bbox_max" - Selects polygons by the maximum dimension of the bounding box

Usage:

• layer.with_bbox_max(min .. max)

• layer.with_bbox_max(value)

• layer.with_bbox_max(min, max)

The method selects polygons similar to with_area or with_perimeter. However, the measured dimension is the maximum dimension of the
bounding box. The maximum dimension is either the width or height of the bounding box, whichever is larger.

This method is available for polygon layers only.

"with_bbox_min" - Selects polygons by the minimum dimension of the bounding box

Usage:

• layer.with_bbox_min(min .. max)

• layer.with_bbox_min(value)

• layer.with_bbox_min(min, max)

For more details visit
https://www.klayout.org

Page 355 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

The method selects polygons similar to with_area or with_perimeter. However, the measured dimension is the minimum dimension of the
bounding box. The minimum dimension is either the width or height of the bounding box, whichever is smaller.

This method is available for polygon layers only.

"with_bbox_width" - Selects polygons by the width of the bounding box

Usage:

• layer.with_bbox_width(min .. max)

• layer.with_bbox_width(value)

• layer.with_bbox_width(min, max)

The method selects polygons similar to with_area or with_perimeter. However, the measured dimension is the width of the bounding box.

This method is available for polygon layers only.

"with_density" - Returns tiles whose density is within a given range

Usage:

• layer.with_density(min_value, max_value [, options])

• layer.with_density(min_value .. max_value [, options])

This method runs a tiled analysis over the current layout. It reports the tiles whose density is between "min_value" and "max_value".
"min_value" and "max_value" are given in relative units, i.e. within the range of 0 to 1.0 corresponding to a density of 0 to 100%.

"min_value" or "max_value" can be nil or omitted in the ".." range notation. In this case, they are taken as "0" and "100%".

The tile size must be specified with the "tile_size" option:

reports areas where layer 1/0 density is below 10% on 20x20 um tiles
low_density = input(1, 0).with_density(0.0 .. 0.1, tile_size(20.um))

Anisotropic tiles can be specified by giving two values, like "tile_size(10.um, 20.um)". The first value is the horizontal tile dimension, the
second value is the vertical tile dimension.

A tile overlap can be specified using "tile_step". If the tile step is less than the tile size, the tiles will overlap. The layout window given by
"tile_size" is moved in increments of the tile step:

reports areas where layer 1/0 density is below 10% on 30x30 um tiles
with a tile step of 20x20 um:
low_density = input(1, 0).with_density(0.0 .. 0.1, tile_size(30.um), tile_step(20.um))

For "tile_step", anisotropic values can be given as well by using two values: the first for the horizontal and the second for the vertical tile
step.

Another option is "tile_origin" which specifies the location of the first tile's position. This is the lower left tile's lower left corner. If no origin is
given, the tiles are centered over the area investigated.

By default, the tiles will cover the bounding box of the input layer. A separate layer can be used in addition. This way, the layout's
dimensions can be derived from some drawn boundary layer. To specify a separate, additional layer included in the bounding box, use the
"tile_boundary" option:

reports density of layer 1/0 below 10% on 20x20 um tiles. The layout's boundary is taken from
layer 0/0:
cell_frame = input(0, 0)

For more details visit
https://www.klayout.org

Page 356 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

low_density = input(1, 0).with_density(0.0 .. 0.1, tile_size(20.um), tile_boundary(cell_frame))

Note that the layer given in "tile_boundary" adds to the input layer for computing the bounding box. The computed area is at least the area
of the input layer.

Computation of the area can be skipped by explicitly giving a tile count in horizontal and vertical direction. With the "tile_origin" option this
allows full control over the area covered:

reports density of layer 1/0 below 10% on 20x20 um tiles in the region 0,0 .. 2000,3000
(100 and 150 tiles of 20 um each are used in horizontal and vertical direction):
low_density = input(1, 0).with_density(0.0 .. 0.1, tile_size(20.um), tile_origin(0.0, 0.0), tile_count(100,
 150))

The "padding mode" indicates how the area outside the layout's bounding box is considered. There are two modes:

• padding_zero : the outside area is considered zero density. This is the default mode.

• padding_ignore : the outside area is ignored for the density computation.

Example:

low_density = input(1, 0).with_density(0.0 .. 0.1, tile_size(20.um), padding_ignore)

The complementary version of "with_density" is without_density.

"with_distance" - Selects edge pairs by the distance of the edges

Usage:

• layer.with_distance(min .. max)

• layer.with_distance(value)

• layer.with_distance(min, max)

The method selects edge pairs by the distance of their edges. The first version selects edge pairs with a distance larger or equal to min and
less than max (but not equal). The second version selects edge pairs with exactly the given distance. The third version is similar to the first
one, but allows specification of nil for min or max indicating that there is no lower or upper limit.

The distance of the edges is defined by the minimum distance of all points from the edges involved. For edge pairs generated in
geometrical checks this is equivalent to the actual distance of the original edges.

This method is available for edge pair layers only.

"with_holes" - Selects all polygons with the specified number of holes

Usage:

• layer.with_holes

• layer.with_holes(count)

• layer.with_holes(min_count, max_count)

• layer.with_holes(min_count .. max_count)

This method is available for polygon layers. It will select all polygons from the input layer which have the specified number of holes. Without
any argument, all polygons with holes are selected.

For more details visit
https://www.klayout.org

Page 357 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"with_internal_angle" - Selects edge pairs by their internal angle

Usage:

• edge_pair_layer.with_internal_angle(min .. max)

• edge_pair_layer.with_internal_angle(value)

• edge_pair_layer.with_internal_angle(min, max)

This method selects edge pairs by the angle enclosed by their edges. The angle is between 0 (parallel or anti-parallel edges) and 90
degree (perpendicular edges). If an interval or two values are given, the angle is checked to be within the given range.

Here are examples for "with_internal_angle" on edge pair layers:

selects edge pairs with parallel edges
ep1 = edge_pairs.with_internal_angle(0)
selects edge pairs with perpendicular edges
ep2 = edge_pairs.with_internal_angle(90)

"with_length" - Selects edges by their length

Usage:

• layer.with_length(min .. max)

• layer.with_length(value)

• layer.with_length(min, max)

• edge_pairlayer.with_length(min, max [, both])

The method selects edges by their length. The first version selects edges with a length larger or equal to min and less than max (but not
equal). The second version selects edges with exactly the given length. The third version is similar to the first one, but allows specification
of nil for min or max indicating that there is no lower or upper limit.

This method is available for edge and edge pair layers.

When called on an edge pair layer, this method will select edge pairs if one or both of the edges meet the length criterion. Use the
additional argument and pass "both" (plain word) to specify that both edges need to be within the given interval. By default, it's sufficient for
one edge to meet the criterion.

Here are examples for "with_length" on edge pair layers:

at least one edge needs to have a length of 1.0 <= l < 2.0
ep1 = edge_pairs.with_length(1.um .. 2.um)
both edges need to have a length of exactly 2 um
ep2 = edge_pairs.with_length(2.um, both)

"with_perimeter" - Selects polygons by perimeter

Usage:

• layer.with_perimeter(min .. max)

• layer.with_perimeter(value)

For more details visit
https://www.klayout.org

Page 358 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

• layer.with_perimeter(min, max)

The first form will select all polygons with an perimeter larger or equal to min and less (but not equal to) max. The second form will select
the polygons with exactly the given perimeter. The third form basically is equivalent to the first form, but allows specification of nil for min or
max indicating no lower or upper limit.

This method is available for polygon layers only.

"with_relative_height" - Selects polygons by the ratio of the height vs. width of it's bounding
box

Usage:

• layer.with_relative_height(min .. max)

• layer.with_relative_height(value)

• layer.with_relative_height(min, max)

The relative height is a measure how tall a polygon is. Tall polygons have values larger than 1, wide polygons have a value smaller than 1.
Squares have a value of 1.

Don't use this method when you can use with_area_ratio, which provides a similar measure but is isotropic.

This method is available for polygon layers only.

"without_angle" - Selects edges by the their angle

Usage:

• layer.without_angle(min .. max)

• layer.without_angle(value)

• layer.without_angle(min, max)

• edge_pair_layer.without_angle(min, max [, both])

The method basically is the inverse of with_angle. It selects all edges of the edge layer or corners of the polygons which do not have the
given angle (second form) or whose angle is not inside the given interval (first and third form). When called on edge pairs, it selects edge
pairs by the angles of their edges.

A note on the "both" modifier (without_angle called on edge pairs): "both" means that both edges need to be "without_angle". For example

both edges are not horizontal or:
the edge pair is skipped if one edge is horizontal
ep = edge_pairs.without_angle(0, both)

See with_internal_angle and without_internal_angle to select edge pairs by the angle between the edges.

"without_area" - Selects polygons or edge pairs by area

Usage:

• layer.without_area(min .. max)

• layer.without_area(value)

• layer.without_area(min, max)

For more details visit
https://www.klayout.org

Page 359 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

This method is the inverse of "with_area". It will select polygons or edge pairs without an area equal to the given one or outside the given
interval.

This method is available for polygon or edge pair layers.

"without_area_ratio" - Selects polygons by the aspect ratio of their bounding box

Usage:

• layer.without_area_ratio(min .. max)

• layer.without_area_ratio(value)

• layer.without_area_ratio(min, max)

The method provides the opposite filter for with_area_ratio.

This method is available for polygon layers only.

"without_bbox_height" - Selects polygons by the aspect ratio of their bounding box

Usage:

• layer.without_bbox_aspect_ratio(min .. max)

• layer.without_bbox_aspect_ratio(value)

• layer.without_bbox_aspect_ratio(min, max)

The method provides the opposite filter for with_bbox_aspect_ratio.

This method is available for polygon layers only.

"without_bbox_max" - Selects polygons by the maximum dimension of the bounding box

Usage:

• layer.without_bbox_max(min .. max)

• layer.without_bbox_max(value)

• layer.without_bbox_max(min, max)

The method selects polygons similar to without_area or without_perimeter. However, the measured dimension is the maximum dimension
of the bounding box. The minimum dimension is either the width or height of the bounding box, whichever is larger.

This method is available for polygon layers only.

"without_bbox_min" - Selects polygons by the minimum dimension of the bounding box

Usage:

• layer.without_bbox_min(min .. max)

• layer.without_bbox_min(value)

• layer.without_bbox_min(min, max)

The method selects polygons similar to without_area or without_perimeter. However, the measured dimension is the minimum dimension of
the bounding box. The minimum dimension is either the width or height of the bounding box, whichever is smaller.

This method is available for polygon layers only.

For more details visit
https://www.klayout.org

Page 360 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

"without_bbox_width" - Selects polygons by the width of the bounding box

Usage:

• layer.without_bbox_width(min .. max)

• layer.without_bbox_width(value)

• layer.without_bbox_width(min, max)

The method selects polygons similar to without_area or without_perimeter. However, the measured dimension is the width of the bounding
box.

This method is available for polygon layers only.

"without_density" - Returns tiles whose density is not within a given range

Usage:

• layer.without_density(min_value, max_value [, options])

• layer.without_density(min_value .. max_value [, options])

For details about the operations and the operation see with_density. This version will return the tiles where the density is not within the
given range.

"without_distance" - Selects edge pairs by the distance of the edges

Usage:

• layer.without_distance(min .. max)

• layer.without_distance(value)

• layer.without_distance(min, max)

The method basically is the inverse of with_distance. It selects all edge pairs of the edge pair layer which do not have the given distance
(second form) or are not inside the given interval (first and third form).

This method is available for edge pair layers only.

"without_holes" - Selects all polygons with the specified number of holes

Usage:

• layer.without_holes

• layer.without_holes(count)

• layer.without_holes(min_count, max_count)

• layer.without_holes(min_count .. max_count)

This method is available for polygon layers. It will select all polygons from the input layer which do not have the specified number of holes.
Without any arguments, all polygons without holes are selected.

"without_internal_angle" - Selects edge pairs by their internal angle

Usage:

For more details visit
https://www.klayout.org

Page 361 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

• edge_pair_layer.without_internal_angle(min .. max)

• edge_pair_layer.without_internal_angle(value)

• edge_pair_layer.without_internal_angle(min, max)

The method basically is the inverse of with_internal_angle. It selects all edge pairs by the angle enclosed by their edges, applying the
opposite criterion than with_internal_angle.

"without_length" - Selects edges by the their length

Usage:

• layer.without_length(min .. max)

• layer.without_length(value)

• layer.without_length(min, max)

• edge_pairlayer.with_length(min, max [, both])

The method basically is the inverse of with_length. It selects all edges of the edge layer which do not have the given length (second form)
or are not inside the given interval (first and third form).

This method is available for edge and edge pair layers.

A note on the "both" modifier (without_length called on edge pairs): "both" means that both edges need to be "without_length". For example

both edges are not exactly 1 um in length, or:
the edge pair is skipped if one edge has a length of exactly 1 um
ep = edge_pairs.without_length(1.um, both)

"without_perimeter" - Selects polygons by perimeter

Usage:

• layer.without_perimeter(min .. max)

• layer.without_perimeter(value)

• layer.without_perimeter(min, max)

This method is the inverse of "with_perimeter". It will select polygons without a perimeter equal to the given one or outside the given
interval.

This method is available for polygon layers only.

"without_relative_height" - Selects polygons by the ratio of the height vs. width

Usage:

• layer.without_relative_height(min .. max)

• layer.without_relative_height(value)

• layer.without_relative_height(min, max)

The method provides the opposite filter for with_relative_height.

For more details visit
https://www.klayout.org

Page 362 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.2. DRC Reference: Layer Object

This method is available for polygon layers only.

"xor" - Boolean XOR operation

Usage:

• layer.xor(other)

The method computes a boolean XOR between self and other. It is an alias for the "^" operator.

This method is available for polygon and edge layers.

The following images show the effect of the "xor" method on polygons and edges (input1: red, input2: blue):

"|" - Boolean OR operation

Usage:

• self | other

The method computes a boolean OR between self and other. A similar operation is join which will basically gives the same result but won't
merge the shapes.

This method is available for polygon and edge layers. An alias is "or". See there for a description of the function.

For more details visit
https://www.klayout.org

Page 363 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.3. DRC Reference: Netter object

2.20.3. DRC Reference: Netter object
The Netter object provides services related to network extraction from a layout. The relevant methods of this object are available as global
functions too where they act on a default incarnation of the netter. Usually it's not required to instantiate a Netter object, but it serves as a
container for this functionality.

create a new Netter object:
nx = netter
nx.connect(poly, contact)
...

Network formation:

A basic service the Netter object provides is the formation of connected networks of conductive shapes (netting). To do so, the Netter must
be given a connection specification. This happens by calling "connect" with two polygon layers. The Netter will then regard all overlaps of
shapes on these layers as connections between the respective materials. Networks are the basis for netlist extraction, network geometry
deduction and the antenna check.

Connections can be cleared with "clear_connections". If not, connections add atop of the already defined ones. Here is an example for the
antenna check:

build connction of poly+gate to metal1
connect(gate, poly)
connect(poly, contact)
connect(contact, metal1)

runs an antenna check for metal1 with a ratio of 50
m1_antenna_errors = antenna_check(gate, metal1, 50.0)

add connections to metal2
connect(metal1, via1)
connect(via1, metal2)

runs an antenna check for metal2 with a ratio of 70.0
m2_antenna_errors = antenna_check(gate, metal2, 70.0)

this will remove all connections made
clear_connections
...

Further functionality of the Netter object:

More methods will be added in the future to support network-related features.

"antenna_check" - Performs an antenna check

Usage:

• antenna_check(gate, metal, ratio, [diode_specs ...])

The antenna check is used to avoid plasma induced damage. Physically, the damage happes if during the manufacturing of a metal layer
with plasma etching charge accumulates on the metal islands. On reaching a certain threshold, this charge may discarge over gate oxide
attached of devices attached to such metal areas hence damaging it.

Antenna checks are performed by collecting all connected nets up to a certain metal layer and then computing the area of all metal shapes
and all connected gates of a certain kind (e.g. thin and thick oxide gates). The ratio of metal area divided by the gate area must not exceed
a certain threshold.

A simple antenna check is this:

For more details visit
https://www.klayout.org

Page 364 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.3. DRC Reference: Netter object

poly = ... # poly layer
diff = ... # diffusion layer
contact = ... # contact layer
metal1 = ... # metal layer

compute gate area
gate = poly & diff

note that gate and poly have to be included - gate is
a subset of poly, but forms the sensitive area
connect(gate, poly)
connect(poly, contact)
connect(contact, metal1)
errors = antenna_check(gate, metal1, 50.0)

Usually antenna checks apply to multiple metal layers. In this case, the connectivity needs to be extended after the first check to include the
next metal layers. This can be achieved with incremental connects:

provide connections up to metal1
connect(gate, poly)
connect(poly, contact)
connect(contact, metal1)
metal1_errors = antenna_check(gate, metal1, 50.0)

now *add* connections up to metal2
connect(metal1, via1)
connect(via1, metal2)
metal2_errors = antenna_check(gate, metal2, 50.0)

... continue this scheme with further metal layers ...

Plasma induced damage can be rectified by including diodes which create a safe current path for discharging the metal islands. Such
diodes can be identified with a recognition layer (usually the diffusion area of a certain kind). You can include such diode recognition layers
in the antenna check. If a connection is detected to a diode, the respective network is skipped:

...
diode = ... # diode recognition layer

connect(diode, contact)
errors = antenna_check(gate, metal1, 50.0, diode)

You can also make diode connections decreases the sensitivity of the antenna check depending on the size of the diode. The following
specification makes diode connections increase the ratio threshold by 10 per square micrometer of diode area:

...
diode = ... # diode recognition layer

connect(diode, contact)
each square micrometer of diode area connected to a network
will add 10 to the ratio:
errors = antenna_check(gate, metal1, 50.0, [diode, 10.0])

Multiple diode specifications are allowed. Just add them to the antenna_check call.

For more details visit
https://www.klayout.org

Page 365 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.3. DRC Reference: Netter object

You can include the perimeter into the area computation for the gate or metal layer or both. The physical picture is this: the side walls of the
material contribute to the surface too. As the side wall area can be estimated by taking the perimeter times some material thickness, the
effective area is:

A(eff) = A + P * t

Here A is the area of the polygons and P is their perimeter. t is the "thickness" in micrometer units. To specify such a condition, use the
following notation:

errors = antenna_check(area_and_perimeter(gate, 0.5), ...)

"area_and_perimeter" takes the polygon layer and the thickness (0.5 micrometers in this case). This notation can be applied to both gate
and metal layers. A detailed notation for the usual, area-only case is available as well for completeness:

errors = antenna_check(area_only(gate), ...)

this is equivalent to a zero thickness:
errors = antenna_check(area_and_perimeter(gate, 0.0), ...)
or the standard case:
errors = antenna_check(gate, ...)

Finally there is also "perimeter_only". When using this specification with a thickness value, the area is computed from the perimeter alone:

A(eff) = P * t

errors = antenna_check(perimeter_only(gate, 0.5), ...)

The error shapes produced by the antenna check are copies of the metal shapes on the metal layers of each network violating the antenna
rule.

"clear_connections" - Clears all connections stored so far

Usage:

• clear_connections

See connect for more details.

"connect" - Specifies a connection between two layers

Usage:

• connect(a, b)

a and b must be polygon or text layers. After calling this function, the Netter regards all overlapping or touching shapes on these layers
to form an electrical connection between the materials formed by these layers. This also implies intra-layer connections: shapes on these
layers touching or overlapping other shapes on these layers will form bigger, electrically connected areas.

For more details visit
https://www.klayout.org

Page 366 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.3. DRC Reference: Netter object

Texts will be used to assign net names to the nets. The preferred method is to use labels to create a text layer from a design layer. When
using input, text labels are carried implicitly with the polygons but at the cost of small dummy shapes (2x2 DBU marker polygons) and
limited functionality.

Multiple connect calls must be made to form larger connectivity stacks across multiple layers. Such stacks may include forks and joins.

Connections are accumulated. The connections defined so far can be cleared with clear_connections.

"connect_explicit" - Specifies a list of net names for nets to connect explicitly

Usage:

• connect_explicit(net_names)

• connect_explicit(cell_pattern, net_names)

Use this method to explicitly connect nets even if there is no physical connection. As this breaks with the concept of physical verification,
this feature should be used with care.

The first version of this function will connect all nets listed in the "net_names" array in the top level cell. The second version takes a cell
name pattern and connects all nets listed in "net_names" for cells matching this pattern.

A use case for this method is the following: consider a set of standard cells. These do not have a bulk or n-well pin in the schematics. They
also do not have build in tie-down diodes for the substrate connections. In this case there is a build-in discrepancy between the schematics
and the layout: bulk and VSS are separate nets within the layout, but the schematic does not list them as separate. The solution is to make
an explicit connection between VDD and n-well and VSS and bulk, provided VDD and VSS are properly labelled as "VDD" and "VSS" and
n-well and bulk are accessible as named nets (for bulk you can use "connect_global").

The following code will establish an explicit connection for all cells called "INV.." between BULK and VSS nets:

connect_global(bulk, "BULK")
...
connect_explicit("INV*", ["BULK", "VSS"])

Explicit connections also imply implicit connections between different parts of one of the nets. In the example before, "VSS" pieces without
a physical connection will also be connected.

When you use explicit connections you should make sure by other ways that the connection is made physically. For example, for the bulk/
n-well pin example above, by enforcing at least one tie-down diode per n-well island and in the substrate by means of a DRC rule.

The explicit connections are applied on the next net extraction and cleared on "clear_connections".

"connect_global" - Connects a layer with a global net

Usage:

• connect_global(l, name)

Connects the shapes from the given layer l to a global net with the given name. Global nets are common to all cells. Global nets
automatically connect to parent cells throughs implied pins. An example is the substrate (bulk) net which connects to shapes belonging to
tie-down diodes. "l" can be a polygon or text layer.

"connect_implicit" - Specifies a search pattern for labels which create implicit net connections

Usage:

• connect_implicit(label_pattern)

• connect_implicit(cell_pattern, label_pattern)

Use this method to supply label strings which create implicit net connections on the top level circuit in the first version. This feature is
useful to connect identically labelled nets while a component isn't integrated yet. If the component is integrated, nets may be connected

For more details visit
https://www.klayout.org

Page 367 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.3. DRC Reference: Netter object

on a higher hierarchy level - e.g. by a power mesh. Inside the component this net consists of individual islands. To properly perform netlist
extraction and comparison, these islands need to be connected even though there isn't a physical connection. "connect_implicit" can achive
this if these islands are labelled with the same text on the top level of the component.

In the second version, the pattern can be specified for a cell range (given by a cell name pattern or a single cell name). These pattern are
applied to non-top cells. The unspecific pattern has priority over the cell-specific ones. As the cell selector is a pattern itself, a single cell
may fall into more than one category. In this case, the label filters are combined.

The implicit connections are applied on the next net extraction and cleared on "clear_connections".

"device_scaling" - Specifies a dimension scale factor for the geometrical device properties

Usage:

• device_scaling(factor)

Specifying a factor of 2 will make all devices being extracted as if the geometries were two times larger. This feature is useful when the
drawn layout does not correspond to the physical dimensions.

"extract_devices" - Extracts devices based on the given extractor class, name and device layer
selection

Usage:

• extract_devices(extractor, layer_hash)

• extract_devices(extractor_class, name, layer_hash)

Runs the device extraction for given device extractor class. In the first form, the extractor object is given. In the second form, the extractor's
class object and the new extractor's name is given.

The device extractor is either an instance of one of the predefined extractor classes (e.g. obtained from the utility methods such as
mos4) or a custom class. It provides the algorithms for deriving the device parameters from the device geometry. It needs several device
recognition layers which are passed in the layer hash.

Predefined device extractors are:

• mos3 - A three-terminal MOS transistor

• mos4 - A four-terminal MOS transistor

• dmos3 - A three-terminal MOS asymmetric transistor

• dmos4 - A four-terminal MOS asymmetric transistor

• bjt3 - A three-terminal bipolar transistor

• bjt4 - A four-terminal bipolar transistor

• diode - A planar diode

• resistor - A resistor

• resistor_with_bulk - A resistor with a separate bulk terminal

• capacitor - A capacitor

• capacitor_with_bulk - A capacitor with a separate bulk terminal

Each device class (e.g. n-MOS/p-MOS or high Vt/low Vt) needs its own instance of device extractor. The device extractor beside the
algorithm and specific extraction settings defines the name of the device to be built.

The layer hash is a map of device type specific functional names (key) and polygon layers (value). Here is an example:

For more details visit
https://www.klayout.org

Page 368 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.3. DRC Reference: Netter object

deep

nwell = input(1, 0)
active = input(2, 0)
poly = input(3, 0)
bulk = make_layer # renders an empty layer used for putting the terminals on

nactive = active - nwell # active area of NMOS
nsd = nactive - poly # source/drain area
gate = nactive & poly # gate area

extract_devices(mos4("NMOS4"), { :SD => nsd, :G => gate, :P => poly, :W => bulk })

The return value of this method will be the device class of the devices generated in the extraction step (see DeviceClass).

"l2n_data" - Gets the internal LayoutToNetlist object

Usage:

• l2n_data

The LayoutToNetlist object provides access to the internal details of the netter object.

"netlist" - Gets the extracted netlist or triggers extraction if not done yet

Usage:

• netlist

If no extraction has been performed yet, this method will start the layout analysis. Hence, all connect, connect_global and connect_implicit
calls must have been made before this method is used. Further connect statements will clear the netlist and re-extract it again.

For more details visit
https://www.klayout.org

Page 369 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.4. DRC Reference: Source Object

2.20.4. DRC Reference: Source Object
The layer object represents a collection of polygons, edges or edge pairs. A source specifies where to take layout from. That includes the
actual layout, the top cell and options such as clip/query boxes, cell filters etc.

"cell" - Specifies input from a specific cell

Usage:

• source.cell(name)

This method will create a new source that delivers shapes from the specified cell.

"cell_name" - Returns the name of the currently selected cell

Usage:

• cell_name

"cell_obj" - Returns the Cell object of the currently selected cell

Usage:

• cell_obj

"clip" - Specifies clipped input

Usage:

• source.clip(box)

• source.clip(p1, p2)

• source.clip(l, b, r, t)

Creates a source which represents a rectangular part of the original input. Three ways are provided to specify the rectangular region: a
single DBox object (micron units), two DPoint objects (lower/left and upper/right coordinate in micron units) or four coordinates: left, bottom,
right and top coordinate.

This method will create a new source which delivers the shapes from that region clipped to the rectangle. A method doing the same but
without clipping is touching or overlapping.

"edge_pairs" - Gets the edge pairs from an input layer

Usage:

• source.edge_pairs(layer)

• source.edge_pairs(layer, datatype)

• source.edge_pairs(layer_into)

• source.edge_pairs(filter, ...)

Creates a layer with the edge_pairs from the given layer of the source. Edge pairs are not supported by layout formats so far. So except if
the source is a custom-built layout object, this method has little use. It is provided for future extensions which may include edge pairs in file
streams.

For more details visit
https://www.klayout.org

Page 370 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.4. DRC Reference: Source Object

This method is identical to input with respect to the options supported.

Use the global version of "edge_pairs" without a source object to address the default source.

This method has been introduced in version 0.27.

"edges" - Gets the edge shapes (or shapes that can be converted edges) from an input layer

Usage:

• source.edges(layer)

• source.edges(layer, datatype)

• source.edges(layer_into)

• source.edges(filter, ...)

Creates a layer with the edges from the given layer of the source. Edge layers are formed from shapes by decomposing the shapes into
edges: polygons for example are decomposed into their outline edges. Some file formats support egdes as native objects.

This method is identical to input with respect to the options supported.

Use the global version of "edges" without a source object to address the default source.

This method has been introduced in version 0.27.

"extent" - Returns a layer with the bounding box of the selected layout or cells

Usage:

• source.extent

• source.extent(cell_filter)

Without an argument, the extent method returns a layer with the bounding box of the top cell. With a cell filter argument, the method returns
a layer with the bounding boxes of the selected cells. The cell filter is a glob pattern.

The extent function is useful to invert a layer:

inverse_1 = extent.sized(100.0) - input(1, 0)

The following example returns the bounding boxes of all cells whose names start with "A":

a_cells = extent("A*")

"global_transform" - Gets or sets a global transformation

Usage:

• global_transform

• global_transform([transformations])

This method returns a new source representing the transformed layout. It is provided in the spritit of Source#clip and similar methods.

The transformation is either given as a DTrans, DVector or DCplxTrans object or as one of the following specifications:

• "shift(x, y)": shifts the input layout horizontally by x and vertically by y micrometers

For more details visit
https://www.klayout.org

Page 371 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.4. DRC Reference: Source Object

• "rotate(a)": rotates the input layout by a degree counter-clockwise

• "magnify(m)": magnifies the input layout by the factor m (NOTE: using fractional scale factors may result in small gaps due to grid
snapping)

• "mirror_x": mirrors the input layout at the x axis

• "mirror_y": mirrors the input layout at the y axis

Multiple transformation specs can be given. In that case the transformations are applied right to left. Using "global_transform" will reset any
global transformation present already. Without an argument, the global transformation is reset.

The following example rotates the layout by 90 degree at the origin (0, 0) and then shifts it up by 100 micrometers:

source.global_transform(shift(0, 100.um), rotate(90.0))

"input" - Specifies input from a source

Usage:

• source.input(layer)

• source.input(layer, datatype)

• source.input(layer_into)

• source.input(filter, ...)

Creates a layer with the shapes from the given layer of the source. The layer can be specified by layer and optionally datatype, by a
LayerInfo object or by a sequence of filters. Filters are expressions describing ranges of layers and/or datatype numbers or layer names.
Multiple filters can be given and all layers matching at least one of these filter expressions are joined to render the input layer for the DRC
engine.

Some filter expressions are:

• 1/0-255 : Datatypes 0 to 255 for layer 1

• 1-10 : Layers 1 to 10, datatype 0

• METAL : A layer named "METAL"

• METAL (17/0) : A layer named "METAL" or layer 17, datatype 0 (for GDS, which does not have names)

Layers created with "input" may contain both texts (labels) and polygons. There is a subtle difference between flat and deep mode: in flat
mode, texts are not visible in polygon operations. In deep mode, texts appear as small 2x2 DBU rectangles. In flat mode, some operations
such as clipping are not fully supported for texts. Also, texts will vanish in most polygon operations such as booleans etc.

Texts can later be selected on the layer returned by "input" with the Layer#texts method.

If you don't want to see texts, use polygons to create an input layer with polygon data only. If you only want to see texts, use labels to
create an input layer with texts only.

labels also produces a true "text layer" which contains text objects. A variety of operations is available for these objects, such as boolean
"and" and "not" with a polygon layer. True text layers should be preferred over mixed polygon/text layers if text object processing is
required.

Use the global version of "input" without a source object to address the default source.

"labels" - Gets the labels (texts) from an input layer

Usage:

For more details visit
https://www.klayout.org

Page 372 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.4. DRC Reference: Source Object

• source.labels(layer)

• source.labels(layer, datatype)

• source.labels(layer_into)

• source.labels(filter, ...)

Creates a true text layer with the labels from the given layer of the source.

This method is identical to input, but takes only texts from the given input layer. Starting with version 0.27, the result is no longer a polygon
layer that tries to provide text support but a layer type which is provided for carrying text objects explicitly.

Use the global version of "labels" without a source object to address the default source.

"layers" - Gets the layers the source contains

Usage:

• source.layers

Delivers a list of LayerInfo objects representing the layers inside the source.

One application is to read all layers from a source. In the following example, the "and" operation is used to perform a clip with the given
rectangle. Note that this solution is not efficient - it's provided as an example only:

output_cell("Clipped")

clip_box = polygon_layer
clip_box.insert(box(0.um, -4.um, 4.um, 0.um))

layers.each { |l| (input(l) & clip_box).output(l) }

"layout" - Returns the Layout object associated with this source

Usage:

• layout

"make_layer" - Creates an empty polygon layer based on the hierarchy of the layout

Usage:

• make_layer

This method delivers a new empty original layer.

"overlapping" - Specifies input selected from a region in overlapping mode

Usage:

• source.overlapping(...)

Like clip, this method will create a new source delivering shapes from a specified rectangular region. In contrast to clip, all shapes
overlapping the region with their bounding boxes are delivered as a whole and are not clipped. Hence shapes may extent beyond the limits
of the specified rectangle.

touching is a similar method which delivers shapes touching the search region with their bounding box (without the requirement to overlap)

For more details visit
https://www.klayout.org

Page 373 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.4. DRC Reference: Source Object

"path" - Gets the path of the corresponding layout file or nil if there is no path

Usage:

• path

"polygons" - Gets the polygon shapes (or shapes that can be converted polygons) from an input
layer

Usage:

• source.polygons(layer)

• source.polygons(layer, datatype)

• source.polygons(layer_into)

• source.polygons(filter, ...)

Creates a layer with the polygon shapes from the given layer of the source. With "polygon shapes" we mean all kind of shapes that can be
converted to polygons. Those are boxes, paths and real polygons.

This method is identical to input with respect to the options supported.

Use the global version of "polygons" without a source object to address the default source.

"select" - Adds cell name expressions to the cell filters

Usage:

• source.select(filter1, filter2, ...)

This method will construct a new source object with the given cell filters applied. Cell filters will enable or disable cells plus their subtree.
Cells can be switched on and off, which makes the hierarchy traversal stop or begin delivering shapes at the given cell. The arguments of
the select method form a sequence of enabling or disabling instructions using cell name pattern in the glob notation ("*" as the wildcard, like
shell). Disabling instructions start with a "-", enabling instructions with a "+" or no specification.

The following options are available:

• + name_filter : Cells matching the name filter will be enabled

• name_filter : Same as "+name_filter"

• - name_filter : Cells matching the name filter will be disabled

To disable the TOP cell but enabled a hypothetical cell B below the top cell, use that code:

layout_with_selection = source.select("-TOP", "+B")
l1 = source.input(1, 0)
...

Please note that the sample above will deliver the children of "B" because there is nothing said about how to proceed with cells other
than "TOP" or "B". Conceptually, the instantiation path of a cell will be matched against the different filters in the order they are given. A
matching negative expression will disable the cell, a matching positive expression will enable the cell. Hence, every cell that has a "B" in
the instantiation path is enabled.

The following code will just select "B" without its children, because in the first "-*" selection, all cells including the children of "B" are
disabled:

For more details visit
https://www.klayout.org

Page 374 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.4. DRC Reference: Source Object

layout_with_selection = source.select("-*", "+B")
l1 = source.input(1, 0)
...

The short form "-" will disable the top cell. This code is identical to the first example and will start with a disabled top cell regardless of its
name:

layout_with_selection = source.select("-", "+B")
l1 = source.input(1, 0)
...

"touching" - Specifies input selected from a region in touching mode

Usage:

• source.touching(box)

• source.touching(p1, p2)

• source.touching(l, b, r, t)

Like clip, this method will create a new source delivering shapes from a specified rectangular region. In contrast to clip, all shapes touching
the region with their bounding boxes are delivered as a whole and are not clipped. Hence shapes may extent beyond the limits of the
specified rectangle.

overlapping is a similar method which delivers shapes overlapping the search region with their bounding box (and not just touching)

For more details visit
https://www.klayout.org

Page 375 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

2.20.5. DRC Reference: Global Functions

"angle (in condition)" - In universal DRC context: selects edges based on their orientation

Usage:

• angle (in condition)

"angle" represents the edge orientation filter on the primary shape edges in DRC expressions (see Layer#drc and DRC#angle for more
details). In this context, the operation acts similar to Layer#with_angle.

"antenna_check" - Performs an antenna check

Usage:

• antenna_check(gate, metal, ratio, [diode_specs ...])

See Netter#antenna_check for a description of that function.

"area" - Computes the total area or in universal DRC context: selects the primary shape if the
area is meeting the condition

Usage:

• area (in condition)

• area(layer)

This function can be used with a layer argument. In this case it is equivalent to "layer.area" (see Layer#area) and returns the total area of
the polygons in the layer.

Without a layer argument, "area" represents an area filter for primary shapes in DRC expressions (see Layer#drc and DRC#area for more
details).

"area_ratio" - Selects primary shapes based on the ratio of bounding box and polygon area

Usage:

• area_ratio (in condition)

See Layer#drc, area_ratio and DRC#area_ratio for more details.

"bbox_aspect_ratio" - Selects primary shapes based on the aspect ratio of their bounding boxes

Usage:

• bbox_aspect_ratio (in condition)

See Layer#drc, bbox_aspect_ratio and DRC#bbox_aspect_ratio for more details.

"bbox_height" - Selects primary shapes based on their bounding box height

Usage:

• bbox_height (in condition)

For more details visit
https://www.klayout.org

Page 376 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

This method creates a universal DRC expression (see Layer#drc) to select primary shapes whose bounding box height satisfies the
condition. Conditions may be written as arithmetic comparisons against numeric values. For example, "bbox_height < 2.0" will select all
primary shapes whose bounding box height is less than 2 micrometers. See Layer#drc for more details about comparison specs. Plain
"bbox_min" is equivalent to "primary.bbox_min" - i.e. it is used on the primary shape. Also see DRC#bbox_min.

"bbox_max" - Selects primary shapes based on their bounding box height or width, whichever
is larger

Usage:

• bbox_max (in condition)

See Layer#drc, bbox_max and DRC#bbox_max for more details.

"bbox_min" - Selects primary shapes based on their bounding box height or width, whichever is
smaller

Usage:

• bbox_max (in condition)

See Layer#drc, bbox_min and DRC#bbox_min for more details.

"bbox_width" - Selects primary shapes based on their bounding box width

Usage:

• bbox_max (in condition)

See Layer#drc, bbox_height and DRC#bbox_height for more details.

"bjt3" - Supplies the BJT3 transistor extractor class

Usage:

• bjt3(name)

• bjt3(name, class)

Use this class with extract_devices to specify extraction of a bipolar junction transistor

See DeviceExtractorBJT3Transistor for more details about this extractor.

"bjt4" - Supplies the BJT4 transistor extractor class

Usage:

• bjt4(name)

• bjt4(name, class)

Use this class with extract_devices to specify extraction of a bipolar junction transistor with a substrate terminal

See DeviceExtractorBJT4Transistor for more details about this extractor.

"box" - Creates a box object

Usage:

For more details visit
https://www.klayout.org

Page 377 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

• box(...)

This function creates a box object. The arguments are the same than for the DBox constructors.

"capacitor" - Supplies the capacitor extractor class

Usage:

• capacitor(name, area_cap)

• capacitor(name, area_cap, class)

Use this class with extract_devices to specify extraction of a capacitor. The area_cap argument is the capacitance in Farad per square
micrometer.

See DeviceExtractorCapacitor for more details about this extractor.

"capacitor_with_bulk" - Supplies the capacitor extractor class that includes a bulk terminal

Usage:

• capacitor_with_bulk(name, area_cap)

• capacitor_with_bulk(name, area_cap, class)

Use this class with extract_devices to specify extraction of a capacitor with a bulk terminal. The area_cap argument is the capacitance in
Farad per square micrometer.

See DeviceExtractorCapacitorWithBulk for more details about this extractor.

"cell" - Selects a cell for input on the default source

Usage:

• cell(args)

See Source#cell for a description of that function. In addition to the functionality described there, the global function will also send the
output to the specified cell.

The following code will select cell "MACRO" from the input layout:

cell("MACRO")
shapes now will be taken from cell "MACRO"
l1 = input(1, 0)

"cheat" - Hierarchy cheats

Usage:

• cheat(args) { block }

Hierarchy cheats can be used in deep mode to shortcut hierarchy evaluation for certain cells and consider their local configuration only.
Cheats are useful for example when dealing with memory arrays. Often such arrays are build from unit cells and those often overlap
with their neighbors. Now, if the hierarchical engine encounters such a situation, it will first analyse all these interactions (which can be
expensive) and then it may come to the conclusion that boundary instances need to be handled differently than inside instances. This
in turn might lead to propagation of shapes and in an LVS context to device externalisation: because some devices might have different
parameters for boundary cells than for inside cells, the device instances can no longer be kept inside the unit cell. Specifically for memory
arrays, this is not desired as eventually this leads to flattening of the whole array.

For more details visit
https://www.klayout.org

Page 378 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

The solution is to cheat: provided the unit cell is fully fledged and neighbors do not disturb the unit cell's configuration in critical ways, the
unit cell can be treated as being isolated and results are put together in the usual way.

Cheats can be applied on layout operations - specifically booleans - and device extraction operations. Cheats are only effective in deep
mode.

For booleans, a cheat means that the cheating cell's boolean results are computed locally and are combined afterwards. A cheat is
introduced this way:

deep

l1 = input(1, 0)
l2 = input(2, 0)

usual booleans
l1and2 = l1 & l2

will compute "UNIT_CELL" isolated and everything else in normal hierarchical mode:
l1minus2 = cheat("UNIT_CELL) { l1 - l2 }

The cheat block can also be wrapped in do .. end statements and can return multiple layer objects:

deep

l1 = input(1, 0)
l2 = input(2, 0)

computes both AND and NOT of l1 and l2 with cheating for "UNIT_CELL"
l1and2, l1minus2 = cheat("UNIT_CELL) do
[l1 & l2, l1 - l2]
end

(Technically, the cheat code block is a Ruby Proc and cannot create variables outside its scope. Hence the results of this code block have
to be passed through the "cheat" method).

To apply cheats for device extraction, use the following scheme:

deep

poly = input(1, 0)
active = input(2, 0)

sd = active - poly
gate = active & poly

device extraction with cheating for "UNIT_CELL":
cheat("UNIT_CELL") do
extract_devices(mos3("NMOS"), { "SD" => sd, "G" => gate, "tS" => sd, "tD" => sd, "tG" => poly }
end

The argument to the cheat method is a list of cell name pattern (glob-style pattern). For example:

cheat("UNIT_CELL*") { ... }
cheat("UNIT_CELL1", "UNIT_CELL2") { ... }
cheat("UNIT_CELL{1,2}") { ... }

For LVS applications, it's usually sufficient to cheat in the device extraction step. Cheats have been introduced in version 0.26.1.

For more details visit
https://www.klayout.org

Page 379 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

"clear_connections" - Clears all connections stored so far

Usage:

• clear_connections

See Netter#clear_connections for a description of that function.

"clip" - Specifies clipped input on the default source

Usage:

• clip(args)

See Source#clip for a description of that function.

The following code will select shapes within a 500x600 micron rectangle (lower left corner at 0,0) from the input layout. The shapes will be
clipped to that rectangle:

clip(0.mm, 0.mm, 0.5.mm, 0.6.mm)
shapes now will be taken from the given rectangle and clipped to it
l1 = input(1, 0)

To remove the clip condition, call "clip" without any arguments.

"connect" - Specifies a connection between two layers

Usage:

• connect(a, b)

See Netter#connect for a description of that function.

"connect_explicit" - Specifies explicit net connections

Usage:

• connect_explicit(net_names)

• connect_explicit(cell_pattern, net_names)

See Netter#connect_explicit for a description of that function. Net names is an array (use square brackets to list the net names).

"connect_global" - Specifies a connection to a global net

Usage:

• connect_global(l, name)

See Netter#connect_global for a description of that function.

"connect_implicit" - Specifies a label pattern for implicit net connections

Usage:

• connect_implicit(label_pattern)

For more details visit
https://www.klayout.org

Page 380 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

• connect_implicit(cell_pattern, label_pattern)

See Netter#connect_implicit for a description of that function.

"corners" - Selects corners of polygons

Usage:

• corners([options]) (in condition)

• corners(layer [, options])

This function can be used with a layer argument. In this case it is equivalent to "layer.corners" (see Layer#corners). Without a layer
argument, "corners" represents the corner generator/filter in primary shapes for DRC expressions (see Layer#drc and DRC#corners for
more details).

Like the layer-based version, the "corners" operator accepts the output type option: "as_dots" for dot-like edges, "as_boxes" for small (2x2
DBU) box markers and "as_edge_pairs" for edge pairs. The default output type is "as_boxes".

The "corners" operator can be put into a condition which means it's applied to corners meeting a particular angle constraint.

"covering" - Selects shapes entirely covering other shapes

Usage:

• covering(other) (optionally in condition)

This operator represents the selector of primary shapes which entirely cover shapes from the other layer. This version can be put into
a condition indicating how many shapes of the other layer need to be covered. Use this operator within DRC expressions (also see
Layer#drc). If can be used as method to an expression. See there for more details: DRC#covering.

"dbu" - Gets or sets the database unit to use

Usage:

• dbu(dbu_value)

• dbu

Without any argument, this method gets the database unit used inside the DRC engine.

With an argument, sets the database unit used internally in the DRC engine. Without using that method, the database unit is automatically
taken as the database unit of the last input. A specific database unit can be set in order to optimize for two layouts (i.e. take the largest
common denominator). When the database unit is set, it must be set at the beginning of the script and before any operation that uses it.

"deep" - Enters deep (hierarchical) mode

Usage:

• deep

In deep mode, the operations will be performed in a hierarchical fashion. Sometimes this reduces the time and memory required for an
operation, but this will also add some overhead for the hierarchical analysis.

"deepness" is a property of layers. Layers created with "input" while in deep mode carry hierarchy. Operations involving such layers at the
only or the first argument are carried out in hierarchical mode.

Hierarchical mode has some more implications, like "merged_semantics" being implied always. Sometimes cell variants will be created.

Deep mode can be cancelled with tiles or flat.

For more details visit
https://www.klayout.org

Page 381 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

"deep_reject_odd_polygons" - Gets or sets a value indicating whether the reject odd polygons
in deep mode

Usage:

• deep_reject_odd_polygons(flag)

• deep_reject_odd_polygons

In deep mode, non-orientable (e.g. "8"-shaped) polygons may not be resolved properly. By default the interpretation of such polygons is
undefined - they may even vanish entirely. By setting this flag to true, the deep mode layout processor will reject such polygons with an
error.

"device_scaling" - Specifies a dimension scale factor for the geometrical device properties

Usage:

• device_scaling(factor)

See Netter#device_scaling for a description of that function.

"diode" - Supplies the diode extractor class

Usage:

• diode(name)

• diode(name, class)

Use this class with extract_devices to specify extraction of a planar diode

See DeviceExtractorDiode for more details about this extractor.

"dmos3" - Supplies the DMOS3 transistor extractor class

Usage:

• dmos3(name)

• dmos3(name, class)

Use this class with extract_devices to specify extraction of a three-terminal DMOS transistor. A DMOS transistor is essentially the same
than a MOS transistor, but source and drain are separated.

See DeviceExtractorMOS3Transistor for more details about this extractor (strict mode applies for 'dmos3').

"dmos4" - Supplies the MOS4 transistor extractor class

Usage:

• dmos4(name)

• dmos4(name, class)

Use this class with extract_devices to specify extraction of a four-terminal DMOS transistor. A DMOS transistor is essentially the same than
a MOS transistor, but source and drain are separated.

See DeviceExtractorMOS4Transistor for more details about this extractor (strict mode applies for 'dmos4').

For more details visit
https://www.klayout.org

Page 382 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

"edge" - Creates an edge object

Usage:

• edge(...)

This function creates an edge object. The arguments are the same than for the DEdge constructors.

"edge_layer" - Creates an empty edge layer

Usage:

• edge_layer

The intention of that method is to create an empty layer which can be filled with edge objects using Layer#insert.

"edge_pairs" - Gets the edges from an original layer

Usage:

• edge_pairs(args)

See Source#edge_pairs for a description of that function.

"edges" - Gets the edges from an original layer

Usage:

• edges(args)

See Source#edges for a description of that function.

"enc" - Synonym for "enclosing"

Usage:

• enc(...)

"enc" is the short form for enclosing.

"enclosed" - Performs an enclosing check (other enclosing layer)

Usage:

• enclosed(other [, options]) (in conditions)

• enclosed(layer, other [, options])

This check verifies if the polygons of the input layer are enclosed by shapes of the other input layer by a certain distance. It has manifold
options. See Layer#width for the basic options such as metrics, projection and angle constraints etc. This check also features opposite and
rectangle filtering. See Layer#separation for details about opposite and rectangle error filtering.

This function is essentially the reverse of enclosing. In case of "enclosed", the other layer must be bigger than the primary layer.

Classic mode

This function can be used in classic mode with a layer argument. In this case it is equivalent to "layer.enclosed" (see Layer#enclosed).

For more details visit
https://www.klayout.org

Page 383 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

classic "enclosed" check for < 0.2 um
in = layer(1, 0)
other = layer(2, 0)
errors = enclosed(in, other, 0.2.um)

Universal DRC

The version without a first layer is intended for use within DRC expressions together with the "universal DRC" method Layer#drc. In this
case, this function needs to be put into a condition to specify the check constraints. The other options of Layer#enclosed (e.g. metrics,
projection constraints, angle limits etc.) apply to this version too:

universal DRC "enclosed" check for < 0.2 um
in = layer(1, 0)
other = layer(2, 0)
errors = in.drc(enclosed(other) < 0.2.um)

The conditions may involve an upper and lower limit. The following examples illustrate the use of this function with conditions:

out = in.drc(enclosed(other) < 0.2.um)
out = in.drc(enclosed(other) <= 0.2.um)
out = in.drc(enclosed(other) > 0.2.um)
out = in.drc(enclosed(other) >= 0.2.um)
out = in.drc(enclosed(other) == 0.2.um)
out = in.drc(enclosed(other) != 0.2.um)
out = in.drc(0.1.um <= enclosed(other) < 0.2.um)

The result of the enclosed check are edges or edge pairs forming the markers. These markers indicate the presence of the specified
condition.

With a lower and upper limit, the results are edges marking the positions on the primary shape where the condition is met. With a lower limit
alone, the results are edge pairs which are formed by two identical, but opposite edges attached to the primary shape. Without an upper
limit only, the first edge of the marker is attached to the primary shape while the second edge is attached to the shape of the "other" layer.

For more details visit
https://www.klayout.org

Page 384 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

When "larger than" constraints are used, this function will produce the edges from the first layer only. The result will still be edge pairs for
consistency, but each edge pair holds one edge from the original polygon plus a reverse copy of that edge in the second member. Use
"first_edges" to extract the actual edges from the first input (see separation for an example).

"enclosing" - Performs an enclosing check

Usage:

• enclosing(other [, options]) (in conditions)

• enclosing(layer, other [, options])

This check verifies if the polygons of the input layer are enclosing the shapes of the other input layer by a certain distance. It has manifold
options. See Layer#width for the basic options such as metrics, projection and angle constraints etc. This check also features opposite and
rectangle filtering. See Layer#separation for details about opposite and rectangle error filtering.

Classic mode

This function can be used in classic mode with a layer argument. In this case it is equivalent to "layer.enclosing" (see Layer#enclosing).

classic "enclosing" check for < 0.2 um
in = layer(1, 0)
other = layer(2, 0)
errors = enclosing(in, other, 0.2.um)

For more details visit
https://www.klayout.org

Page 385 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

Universal DRC

The version without a first layer is intended for use within DRC expressions together with the "universal DRC" method Layer#drc. In this
case, this function needs to be put into a condition to specify the check constraints. The other options of Layer#enclosing (e.g. metrics,
projection constraints, angle limits etc.) apply to this version too:

universal DRC "enclosing" check for < 0.2 um
in = layer(1, 0)
other = layer(2, 0)
errors = in.drc(enclosing(other) < 0.2.um)

The conditions may involve an upper and lower limit. The following examples illustrate the use of this function with conditions:

out = in.drc(enclosing(other) < 0.2.um)
out = in.drc(enclosing(other) <= 0.2.um)
out = in.drc(enclosing(other) > 0.2.um)
out = in.drc(enclosing(other) >= 0.2.um)
out = in.drc(enclosing(other) == 0.2.um)
out = in.drc(enclosing(other) != 0.2.um)
out = in.drc(0.1.um <= enclosing(other) < 0.2.um)

The result of the enclosing check are edges or edge pairs forming the markers. These markers indicate the presence of the specified
condition.

With a lower and upper limit, the results are edges marking the positions on the primary shape where the condition is met. With a lower limit
alone, the results are edge pairs which are formed by two identical, but opposite edges attached to the primary shape. Without an upper
limit only, the first edge of the marker is attached to the primary shape while the second edge is attached to the shape of the "other" layer.

For more details visit
https://www.klayout.org

Page 386 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

When "larger than" constraints are used, this function will produce the edges from the first layer only. The result will still be edge pairs for
consistency, but each edge pair holds one edge from the original polygon plus a reverse copy of that edge in the second member. Use
"first_edges" to extract the actual edges from the first input (see separation for an example).

"error" - Prints an error

Usage:

• error(message)

Similar to log, but the message is printed formatted as an error

"extent" - Creates a new layer with the bounding box of the default source or cell bounding
boxes

Usage:

• extent

• extent(cell_filter)

See Source#extent for a description of that function.

For more details visit
https://www.klayout.org

Page 387 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

"extent_refs" - Returns partial references to the boundings boxes of the polygons

Usage:

• extent_refs([options])

• extent_refs(layer, [options])

This function can be used with a layer argument. In this case it is equivalent to "layer.extent_refs" (see Layer#extent_refs). Without a
layer argument, "extent_refs" represents the partial extents extractor on primary shapes within DRC expressions (see Layer#drc and
DRC#extent_refs for more details).

"extents" - Returns the bounding box of each input object

Usage:

• extents([enlargement])

• extents(layer, [enlargement])

This function can be used with a layer argument. In this case it is equivalent to "layer.extents" (see Layer#extents). Without a layer
argument, "extents" represents the extents generator on primary shapes within DRC expressions (see Layer#drc and DRC#extents for
more details).

"extract_devices" - Extracts devices for a given device extractor and device layer selection

Usage:

• extract_devices(extractor, layer_hash)

• extract_devices(extractor_class, name, layer_hash)

See Netter#extract_devices for a description of that function.

"flat" - Disables tiling mode

Usage:

• flat

Disables tiling mode. Tiling mode can be enabled again with tiles later.

"foreign" - Represents all other polygons from primary except the current one

Usage:

• foreign

The primary input of the universal DRC function is the layer the Layer#drc function is called on. This operation represents all "other"
primary polygons while primary represents the current polygon.

This feature opens new options for processing layouts beyond the abilities of the classical DRC concept. For classic DRC, intra-layer
interactions are always symmetric: a polygon cannot be considered separated from it's neighbors on the same layer.

The following example computes every part of the input which is closer than 0.5 micrometers to other (disconnected) polygons on the same
layer:

For more details visit
https://www.klayout.org

Page 388 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

out = in.drc(primary & foreign.sized(0.5.um))

"global_transform" - Gets or sets a global transformation

Usage:

• global_transform

• global_transform([transformations])

Applies a global transformation to the default source layout. See Source#global_transform for a description of this feature.

"holes" - Selects all holes from the input polygons

Usage:

• holes

• holes(layer)

This function can be used with a layer argument. In this case it is equivalent to "layer.holes" (see Layer#hulls). Without a layer argument,
"holes" represents a hole extractor for primary shapes in DRC expressions (see Layer#drc and DRC#hulls for more details).

"hulls" - Selects all hulls from the input polygons

Usage:

• hulls

• hulls(layer)

This function can be used with a layer argument. In this case it is equivalent to "layer.hulls" (see Layer#hulls). Without a layer argument,
"hulls" represents a hull contour extractor for primary shapes in DRC expressions (see Layer#drc and DRC#hulls for more details).

"if_all" - Evaluates to the primary shape when all condition expression results are non-empty

Usage:

• if_all(c1, ... cn)

This function will evaluate the conditions c1 to cn and return the current primary shape if all conditions render a non-empty result. The
following example selects all shapes which are rectangles and whose area is larger than 0.5 square micrometers:

out = in.drc(if_all(area > 0.5, rectangle))

The condition expressions may be of any type (edges, edge pairs and polygons).

"if_any" - Evaluates to the primary shape when any condition expression results is non-empty

Usage:

• if_any(c1, ... cn)

This function will evaluate the conditions c1 to cn and return the current primary shape if at least one condition renders a non-empty result.
See if_all for an example how to use the if_... functions.

For more details visit
https://www.klayout.org

Page 389 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

"if_none" - Evaluates to the primary shape when all of the condition expression results are
empty

Usage:

• if_none(c1, ... cn)

This function will evaluate the conditions c1 to cn and return the current primary shape if all conditions renders an empty result. See if_all
for an example how to use the if_... functions.

"info" - Outputs as message to the logger or progress window

Usage:

• info(message)

• info(message, indent)

Prints the message to the log window in verbose mode. In non-verbose more, nothing is printed but a statement is put into the progress
window. log is a function that always prints a message.

"input" - Fetches the shapes from the specified input from the default source

Usage:

• input(args)

See Source#input for a description of that function. This method will fetch polygons and labels. See polygons and labels for more specific
versions of this method.

"inside" - Selects shapes entirely inside other shapes

Usage:

• inside(other)

This operator represents the selector of primary shapes which are inside shapes from the other layer. Use this operator within DRC
expressions (also see Layer#drc). If can be used as method to an expression. See there for more details: DRC#inside.

"interacting" - Selects shapes interacting with other shapes

Usage:

• interacting(other) (optionally in condition)

This operator represents the selector of primary shapes which interact with shapes from the other layer. This version can be put into
a condition indicating how many shapes of the other layer need to be covered. Use this operator within DRC expressions (also see
Layer#drc). If can be used as method to an expression. See there for more details: DRC#interacting.

"is_deep?" - Returns true, if in deep mode

Usage:

• is_deep?

For more details visit
https://www.klayout.org

Page 390 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

"is_tiled?" - Returns true, if in tiled mode

Usage:

• is_tiled?

"iso" - Synonym for "isolated"

Usage:

• iso(...)

"iso" is the short form for isolated.

"isolated" - Performs an isolation (inter-polygon space) check

Usage:

• isolated([options]) (in conditions)

• iso([options]) (in conditions)

• isolated(layer [, options])

• iso(layer [, options])

Provides a intra-polygon space check for polygons. It is similar to space, but checks inter-polygon space only. "iso" is a synonym for
"isolated". This check has manifold options. See Layer#width for the basic options such as metrics, projection and angle constraints etc.
This check also features opposite and rectangle filtering. See Layer#separation for details about opposite and rectangle error filtering.

Classic mode

This function can be used in classic mode with a layer argument. In this case it is equivalent to "layer.isolated" (see Layer#isolated).

classic "isolated" check for space < 1.2 um
in = layer(1, 0)
errors = isolated(in, 1.2.um)

Universal DRC

The version without a layer is intended for use within DRC expressions together with the "universal DRC" method Layer#drc. In this case,
this function needs to be put into a condition to specify the check constraints. The other options of Layer#isolated (e.g. metrics, projection
constraints, angle limits etc.) apply to this version too:

universal DRC "isolated" check for space < 1.2.um
in = layer(1, 0)
errors = in.drc(isolated < 1.2.um)

See enclosing for more details about the various ways to specify conditions.

For more details visit
https://www.klayout.org

Page 391 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

"l2n_data" - Gets the internal LayoutToNetlist object for the default Netter

Usage:

• l2n_data

See Netter#l2n_data for a description of that function.

"labels" - Gets the labels (text) from an original layer

Usage:

• labels(args)

See Source#labels for a description of that function.

"layers" - Gets the layers contained in the default source

Usage:

• layers

See Source#layers for a description of that function.

For more details visit
https://www.klayout.org

Page 392 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

"layout" - Specifies an additional layout for the input source.

Usage:

• layout

• layout(what)

This function can be used to specify a new layout for input. It returns an Source object representing that layout. The "input" method of that
object can be used to get input layers for that layout.

"what" specifies what input to use. "what" be either

• A string "@n" specifying input from a cellview in the current view

• A layout filename plus an optional cell name

• A Layout object

• A Cell object

Without any arguments the default layout is returned.

If a file name is given, a cell name can be specified as the second argument. If not, the top cell is taken which must be unique in that case.

Having specified a layout for input enables to use the input method for getting input:

XOR between layers 1 or the default input and "second_layout.gds":
l2 = layout("second_layout.gds")
(input(1, 0) ^ l2.input(1, 0)).output(100, 0)

For further methods on the source object see Source.

"length (in condition)" - Computes the total edge length of an edge layer or in universal DRC
context: selects edges based on a length condition

Usage:

• length (in condition)

• length(layer)

This function can be used with a layer argument. In this case it is equivalent to "layer.length" (see Layer#length). Without a layer argument,
"length" represents the edge length filter on the primary shape edges in DRC expressions (see Layer#drc and DRC#length for more
details). In this context, the operation acts similar to Layer#with_length.

"log" - Outputs as message to the logger window

Usage:

• log(message)

• log(message, indent)

Prints the message to the log window. info is a function that prints a message only if verbose mode is enabled.

"log_file" - Specify the log file where to send to log to

Usage:

For more details visit
https://www.klayout.org

Page 393 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

• log_file(filename)

After using that method, the log output is sent to the given file instead of the logger window or the terminal.

"make_layer" - Creates an empty polygon layer based on the hierarchical scheme selected

Usage:

• make_layer

The intention of this method is to provide an empty polygon layer based on the hierarchical scheme selected. This will create a new layer
with the hierarchy of the current layout in deep mode and a flat layer in flat mode. This method is similar to polygon_layer, but the latter
does not create a hierarchical layer. Hence the layer created by make_layer is suitable for use in device extraction for example, while the
one delivered by polygon_layer is not.

On the other hand, a layer created by the make_layer method is not intended to be filled with Layer#insert.

"max_area_ratio" - Gets or sets the maximum bounding box to polygon area ratio for deep
mode fragmentation

Usage:

• max_area_ratio(ratio)

• max_area_ratio

In deep mode, polygons with a bounding box to polygon area ratio bigger than the given number will be split into smaller chunks to optimize
performance (which gets better if the polygon's bounding boxes do not cover a lot of empty space). The default threshold is 3.0 which
means fairly compact polygons. Use this method with a numeric argument to set the value and without an argument to get the current
maximum area ratio. Set the value to zero to disable splitting by area ratio.

See also max_vertex_count for the other option affecting polygon splitting.

"max_vertex_count" - Gets or sets the maximum vertex count for deep mode fragmentation

Usage:

• max_vertex_count(count)

• max_vertex_count

In deep mode, polygons with more than the given number of vertexes will be split into smaller chunks to optimize performance (which is
better or less complex polygons). The default threshold is 16 vertexes. Use this method with a vertex count to set the value and without an
argument to get the current maximum vertex count. Set the value to zero to disable splitting by vertex count.

See also max_area_ratio for the other option affecting polygon splitting.

"middle" - Returns the centers of polygon bounding boxes

Usage:

• middle([options])

• middle(layer, [options])

This function can be used with a layer argument. In this case it is equivalent to "layer.middle" (see Layer#middle). Without a layer
argument, "middle" represents the bounding box center marker generator on primary shapes within DRC expressions (see Layer#drc and
DRC#middle for more details).

For more details visit
https://www.klayout.org

Page 394 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

"mos3" - Supplies the MOS3 transistor extractor class

Usage:

• mos3(name)

• mos3(name, class)

Use this class with extract_devices to specify extraction of a three-terminal MOS transistor.

See DeviceExtractorMOS3Transistor for more details about this extractor (non-strict mode applies for 'mos3').

"mos4" - Supplies the MOS4 transistor extractor class

Usage:

• mos4(name)

• mos4(name, class)

Use this class with extract_devices to specify extraction of a four-terminal MOS transistor.

See DeviceExtractorMOS4Transistor for more details about this extractor (non-strict mode applies for 'mos4').

"netlist" - Obtains the extracted netlist from the default Netter

The netlist is a Netlist object. If no netlist is extracted yet, this method will trigger the extraction process. See Netter#netlist for a description
of this function.

"netter" - Creates a new netter object

Usage:

• netter

See Netter for more details

"no_borders" - Reset the tile borders

Usage:

• no_borders

Resets the tile borders - see tile_borders for a description of tile borders.

"notch" - Performs a notch (intra-polygon space) check

Usage:

• notch([options]) (in conditions)

• notch(layer [, options])

Provides a intra-polygon space check for polygons. It is similar to space, but checks intra-polygon space only. It has manifold options. See
Layer#width for the basic options such as metrics, projection and angle constraints etc.

Classic mode

This function can be used in classic mode with a layer argument. In this case it is equivalent to "layer.notch" (see Layer#notch).

For more details visit
https://www.klayout.org

Page 395 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

classic "notch" check for space < 1.2 um
in = layer(1, 0)
errors = notch(in, 1.2.um)

Universal DRC

The version without a layer is intended for use within DRC expressions together with the "universal DRC" method Layer#drc. In this case,
this function needs to be put into a condition to specify the check constraints. The other options of Layer#notch (e.g. metrics, projection
constraints, angle limits etc.) apply to this version too:

universal DRC "notch" check for space < 1.2.um
in = layer(1, 0)
errors = in.drc(notch < 1.2.um)

See enclosing for more details about the various ways to specify conditions.

"output" - Outputs a layer to the report database or output layout

Usage:

• output(layer, args)

For more details visit
https://www.klayout.org

Page 396 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

This function is equivalent to "layer.output(args)". See Layer#output for details about this function.

"output_cell" - Specifies a target cell, but does not change the target layout

Usage:

• output_cell(cellname)

This method switches output to the specified cell, but does not change the target layout nor does it switch the output channel to layout if is
report database.

"outside" - Selects shapes entirely outside other shapes

Usage:

• outside(other)

This operator represents the selector of primary shapes which are outside shapes from the other layer. Use this operator within DRC
expressions (also see Layer#drc). If can be used as method to an expression. See there for more details: DRC#outside.

"overlap" - Performs an overlap check

Usage:

• overlap(other [, options]) (in conditions)

• overlap(layer, other [, options])

Provides an overlap check (primary layer vs. another layer). This check has manifold options. See Layer#width for the basic options such
as metrics, projection and angle constraints etc. This check also features opposite and rectangle filtering. See Layer#separation for details
about opposite and rectangle error filtering.

Classic mode

Like other checks, this function is available as a classic DRC function with a layer as the first argument and as an DRC expression operator
for use with Layer#drc.

classic "overlap" check for < 0.2 um
in = layer(1, 0)
other = layer(2, 0)
errors = overlap(in, other, 0.2.um)

Universal DRC

For use with the "unversal DRC" put the separation expression into the "drc" function call and use a condition to specify the constraint:

universal DRC "overlap" check for < 0.2 um
in = layer(1, 0)
other = layer(2, 0)
errors = in.drc(overlap(other) < 0.2.um)

For more details visit
https://www.klayout.org

Page 397 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

When "larger than" constraints are used, this function will produce the edges from the first layer only. The result will still be edge pairs for
consistency, but each edge pair holds one edge from the original polygon plus a reverse copy of that edge in the second member. Use
"first_edges" to extract the actual edges from the first input (see separation for an example).

"overlapping" - Selects shapes overlapping with other shapes

Usage:

• overlapping(other) (optionally in condition)

This operator represents the selector of primary shapes which overlap shapes from the other layer. This version can be put into a condition
indicating how many shapes of the other layer need to be covered. Use this operator within DRC expressions (also see Layer#drc). If can
be used as method to an expression. See there for more details: DRC#overlapping.

"p" - Creates a point object

Usage:

• p(x, y)

A point is not a valid object by itself, but it is useful for creating paths for polygons:

x = polygon_layer

For more details visit
https://www.klayout.org

Page 398 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

x.insert(polygon([p(0, 0), p(16.0, 0), p(8.0, 8.0)]))

"path" - Creates a path object

Usage:

• path(...)

This function creates a path object. The arguments are the same than for the DPath constructors.

"perimeter" - Computes the total perimeter or in universal DRC context: selects the primary
shape if the perimeter is meeting the condition

Usage:

• perimeter (in condition)

• perimeter(layer)

This function can be used with a layer argument. In this case it is equivalent to "layer.perimeter" (see Layer#perimeter) and returns the total
perimeter of all polygons in the layer.

Without a layer argument, "perimeter" represents a perimeter filter for primary shapes in DRC expressions (see Layer#drc and
DRC#perimeter for more details).

"polygon" - Creates a polygon object

Usage:

• polygon(...)

This function creates a polygon object. The arguments are the same than for the DPolygon constructors.

"polygon_layer" - Creates an empty polygon layer

Usage:

• polygon_layer

The intention of that method is to create an empty layer which can be filled with polygon-like objects using Layer#insert. A similar method
which creates a hierarchical layer in deep mode is make_layer. This other layer is better suited for use with device extraction.

"polygons" - Fetches the polygons (or shapes that can be converted to polygons) from the
specified input from the default source

Usage:

• polygons(args)

See Source#polygons for a description of that function.

"primary" - Represents the primary input of the universal DRC function

Usage:

• primary

For more details visit
https://www.klayout.org

Page 399 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

The primary input of the universal DRC function is the layer the Layer#drc function is called on.

"rectangles" - Selects all polygons which are rectangles

Usage:

• rectangles

• rectangles(layer)

This function can be used with a layer argument. In this case it is equivalent to "layer.rectangles" (see Layer#rectangles). Without a layer
argument, "rectangles" represents the rectangles filter for primary shapes in DRC expressions (see Layer#drc and DRC#rectangles for
more details).

"rectilinear" - Selects all polygons which are rectilinear

Usage:

• rectilinear

• rectilinear(layer)

This function can be used with a layer argument. In this case it is equivalent to "layer.rectilinear" (see Layer#rectilinear). Without a layer
argument, "rectilinear" represents the rectilinear polygons filter for primary shapes in DRC expressions (see Layer#drc and DRC#rectilinear
for more details).

"region_overlap" - Specifies region selected input in "overlap mode"

Usage:

• region_overlap(args)

See Source#overlapping for a description of that function.

The following code will select shapes overlapping a 500x600 micron rectangle (lower left corner at 0,0) from the input layout. The shapes
will not be clipped:

region_overlapping(0.mm, 0.mm, 0.5.mm, 0.6.mm)
shapes will now be the ones overlapping the rectangular region
l1 = input(1, 0)

To remove this condition, call "region_overlapping" without any arguments.

"region_touch" - Specifies region selected input in "touch mode"

Usage:

• region_touch(args)

See Source#touching for a description of that function.

The following code will select shapes touching a 500x600 micron rectangle (lower left corner at 0,0) from the input layout. The shapes will
not be clipped:

region_touch(0.mm, 0.mm, 0.5.mm, 0.6.mm)
shapes will now be the ones touching the rectangular region

For more details visit
https://www.klayout.org

Page 400 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

l1 = input(1, 0)

To remove this condition, call "region_touch" without any arguments.

"relative_height" - Selects primary shapes based on the ratio of height and width of their
bounding boxes

Usage:

• relative_height (in condition)

See Layer#drc, relative_height and DRC#relative_height for more details.

"report" - Specifies a report database for output

Usage:

• report(description [, filename [, cellname]])

After specifying a report database for output, output method calls are redirected to the report database. The format of the output calls
changes and a category name plus description can be specified rather than a layer/datatype number of layer name. See the description of
the output method for details.

If a filename is given, the report database will be written to the specified file name. Otherwise it will be shown but not written.

If external input is specified with source, "report" must be called after "source".

The cellname specifies the top cell used for the report file. By default this is the cell name of the default source. If there is no source layout
you'll need to give the cell name in the third parameter.

"report_netlist" - Specifies an extracted netlist report for output

Usage:

• report_netlist([filename [, long]])

This method applies to runsets creating a netlist through extraction. Extraction happens when connections and/or device extractions are
made. If this statement is used, the extracted netlist plus the net and device shapes are turned into a layout-to-netlist report (L2N database)
and shown in the netlist browser window. If a file name is given, the report will also be written to the given file. If a file name is given and
"long" is true, a verbose version of the L2N DB format will be used.

"resistor" - Supplies the resistor extractor class

Usage:

• resistor(name, sheet_rho)

• resistor(name, sheet_rho, class)

Use this class with extract_devices to specify extraction of a resistor.

The sheet_rho value is the sheet resistance in ohms/square. It is used to compute the resistance from the geometry.

See DeviceExtractorResistor for more details about this extractor.

"resistor_with_bulk" - Supplies the resistor extractor class that includes a bulk terminal

Usage:

• resistor_with_bulk(name, sheet_rho)

For more details visit
https://www.klayout.org

Page 401 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

• resistor_with_bulk(name, sheet_rho, class)

Use this class with extract_devices to specify extraction of a resistor with a bulk terminal. The sheet_rho value is the sheet resistance in
ohms/square.

See DeviceExtractorResistorWithBulk for more details about this extractor.

"rounded_corners" - Applies corner rounding

Usage:

• rounded_corners(inner, outer, n)

• rounded_corners(layer, inner, outer, n)

This function can be used with a layer argument. In this case it is equivalent to "layer.rounded_corners" (see Layer#rounded_corners).
Without a layer argument, "rounded_corners" represents the corner rounding algorithm on primary shapes within DRC expressions (see
Layer#drc and DRC#rounded_corners for more details).

"secondary" - Provides secondary input for the "drc" universal DRC function

Usage:

• secondary(layer)

To supply additional input for the universal DRC expressions (see Layer#drc), use "secondary" with a layer argument. This example
provides a boolean AND between l1 and l2:

l1 = layer(1, 0)
l2 = layer(2, 0)
out = l1.drc(primary & secondary(l2))

"select" - Specifies cell filters on the default source

Usage:

• select(args)

See Source#select for a description of that function.

"sep" - Synonym for "separation"

Usage:

• sep(...)

"sep" is the short form for separation.

"separation" - Performs a separation check

Usage:

• separation(other [, options]) (in conditions)

• separation(layer, other [, options])

For more details visit
https://www.klayout.org

Page 402 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

Provides a separation check (primary layer vs. another layer). Like enclosing this function provides a two-layer check, but checking the
distance rather than the overlap. This check has manifold options. See Layer#width for the basic options such as metrics, projection
and angle constraints etc. This check also features opposite and rectangle filtering. See Layer#separation for details about opposite and
rectangle error filtering.

Classic mode

Like enclosing, this function is available as a classic DRC function with a layer as the first argument and as an DRC expression operator for
use with Layer#drc.

classic "separation" check for distance < 0.2 um
in = layer(1, 0)
other = layer(2, 0)
errors = separation(in, other, 0.2.um)

Universal DRC

For use with the "universal DRC" put the separation expression into the "drc" function call and use a condition to specify the constraint:

universal DRC "separation" check for distance < 0.2 um
in = layer(1, 0)
other = layer(2, 0)
errors = in.drc(separation(other) < 0.2.um)

enclosing explains the constraints and how the work in generating error markers.

For more details visit
https://www.klayout.org

Page 403 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

When "larger than" constraints are used, this function will produce the edges from the first layer only. The result will still be edge pairs for
consistency, but each edge pair holds one edge from the original polygon plus a reverse copy of that edge in the second member. Use
"first_edges" to extract the actual edges from the first input:

l1_edges_without_l2 = l1.drc((separation(l2) >= 1.0).first_edges)

The following image shows the effect of such a negative-output separation check:

For more details visit
https://www.klayout.org

Page 404 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

"silent" - Resets verbose mode

Usage:

• silent

This function is equivalent to "verbose(false)" (see verbose)

"sized" - Returns the sized version of the input

Usage:

• sized(d [, mode])

• sized(dx, dy [, mode]))

• sized(layer, d [, mode])

• sized(layer, dx, dy [, mode]))

This function can be used with a layer argument. In this case it is equivalent to "layer.sized" (see Layer#sized). Without a layer argument,
"sized" represents the polygon sizer on primary shapes within DRC expressions (see Layer#drc and DRC#sized for more details).

For more details visit
https://www.klayout.org

Page 405 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

"smoothed" - Applies smoothing

Usage:

• smoothed(d)

• smoothed(layer, d)

This function can be used with a layer argument. In this case it is equivalent to "layer.smoothed" (see Layer#smoothed). Without a layer
argument, "smoothed" represents the polygon smoother on primary shapes within DRC expressions (see Layer#drc and DRC#smoothed
for more details).

"source" - Specifies a source layout

Usage:

• source

• source(what)

This function replaces the default source layout by the specified file. If this function is not used, the currently active layout is used as input.

layout is a similar method which specifies an additional input layout.

"what" specifies what input to use. "what" be either

• A string "@n" specifying input from a layout in the current panel

• A layout filename plus an optional cell name

• A Layout object plus an optional cell name

• A Cell object

Without any arguments the default layout is returned. If a filename is given, a cell name can be specified as the second argument. If none is
specified, the top cell is taken which must be unique in that case.

XOR between layers 1 of "first_layout.gds" and "second_layout.gds" and sends the results to
 "xor_layout.gds":
target("xor_layout.gds")
source("first_layout.gds")
l2 = layout("second_layout.gds")
(input(1, 0) ^ l2.input(1, 0)).output(100, 0)

For further methods on the source object see Source.

"space" - Performs a space check

Usage:

• space([options]) (in conditions)

• space(layer [, options])

"space" looks for spacing violations between edges of the same polygon (intra-polygon checks) and between different polygons (inter-
polygon checks). notch is similar function that provides only intra-polygon space checks. isolated is the version checking inter-polygon
distance only. The check has manifold options. See Layer#width for the basic options such as metrics, projection and angle constraints etc.

Classic mode

For more details visit
https://www.klayout.org

Page 406 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

This function can be used in classic mode with a layer argument. In this case it is equivalent to "layer.space" (see Layer#space). In this
mode, "space" is applicable to edge layers too.

classic "space" check for space < 0.2 um
in = layer(1, 0)
errors = space(in, 0.2.um)

Universal DRC

The version without a layer is intended for use within DRC expressions together with the "universal DRC" method Layer#drc. In this case,
this function needs to be put into a condition to specify the check constraints. The other options of Layer#space (e.g. metrics, projection
constraints, angle limits etc.) apply to this version too:

universal DRC check for space < 0.2.um
in = layer(1, 0)
errors = in.drc(space < 0.2.um)

See enclosing for more details about the various ways to specify conditions.

"squares" - Selects all polygons which are squares

Usage:

For more details visit
https://www.klayout.org

Page 407 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

• squares

• squares(layer)

This function can be used with a layer argument. In this case it is equivalent to "layer.squares" (see Layer#squares). Without a layer
argument, "squares" represents the rectangles filter for primary shapes in DRC expressions (see Layer#drc and DRC#squares for more
details).

"switch" - A conditional selector for the "drc" universal DRC function

Usage:

• switch(...)

This function provides a conditional selector for the "drc" function. It is used this way:

out = in.drc(switch(c1, r1, c2, r2, ..., cn, rn)
out = in.drc(switch(c1, r1, c2, r2, ..., cn, rn, rdef)

This function will evaluate c1 which is a universal DRC expression (see Layer#drc). If the result is not empty, "switch" will evaluate and
return r1. Otherwise it will continue with c2 and the result of this expression is not empty it will return r2. Otherwise it will continue with c3/r3
etc.

If an odd number of arguments is given, the last expression is evaluated if none of the conditions c1..cn gives a non-empty result.

As a requirement, the result types of all r1..rn expressions and the rdef needs to be the same - i.e. all need to render polygons or edges or
edge pairs.

"target" - Specify the target layout

Usage:

• target(what [, cellname])

This function can be used to specify a target layout for output. Subsequent calls of "output" will send their results to that target layout. Using
"target" will disable output to a report database. If any target was specified before, that target will be closed and a new target will be set up.

"what" specifies what input to use. "what" be either

• A string "@n" (n is an integer) specifying output to a layout in the current panel

• A string "@+" specifying output to a new layout in the current panel

• A layout filename

• A Layout object

• A Cell object

Except if the argument is a Cell object, a cellname can be specified stating the cell name under which the results are saved. If no cellname
is specified, either the current cell or "TOP" is used.

"target_netlist" - With this statement, an extracted netlist is finally written to a file

Usage:

• target_netlist(filename [, format [, comment]])

For more details visit
https://www.klayout.org

Page 408 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

This method applies to runsets creating a netlist through extraction. Extraction happens when connections and/or device extractions are
made. If this statement is used, the extracted netlist is written to the given file.

The format parameter specifies the writer to use. You can use nil to use the standard format or produce a SPICE writer with write_spice.
See write_spice for more details.

"threads" - Specifies the number of CPU cores to use in tiling mode

Usage:

• threads(n)

• threads

If using threads, tiles are distributed on multiple CPU cores for parallelization. Still, all tiles must be processed before the operation
proceeds with the next statement.

Without an argument, "threads" will return the current number of threads

"tile_borders" - Specifies a minimum tile border

Usage:

• tile_borders(b)

• tile_borders(bx, by)

The tile border specifies the distance to which shapes are collected into the tile. In order words, when processing a tile, shapes within the
border distance participate in the operations.

For some operations such as booleans (and, or, ...), size and the DRC functions (width, space, ...) a tile border is automatically established.
For other operations such as with_area or edges, the exact distance is unknown, because such operations may have a long range. In that
cases, no border is used. The tile_borders function may be used to specify a minimum border which is used in that case. That allows taking
into account at least shapes within the given range, although not necessarily all.

To reset the tile borders, use no_borders or "tile_borders(nil)".

"tiles" - Specifies tiling

Usage:

• tiles(t)

• tiles(w, h)

Specifies tiling mode. In tiling mode, the DRC operations are evaluated in tiles with width w and height h. With one argument, square tiles
with width and height t are used.

Special care must be taken when using tiling mode, since some operations may not behave as expected at the borders of the tile. Tiles can
be made overlapping by specifying a tile border dimension with tile_borders. Some operations like sizing, the DRC functions specify a tile
border implicitly. Other operations without a defined range won't do so and the consequences of tiling mode can be difficult to predict.

In tiling mode, the memory requirements are usually smaller (depending on the choice of the tile size) and multi-CPU support is enabled
(see threads). To disable tiling mode use flat or deep.

Tiling mode will disable deep mode (see deep).

"verbose" - Sets or resets verbose mode

Usage:

• verbose

For more details visit
https://www.klayout.org

Page 409 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

• verbose(m)

In verbose mode, more output is generated in the log file

"verbose?" - Returns true, if verbose mode is enabled

Usage:

• verbose?

In verbose mode, more output is generated in the log file

"warn" - Prints a warning

Usage:

• warn(message)

Similar to log, but the message is printed formatted as a warning

"width" - Performs a width check

Usage:

• width([options]) (in conditions)

• width(layer [, options])

A width check is a check for the distance of edges of the same polygon.

Classic mode

This function can be used in classic mode with a layer argument. In this case it is equivalent to "layer.width" (see Layer#width).

classic "width" check for width < 2 um
in = layer(1, 0)
errors = width(in, 0.2.um)

Universal DRC

The version without a layer is intended for use within DRC expressions together with the "universal DRC" method Layer#drc. In this case,
this function needs to be put into a condition to specify the check constraints. The other options of Layer#width (e.g. metrics, projection
constraints, angle limits etc.) apply to this version too:

universal DRC check for width < 2 um
in = layer(1, 0)
errors = in.drc(width < 0.2.um)

The conditions may involve an upper and lower limit. The following examples illustrate the use of this function with conditions:

errors = in.drc(width < 0.2.um)
errors = in.drc(width <= 0.2.um)
errors = in.drc(width > 0.2.um)
errors = in.drc(width >= 0.2.um)
errors = in.drc(width == 0.2.um)
errors = in.drc(width != 0.2.um)

For more details visit
https://www.klayout.org

Page 410 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

errors = in.drc(0.1.um <= width < 0.2.um)

With a lower and upper limit or with the "equal" condition, the results are edges marking the positions on the primary shape where the
condition is met. With a lower limit alone, the results are edge pairs which are formed by two identical, but opposite edges attached to the
primary shape. Without an upper limit only, both edges are attached to different sides of the primary shape.

For more details visit
https://www.klayout.org

Page 411 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

For more details visit
https://www.klayout.org

Page 412 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.20.5. DRC Reference: Global Functions

"with_holes" - Selects all input polygons according to their number of holes in DRC expressions

Usage:

• with_holes (in condition)

"with_holes" represents a polygon selector for DRC expressions selecting polygons of the primary by their number of holes (see Layer#drc
and DRC#with_holes for more details).

"write_spice" - Defines SPICE output format (with options)

Usage:

• write_spice([use_net_names [, with_comments]])

• write_spice(writer_delegate [, use_net_names [, with_comments]])

Use this option in target_netlist for the format parameter to specify SPICE format. "use_net_names" and "with_comments" are boolean
parameters indicating whether to use named nets (numbers if false) and whether to add information comments such as instance
coordinates or pin names.

"writer_delegate" allows using a NetlistSpiceWriterDelegate object to control the actual writing.

For more details visit
https://www.klayout.org

Page 413 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.21. LVS Reference

2.21. LVS Reference

• LVS Reference: Netter object

• LVS Reference: Global Functions

For more details visit
https://www.klayout.org

Page 414 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.21.1. LVS Reference: Netter object

2.21.1. LVS Reference: Netter object
The Netter object provides services related to network extraction from a layout plus comparison against a reference netlist. Similar to the
DRC DRC::Netter (which lacks the compare ability), the relevant method of this object are available as global functions too where they act
on a default incarnation. Usually it's not required to instantiate a Netter object explicitly.

The LVS Netter object inherits all methods of the DRC::Netter.

An individual netter object can be created, if the netter results need to be kept for multiple extractions. If you really need a Netter object,
use the global netter function:

create a new Netter object:
nx = netter

build connectivity
nx.connect(poly, contact)
...

read the reference netlist
nx.schematic("reference.cir")

configure the netlist compare
nx.same_circuits("A", "B")
...

runs the compare
if ! nx.compare
puts("no equivalence!")
end

"align" - Aligns the extracted netlist vs. the schematic

Usage:

• align

The align method will modify the netlists in case of missing corresponding circuits. It will flatten these circuits, thus improving the
equivalence between the netlists. Top level circuits are not flattened.

This feature is in particular useful to remove structural cells like device PCells, reuse blocks etc.

This method will also remove schematic circuits for which there is no corresponding layout cell. In the extreme case of flat layout this will
result in a flat vs. flat compare.

"netlist.flatten_circuit(...)" or "schematic.flatten_circuit(...)" are other (explicit) ways to flatten circuits.

Please note that flattening circuits has some side effects such as loss of details in the cross reference and net layout.

"blank_circuit" - Removes the content from the given circuits (blackboxing)

Usage:

• blank_circuit(circuit_filter)

This method will erase all content from the circuits matching the filter. The filter is a glob expression.

This has the following effects:

• The circuits are no longer compared (netlist vs. schematic)

• Named pins are required to match (use labels on the nets to name pins in the layout)

For more details visit
https://www.klayout.org

Page 415 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.21.1. LVS Reference: Netter object

• Unnamed pins are treated as equivalent and can be swapped

• The selected circuits will not be purged on netlist simplification

Using this method can be useful to reduce the verification overhead for blocks which are already verifified by other ways or for which no
schematic is available - e.g. hard macros.

Example:

skips all MEMORY* circuits from compare
blank_circuit("MEMORY*")

"compare" - Compares the extracted netlist vs. the schematic

Usage:

• compare

Before using this method, a schematic netlist has to be loaded with schematic. The compare can be configured in more details using
same_nets, same_circuits, same_device_classes and equivalent_pins.

The compare method will also modify the netlists in case of missing corresponding circuits: the unpaired circuit will be flattened then.

This method will return true, if the netlists are equivalent and false otherwise.

"consider_net_names" - Indicates whether the netlist comparer shall use net names

Usage:

• consider_net_names(f)

If this value is set to true (the default), the netlist comparer will employ net names to resolve ambiguities. If set to false, ambiguities will be
resolved based on the topology alone. Topology resolution is more expensive.

"disable_parameter" - Indicates whether to disable a specific parameter for a given device

Usage:

• disable_parameter(device_class_name, parameter_name)

Disabling a parameter is the inverse of enable_parameter. Disabling a parameter will reset the "primary" flag of the parameter. This has
several effects - e.g. the parameter will not be used in device compare during netlist matching by default.

This is not a strong concept but rather a hint for the system. Disabling a parameter for netlist compare without side effects is possible with
the ignore_parameter function. In the same way, tolerance will enable a parameter for netlist compare regardless of the "primary" status of
the parameter.

"enable_parameter" - Indicates whether to enable a specific parameter for a given device

Usage:

• enable_parameter(device_class_name, parameter_name)

The parameter is made "primary" which enables further applications - e.g. it is netlisted for some elements which normally would not print
that parameter, and the parameter is compared in the default device compare scheme during netlist matching.

Enabling a parameter is rather a hint for the system and the effects can be controlled by other means, so this is not a strong concept. For
example, once a tolerance is specified for a parameter, the "primary" flag of the parameter is not considered anymore. The inverse the this
function is disable_parameter.

For more details visit
https://www.klayout.org

Page 416 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.21.1. LVS Reference: Netter object

"equivalent_pins" - Marks pins as equivalent

Usage:

• equivalent_pins(circuit, pin ...)

This method will mark the given pins as equivalent. This gives the compare algorithm more degrees of freedom when establishing net
correspondence. Typically this method is used to declare inputs from gates are equivalent where are are logically, but not physically (e.g. in
a CMOS NAND gate):

netter.equivalent_pins("NAND2", 0, 1)

The circuit argument is either a circuit name (a string) or a Circuit object from the schematic netlist.

Names are case sensitive for layout-derived netlists and case-insensitive for SPICE schematic netlists.

The pin arguments are zero-based pin numbers, where 0 is the first number, 1 the second etc. If the netlist provides named pins, names
can be used instead of numbers. Again, use upper case pin names for SPICE netlists.

Use this method andwhere in the script before the compare call.

"ignore_parameter" - Skip a specific parameter for a given device class name during device
compare

Usage:

• ignore_parameter(device_class_name, parameter_name)

Use this function is ignore a parameter for a particular device class during the netlist compare. Some parameters - for example "L" and
"W" parameters of the resistor device - are "secondary" parameters which are not ignored by default. Using "ignore_parameter" on such
devices does not have an effect.

"ignore_parameter" and "tolerance" only have an effect with the default device comparer. Using a custom device comparer will override the
definitions by "ignore_parameter" or "tolerance".

"join_symmetric_nets" - Joins symmetric nets of selected circuits on the extracted netlist

Usage:

• join_symmetric_nets(circuit_filter)

Nets are symmetrical if swapping them would not modify the circuit. Hence they will carry the same potential and can be connected
(joined). This will simplify the circuit and can be applied before device combination (e.g. through "netlist.simplify") to render a schematic-
equivalent netlist in some cases where symmetric nodes are split (i.e. "split gate" configuration).

This method operates on the extracted netlist (layout). The circuit filter specifies the circuits to which to apply this operation. The filter is a
glob-style pattern. Using "*" for all circuits is possible, but it's discouraged currenty until the reliability of the symmetry detection algorithm is
established. Currently it is recommended to apply it only to those circuits for which this feature is required.

For the symmetry detection, the specified constraints (e.g. tolerances, device filters etc.) apply.

"lvs_data" - Gets the internal LayoutVsSchematic object

Usage:

• lvs_data

The LayoutVsSchematic object provides access to the internal details of the netter object.

For more details visit
https://www.klayout.org

Page 417 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.21.1. LVS Reference: Netter object

"max_branch_complexity" - Configures the maximum branch complexity for ambiguous net
matching

Usage:

• max_branch_complexity(n)

The netlist compare algorithm is basically a backtracing algorithm. With ambiguous nets, the algorithm picks possible net pairs and
tries whether they will make a good match. Following the deduction path for this nets may lead to further branches if more ambiguous
nets are encountered. To avoid combinational explosion, the maximum branch complexity is limited to the value configured with this
function. The default value is 500 which means not more than 500 combinations are tried for a single seed pair. For networks with inherent
ambiguity such as decoders, the complexity can be increased at the expense of potentially larger runtimes. The runtime penality is roughly
proportional to the branch complexity.

By default, the branch complexity is unlimited, but it may be reduced in order to limit the compare runtimes at the cost of a less elaborate
compare attempt. The preferred solution however is to use labels for net name hints which also reduces the depth.

"max_depth" - Configures the maximum search depth for net match deduction

Usage:

• max_depth(n)

The netlist compare algorithm works recursively: once a net equivalence is established, additional matches are derived from this
equivalence. Such equivalences in turn are used to derive new equivalences and so on. The maximum depth parameter configures the
number of recursions the algorithm performs before picking the next net. With higher values for the depth, the algorithm pursues this
"deduction path" in greater depth while with smaller values, the algorithm prefers picking nets in a random fashion as the seeds for this
deduction path. The default value is 8.

By default, the depth is unlimited, but it may be reduced in order to limit the compare runtimes at the cost of a less elaborate compare
attempt. The preferred solution however is to use labels for net name hints which also reduces the branch complexity.

"max_res" - Ignores resistors with a resistance above a certain value

Usage:

• max_res(threshold)

After using this method, the netlist compare will ignore resistor devices with a resistance value above the given threshold (in Farad).

"min_caps" - Ignores capacitors with a capacitance below a certain value

Usage:

• min_caps(threshold)

After using this method, the netlist compare will ignore capacitance devices with a capacitance values below the given threshold (in Farad).

"same_circuits" - Establishes an equivalence between the circuits

Usage:

• same_circuits(circuit_a, circuit_b)

This method will force an equivalence between the two circuits. By default, circuits are identified by name. If names are different, this
method allows establishing an explicit correspondence.

circuit_a is for the layout netlist, circuit_b for the schematic netlist. Names are case sensitive for layout-derived netlists and case-insensitive
for SPICE schematic netlists.

For more details visit
https://www.klayout.org

Page 418 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.21.1. LVS Reference: Netter object

One of the circuits may be nil. In this case, the corresponding other circuit is mapped to "nothing", i.e. ignored.

Use this method andwhere in the script before the compare call.

"same_device_classes" - Establishes an equivalence between the device classes

Usage:

• same_device_classes(class_a, class_b)

This method will force an equivalence between the two device classes. Device classes are also known as "models". By default, device
classes are identified by name. If names are different, this method allows establishing an explicit correspondence.

Before this method can be used, a schematic netlist needs to be loaded with schematic.

class_a is for the layout netlist, class_b for the schematic netlist. Names are case sensitive for layout-derived netlists and case-insensitive
for SPICE schematic netlists.

One of the device classes may be "nil". In this case, the corresponding other device class is mapped to "nothing", i.e. ignored.

A device class on one side can be mapped to multiple other device classes on the other side by using this function multiple times, e.g.

same_device_classes("POLYRES", "RES")
same_device_classes("WELLRES", "RES")

will match both "POLYRES" and "WELLRES" on the layout side to "RES" on the schematic side.

Once a device class is mentioned with "same_device_classes", matching by name is disabled for this class. So after using
'same_device_classes("A", "B")' "A" is no longer equivalent to "A" on the other side. If you want "A" to stay equivalent to "A" too, you need
to use 'same_device_classes("A", "A")' in addition.

Use this method andwhere in the script before the compare call.

"same_nets" - Establishes an equivalence between the nets

Usage:

• same_nets(circuit_pattern, net_pattern)

• same_nets(circuit_pattern, net_a, net_b)

• same_nets(circuit_a, net_a, circuit_b, net_b)

This method will force an equivalence between the net_a and net_b from circuit_a and circuit_b (circuit in the three-argument form is for
both circuit_a and circuit_b).

In the four-argument form, the circuits can be either given by name or as Circuit objects. In the three-argument form, the circuits have to
be given by name pattern. Nets can be either given by name or as Net objects. In the two-argument form, the circuits and nets have to be
given as name pattern.

"name pattern" are glob-style pattern - e.g. the following will identify the all nets starting with "A" from the extracted netlist with the same net
from the schematic netlist for all circuits starting with "INV":

same_nets("INV*", "A*")

After using this function, the compare algorithm will consider these nets equivalent. Use this method to provide hints for the comparer in
cases which are difficult to resolve otherwise.

circuit_a and net_a are for the layout netlist, circuit_b and net_b for the schematic netlist. Names are case sensitive for layout-derived
netlists and case-insensitive for SPICE schematic netlists.

Use this method andwhere in the script before the compare call.

For more details visit
https://www.klayout.org

Page 419 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.21.1. LVS Reference: Netter object

"same_nets!" - Establishes an equivalence between the nets with matching requirement

Usage:

• same_nets!(circuit_pattern, net_pattern)

• same_nets!(circuit_pattern, net_a, net_b)

• same_nets!(circuit_a, net_a, circuit_b, net_b)

This method is equivalent to same_nets, but requires identity of the given nets. If the specified nets do not match, an error is reported.

"schematic" - Gets, sets or reads the reference netlist

Usage:

• schematic(filename)

• schematic(filename, reader)

• schematic(netlist)

• schematic

If no argument is given, the current schematic netlist is returned. nil is returned if no schematic netlist is set yet.

If a filename is given (first two forms), the netlist is read from the given file. If no reader is provided, Spice format will be assumed. The
reader object is a NetlistReader object and allows detailed customization of the reader process.

Alternatively, a Netlist object can be given which is obtained from any other source.

"split_gates" - Implements the "split gates" feature

Usage:

• split_gates(device_name)

• split_gates(device_name, circuit_filter)

Multi-fingered, multi-gate MOS transistors can be built without connecting the source/drain internal nets between the fingers. This will
prevent "combine_devices" from combining the single gate transistors of the different fingers into single ones.

"split_gates" now marks the devices of the given class so that they will receive a special treatment which joins the internl source/drain
nodes.

By default, this method is applied to all circuits. You can specify a circuit pattern to apply it to certain circuits only.

"device_name" must be a valid device name and denote a MOS3, MOS4, DMOS3 or DMOS4 device.

"tolerance" - Specifies compare tolerances for certain device parameters

Usage:

• tolerance(device_class_name, parameter_name, absolute_tolerance [, relative_tolerance])

• tolerance(device_class_name, parameter_name [, :absolute => absolute_tolerance] [, :relative =>
relative_tolerance])

Specifies a compare tolerance for a specific parameter on a given device class. The device class is the name of a device class in the
extracted netlist. Tolerances can be given in absolute units or relative or both. The relative tolerance is given as a factor, so 0.1 is a 10%
tolerance. Absolute and relative tolerances add, so specifying both allows for a larger deviation.

For more details visit
https://www.klayout.org

Page 420 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.21.1. LVS Reference: Netter object

Some device parameters - like the resistor's "L" and "W" parameters - are not compared by default. These are "secondary" device
parameters. Using a tolerance on such parameters will make these parameters being compared even if they are secondary ones.

A function is skip a parameter during the device compare is "ignore_parameter".

"tolerance" and "ignore_parameter" only have an effect with the default device comparer. Using a custom device comparer will override the
definitions by "ignore_parameter" or "tolerance".

For more details visit
https://www.klayout.org

Page 421 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.21.2. LVS Reference: Global Functions

2.21.2. LVS Reference: Global Functions
Some functions are available on global level and can be used without any object. Most of them are convenience functions that basically act
on some default object or provide function-like alternatives for the methods.

LVS is built upon DRC. So all functions available in DRC are also available in LVS. In LVS, DRC functions are used to derive functional
layers from original layers or specification of the layout source.

For more details about the DRC functions see DRC::global.

"align" - Aligns the extracted netlist vs. the schematic by flattening circuits where required

Usage:

• align

See Netter#align for a description of that function.

"blank_circuit" - Removes the content from the given circuits (blackboxing)

Usage:

• blank_circuit(circuit_filter)

See Netter#blank_circuit for a description of that function.

"compare" - Compares the extracted netlist vs. the schematic

Usage:

• compare

See Netter#compare for a description of that function.

"consider_net_names" - Indicates whether the netlist comparer shall use net names

Usage:

• consider_net_names(f)

See Netter#consider_net_names for a description of that function.

"disable_parameter" - Specifies whether to disable a parameter from a given device class for
netlisting and default compare

Usage:

• disable_parameter(device_class_name, parameter_name)

See Netter#disable_parameter for a description of that function.

"enable_parameter" - Specifies whether to enable a parameter from a given device class for
netlisting and default compare

Usage:

• enable_parameter(device_class_name, parameter_name)

For more details visit
https://www.klayout.org

Page 422 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.21.2. LVS Reference: Global Functions

See Netter#enable_parameter for a description of that function.

"equivalent_pins" - Marks pins as equivalent

Usage:

• equivalent_pins(circuit, pins ...)

See Netter#equivalent_pins for a description of that function.

"ignore_parameter" - Specifies whether to ignore a parameter from a given device class for the
compare

Usage:

• ignore_parameter(device_class_name, parameter_name)

See Netter#ignore_parameter for a description of that function.

"join_symmetric_nets" - Joins symmetric nets of selected circuits on the extracted netlist

Usage:

• join_symmetric_nets(circuit_filter)

See Netter#join_symmetric_nets for a description of that function.

"lvs_data" - Gets the LayoutVsSchematic object after compare was used

Usage:

• lvs_data

See Netter#lvs_data for a description of that function.

"max_branch_complexity" - Configures the maximum branch complexity for ambiguous net
matching

Usage:

• max_branch_complexity(n)

See Netter#max_branch_complexity for a description of that function.

"max_depth" - Configures the maximum search depth for net match deduction

Usage:

• max_depth(n)

See Netter#max_depth for a description of that function.

"max_res" - Ignores resistors with a resistance above a certain value

Usage:

• max_res(threshold)

For more details visit
https://www.klayout.org

Page 423 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.21.2. LVS Reference: Global Functions

See Netter#max_res for a description of that function.

"min_caps" - Ignores capacitors with a capacitance below a certain value

Usage:

• min_caps(threshold)

See Netter#min_caps for a description of that function.

"netter" - Creates a new netter object

Usage:

• netter

See Netter for more details

"report_lvs" - Specifies an LVS report for output

Usage:

• report_lvs([filename [, long]])

After the comparison step, the LVS database will be shown in the netlist database browser in a cross-reference view. If a filename is given,
the LVS database is also written to this file. If a file name is given and "long" is true, a verbose version of the LVS DB format will be used.

If this method is called together with report_netlist and two files each, two files can be generated - one for the extracted netlist (L2N
database) and one for the LVS database. However, report_netlist will only write the extracted netlist while report_lvs will write the LVS
database which also includes the extracted netlist.

report_lvs is only effective if a comparison step is included.

"same_circuits" - Establishes an equivalence between the circuits

Usage:

• same_circuits(circuit_a, circuit_b)

See Netter#same_circuits for a description of that function.

"same_device_classes" - Establishes an equivalence between the device_classes

Usage:

• same_device_classes(class_a, class_b)

See Netter#same_device_classes for a description of that function.

"same_nets" - Establishes an equivalence between the nets

Usage:

• same_nets(circuit_pattern, net_pattern)

• same_nets(circuit_pattern, net_a, net_b)

• same_nets(circuit_a, net_a, circuit_b, net_b)

See Netter#same_nets for a description of that function.

For more details visit
https://www.klayout.org

Page 424 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 2.21.2. LVS Reference: Global Functions

"same_nets!" - Establishes an equivalence between the nets (must match)

Usage:

• same_nets!(circuit_pattern, net_pattern)

• same_nets!(circuit_pattern, net_a, net_b)

• same_nets!(circuit_a, net_a, circuit_b, net_b)

See Netter#same_nets! for a description of that function.

"schematic" - Reads the reference netlist

Usage:

• schematic(filename)

• schematic(filename, reader)

• schematic(netlist)

See Netter#schematic for a description of that function.

"split_gates" - Implements the "split gates" feature for the given device and circuits

Usage:

• split_gates(device_name)

• split_gates(device_name, circuit_filter)

See Netter#split_gates for a description of that function.

"tolerance" - Specifies compare tolerances for certain device parameters

Usage:

• tolerance(device_class_name, parameter_name, absolute_tolerance [, relative_tolerance])

• tolerance(device_class_name, parameter_name [, :absolute => absolute_tolerance] [, :relative =>
relative_tolerance])

See Netter#tolerance for a description of that function.

For more details visit
https://www.klayout.org

Page 425 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3. Programming scripts

3. Programming scripts
This category is about programming KLayout using the integrated Ruby or Python scripting language. The following topics are available:

• Introduction

• Using Python

• The Application API

• The Database API

• The Geometry API

• Events And Callbacks

• The Ruby Language Binding

• Coding PCells In Ruby

• The Qt Binding

For more details visit
https://www.klayout.org

Page 426 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.1. Introduction

3.1. Introduction
This chapter is about programming extensions for KLayout using the integrated Ruby API (RBA) or Python API (pya).

To use RBA scripts, KLayout must be compiled with the Ruby interpreter. Check under "Help/About" whether support is available. If there
is, the "Build options" will include a "Ruby" or "Python" interpreter or both. RBA scripts require a Ruby interpreter. To use pya scripts,
Python support must be included.

KLayout comes with the Qt library included into the Ruby or Python API. This means, KLayout scripts can access the full Qt API if Qt
binding is available. Check whether "Qt bindings for scripts" is included in the build options on the "Help/About" page.

Basically there are scripts and macros:

• Scripts are simple text files which are prepared externally and KLayout acts as an interpreter for these scripts. A special case of
scripts is included code, while is loaded into other scripts or macros using "require" on Ruby or "import" on Python. Scripts have been
the only way to code Ruby functionality in version 0.21 and earlier.

• Macros are special XML files which contain Ruby code plus some additional information required to link them into the system,
i.e. automatically execute them on startup or provide menu entries for them. They can load normal ".rb" or ".py" files to implement
libraries of classes in the usual way. Macros are managed and developed conveniently in the integrated macro development
environment along with the supporting files. This method is the preferred way of creating application extensions and is described in
this chapter.

Before you start, please make yourself familiar with the macro development integrated environment (About Macro Development). This
documentation also assumes that you familiar with the Ruby programming language. There are numerous books and tutorials about
Ruby. The most famous one is the "pickaxe book" (Programming Ruby - The Pragmatic Programmers Guide) by Dave Thomas. If you are
familiar with Ruby there is a technical article about the way Ruby and KLayout's core are integrated (The Ruby Language Binding). There
are special articles about the integrated Qt binding (The Qt Binding) and PCell programming (Coding PCells In Ruby). If you want to use
Python, please read the python implementation article (Using Python) for details about how to translate Ruby samples into Python and
specific details of the Python integration.

An introduction into the basic concepts of the KLayout API are given in the article about the application API (The Application API) and about
the database API (The Database API).

A First Sample

The first sample is already a complete macro which counts all selected paths, boxes, polygons or text objects. It demonstrates how to set
up a macro, how to deal with the selection and how to access the layout database.

Here is the code:

module MyMacro

 include RBA

 app = Application.instance
 mw = app.main_window

 lv = mw.current_view
 if lv == nil
 raise "Shape Statistics: No view selected"
 end

 paths = 0
 polygons = 0
 boxes = 0
 texts = 0

 lv.each_object_selected do |sel|

 shape = sel.shape

 if shape.is_path?
 paths += 1
 elsif shape.is_box?

For more details visit
https://www.klayout.org

Page 427 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.1. Introduction

 boxes += 1
 elsif shape.is_polygon?
 polygons += 1
 elsif shape.is_text?
 texts += 1
 end

 end

 s = "Paths: #{paths}\n"
 s += "Polygons: #{polygons}\n"
 s += "Boxes: #{boxes}\n"
 s += "Texts: #{texts}\n"

 MessageBox::info("Shape Statistics", s, MessageBox::Ok)

end

To run the macro, create a new macro in the macro development IDE: choose "Macros/Macro Development". Create a new macro using
the "+" button. Rename the macro to a suitable name. Copy the code above into the text. Load a layout, select some objects and in the
macro development IDE press F5. A message box will appear the tells us how may boxes, polygons etc. we have selected.

If we look at the code, the first observation is that we put the whole script into our own namespace (we can use any name which is not
used otherwise). The advantage of that approach is that we can import the "RBA" namespace which makes life somewhat easier. The RBA
namespace contains all KLayout classes and constants. If we would import the RBA namespace into the main namespace we would do
that for all other scripts in KLayout since the main namespace is a common resource for all scripts.

The first thing we do inside the macro is to access the layout view:

 app = Application.instance
 mw = app.main_window

 lv = mw.current_view
 if lv == nil
 raise "Shape Statistics: No view selected"
 end

The Application class (Application) is a representative for the KLayout application. Since there is only one application, it is a singleton.
We can obtain the singleton instance with the class method ("static" in the language of C++) "instance". It delivers a reference to the only
Application object which is the main entrance to all internals of KLayout.

The next object which is important is the MainWindow object (MainWindow). Currently there is only one MainWindow object which can
be obtained with the "main_window" method of the Application object. The MainWindow object represents the application's window and
manages the top level visual objects of the application. The main visual components of the main window are the menus, the tool panels
(cell tree, layer list, tool box, navigator ...) and the layout views.

The layout view is the representation of a layout tab (LayoutView). That is basically the window to the layouts loaded into that tab. All
related information such as the display settings, the zoom area, the layer properties and the information about the cell shown, the hierarchy
levels and further settings go here.

A main window can display multiple tabs. Hence there are multiple LayoutView objects available. The currently selected tab can be
addressed with the "current_view" method. This method delivers the LayoutView object associated with that tab. If no layout is loaded, that
method returns nil (the Ruby for "nothing")

Actually the preparation step can be simplified without needing the Application and MainWindow object. For demonstration purposes it was
included however. Here is the short version:

 lv = LayoutView.current || raise "Shape Statistics: No view selected"

The actual layouts loaded are entities separated from the views. Technically, there is a many-to-many relationship between layout views
and layout objects. A layout view may display multiple layouts and one layout may be displayed in multiple layout views. In addition, a
layout view can address different cells from a layout. A layout view has a current cell and a path that leads to that cell. The path consists
of a specific and unspecific part. The unspecific part of the path tells where the cell we show as the current cell is located in the cell tree.
The unspecific part is a tribute to the fact that a cell can appear in different branches of the cell tree (i.e. as child of cell A and cell B). The

For more details visit
https://www.klayout.org

Page 428 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.1. Introduction

specific part of the path addresses a specific instance of within some cell (the "context cell") above in the hierarchy. A specific path is
created when we descend down in the hierarchy along a certain instantiation path.

Layout, current cell, context cell, specific and unspecific path are combined into the CellView object (CellView). A layout view can have
multiple cell views corresponding to the different layouts that can be loaded into a panel. The cell views do not necessarily have to point to
different layouts.

For our sample we don't need the CellView objects, because we get all information directly from the view. But the concept of that object is
important to understand the API documentation. Here we ask the layout view for all selected objects and collect the object counts:

 lv.each_object_selected do |sel|

 shape = sel.shape

 if shape.is_path?
 paths += 1
 elsif shape.is_box?
 boxes += 1
 elsif shape.is_polygon?
 polygons += 1
 elsif shape.is_text?
 texts += 1
 end

 end

"each_object_selected" is a method of the LayoutView object. More precisely it's an iterator which calls the given block for each selected
object. Since the layout view can show multiple layouts, the selected objects may originate from different layouts. In addition, the object
may be selected in a child cell of the current cell. Hence, the selection is described by a cell view index (indicating which layout it resided
in), an instantiation path (a sequence of instances leading to the cell containing the selected object from the current cell) and the actual
object selected. That information is combined into an ObjectInstPath object (ObjectInstPath).

In our case we are not interested in the cell view that shape lives in. Neither are we in the instantiation path. Hence all we need is the
shape and we can obtain it with the "shape" method. This method delivers a Shape object (Shape), which is some kind of pointer (a
"proxy") to the actual shape. The actual shape is either a polygon, a box, a text or a path. The Shape object has multiple identities and we
can ask it what shape type is represents. For that, the Shape object offers methods like "is_box?" etc. If we know the type we can ask it for
the actual object and fetch a Polygon (Polygon), a Box (Box), a Text (Text) or a Path object (Path). For our sample however we don't need
access to the actual object.

Finally we put together a message and display it in a message box:

 s = "Paths: #{paths}\n"
 s += "Polygons: #{polygons}\n"
 s += "Boxes: #{boxes}\n"
 s += "Texts: #{texts}\n"

 MessageBox::info("Shape Statistics", s, MessageBox::Ok)

MessageBox (MessageBox) is a class that provides modal message dialogs through several class methods. "info" shows an information
box and with the given title and message. The third parameter indicates which buttons will be shown. In that case, one "Ok" button is
sufficient because we don't want to take specific actions when the message box is closed. MessageBox is not the Qt class, which is also
available (QMessageBox), but less portable in case a user does not have Qt binding enabled.

This is just a simple example, but it already illustrates some basic concepts. For a in-depth introduction into the API, read The Application
API and The Database API.

For more details visit
https://www.klayout.org

Page 429 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.2. Using Python

3.2. Using Python
KLayout does not come with one integrated interpreter. Instead Python and Ruby can both be used together. So it is possible to write one
script in Ruby and another one in Python. Just pick your favorite language. Scripts written in different languages share the same KLayout
data structures. Naturally they cannot directly share variables or language-specific data. But you can, for example, implement PCells in
Python and Ruby and use those different PCells in the same layout at the same time. Depending on the type of PCell, KLayout will either
execute Python or Ruby code.

Python macros are loaded into KLayout using either ".py" files or ".lym" files with the interpreter set to "Python". To create Python macros, a
new tab is available in the Macro Development IDE. When creating macros in the "Python" tab, they will use the Python interpreter. Macros
created in the "Ruby" tab will use the Ruby interpreter. Files loaded by "import" need to be in plain text format and use the ".py" suffix.
The macro folder is called "pymacros" for a clean separation between the two macro worlds. Technically, both Ruby and Python macros
are .lym files with a different interpreter specified in these files.

The Python macro folder is in the "sys.path" search path so it is possible to install modules there. To install libraries globally use "inst_path/
lib/python/Lib" and "inst_path/lib/python/DLLs" on Windows. inst_path is the installation path (where klayout.exe is located). On Linux, the
installation will share the Python interpreter with the system and modules installed there will be available for KLayout too.

"$PYTHONHOME" is not supported to prevent interference with other Python consumers. Instead, KLayout will read the Python path from
"$KLAYOUT_PYTHONPATH" (for Python >= 3.x).

Writing Macros in Python

A good way is to start with the samples provided when creating new macros on the Python tab. The samples are available at the end of the
template list. There is a sample for a PCell implementation, a sample for a Qt dialog, a sample for using Qt's .ui files in Python macros and
one sample turning KLayout into a HTTP server using a Python macro.

Apart from a few specialities and the different language of course, Python macros do not look much different from Ruby macros. Ruby's
"RBA" namespace is "pya" for Python (lowercase to conform with PEP-8). The class and methods names are the same with very few
exceptions and the documentation can be used for Python too. Where necessary, a special remark is made regarding the Python
implementation.

Here is a basic Python Macro. It creates a layout with a single cell and single layer and puts one rectangle on that layer:

Python version:

import pya

layout = pya.Layout()
top = layout.create_cell("TOP")
l1 = layout.layer(1, 0)
top.shapes(l1).insert(pya.Box(0, 0, 1000, 2000))

layout.write("t.gds")

Here is the Ruby variant to demonstrate the similarity:

Ruby version:

layout = RBA::Layout::new()
top = layout.create_cell("TOP")
l1 = layout.layer(1, 0)
top.shapes(l1).insert(RBA::Box::new(0, 0, 1000, 2000))

layout.write("t.gds")

Of course, not everything can be translated that easily between Ruby and Python. The details are given below. Usually however, it's
straightforward to translate Ruby into Python.

There is no clear advantage of one language over the other. The Python community is somewhat stronger, but performance-wise, Ruby is
better. In KLayout, the debugger support for Python is slighly better, since the guts of the interpreter are better documented for Python.

For more details visit
https://www.klayout.org

Page 430 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.2. Using Python

Apart from that, Python and Ruby coexist remarkably well and it is amazing, how easy it it to extend the interfaces from Ruby to Python: not
counting the different in the memory management model (mark and sweep garbage collector in Ruby, reference counting in Python), the
concepts are very similar.

Please read the Python specific notes below before you start. Some things need to be considered when going from Ruby to Python.

Python PCells

Please have a look at the PCell sample available in the templates. Pick the PCell sample after you have created a new Python macro.

PCell implementation in Python is very similar to Ruby.

Python macros are ".lym" files that are placed into the "pymacro" subfolder in the KLayout path. Python libraries can be put into the
"python" subfolder. This subfolder is included into the "sys.path" variable, so macros can load libraries simply by using "import".

Python Implementation Notes

• KLayout module: KLayout's module is "pya" (lowercase conforming to PEP 8).

• Reserved names: Some methods with reserved names are not available (i.e. "exec", "in"). Some of these methods have been
renamed and their original name is still available in Ruby, but use is deprecated. Where this was not possible, they are available with
an appended underscore. For example: "QDialog.exec" is available as "QDialog.exec_". That is the same scheme PyQt uses.

• Assignment methods (attribute setters): Assignment methods (i.e. "Box#left=" are available as attributes. If there is a read
accessor method too, the attribute can be read and written. For example:

box = pya.Box()
box.left = 10
box.right = box.right + 100

If the translation is ambiguous (i.e. because there is more than one getter or setter, the setter will be translated to a method
"set_x(value)" where "x" is the attribute name.

• Predicate getters: Question-mark names for predicates are translated to non-question-marker names:

Ruby:
 edges.is_empty?

Python:
 edges.is_empty()

• Constants: Constants (upper-case static variable) are made available as static attributes.

• Arrays: Arrays will be represented as lists, but on assignment, they accept tuples as well.

• Boolean values: Boolean values are True and False.

• No protected methods: Protected methods are not supported - methods are public always.

• "nil" value: The Python equivalent to Ruby's "nil" is "None".

• Iterators: Iterator binding:

edges = pya.Edges()
...
for edge in edges.each():

For more details visit
https://www.klayout.org

Page 431 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.2. Using Python

 ...

If there is an iterator named "each", it will become the default iterator:

for edge in edges:
 ...

• Standard protocols:
"x.to_s()" is available as "str(x)" too.

"x.size()" is available as "len(x)" too.

If there is a "[]" operator and a "size" method, the object implements the sequence protocol too.

• Operators:
Operators are made available through Python operators. For example

• "+" will be available as "+" ("__add__")

• "&" will be available as "and" ("__and__")

• "|" will be available as "or" ("__or__")

• "==" will be available as "==" ("__eq__")

• Deep copies: Deep copies of pya objects can be made with dup()

box = pya.Box(10, 20, 110, 220)
copy_box = box.dup()

• Events (signals): Events can be bound to lambdas or functions:

action.on_triggered(lambda: action.text += "X")

or to function:

def f():
 print "triggered"

action.on_triggered(f)

Events have to match precisely - exactly the number of arguments have to be declared.

• sys.settrace: Using "sys.settrace" will disable the debugger support permanently.

• Instance attributes can't reimplement virtual methods: This is a limitation driven by the need to avoid cyclic references. Instance-
bound methods require a reference to the instance and that will create a cycle with the reimplementation callable object which is held
by the class itself.

For more details visit
https://www.klayout.org

Page 432 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.2. Using Python

• Tips when developing own modules:

• The "python" subfolders of the KLayout path are added to sys.path, so modules can be put as plain .py files and imported with
"import module".

• Or: modules can be put into folders inside "python" using an "__init__.py" file to indicate the folder is a module.

• Use "reload(module)" on the console to refresh the module cache if changes have been applied.

For more details visit
https://www.klayout.org

Page 433 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.3. The Application API

3.3. The Application API
This section covers the basic application API. The application API consists of the main application class and several classes that represent
the user interface. This sections presents a selection of classes that make up the application API. These classes provide the main entry
points into the application API. Further classes are documented in RBA Class Index.

All classes discussed herein are contained in the RBA namespace. In you code you either have to use qualified names (i.e.
RBA::Application) or include the RBA module in you macro's namespace.

The Application class

The Application class is documented in detail in Application. It represents the application and because there is just one application, there
also is just one instance of the application object. That instance can be obtained through the "instance" class method:

Application::instance

The application object is the main entry point into the API. It offers several methods and attributes. In particular:

• Application#application_data_path: returns the user-local storage path. This is where KLayout saves user-specific files, for example
the configuration file.

• Application#execute: runs the application. Normally, this method is called implicitly when the application is started. It is possible to
use KLayout as a Ruby interpreter by supplying a Ruby script on the command line with the "-r" option. Such scripts must run the
application explicitly if they want to.

• Application#exit: exits the application. This method unconditionally terminates the application in a clean way.

• Application#get_config and Application#set_config: read and write the configuration database. The configuration database is a
storage of name/value pairs which is stored in the configuration file. These methods can be used to manipulate that storage. Use
the Application#get_config_names method to retrieve the names of the configuration parameters stored inside the configuration
database. Use the Application#commit_config method to activate settings that have been made with "set_config".

• Application#inst_path: returns the installation path. That is where the executable is located.

• Application#is_editable?: returns true, if KLayout runs in editable mode.

• Application#klayout_path: returns the KLAYOUT_PATH value. This is the search path where KLayout looks for library files or macros.
This method delivers the application data path and can be used to look up files required by the macro.

• Application#main_window: delivers the MainWindow object which represents the application's main window. See below for a
description of that class.

• Application#process_events: process pending events. If that method is called periodically during long operations, the application will
be able to process events and thus handle clicks on a "Stop" button for example. Please note that calling this method is not safe in
every context, because not every execution context is reentrant.

• Application#read_config and Application#write_config: reads and writes the configuration database from a file.

• Application#version: delivers KLayout's version string. This string can be used to switch the implementation of a script depending on
KLayout's version.

The MainWindow class

The MainWindow class is documented in detail in MainWindow. It represents the main application window. The main window instance can
be obtained with:

Application::instance.main_window

The main window object is the entry point to all user-interface related objects. It offers a couple of methods. In particular:

For more details visit
https://www.klayout.org

Page 434 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.3. The Application API

• MainWindow#cancel: cancels any pending operation (i.e. dragging of an object in move mode) and resets the mode to the default
mode (Select). Use this method to establish a known user interface state.

• MainWindow#close_all and MainWindow#close_current_view: close all or the current tab.

• MainWindow#cm_*: these are methods which are bound to the menu items in the menu bar. They can be used to trigger a menu
function from a script.

• MainWindow#create_layout: create a new layout and load it into a layout view. This method has a parameter that controls whether
the layout is shown in a new tab, replaces the layout in the current tab or adds to the current tab.

• MainWindow#create_layout: creates a new, empty layout and loads it.

• MainWindow#create_view: creates a new, empty tab.

• MainWindow#current_view: returns a LayoutView object (see below) which represents the current tab.

• MainWindow#current_view_index: returns the index of the current tab. Some methods like "select_view" operate with view indexes.
The view index is the number of the tab (0 is the leftmost one). The "view" method allows obtaining the LayoutView object from a
view index. The same way MainWindow#current_view_index= selects the view with the index given in this call.

• MainWindow#grid_micron: gets the global grid in micrometer units.

• MainWindow#initial_technology and MainWindow#initial_technology=: gets or sets the name of the technology to use to new layouts
or for layouts loaded without an explicit technology specification.

• MainWindow#load_layout: loads a layout into a tab. There are various variants of this method, offering various levels of configuration.
All these variants have a parameter that controls whether the layout is shown in a new tab, replaces the layout in the current tab or
adds to the current tab.

• MainWindow#menu: provides access to the menu object of class AbstractMenu (see AbstractMenu). This object provides access to
the main menu, the toolbar and various context menus. With this object it is possible to manipulate the menu.

• MainWindow#message: show a message in the status bar.

• MainWindow#save_session and MainWindow#restore_session: save or restore a session. Sessions contain a window settings and
information about the layouts loaded. Sessions allows storing and restoring of the state of the main window.

• MainWindow#select_view: switches to the given tab. This equivalent to using MainWindow#current_view_index=.

• MainWindow#view: gets the LayoutView object for a given tab index.

• MainWindow#views: gets the number of tabs.

The MainWindow supplies three events. See Events And Callbacks for details about events. These are the events:

• on_current_view_changed: This event is triggered when the current tab changes. The signal is available with an integer parameter:
this is the index of the previous tab. The new tab is already the current tab when this event is triggered.

• on_view_created: This event is triggered when a new view is created. The signal is available with an integer parameter: this is the
index of the new tab.

• on_view_closed: This event is triggered when a new view is closed. The signal is available with an integer parameter: this is the
index of the tab that was closed.

In addition, the MainWindow class features many parameterless methods starting with "cm_...". These methods are identical with the
methods called when the respective menu functions are triggered. They are of use when menu events need to be emulated in code, for
example to implement special key bindings.

For more details visit
https://www.klayout.org

Page 435 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.3. The Application API

The LayoutView class

The LayoutView class is documented in detail in LayoutView. It represents one layout tab in the main window. A single layout view can
show multiple layouts. The CellView objects represent one layout loaded into a view. They specific the layout loaded plus the cell selected
for drawing. Each LayoutView has a list of CellView objects corresponding to the layouts shown in the same panel.

A LayoutView object can be obtained from the main window either by reading the current view or by getting the view object for a tab by the
tab index:

Current view:
Application::instance.main_window.current_view
or short:
LayoutView::current

By index:
Application::instance.main_window.view(index)

Note: the index of the current view is
Application::instance.main_window.current_view_index
and the number of views is
Application::instance.main_window.views

The index is 0 for the first tab. Note that the value returned by LayoutView#current or MainWindow#current_view can be "nil" if no layout is
shown.

A layout view is the container for a variety of "visual" objects. These resources are mainly display objects like annotations, markers and
images. In addition, the report database system is anchored in the LayoutView object. The following resources are managed in the layout
view:

• Annotations (rulers): an arbitrary number of annotations can be registered in the view. The annotations are objects of the
Annotation class (Annotation). Annotations are independent of layouts and are defined in micron units.

• Images: images are also objects independent of layouts. Any number of images can be placed below the drawn layout.

• Markers: markers are temporary overlay objects which can be used a highlights or to add some elaborate annotation to a layout
view. Markers can be layout database objects, hence it is possible to draw polygons or other objects over the layout. Markers can be
configured to a large degree, so different colors can be used for example. Markers are objects of class Marker (Marker).

• Local configuration: be default, the layout view pulls its configuration from the global configuration database. It is possible however
to override certain configuration parameters for a particular view. This allows for example to set the background color for a particular
view without affecting the other views.

• Layer properties: the layer properties tree is also managed by the layout view. Since there can be multiple layer properties trees
in different tabs in the layer properties panel, there are method to access either the current or a specific one of the layer properties
trees.

• Custom stipples and line pattern: custom stipplesu and line styles can be set in the layout view and used in the layer properties.
Custom stipples are bitmaps that define the fill pattern used for the inside area of a polygon. Line styles are bit pattern that make
lines being resolved into dots.

• Selection: the layout view also manages the selection. This is a set of objects and their instantiation path in the layout database. It
represents the set of selected objects. Each selected object is described by a instantiation path and the object itself. That information
is combined in the ObjectInstPath object (ObjectInstPath).

• Transient selection: this is the object that is highlighted briefly when the mouse hovers over it.

• Cell views: the list of layouts and cells shown in the layout view as overlays. Cell views are created when layouts are loaded and
deleted when layouts are closed. One of the cell views is the "active" one. That is the one which is selected in the drop-down box in
the cell tree and for which the cell tree is shown.

• Cell visibility: the information about what cell is visible and what cell is not. Each cell can be made invisible. In that case, only the
cell frame is drawn and the cell is shown stroked out in the cell tree.

For more details visit
https://www.klayout.org

Page 436 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.3. The Application API

• Hierarchy levels: this attribute controls which hierarchy levels are shown by default.

• Viewport: the geometrical dimensions of the area which is drawn in micron space.

• Report databases: a layout view can have multiple report databases attached to it. Report databases can be shown in the marker
browser and are collections of general information or geometrical information related to a certain position or area.

• Transactions: transactions are grouped layout operations which form an atomic operation which can be undone. Transactions can
be created within the layout view. Transactions must be opened and closed before they are available as operations on the undo
stack.

• Plugins: plugins are a way to implement new functionality inside the layout view related to mouse actions. By using plugins it is
possible to track the mouse and implement actions related to mouse activity.

• Title: finally, a layout view has a title which is shown in the tab.

Being the central class, the layout view naturally offers many methods and attributes. Here's a brief explanation of some of these methods:

• LayoutView#active_cellview and LayoutView#active_cellview_index: gets the active CellView object or index of this object. The active
cell view is the one that is selected in the drop-down box above the cell tree. CellView#active gets the active cellview of the current
layout view.

• LayoutView#add_missing_layers will add the layers to the layer tree for which there is no layer properties entry yet. This method can
be used after a layout has been created and populated to show all layers of the layout.

• LayoutView#add_stipple, LayoutView#clear_stipples and LayoutView#remove_stipple: manage custom stipples.

• LayoutView#add_line_style, LayoutView#clear_line_styles and LayoutView#remove_line_style: manage custom line styles.

• LayoutView#ascend and LayoutView#descend: moves the context cell up or down in the hierarchy.

• LayoutView#begin_layers and LayoutView#end_layers: gets an start or end iterator object that allows traversing of the layer
properties tree in a recursive or non-recursive fashion. See below for a description of how to deal with the layer properties.

• LayoutView#each_layer is a convenient alternative way of iterating over the layers without directly using the layer tree iterator.

• LayoutView#box: gets the display area in micron units (the viewport).

• LayoutView#cancel: returns the view into idle state (nothing selected, no editing in progress, "Select" mode is active).

• LayoutView#cellview: gets the CellView object for a given index.

• LayoutView#cellviews: gets the number of cell views registered.

• LayoutView#clear_annotations, LayoutView#insert_annotation, LayoutView#erase_annotation and LayoutView#replace_annotation:
manage annotations (rulers).

• LayoutView#clear_images, LayoutView#insert_image, LayoutView#erase_image and LayoutView#replace_image: manage images.

• LayoutView#clear_config, LayoutView#get_config, LayoutView#set_config and LayoutView#commit_config: allow manipulation of the
configuration for that layout view only. For example it is possible to set a different background color for that specific layout view.

• LayoutView#clear_layers, LayoutView#delete_layer, LayoutView#delete_layer_list, LayoutView#insert_layer,
LayoutView#insert_layer_list, LayoutView#replace_layer_node and LayoutView#remove_unused_layers: manage the layer
properties. See below for a detailed explanation.

• LayoutView#clear_transactions: clears all transactions (clears the undo stack).

• LayoutView#transaction and LayoutView#commit: starts or ends a transaction. All operations between the start and end of a
transaction can be undone in one step.

• LayoutView#clear_object_selection: clears the selection of geometrical objects (shapes or cell instances).

For more details visit
https://www.klayout.org

Page 437 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.3. The Application API

• LayoutView#create_layout and LayoutView#load_layout: creates a new layout or loads a layout. In both cases, you can either
replace the current layouts or add the new one to the layouts present.

• LayoutView#current_layer: returns an iterator pointing to the current layer (the one that has the focus frame in the layer tree.

• LayoutView#current_layer_list: returns the index of the current layer list (if multiple tabs are present in the layer control panel, the
current layer list is the tab that is selected).

• LayoutView#each_annotation and LayoutView#each_annotation_selected: delivers all or the selected annotations.

• LayoutView#each_image and LayoutView#each_image_selected: delivers all or the selected images.

• LayoutView#each_object_selected and LayoutView#each_object_selected_transient: delivers ObjectInstPath objects
(ObjectInstPath) that point to one selected object each.

• LayoutView#erase_cellview: close a cell view, i.e. remove that specific layout from the list of loaded layouts.

• LayoutView#enable_edits: Enables or disables editing. This method will enable or disable all editing features. This is intended for
temporarily disallowing edits. This is not the same than edit and viewer mode.

• LayoutView#get_image, LayoutView#get_image_with_options and LayoutView#get_screenshot: dumps the screen content into a
QImage with or without a specific resolution.

• LayoutView#init_layer_properties: provides an initialization of a "LayerProperties" object for a new layer according to the current
settings of the view.

• LayoutView#is_cell_hidden?, LayoutView#hide_cell, LayoutView#show_cell and LayoutView#show_all_cells: manages cell visibility.

• LayoutView#load_layer_props and LayoutView#save_layer_props: loads or saves layer properties files.

• LayoutView#max_hier, LayoutView#max_hier_levels= and LayoutView#min_hier_levels=: manages hierarchy levels shown.

• LayoutView#object_selection, LayoutView#object_selection=, LayoutView#select_object and LayoutView#clear_object_selection:
return or manipulate the selection of geometrical objects (shapes, instances). The key descriptor object for that purpose is
ObjectInstPath, which refers to a geometrical object throug an instantiation path.

• LayoutView#pan_center (and other pan... methods), LayoutView#zoom_box (and other zoom... methods): changes the viewport.

• LayoutView#reload_layout: reloads a given layout.

• LayoutView#create_rdb, LayoutView#remove_rdb, LayoutView#rdb and LayoutView#num_rdbs: Create, delete and get report
databases stored inside the LayoutView object.

• LayoutView#rename_cellview: changes the name of a cellview.

• LayoutView#title, LayoutView#title= and LayoutView#reset_title: sets or resets the layout view's title.

• LayoutView#save_as: Saves a layout to a file (with options).

• LayoutView#show_image: shows or hides an image.

• LayoutView#viewport_width, LayoutView#viewport_height and LayoutView#viewport_trans: gets the viewport parameters.

Implementing Undo/Redo

Undo/Redo functionality is implemented by using "transactions". Transactions are groups of operations which implement one user
operation. Transactions are built internally and automatically once a transaction is initiated. Most operations performed in the framework of
the LayoutView and Layout objects are tracked within these transactions. When a transacting is finished, it needs to be committed. After
that, a new operation will be available for "Undo" or "Redo".

Transactions can be initiated with LayoutView#transaction and committed with LayoutView#commit. To ensure, every initiation of a
transaction is matched by a "commit", it is recommended to employ "ensure":

For more details visit
https://www.klayout.org

Page 438 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.3. The Application API

begin

 view.transaction("Some operation")

 ... do your thing here ...

ensure
 view.commit
end

Manipulating the selection

The selection of geometrical objects can be manipulated by providing the necessary ObjectInstPath objects. Each such object provides
a "pointer" to a shape or instance through the hierarchy. Specifically it lists all the cells and their instantiation transformations down to the
shape selected. By accumulating these selections, a shape can be addressed in a flat view, even if the shape is instantiated many levels
down in the hierarchy.

Generating such instantiation path objects is somewhat tedious, but usually the requirement is not to generate such paths, but to take an
existing selecting, manipulate it somehow and then to set the selection to the new one. This is fairly easy by taking a copy of the selection,
manipulation of the shapes and setting the manipulated selection as the new one.

The following is a sample which replaces all shapes by their hull polygons. Note that is provides undo/redo support through a "transaction":

view = mw.current_view

begin

 view.transaction("Convert selected shapes to polygons")

 sel = view.object_selection

 sel.each do |s|
 if !s.is_cell_inst? && !s.shape.is_text?
 ly = view.cellview(s.cv_index).layout
 # convert to polygon
 s.shape.polygon = s.shape.polygon
 end
 end

 view.object_selection = sel

ensure
 view.commit
end

Events

The LayoutView object supplies several events. See Events And Callbacks for details about events. These are the events:

• on_active_cellview_changed: This event is triggered when the active cellview changes. The active cellview is the one indicated by
the drop-down-box atop of the cell list if multiple layouts are loaded into one view.

• on_annotation_changed: This event is triggered if an annotation is changed. The ID of the annotation is sent along with the event.

• on_annotation_selection_changed: This event is triggered if the selection of annotations is changed.

• on_annotations_changed: This event is triggered if an annotation is added or deleted.

• on_cell_visibility_changed: This event is triggered when the visibility of a cell changes. The visibility of a cell is changed by using
"Hide Cell" or "Show Cell" from the cell tree's context menu.

• on_cellviews_changed: This event is triggered when a new cellview is added or a cellview is removed.

For more details visit
https://www.klayout.org

Page 439 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.3. The Application API

• on_cellview_changed: This event is triggered when a cellview changed (i.e. the current cell has been changed. The index of the
changed cell view is sent along with the event.

• on_close: This event is triggered when a cell view is closed.

• on_file_open: This event is triggered when a file is loaded.

• on_hide: This event is triggered when a cell view is going to become invisible (i.e the tab changed).

• on_current_layer_list_changed: This event is triggered when the current layer list was changed (i.e. the tab in the layer list has
been changed).

• on_image_changed: This event is triggered when an image was edited. The ID of the image is sent along with the event.

• on_image_selection_changed: This event is triggered when an image was selected or unselected.

• on_images_changed: This event is triggered when an image was added or deleted.

• on_layer_list_changed: This event is triggered if a layer was changed, added or deleted.

• on_layer_list_deleted: This event is triggered if a layer list was deleted (i.e. a tab was removed).

• on_layer_list_inserted: This event is triggered if a layer list was inserted (i.e. a tab was added).

• on_rdb_list_changed: This event is triggered when a report database is opened or removed.

• on_selection_changed: This event is triggered when the selection has changed.

• on_show: This event is triggered when a cell view is going to become visible (i.e the tab changed).

• on_transient_selection_changed: This event is triggered when the transient selection has changed.

• on_viewport_changed: This event is triggered when the viewport has changed, for example the view is zoomed in or panned.

Working with layer properties

The API provides methods by which the layer properties list of the layout view can be traversed and manipulated in many ways. In
particular:

• Add or remove entries to or from the layer properties list: LayoutView#insert_layer and LayoutView#delete_layer

• Clear all entries: LayoutView#clear_layers

• Manage custom stipple pattern: LayoutView#add_stipple, LayoutView#clear_stipples and LayoutView#remove_stipple

• Add, rename or remove tabs, get or change the current tab: LayoutView#insert_layer_list, LayoutView#rename_layer_list,
LayoutView#delete_layer_list, LayoutView#current_layer_list and LayoutView#set_current_layer_list

• Remove unused layers from the layer list or add entries for missing layers: LayoutView#remove_unused_layers,
LayoutView#add_missing_layers

• Load or save layer properties from or to a ".lyp" file: LayoutView#load_layer_props and LayoutView#save_layer_props

• Obtain the selected entries from the layer properties tree: LayoutView#selected_layers and LayoutView#current_layer

• Initialize layer properties with the default settings: LayoutView#init_layer_properties

• Expand layer properties which contain wildcard entries ("stylesheet" layer properties files): LayoutView#expand_layer_properties

• Manipulate layer properties by setting the properties of the LayerPropertiesNodeRef object returned by LayoutView#each_layer or
LayerPropertiesIterator#current.

For more details visit
https://www.klayout.org

Page 440 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.3. The Application API

Many of these functions use LayerPropertiesIterator objects to identify entries in the layer tree. Such an object is basically a pointer
into the tree. The term "iterator" refers means that such a pointer can be moved to neighboring entries in the layer tree. By default, the
LayerPropertiesIterator performs a preorder, depth-first traversal of the layer properties tree (the virtual root object is omitted). This is how
to work with LayerPropertiesIterator objects:

layout_view = Application::instance.main_window.current_view
Get the iterator for the first entry:
lp = layout_view.begin_layers
advance to the next entry (preorder, depth-first traversal):
lp.next
advance to the next sibling
lp.next_sibling(1)
advance to the previous sibling
lp.next_sibling(-1)
move down in the hierarchy to the first child
lp.down_first_child
move down in the hierarchy to the last child
lp.down_last_child
move up to the parent node
lp.up
get the value of the current node
props = lp.current

The LayerPropertiesIterator has a couple of attributes:

• LayerPropertiesIterator#current: returns the LayerPropertiesNodeRef object (LayerPropertiesNodeRef) which is a representative for
the layer the iterator points to. This object can be manipulated which has an immediate effect on the layer list of the view.

• LayerPropertiesIterator#at_end?: returns true, if the iterator is at the end of the layer properties tree (if "next" is used to traverse) or
at the end of the current child node list if other methods of traversal are used. It "at_end?" is true, the iterator does not point to a valid
entry.

• LayerPropertiesIterator#is_null?: returns true, if this iterator is a null iterator (i.e. default-constructed).

• LayerPropertiesIterator#at_top?: returns true, if this iterator is pointing to a top-level entry.

• LayerPropertiesIterator#child_index: returns the index of the current entry in the current child list.

Iterators can be compared against each other. If two iterators point to the same object, the equality operator "==" returns true.

The actual entry that the iterators "current" property is a LayerPropertiesNodeRef object (a reference to a LayerPropertiesNode object). If
behaves the same way than a LayerPropertiesNode object (LayerPropertiesNode), but modifications of the latter will change the way the
layer is displayed in the view.

The LayerPropertiesNode object contributes only a few methods, namely:

• LayerPropertiesNode#id: an integer ID that uniquely identifies the entry in the tree.

• LayerPropertiesNode#flat: computes and delivers an effective set of properties as a LayerProperties object.

• LayerPropertiesNode#bbox: computes the bounding box of the drawn layer represented by this entry.

• LayerPropertiesNode#has_children?: returns true, if this node is not a leaf node.

• LayerPropertiesNode#add_child: adds a child node to the node. It returns a reference to the new node created inside the node's
hierarchy. Is is possible to add new children to the node returned.

• LayerPropertiesNode#clear_children: removes all children from the node.

The actual properties of the layer are accessible through methods of the LayerProperties object. Since the parent node may override or
contribute properties, a LayerProperties object has a twofold identity: the way it appears finally ("real") and the way it is configured ("local").
The property accessors have a "real" parameter and deliver the real value if this parameter is set to true and the local value otherwise.
There are also convenience methods which always deliver the "real" value.

For more details visit
https://www.klayout.org

Page 441 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.3. The Application API

lp = layout_view.begin_layers

manipulate the layer
lp.current.width = 2
lp.current.fill_color = 0x80ff40

which is equivalent to this somewhat more efficient way:
props = lp.current.dup
props.width = 2
props.fill_color = 0x80ff40
lp.current.assign(props)

It is possible to directly manipulate the hierarchy this way:

lp = layout_view.begin_layers
create a copy that we can manipulate
add two child nodes
cp = RBA::LayerProperties::new
cp.source = "100/0"
lp.current.add_child(cp)
cp = RBA::LayerProperties::new
cp.source = "101/0"
lp.current.add_child(cp)

New entries can be created by using LayoutView's insert_layer method and a LayerPropertiesIterator to specify the location where the
node shall be created. Here is an example how to create a child entry using that technique. Please note how "down_first_child" is used to
navigate into the node's child space which works even if there are no children yet:

lp = layout_view.begin_layers
let the iterator point to the first child, even if it does not exist
lp.down_first_child
(lp.current may not be valid, but still lp is a valid insert position)
prepare a new entry for insert:
props = RBA::LayerProperties.new
props.source = "100/0"
insert the child node:
layout_view.insert_layer(lp, props)
now, lp points to a valid object: lp.current.source == "100/0"

LayerProperties objects

The LayerProperties object represents one entry in the layer properties tree and has several basic properties. For each of these properties,
a getter for the real and local value exists as well as a setter that installs a local value. For example, for the width property, the following
methods are defined:

• width(real): the getter for the real ("width(true)") or local ("width(false)") value.

• width: the real value.

• width=: the setter for the local value.

Width is a "weak" property. That means that for computing the effective width, child nodes can override the settings inherited from the
parent nodes. A width of 0 is considered "not set" and does not override parent defined widths. Other properties like visibility are "strong",
i.e. the parent can override the properties set for its children. Another form of combination is "additive" where the effective property value is
the "sum" (or in general combination) of all local properties from parent to child.

Some properties like "fill_color" do not have a neutral value but instead they can be cleared (in that case with "clear_fill_color"). The
LayerProperties object can be asked whether a fill color is set using the "has_fill_color?" method.

This is a brief list of properties:

For more details visit
https://www.klayout.org

Page 442 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.3. The Application API

• LayerProperties#animation (strong): specifies animation (blinking, scrolling)

• LayerProperties#dither_pattern (strong): specifies the fill pattern

• LayerProperties#line_style (strong): specifies the line style

• LayerProperties#fill_brightness (additive): specifies the fill color's brightness

• LayerProperties#fill_color (strong): specifies the fill color

• LayerProperties#frame_brightness (additive): specifies the frame color's brightness

• LayerProperties#frame_color (strong): specifies the frame color

• LayerProperties#lower_hier_level (weak): the lower hierarchy level shown. This property has various flavors related to the definition
of "lower level".

• LayerProperties#upper_hier_level (weak): the upper hierarchy level shown. This property has various flavors related to the definition
of "upper level".

• LayerProperties#marked? (strong): specifies whether the layout is rendered with small crosses at each vertex

• LayerProperties#xfill? (strong): Specifies whether a cross is drawn in rectangles

• LayerProperties#transparent? (strong): specifies whether the layer is semi-transparent (color bitmap combination)

• LayerProperties#visible? (strong): specifies whether the layer is visible

• LayerProperties#valid? (strong): specifies whether the layer is valid

• LayerProperties#width (weak): specifies the line width

• LayerProperties#source (weak, additive): specifies the origin of the data. This property can be set or obtained either a string
using KLayout's source notation or be accessed through a couple of specialized properties delivering a part of the source
specification each (LayerProperties#source_layer, LayerProperties#source_datatype, LayerProperties#source_name,
LayerProperties#source_layer_index, LayerProperties#source_cellview and LayerProperties#trans)

In addition, a couple of getters for computed and derived values are present (i.e. "eff_frame_color"). There are no setters for these
properties. The effective frame color for example delivers the frame color which results from combining the frame color and the frame
brightness.

The CellView class

The CellView (CellView) identifies the cell drawn and the context the cell is drawn in. A CellView can be created as a object but usually it is
obtained from a LayoutView object. In the following example, the active cell view is used:

RBA::Application::instance.main_window.current_view.active_cellview

Alternatively, a cell view can be addressed by index:

lv = RBA::Application::instance.main_window.current_view
num_cellviews = lv.cellviews # number of cell views
lv.cellview(0) # first one

A cellview carries the following information:

• CellView#cell: a reference to the cell shown (a Cell object: Cell).

• CellView#layout: a reference to the layout object (a Layout object: Layout) which contains the cell shown.

For more details visit
https://www.klayout.org

Page 443 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.3. The Application API

• CellView#name: the unique name of the layout.

• CellView#filename: the name (actually the path) of the file loaded if the layout was loaded from a file.

• CellView#path: the unspecific path (see below)

• CellView#context_path: the specific path (see below)

• CellView#ctx_cell: the context cell (see below). Alternatively the cell index of the context cell is available by CellView#ctx_cell_index.

• CellView#technology: the technology (name) used with this layout

• CellView#is_cell_hidden?: returns a value indicating whether a given cell is hidden

A cellview can be manipulated to change the cell shown in the layout view. For this purpose, assignment methods exist which will
reconfigure the cellview:

• CellView#cell=: a reference to the cell shown (a Cell object: Cell).

• CellView#cell_index=: a reference to the cell shown (by cell index).

• CellView#name=: the unique name of the layout.

• CellView#path=: sets the unspecific path (see below)

• CellView#context_path=: sets the specific path (see below)

• CellView#technology=: applies the given technology to this layout

• CellView#show_cell, CellView#show_all_cells, CellView#hide_cell: shows or hides cells

• CellView#close: closes this cell view (removes it from the layout view)

Unspecific and specific path and context cell

In addition to the cell itself, the cell view specifies how the cell is embedded in the hierarchy. Embedding can happen in two ways: an
unspecific and a specific way. Both ways contribute to a path which leads from a top cell to the cell drawn.

The first part is always the unspecific path. This path specifies, where the cell drawn is located in the cell tree. That has no effect on the
drawing, but is determines what entry in the cell tree is selected. Giving a path for that information is required, because a cell can be child
of different cells which itself can be children of other cells. The unspecific path lists the top cell and further cells which are all direct or
indirect parents of the cell addressed.

The unspecific path ends at the "context cell" which usually is identical to the cell addressed by the cell view. KLayout allows addressing of
a specific instance of a direct or indirect child cell as the actual cell. In that case, the specific path comes into play. Bascially that means,
that a cell is drawn within a context of embedding layout. The specific path leads from the context cell to the cell view's target cell and
consists of specific instances (hence the name "specific path"). The "descend" and "ascend" feature bascially adds or removes instances
from that path.

The unspecific path can be obtained with the CellView#path method, the specific path with the CellView#context_path method. The
unspecific path is just an array of cell indexes specifying the top cell and further cells down to the context cell and includes the context
cell. The specific path is an array of InstElement objects (InstElement). Each InstElement object describes a specific instantiation (a cell
instance plus information when a specific array instance is addressed). When there is no context, the specific path is an empty array. Using
the setters CellView#path= and CellView#context_path= these paths can be changed to select a new cell into the layout view.

The Image class

Images can be placed onto the drawing canvas and display colored or monochrome images below the layout. Images are represented
by Image objects (Image). Basically an image is a two-dimensional array of pixel values with a specification how these pixels are to be
displayed on the canvas. An image can be created an placed on the canvas like this:

lv = RBA::Application::instance.main_window.current_view
image = RBA::Image::new("image.png")

For more details visit
https://www.klayout.org

Page 444 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.3. The Application API

lv.insert_image(image)

An image can be configured by using different properties and attributes:

• The images' data can be loaded from a file by using a constructor with a file name. In addition, the image can use data from an
array of floating-point values using either a constructor or the Image#set_data method. An image can be colored, in which case
three channels are present or it can be monochrome. In the latter case, a single channel is present only. Together with the data, the
dimensions of the image have to be specified (width and height in pixel units).

• The image's data can be manipulated per pixel using the Image#get_pixel or Image#set_pixel method.

• The data range for the data stored in the image can be set using the Image#min_value= and Image#max_value= attributes. The data
range determines which value is considered "maximum intensity" (max_value) and "zero intensity" (min_value).

• For monochrome images, a data mapping can be specified. A data mapping converts a monochrome value (a scalar) to a color. Data
mapping is specified through a ImageDataMapping object (ImageDataMapping) using the Image#data_mapping method.

• The geometrical properties of an image are encapsulated in a Matrix3d object (Matrix3d). Such a matrix describes the transformation
from pixel coordinates to the micron unit space of the canvas. A 3x3 matrix is a generic way to specify a transformation, including
translation, rotation, mirror, shear or perspective distortion. The matrix is obtained and set using the Image#matrix attribute.
Convenience methods like Image#trans, Image#pixel_width and Image#pixel_height allow accessing sub-aspects of the generic
transformation (affine transformation, scaling).

An image can be transformed using one of the Image#transformed methods. It can be hidden or shown using the Image#visible= method.
The bounding box of the image can be obtained with the Image#box method.

The Annotation class

Annotations (Annotation) are basically rulers and other "overlay objects" but can be used for other purposes as well, for example to simply
add a text object. Annotations, like images, are objects stored in the LayoutView and can be selected, deleted, transformed etc.

Programmatically, annotations are created this way:

lv = RBA::Application::instance.main_window.current_view
ant = RBA::Annotation::new
ant.p1 = RBA::DPoint.new(0.0, 0.0)
ant.p2 = RBA::DPoint.new(100.0, 0.0)
lv.insert_annotation(ant)

The annotation carries several attributes. Those are the same attributes that can be configured in the annotation properties dialog.
The most important properties are the two positions (start and end position) accessible through the Annotation#p1 and Annotation#p2
properties, the style (Annotation#style property) and the outline (Annotation#outline property).

If properties are changed using the attribute setters, their appearance will change as well. The following example demonstrates how rulers
are manipulated. In this example, the style of all rulers is set to "arrow on both sides". Note, how in this example transactions are used to
implement undo/redo:

view = RBA::LayoutView::current

begin

 view.transaction("Restyle annotations")

 view.each_annotation do |a|
 a.style = RBA::Annotation::StyleArrowBoth
 end

ensure
 view.commit
end

For more details visit
https://www.klayout.org

Page 445 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.3. The Application API

The Marker class

A marker is a temporary highlight object. A marker is represented by the Marker class (Marker). Markers appear when they are created and
disappear when they are destroyed. Since destruction by the garbage collector happens at undefined times, the destroy method can be
used to destroy the marker explicitly. Markers accept some plain shapes (i.e. a Box) which will be displayed as the marker. Markers can be
configures in manifold ways, i.e. the colors, the fill pattern, line width etc. See the class documentation for details about the configuration
properties.

This is how to create and destroy a marker:

lv = RBA::Application::instance.main_window.current_view
marker = RBA::Marker.new(lv)
marker.set(RBA::DBox::new(0.0, 0.0, 100.0, 200.0))
to hide the marker:
marker.destroy

Markers are temporary objects intended for highlighting a certain area or shape. Markers are not persisted in sessions nor can they be
edited.

The Plugin and PluginFactory classes

Plugins (Plugin) are objects which provide modular extensions of KLayout. Plugins are the only way to handle mouse events in the canvas.
The basic operation of a plugin is the following:

• For each plugin type, a PluginFactory (PluginFactory) object must be provided. KLayout uses this object to configure itself and to
create a particular plugin instance for each LayoutView. The PluginFactory must provide certain configuration information and can
handle some events in a global manner, for example menu entries that do not refer to a certain plugin instance. The PluginFactory
must register itself in the KLayout framework. After doing so, KLayout will provide a new button in the tool bar. If this button is
selected, the plugin will be activated.

• When a LayoutView is created, it will use the PluginFactory to create a specific Plugin instance for the view. When the tool bar button
is pressed which relates to this plugin, the plugin will be activated and mouse or other events will be redirected to this plugin.

The PluginFactory itself acts as a singleton per plugin class and provides not only the ability to create Plugin objects but also a couple of
configuration options and a global handler for configuration and menu events. The configuration includes:

• Menu items: by configuring menu items in the PluginFactory, KLayout can create these items when the plugin is initialized. Each
menu entry is connected with the plugin through a symbol: this is a string that tells the plugin's Plugin#menu_activated method which
menu item was selected. By configuring a menu rather than creating it explicitly, KLayout has a somewhat better control over what
menu items belong to which plugin. Menu items are configured by calling PluginFactory#add_menu_entry in the PluginFactory's
constructor.

• Configuration options: Instead of directly taking values from the configuration database, it is more convenient to register configuration
keys in the PluginFactory's constructor using the PluginFactory#add_option method. After an option is configured, the individual
Plugin objects and the PluginFactory receives "configure" calls when a configuration option changes or for the initial configuration.

A PluginFactory must be instantiated and register itself. Menu items and configuration options should be set before the object is registered.
Upon registration, a unique name must be specified for the plugin class. Also, the tool button title and optionally an icon can be specified.

The main objective of the PluginFactory class however is to create the actual plugin object. For this, the create_plugin method needs to be
reimplemented. The implementation is supposed to create an object of the specific class.

The actual implementation of the plugin is a class derived from Plugin (Plugin). The plugin comes into life, when it is activated. That is,
when the tool button is pressed that is associated with the plugin. When the plugin is activated, the Plugin#activated method is called. The
method can be reimplemented in order to prepare the plugin for taking actions on mouse events. When the plugin is not longer active, i.e.
because another mode has been selected, the Plugin#deactivated method is called.

Every plugin has the ability to receive and intercept mouse events. Various mouse events are available: mouse moved, mouse button
clicked (button pressed and released), mouse button double clicked, mouse button pressed, mouse button released, entry or leave of the
window and agitation of the mouse wheel. Each event follows a certain protocol depending whether the plugin is active or not. In addition,
plugins can request exclusive control over the mouse by "grabbing" the mouse. Each event is associated with a certain callback. The
callback has a parameter - "prio" - which determines the role of the event. The protocol is described here:

For more details visit
https://www.klayout.org

Page 446 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.3. The Application API

• First, all plugins that grabbed the mouse with grab_mouse will receive an event callback with 'prio' set to true in the reverse order the
plugins grabbed the mouse. If any one of the mouse event handlers returns true, the protocol terminates.

• If that is not the case or no plugin has grabbed the mouse, the active plugin receives the mouse event with 'prio' set to true.

• If no receiver accepted the mouse event by returning true, it is sent again to all plugins with 'prio' set to false. Again, the loop
terminates if one of the receivers returns true. The second pass gives inactive plugins a chance to monitor the mouse and implement
specific actions - i.e. displaying the current position.

In an mouse event handler, the plugin can take any action, i.e. transform objects or create/remove markers. This allows implementing
of interactive functionality upon KLayout's canvas object. Using "set_cursor", the plugin can set the mouse cursor to a specific shape for
example. A plugin should consider implementing "drag_cancel" in order to terminate any pending dragging operations. Plugin#drag_cancel
is called by KLayout to regain control over the mouse in certain circumstances and is supposed to put the plugin into a "watching" instead
of "dragging" state.

For more details visit
https://www.klayout.org

Page 447 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.4. The Database API

3.4. The Database API
The basic object of the database is the Layout object. A Layout object represents a layout file or a layout generated. Basically, a layout is
a collection of cells and geometrical shapes. The shapes are organised in layers and the cells can be instantiated in other cells creating
a hierarchy of cells. Hence, the basic objects of the database are Layout, Cell, Shapes and the geometrical primitives like Box, Path,
Polygon, Text and Edge.

The Layout class

The Layout object is the basic container for a layout. Multiple layouts can live within KLayout. Some are stored inside the application and
are created when a layout is loaded for example. However, layout objects can also be created as standalone objects for manipulation by
Ruby scripts. Such a layout can be an isolated entity without connection to a view.

A basic sample

This is a sample how to create a layout in a layout view with one cell ("TOP"), one layer (layer 10, datatype 0) and one shape (a 1x2 micron
box). This sample also shows how to set up the layout view properly:

create a new view (mode 1) with an empty layout
main_window = RBA::Application::instance.main_window
layout = main_window.create_layout(1).layout
layout_view = main_window.current_view

set the database unit (shown as an example, the default is 0.001)
layout.dbu = 0.001

create a cell
cell = layout.create_cell("TOP")

create a layer
layer_index = layout.insert_layer(RBA::LayerInfo::new(10, 0))

add a shape
cell.shapes(layer_index).insert(RBA::Box::new(0, 0, 1000, 2000))

select the top cell in the view, set up the view's layer list and
fit the viewport to the extensions of our layout
layout_view.select_cell(cell.cell_index, 0)
layout_view.add_missing_layers
layout_view.zoom_fit

It is also possible to create a standalone layout. Here is an example how to create the layout without a connection to a view and save that
layout to a file:

create the layout
layout = RBA::Layout::new

set the database unit (shown as an example, the default is 0.001)
layout.dbu = 0.001

create a cell
cell = layout.create_cell("TOP")

create a layer
layer_index = layout.insert_layer(RBA::LayerInfo::new(10, 0))

add a shape
cell.shapes(layer_index).insert(RBA::Box::new(0, 0, 1000, 2000))

save the layout
layout.write("my_layout.gds")

For more details visit
https://www.klayout.org

Page 448 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.4. The Database API

Overview over the Layout object

The basic building blocks of layouts are layers and cells. Layers are not individual objects. Instead, a layer is rather an index and the
various methods allow addressing shapes inside layers by using that index. However, the layout object stores the layer properties, i.e. the
layer and datatype number.

Cells are represented by Cell objects which are described later. Cells are often referred to by a cell index which is basically an ID which
allows identification of a cell without having to keep a reference. The Layout object allows converting of a cell index to a cell reference with
the Layout#cell method. Cells can be instantiated inside other cells. Instances are described by CellInstArray objects.

Another important property of the layout object is the database unit. In the layout, all geometrical coordinates are stored as integer values
for efficiency. The database unit specifies the length of one unit in micrometers. The database unit can be accessed with the Layout#dbu
attribute. Changing the database unit effectively scales a layout. Often the database unit is a fixed value and compatibility between different
layouts in a flow often demands use of a specific database unit. Hence, changing the value of the database unit is possible but requires
some careful consideration.

The Layout object keeps shapes (texts, polygons, boxes, paths etc.) on "layers". A layer is a collection of shapes. A layout features a set of
layers and each cell provides space for each layer. The shapes are stored inside the cells while the layers are managed by the layout. For
doing so, the Layout object keeps layers as a table of LayerInfo objects. The LayerInfo object carries information about the description of a
layer, for example layer and datatype number and/or the layer name. A layer is basically just an index in that table. Layers can be created
using the Layout#insert_layer method. Each layer is present in every cell and inside a cell, a shape storage for each layer is provided.

Inside the layout object, shapes are kept with integer coordinates. The physical units can be obtained by multiplying the integer coordinates
with the database unit. The integer type objects are Box, Polygon etc. Most objects also support floating-point coordinate objects (DBox,
DPolygon etc.). These objects are then given in micrometer units - i.e. already multiplied by the database unit. If using these objects, keep
in mind that internally they are still integer-type objects. This means, rounding to the database will happen and if you change the database
unit, the objects will effectively scale.

A Layout object provides some basic layout manipulation and query methods. For example, it provides a method to retrieve shapes
touching or overlapping a certain rectangular region of a cell. It also provides a clip method which extracts a rectangular region from a
layout (Layout#clip, Layout#clip_into, Layout#multi_clip, Layout#multi_clip_into). It provides methods to delete cells and cell trees and
(Layout#delete_cell, Layout#delete_cell_rec, Layout#delete_cells, Layout#prune_cell, Layout#prune_subcells). There are also methods to
manipulate layers (Layout#clear_layer, Layout#copy_layer, Layout#move_layer, Layout#delete_layer).

Some convenience functions are provide to read and write a layout from or to a file. The Layout#read method reads a layout from a file. It
basically merges the contents of the file with the layout so it's possible to combine multiple files by using read more than once. The method
comes in two flavors: a simple one and one that allows specification of reader options with a LoadLayoutOptions object. There is also a
Layout#write method which writes the layout to a file. The simple form writes the layout to a file and the file type is determined by the file
extension. A full-featured version exists which allows to specify the format and many more options with a SaveLayoutOptions object.

Layouts can also import cells from Libraries (Library). Such imported cells are basically cells linked to another cell inside the library.
Library cells are imported using the Layout#add_lib_cell method. This method creates a "proxy" cell which is a copy of the library cell but
is linked to the library. As long as the library is present in the system, this link is maintained and stored in the layout files. If the link is lost
because the library is removed, the proxy cell becomes a normal cell. Such proxy cells basically behave like normal cells but should not be
manipulated.

Layout objects are also responsible for handling properties. Properties are basically arbitrary sets of data (key/value pairs) attached to
shapes, cells or instances. For efficiency, the property data is not attached to every shape, cell or instance. Instead, the layout object
manages different property sets and associate each distinct set with an integer ID. The shape, cell or cell instance only stores that ID. To
create, query or change property sets, the layout object provides the Layout#properties and Layout#properties_id methods. Since that is
inconvenient, shapes, cells and instances provide access to the properties by providing methods to set, get and delete properties from
the set (for example Shape#property, Shape#delete_property and Shape#set_property). Internally, these methods create a new ID if
necessary and assign that ID to the shape, cell or instance.

A layout can provide and import PCells. PCells are cells that provide its geometry through program code (for example written in Ruby) and
provide parameters which can be adjusted to change the appearance of the cell. For each PCell a "declaration" must be provided which
basically contains the code for the PCell and some information about the parameters provided by the PCell. PCells are stored in the layout
and are referred to by a PCell ID (an integer). PCells are added to a layout using Layout#register_pcell and retrieved by ID or name using
Layout#pcell_declaration. PCells are instantiated with a specific parameter set using the Layout#add_pcell_variant. This method creates a
cell representing the layout generated by the PCell code for a particular set of parameters. The layout internally caches the PCell layouts so
the PCell code is executed only if a new parameter set is requested. Usually PCells are provided through libraries. In that case, the library
provides the PCell variant through Layout#add_pcell_variant which is imported into the target layout through Layout#add_lib_cell. There is
a overload of Layout#add_pcell_variant which combines both steps.

The following code demonstrates how to create a PCell (in that case a "TEXT" cell from the "Basic" library):

For more details visit
https://www.klayout.org

Page 449 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.4. The Database API

ly = RBA::Layout.new
top = ly.add_cell("TOP")

Find the lib
lib = RBA::Library.library_by_name("Basic")
lib || raise("Unknown lib 'Basic'")

Find the pcell
pcell_decl = lib.layout.pcell_declaration("TEXT")
pcell_decl || raise("Unknown PCell 'TEXT'")

Set the parameters (text string, layer to 10/0, magnification to 2.5)
param = { "text" => "KLAYOUT RULES", "layer" => RBA::LayerInfo::new(10, 0), "mag" => 2.5 }

Build a param array using the param hash as a source.
Fill all remaining parameter with default values.
pv = pcell_decl.get_parameters.collect do |p|
 param[p.name] || p.default
end

Create a PCell variant cell
pcell_var = ly.add_pcell_variant(lib, pcell_decl.id, pv)

Instantiate that cell
t = RBA::Trans::new(RBA::Trans::r90, 0, 0)
pcell_inst = ly.cell(top).insert(RBA::CellInstArray::new(pcell_var, t))

Editable mode

A layout can exist in two flavors: editable and non-editable. In editable mode, some optimisations are disabled. For example, OASIS
shape arrays are expanded into single shapes. This enables manipulation of the database. For example, the shape replacement, property
manipulation and other operations are only possible in editable mode. On the other hand, the memory footprint of a layout may be larger in
editable mode. Independent of the mode, layouts can be created and cells, instances and shapes can be added, but not manipulated.

A layout object living in the application is created in editable or non-editable mode depending on the application setting. Layout objects
explicitly created by RBA code can either be in editable or non-editable mode:

editable_layout = RBA::Layout.new
non_editable_layout = RBA::Layout.new(false)

The Layout#is_editable? method returns true, if a layout is in editable mode. Once the layout is created, the editable mode cannot be
changed.

Meta information

A layout object can keep arbitrary meta data in the form of key/value pairs. This meta data is extracted during the reading of a layout and
will reflect special properties of the layout file. For example, the GDS2 library name is available as meta information with key "libname".

The layout object offers methods to retrieve that information: Layout#each_meta_info will iterate over the meta data (returning a
LayoutMetaInfo object). Layout#meta_info_value will get the value for a given name. Layout#add_meta_info will add a new meta
information object and Layout#remove_meta_info will delete one.

Meta information is a different concept than properties.

Cell related methods

Cells can be created using the Layout#create_cell method. This method expects a cell name. If a cell with that name already exists, a new
name is generated by appending a suffix. The method returns the Cell object of the new cell. Layout#rename_cell or Cell#name= can be
used to change the name of a cell. The Cell object for a given name can be obtained with Layout#cell which returns the Cell object or nil if
no cell with that name exists.

The cell name can be obtained from the cell index with the Layout#cell_name method or Cell#name). Layout#has_cell? can be used to
determine whether a cell with the given name exists. Layout#is_valid_cell_index? can be used to determine whether a given index is a valid

For more details visit
https://www.klayout.org

Page 450 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.4. The Database API

cell index. Layout#cells returns the number of cells in the layout. To work with cells, the Cell object is required. It can be obtained from the
cell index using the Layout#cell method.

The top cell of a layout can be obtained using Layout#top_cell. If multiple top cells exist, this method will raise an exception. In that case,
Layout#top_cells can be used to obtain all top cells.

All cells in the layout can be iterated using the Layout#each_cell iterator. All top cells (cells which are not instantiated itself) can be iterated
with the Layout#each_top_cell iterator. The cells can be iterated bottom-up (all child cells come before their parents) or top-down (all
parents come before their children) using the Layout#each_cell_bottom_up or Layout#each_cell_top_down.

Layout#delete_cell deletes a cell. This method will keep the child cells, which may become top cells because their parent cell is deleted.
Layout#delete_cells deletes multiple cells and is more efficient than deleting cell by cell. Layout#delete_cell_rec will delete a cell and all
child cells (direct and indirect), irregardless whether they are used otherwise or not. Layout#prune_cell does the same but is somewhat
more sensitive in that respect and does not delete child cells if they are instantiated by parents not in the cell tree below the cell being
deleted. Layout#prune_subcells as prune_cell deletes the child cells or a cell but in contrast to prune_cell does not delete the cell itself.

Layer related methods

Layout#insert_layer creates a new layer in the layout. The layer will be available to all cells. This method receives a LayerInfo object which
holds the information about the layer's name, layer and datatype. It returns a layer index which can be used to address shapes in the cells.
Layout#insert_layer_at can be used to create a layer with a specific layer index, provided that index is not used yet.

Layout#is_valid_layer? can be used to determine whether a layer index is a valid index. Layout#layer_indices returns a list of indexes of all
layers present. Layout#layers returns the number of layers present.

Layout#find_layerReturns the layer index for a given layer in various flavors. Layout#layer finds or creates a layer if it does not exist yet.
Again, the layer can be given in various flavors - for example by layer and datatype, by name or with a LayerInfo object.

Layout#set_info can be used to change the LayerInfo object for a layer. Layout#get_info returns the LayerInfo object for a layer. To modify
the information, obtain the information with get_info, modify it, and set the new information with set_info:

lv = RBA::Application::instance.main_window.current_view
ly = lv.current_cellview.layout
info = ly.get_info(0)
info.layer = 100
ly.set_info(0, info)
lv.add_missing_layers
lv.remove_unused_layers

The previous sample changes the layer number for layer index 0 to 100. "add_missing_layers" and "remove_unused_layers" will create
new layer entries in the layer list and remove the entry for the previous layer.

For special purposes, special (temporary) layers can be created in the layout. Those layers basically behave like normal layers
but don't appear in the layer list and are not saved to a file. Special layers can be created using Layout#insert_special_layer and
Layout#insert_special_layer_at. Layout#is_special_layer? returns true if a given index is a special layer.

In addition, a layout contains a special layer which is used to implement the "guiding shape" feature of PCells. It is a special layer that
serves as a container for shapes which parametrize PCells. The index of that layer can be obtained with Layout#guiding_shape_layer.

A list of the indexes for all layers inside the layout can be obtained with Layout#layer_indexes. A corresponding list of LayerInfo objects can
be obtained with Layout#layer_infos.

Recursive full or region queries

A layout provides methods to retrieve shapes recursively. That means, that the shapes are delivered from all cells instantiated below a
given top cell. Cells instantiated multiple times are also visited multiple times. While the shapes are delivered, information is provided what
cell instances the specific shape instance is found in.

Recursive shape retrieval is done through a iterator, the RecursiveShapeIterator. This object delivers one shape each time. A
RecursiveShapeIterator is created for example using the Layout#begin_shapes method. This method requires the cell index of the starting
(initial) cell and a layer index. This code demonstrates how to use the RecursiveShapeIterator:

layout = RBA::Application::instance.main_window.current_view.active_cellview.layout
start iterating shapes from cell "TOP", layer index 0
si = layout.begin_shapes(layout.cell_by_name("TOP"), 0)
while !si.at_end?
 puts si.shape.to_s + " with transformation " + si.trans.to_s
 si.next

For more details visit
https://www.klayout.org

Page 451 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.4. The Database API

end

The RecursiveShapeIterator's shape method delivers a shape reference (see description of the Shape class or Shape) which basically
points to a shape inside a cell. Since the cell may be a child cell of the initial cell the RecursiveShapeIterator was created with, in general a
transformation is present that tells how the cell's content shows up in the initial cell. The generic form of that transformation is a CplxTrans
object which is delivered by the RecursiveShapeIterator's "trans" method. This transformation renders floating-point coordinates which is
precise but not a suitable representation for transforming shapes into a form compatible with the database. For that purpose, a ICplxTrans
object is provided as well through the "itrans" method. This transformation renders integer coordinates which may imply rounding effects in
some cases. The RecursiveShapeIterator delivers the cell from which the current shape is taken through the "cell_index" method.

A RecursiveShapeIterator can be configured to retrieve only certain type of shapes (i.e. boxes, texts etc.). To do so, set the shape_flags
attribute of the shape iterator before using it:

layout = RBA::Application::instance.main_window.current_view.active_cellview.layout
start iterating shapes from cell "TOP", layer index 0
si = layout.begin_shapes(layout.cell_by_name("TOP"), 0)
si.shape_flags = RBA::Shapes::SBoxes
while !si.at_end?
 puts si.shape.to_s + " with transformation " + si.trans.to_s
 si.next
end

Also the maximum depth at which the RecursiveShapeIterator will traverse the hierarchy can be set using the "max_depth" attribute.
Setting this attribute to 0 will report only shapes from the initial cell. The depth must be set before the first shape is retrieved.

The RecursiveShapeIterator can also deliver shapes from a region. The region is a rectangle specified in coordinates of the initial
cell. To create a RecursiveShapeIterator that only delivers shapes inside that region use the Layout#begin_shapes_touching or
Layout#begin_shapes_overlapping methods of the Layout object. These methods expect a Box object that specifies that rectangle. All
shapes delivered will either touch or overlap that box when projected into the initial cell.

Shape manipulations should be avoided inside loops that iterate over shapes using a RecursiveShapeIterator. The reason is that shape
manipulations may invalidate the internal state of the RecursiveShapeIterator. Instead, collect all shape references that need to be
manipulated in an array and do the manipulations later.

Properties

As stated earlier, shapes can carry an arbitrary number of user properties in form of key/value pairs. For efficiency, these properties are not
stored directly but in form of a property ID which identifies a unique set of properties. Retrieving a property hence requires an indirection
over the property ID:

layout = RBA::Application::instance.main_window.current_view.active_cellview.layout
first shape of cell "TOP", layer index 0
layer_index = 0
iter = layout.begin_shapes(layout.cell("TOP").cell_index, layer_index)
shape = iter.shape
create a hash from the properties of that shape
props = Hash[*layout.properties(shape.prop_id).flatten]
print the value of the property with key 1
puts props[1]

Since that scheme is somewhat tedious to use, a nice shortcut exists by using the "properties" method on the shape reference. This
method implicitly modifies the property set and assigns a new property ID:

layout = RBA::Application::instance.main_window.current_view.active_cellview.layout
first shape of cell "TOP", layer index 0
layer_index = 0
iter = layout.begin_shapes(layout.cell("TOP").cell_index, layer_index)
shape = iter.shape
print the value of the property with key 1
puts shape.properties(1)

Changing a property requires to obtain a new property ID for the changed set:

For more details visit
https://www.klayout.org

Page 452 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.4. The Database API

layout = RBA::Application::instance.main_window.current_view.active_cellview.layout
first shape of cell "TOP", layer index 0
layer_index = 0
iter = layout.begin_shapes(layout.cell("TOP").cell_index, layer_index)
shape = iter.shape
cell = layout.cell(iter.cell_index)
create a hash from the properties of that shape
props = Hash[*layout.properties(shape.prop_id).flatten]
change or add a property with key 1
props[1] = "NewValue"
store the new properties
shape.prop_id = layout.properties_id(props.to_a)

For that problem also a shortcut exists. Use the "set_properties" method on the shape reference. This method implicitly modifies the
property set and assigns a new property ID:

layout = RBA::Application::instance.main_window.current_view.active_cellview.layout
first shape of cell "TOP", layer index 0
layer_index = 0
iter = layout.begin_shapes(layout.cell("TOP").cell_index, layer_index)
shape = iter.shape
change or add a property with key 1 and value "NewValue"
shape.set_property(1, "NewValue")

A property ID of 0 in general indicates that no properties are attached. Please note that replacing a property ID and modifying the
properties also invalidates any iterators and should not be done in a loop over shapes.

Cell instances and cells also carry a properties ID which can be used to assign user properties to cell instances. The cell instance
properties ID is used like the shape properties ID. The shortcut methods "property", "set_property" and "delete_property" also are provided
for cells and cell instances (Cell and Instance).

Note: The GDS format does not have string names for properties. As a result GDS only supports numeric property keys. OASIS, on the
other hand, can handle string and numeric property "names". When saving layouts in GDS format, KLayout tries to convert the properties'
names into numbers if possible (i.e. if it sees that the string is a number). If it can't, then the property is not saved. When the layout is read
by KLayout upon opening, it gets converted to integer.

The LayerInfo class

The LayerInfo object encapsulates the layer's naming properties. In GDS, a layer is described by a layer number and datatype number. In
OASIS, a text name can be added to that description. In other formats like DXF, a layer has just a text name.

The LayerInfo object thus has a twofold identity: a numeric identity (layer and datatype number) and a text layer name. Both properties can
be specified. In that case, the numeric identity has precendence over the text name.

When a layout is loaded, LayerInfo objects are used to represent a layer's naming properties in the Layout object. The LayerInfo object
associated with a layer can be retrieved using the Layout's "get_info" method. It can be set using the "set_info" method. In general, the
LayerInfo property is detached from the layer index, so it can be assigned and manipulated freely.

The default constructor of LayerInfo will create a nameless object. Nameless layers are not saved to any file and can be used for internal
purposes such as temporary or intermediate layers.

The LayerInfo#layer attribute allows read and write access to the layer number. LayerInfo#datatype is the attribute for the datatype number.
LayerInfo#name gives access to the text name. LayerInfo#is_named? returns true, if the LayerInfo object represents a named layer (no
layer or datatype number are specified). LayerInfo#is_equivalent? compares two LayerInfo objects and returns true, if both denote the
same layer. This is not exact equivalence but follows the logical precendence: two layers are equivalent if layer or datatype number match
(in that case the text name is ignored) or, if no layer and datatype number are specified, the name matches exactly.

LayerInfo objects supply a hash value (LayerInfo#hash) and can therefore be used as keys in Ruby hashes.

The Cell class

After the Layout object, the Cell object is the most fundamental object in KLayout's database API. It represents a cell, which itself is a
collection of shapes per layer and instances of other cells. The methods provided by the Cell class deal with either the shape or the

For more details visit
https://www.klayout.org

Page 453 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.4. The Database API

instance aspect. A cell is also responsible for handling parts of the PCell scheme, either for the cell itself (if it is an incarnation of a PCell) or
instances of PCells.

A cell has a name which can be retrieved using the Cell#name method and which can be set using the Cell#name= method. Setting the
name is equivalent to using the Layout's "rename_cell" method. Cell#basic_name delivers the PCell or library cell name for cells imported
from a library or PCell variants. "name" will deliver an internal unique name in that case. Cell#display_title is a string that encodes library
name and PCell parameters as well and can be used as a descriptive title for the cell in user interfaces.

If the cell is a library cell (a "proxy"), it will have a database name (something like "TEXT$1") and a qualified name which states the library
and the cell name separated with a dot (i.e. "Basic.TEXT"). The qualified name is not neccessarily unique. The qualified name of the cell
can be obtained with Cell#qname.

A cell that represents a cell imported from a library or a PCell variant (or both) is called a proxy cell. For such cells, Cell#is_proxy?
returns true. Such cells should not be manipulated since they may be refreshed when required and the original state is restored.
Cell#is_library_cell? and Cell#is_pcell_variant? deliver a more detailed information about the nature of the proxy cell.

The layout that the cell lives in can be retrieved with the Cell#layout method. If the cell is created standalone (without layout), this method
returns nil. In that case, a cell is not named either.

A cell can be a "ghost cell". A ghost cell is an empty cell which is not written to a layout write and created when a layout file is read with
an unsatisfied reference. Unsatisfied references are present in some GDS files which represent partial layouts. By simple merging of two
GDS files, such references can be made true instances, when another file contributes the cell for that reference. KLayout supports such
unsatisfied references by providing the "ghost cells" which serve as a instance target but are not written. Ghost cells are simply cells where
the Cell#is_ghost_cell? attribute is true. An empty cell can be made a ghost cell by setting the Cell#ghost_cell= property.

A cell has a bounding box which includes child cells as well. KLayout keeps a per-layer bounding box, so it's very simple to tell whether
a cell is empty in a certain layer (including the hierarchy below). In that case the per-layer bounding box is an empty box. The overall
bounding box can be derived with the Cell#bbox method. The per-layer bounding box can be derived with the Cell#bbox_per_layer method.

Cells can be marked as "ghost cells" using the Cell#ghost_cell=. Ghost cells are not saved into GDS files (but their references are).
Also, ghost cells act as "placeholders" for cells - for example if a cell is pasted into a layout, it will replace any ghost cell with the same
name. If a normal cell with the same name exists, a copy will be created instead. A cell can be asked whether it is a ghost cell using
Cell#is_ghost_cell?.

Starting with version 0.23, cells can have properties as well, but writing cell properties to layout files is subject to some restrictions.
Properties are only written to GDS if a special option is enabled because a potentially incompatible extension of GDS is used to store the
properties. OASIS files support cell properties without restrictions.

Cells and shapes

A cell carries a set of geometrical shapes, organised in layers. A layer is specified by a layer index. The layer index is managed by the
Layout object. It is basically an integer that identifies the layer in the layout. The shapes are stored in containers of the Shapes class. Given
a layer index, the shapes object can be obtained from the cell through the Cell#shapes method:

shapes = cell.shapes(layer_index)
shapes.each do |shape|
 puts shape.to_s
end

The same can be achieved by directly iterating over the shapes in the cell:

cell.each_shape(layer_index) do |shape|
 puts shape.to_s
end

That iterator also allows specification of a filter so it delivers only a certain subset, i.e. only text objects. See Cell and Shapes for more
details.

There are iterators that deliver shapes within a rectangular region, either overlapping or touching that region
(Cell#each_overlapping_shape, Cell#each_touching_shape). They basically work like the "each_shape" iterator. Please note that
these iterators are not recursive, i.e. they don't deliver shapes from child cells. Recursive iteration can be performed using Layout's
"begin_shapes" method and the RecursiveShapeIterator object.

All shapes in a cell can be cleared using Cell#clear_shapes. A single layer can be cleared using the Cell#clear method with the layer index
to clear. Both methods are not recursive, i.e. they only clear the shapes on the given cell, not on the child cells.

For more details visit
https://www.klayout.org

Page 454 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.4. The Database API

Layers can be copied using the Cell#copy method. The shapes of a layer can be moved to another layer using the Cell#move method. In
both cases, the target layer is not overwritten, but the shapes from the source layer are added to the target layer. Cell#swap will swap the
shapes of two layers. In all these cases, the operation is local on the cell, i.e. child cells are not affected.

Shapes within a cell are represented as Shape objects. A shape object is a generic object which represents either a polygon, a box, a path,
a text or an edge object. Shapes provide some generic methods such as Shape#bbox to retrieve the bounding box or Shape#transform.
Shapes act as "pointers" to geometrical objects inside the database. Manipulating a shape will also manipulate the database object.

To work with specific kind of shapes, the working classes such as Polygon are provided. Shapes can be converted into these working
objects. The working objects are not related to the layout object and not having a connection to the layout makes them lightweight objects.
A usual way of manipulating a shape is to translate it to a working object, modify that and assign the working object back to the shape.

Interfaces to floating-point working classes such as DPolygon are provided too. By convention such objects represent shapes in
micrometer units. If such an object is requested from the shapes container it is converted from an integer-type object in database units to a
floating-point type object in micrometer units by multiplying with the database unit. When sending such an object to the Shapes container
the same happens in reverse. Internally, the integer type is used.

Cells and hierarchy

The direct children of a cell can be iterated with Cell#each_child_cell. That iterator delivers the cell index of each child cell of the cell.
Similar, there is a Cell#each_parent_cell iterator. It delivers the cell indexes of all cells calling that cells. For a top cell that iterator delivers
nothing. Cell#is_leaf? returns true, if the cell does not have child cells. Cell#is_top? returns true, if the cell is top cell.

Cells and their children form a directed acyclic cell graph. That means, no cell may instantiate a cell which itself calls the cell whether
directly or indirectly. There is a set of cells called by a given cell, either directly or indirectly through children of the cell. That set is the
"called" cell set. That cell set can be obtained with the Cell#called_cells method in form of an array of cell indexes.

Similar, there is a set of cells calling a cell, either directly or indirectly. That set of cells can be obtained with the Cell#caller_cells method.
For a top cell that set is empty.

The number of hierarchy levels can be obtained with Cell#hierarchy_levels. This method delivers the length of the longest path to a leaf
cell. A leaf cell has a hierarchy level count of 0.

A cell can be flattened using Cell#flatten. Child cells can be removed using Cell#prune_subcells. The cell can be removed with Cell#delete
or Cell#prune_cell. The latter will also remove any child cells which are not used otherwise.

Copying information between cells

Instances can be copied from one cell to another using Cell#copy_instances. Shapes can be copied using Cell#copy_shapes. The latter
method supports layer conversions by employing a LayerMapping object to specify input and output layers. In addition, shapes can be
copied to another layout which automatically performs database unit conversion if necessary.

A full cell tree can be copied using Cell#copy_tree. This method will create a new hierarchy below the target cell matching the source cell's
hierarchy and copy all shapes from source to target using that new hierarchy. Source and target cell may reside in different layouts and
database unit conversion is done automatically.

The content of a cell can be copied to another cell hierarchically using Cell#copy_tree_shapes, provided a cell mapping exists. A cell
mapping specifies, how child cells of the source cell are identified in the target, which can be a different layout. For the cell mapping a
CellMapping object is employed. In addition, a LayerMapping object can be used to specify layer mapping to the target. If no cell mapping
is provided, shapes are flattened into the next possible parent, which provides a way to creating flat copies of cells. "copy_tree" is a
convenience method and is a special case of "copy_tree_shapes".

For all methods, "move" flavors are available (Cell#move_instances, Cell#move_shapes, Cell#move_tree and Cell#move_tree_shapes),
which not only copy the information but also remove the respective objects in the source cell. That somewhat reduces the memory required
for such operations.

Cells and instances

A cell also plays a role as container for the instances. An instance describes a cell that is placed into another cell. Technically an instance
is a combination of a cell reference and a transformation. Raw instances are represented by CellInstArray objects. Instances inside a
cell are referred to by Instance objects. An Instance object is basically a pointer into a CellInstArray stored inside a cell and associates
properties with raw instances for example.

Instances can be created by using the various Cell#insert methods of Cell. Instances can have properties, so a property ID can be provided
(see Layout class for a discussion about property ID's). Instances can be deleted using the Cell#erase method. All instances of a cell can
be deleted using the Cell#clear_insts method.

An instance can be replaced by another CellInstArray object using the Cell#replace method. The properties ID can be changed using the
Cell#replace_prop_id method. It is easier however to use the Instance object's "cell_inst=" or "prop_id=" method.

For more details visit
https://www.klayout.org

Page 455 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.4. The Database API

Instances can be iterated with Cell#each_inst. Cell#each_overlapping_inst and Cell#each_touching_inst delivers all instances overlapping
or touching a given rectangular region. That means, the instance's overall bounding box overlaps or touches the search rectangle.

Cell#each_parent_inst delivers all parent instances. Parent instances are basically reverse instances represented by the ParentInstArray
object. A parent instance identifies are parent cell and the instance of the given cell in that parent cell. This iterator allows deriving all
instances of the given cell in other cells.

Instances can be transformed with a given transformation (either a orthogonal or a general complex transformation) using the
Cell#transform method. This method invalidates the Instance pointer given as the argument and returns a new Instance pointer to the new
cell instance.

A floating-point integer class exists too (DCellInstArray). By convention this object represent an instance in micrometer units. If such an
object is requested from the cell it is converted from an integer-type object in database units to a floating-point type object in micrometer
units by multiplying with the database unit. When sending such an object to the cell the same happens in reverse. Internally, the integer
type is used.

Cells, libraries and PCells

If a cell is a cell imported from a library, Cell#is_library_cell? will return true and it is possible to derive the Library object from which this cell
is imported using the Cell#library method. Cell#library_cell_index will return the cell index of the cell in the library's local layout.

If a cell is a PCell variant, either directly from the layout or from a library, Cell#is_pcell_variant? returns true. This method can also be called
on an Instance object in which case it delivers true if the instance is an instance of a PCell. Cell#pcell_id returns the PCell declaration ID
if the cell is a PCell variant. Cell#pcell_declaration will return the PCell declaration object. There is also a overload of "pcell_declaration"
that determines the PCell declaration object for an Instance if it is a PCell instance. Cell#pcell_parameters delivers the PCell parameters
for a cell (if it is a PCell variant) or an instance (if it is a PCell instance). The PCell parameters are an array of variable-type values and the
interpretation is dependent on the PCell implementation. The PCellDeclaration object which can be obtained through "pcell_declaration"
gives the necessary information about the interpretation of the parameters.

Finally, Cell#refresh allows refreshing the layout of a proxy cell, i.e. transfer the current state of a library cell into this cell or recompute
the PCell layout. Usually this method needs not to be called. When PCell parameters change for example, the layout is automatically
recomputed.

Cells and PCell instances

A cell can be a PCell variant as we've seen above. In addition, a cell can hold PCell instances. The parameters of PCell instances can be
modified from the cell using Cell#change_pcell_parameter for individual parameters given by name or Cell#change_pcell_parameters for
all parameters. For changing all parameters it is required to know the parameter's order and meaning. The order can be obtained from
the PCell declaration class which itself can be retrieved from a PCell instance with Cell#pcell_declaration (with the instance as the first
argument).

The PCell parameters of a PCell instance can be obtained with Cell#pcell_parameters (with the instance as the first argument). To get a
specific parameter, use the PCell declaration object which lists the parameters on the order they are delivered by the "pcell_parameters"
method.

The CellInstArray class

Despite its name, a CellInstArray object holds a cell reference which is not only an array, but also a single instances. The object represents
a raw instance, in contrast to the Instance object which is basically a pointer to an instance inside the database. CellInstArray objects as
raw instances can be created, copied, modified and stored in the usual containers, but once they are stored inside the Cell object, they can
be addressed by the Instance object.

The CellInstArray object represents either single instances or array instances. Array instances correspond to GDS AREF records and
are regular, two-dimensional (not necessarily orthogonal) arrays of instances. A single instance consist of a cell index, denoting the cell
that is instantiated and a single transformation, which can be either a simple, orthogonal affine transformation without a magnification (a
Trans object, see Trans) or a general affine transformation (a CplxTrans object, see CplxTrans). A cell instance array in addition specifies
two dimensions (na, nb) and shift vectors (a, b). For each individual instance of the array, an additional displacement is added to the
transformation which is computed by the following formula:

d=i*a+j*b (i=0..na-1, j=0..nb-1)

A CellInstArray object that represents an array will return true on CellInstArray#is_regular_array?. In that case, the CellInstArray#a and
CellInstArray#b attributes are the basic vectors of the array and CellInstArray#na and CellInstArray#nb are the dimensions of the array.
CellInstArray#size is the number of instances in the array.

For more details visit
https://www.klayout.org

Page 456 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.4. The Database API

A CellInstArray with a simple transformation will return false on CellInstArray#is_complex? and the CellInstArray#trans attributes gives
the basic transformation of the instance. If the transformation is complex, i.e. has a rotation angle which is not a multiple of 90 degree or a
magnification, CellInstArray#is_complex? will return true and CellInstArray#cplx_trans should be used instead of CellInstArray#trans. In any
case, CellInstArray#cplx_trans gives the correct transformation.

The CellInstArray#cell_index attribute gets or sets the cell index. The CellInstArray#bbox and CellInstArray#bbox_per_layer methods
deliver the total bounding box of the instance including all instances for an array. CellInstArray#bbox_per_layer gives the bounding box
for a single layer. Since the instance only knows the cell index, these methods require a Layout object in order to derive the actual cell's
bounding box.

A CellInstArray object can be inverted using the CellInstArray#invert method. This method returns an array which represents
the ways the parent cell is seen from the child cell. A CellInstArray object can also be transformed by a given transformation.
The CellInstArray#transform method will (like CellInstArray#invert) transform the object in-place, i.e. modify the object.
CellInstArray#transformed will do the same, but leave the object it is called on and return a modified copy (out-of-place). Various variants of
the CellInstArray#transform and CellInstArray#transformed methods exist taking different forms of transformations (simple, complex).

The floating-point variant (DCellInstArray) behaves the same way, except that by convention the unit of coordinates is micrometers.

The Instance class

As stated earlier, the Instance object represents a cell instance in the database. Technically it acts as a proxy to some CellInstArray inside
the database. In addition, it provides access to properties attached to the instance. Instance objects play an important role in the Cell class
to identify a certain instance, for example to delete it.

The Instance class provides a couple of methods that give read access to the underlying CellInstArray object (Instance#a, Instance#b,
Instance#na, Instance#nb, Instance#size, Instance#trans, Instance#cplx_trans, Instance#cell_index, Instance#cell, Instance#is_complex?
or Instance#is_regular_array?). The whole CellInstArray object can be read with the Instance#cell_inst method. It is possible to copy (dup)
and modify that object and replace the current CellInstArray with the new one using Instance#cell_inst=. Please note, that this operation
may invalidate iterators and should not be done inside a loop using "Cell::each_inst" for example.

The cell the Instance object lives in can be obtained with Instance#cell. Instance#cell_index basically renders the same information, but in
form of a cell index. The cell can be assigned (Instance#cell=) which changes is to refer to a different cell.

The layout the instance lives in can be obtained with Instance#layout. The cell the instance lives in is returned by Instance#parent_cell. The
parent cell can be assigned (Instance#parent_cell=), which effectively moves the instance to a different cell.

User properties can be accessed through the Instance#prop_id attribute or, more convenient, through the Instance#property,
Instance#delete_property or Instance#set_property methods. Please note that changing the property ID or the property values may
invalidate iterators as well.

An instance has an equality operator. That operator returns true, if the Instances indentify the same object.

The Shapes class

The Shapes object is the basic container for geometrical shapes. It stores geometrical primitives (Boxes, Polygons, Paths, Texts and
Edges) either directly or in compressed form to achieve a low memory usage. For example, OASIS shape arrays are stored as compact
arrays when KLayout is used in viewer mode. The Shapes container provides a simplified view through the Shape object which is basically
a pointer to an individual instance of a geometrical primitive. The Shapes container provides access to the primitives through Shape
objects.

In editable mode (i.e. if a Shapes container lives in an editable Layout object), the shapes can be modified or deleted after they have been
inserted. In the opposite mode (viewer mode), shapes can be added, but not modified nor deleted.

A Shapes container is usually obtained from a cell with a given layer index and is filled with geometrical primitives using one of the
Shapes#insert methods. Please note that the shapes are specified in integer coordinates when you use the integer type objects and
micrometer units when using the floating-point type objects (whose classes start with "D"):

cell = a Cell object
layer_index = the index of a the layer
shapes = cell.shapes(layer_index)
shapes.insert(RBA::Box::new(0, 0, 1000, 2000))

With floating-point objects:

cell = a Cell object
layer_index = the index of a the layer
shapes = cell.shapes(layer_index)

For more details visit
https://www.klayout.org

Page 457 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.4. The Database API

shapes.insert(RBA::DBox::new(0.0, 0.0, 1.0, 2.0))

A Shapes object can also be created without a cell:

shapes = RBA::Shapes::new
shapes.insert(RBA::Box::new(0, 0, 1000, 2000))

Standalone Shapes objects can be useful when the methods of the Shapes object are required (for example, region queries through
"each_overlapping"). There are are variety of "insert" methods available, some of which copy shapes from other Shapes containers using
a Shape object as the reference for the source object. Some of these variants allow one to specify a transformation which is applied before
the shape is inserted. There are also variants for all geometrical primitives with or without a properties ID.

If a Shapes container is empty, Shapes#is_empty? will return true. The content of another Shapes container can be assigned to a Shapes
object with the Shapes#assign method. The number of geometrical primitives inside the Shapes container can be obtained with the
Shapes#size method. All shapes in the Shapes container can be deleted with the Shapes#clear method.

The content of the Shapes container can be iterated with the Shapes#each iterator. If will deliver Shape objects pointing to the current
geometrical primitive. The Shapes#each_overlapping and Shapes#each_touching methods deliver only those primitives whose bounding
box overlaps or touches the given rectangle. All iterators allow one to specify flags which confine the kind of shape delivered. The flags are
a combination of the "S..." constants. For example:

delivers all primitives:
shapes.each(RBA::Shapes::SAll) { |s| ... }
delivers all primitives which have user properties attached:
shapes.each(RBA::Shapes::SAllWithProperties) { |s| ... }
delivers only texts:
shapes.each(RBA::Shapes::STexts) { |s| ... }
delivers only polygons and boxes:
shapes.each(RBA::Shapes::SBoxes | RBA::Shapes::SPolygons) { |s| ... }

A geometrical primitive inside the container can be erased using the Shapes#erase method. It is safe to erase shapes inside an iterator
loop for editable containers.

Shapes can be replaced by other primitives using one of the methods. Please note that using "replace" inside an iterator loop may lead to
unexpected behavior of the iterator, so modifying a shape inside an iterator loop should be avoided. Here is an example:

DON'T:
(replace polygons by their bounding boxes)
shapes.each do |shape|
 if shape.is_polygon?
 shapes.replace(shape, shape.bbox)
 end
end

DO
(replace polygons by their bounding boxes)
shapes_to_modify = []
shapes.each do |shape|
 if shape.is_polygon?
 shapes_to_modify.push(shape)
 end
end
shapes_to_modify.each do |shape|
 shapes.replace(shape, shape.bbox)
end

The latter solution requires some more memory but is in general safer. It is safe however to replace an object by the same kind of object
inside a loop.

Shapes can be transformed by using one of the Shapes#transform methods provided by the Shapes object. Variants for simple and
complex transformations exist. Please note that using a arbitrary-angle transformation on a box (i.e. a CplxTrans object with a rotation
angle of 45 degree) will not render a rotated box since a box is by definition parallel to the axes. Instead this operation will render the
bounding box of the rotated box. Transforming shapes is safe inside an iterator loop.

For more details visit
https://www.klayout.org

Page 458 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.4. The Database API

The Shapes container also manages user properties by employing properties ID's. Properties can be modified by obtaining a new ID from
the layout object and replacing the property ID using the Shapes#replace_prop_id method. However it's much more convenient to use
the Shape#property, Shape#set_property or Shape#delete_property methods of the Shape object. In both cases however, modifying the
properties should be avoided inside an iterator loop.

All shapes inside a shape container can be transformed using Shapes#transform.

With version 0.23, new collection objects entered the stage: Region, Edges and EdgePairs which basically provide a way to store polygons,
edges or edge pair objects independently from the shapes container. They are mainly used to implement bulk operations, specifically for
the DRC functionality. The cooperate with the shapes container in the sense that they can be inserted into a shapes container which will
produce polygons or edges in the layout database (edge pairs are converted to single edges or polygons. These classes are discussed in
The Geometry API.

The Shape class

The Shape object provides a unified view to a geometrical primitive inside a Shapes container. It also plays an important role for addressing
geometrical primitives inside a Shapes container. A Shape object has general methods and specific methods that apply depending on its
identity.

General methods

The Shape#bbox method delivers the bounding box of the geometrical primitive addressed by the Shape object. Please note that the
bounding box of a text only contains the single point of the text's origin, not the text drawing itself.

Shape#cell delivers the Cell object that shape lives in. The same way, Shape#layout delivers the Layout object and Shape#shapes the
Shapes object.

Shape#property, Shape#set_property and Shape#delete_property allow modification of the user properties of the geometrical primitive.
The same can be achieved somewhat less conveniently using a properties ID with the Shape#prop_id attributes' write accessor
(Shape#prop_id=). Please note the comments in the description of the Shapes object regarding the interaction of these modifying
operations with iterators. Shape#has_prop_id? returns true, if the shape has user properties attached.

Shape#type returns the type code of the shape addressed by the Shape object. This is a detailed code which distinguishes between
different internal representations. It's more convenient to use one of the is_...? methods. For example Shape#is_box? returns true,
if the geometrical primitive is a box. A note about Shape#is_polygon? and Shape#is_simple_polygon?: usually it is not required to
distinguish between both. "is_polygon?" will also return true for simple polygons, so it is likely to be sufficient to just ask for "is_polygon?".
Shape#is_user_object? returns true, if the primitive is a custom object. Such objects are rarely used and not supported by the Ruby API
currently.

Shape#area delivers the area of the shape. The area is zero for a text object. Shape#perimeter delivers the perimeter of the shape. The
perimeter is zero for a text object. The Shape object provides an equality operator which delivers true if two Shape objects point to the
same primitive.

It is possible to replace a primitive by another one by using the shape assignment methods, i.e. Shape#box=, Shape#path=,
Shape#polygon=, Shape#simple_polygon=, Shape#text= and Shape#edge=. Using these methods is equivalent to the using "replace" on
the containing Shapes objects. Please see the notes on using "replace" inside iterators there.

Floating-point objects are supported too. For example, Shape#dbox is equivalent to Shape#box, but delivers the object in micrometer units.
Shape#dbox= receives a micrometer-unit object. Shape#box_dp1 is equivalent to Shape#box_p1, but gets the first point of the box in
micrometer units.

The layer index a shape is on can be obtained with Shape#layer. A shape can be moved to a different layer by assigning a different layer
index with Shape#layer=. In that context, layers can also be addressed by layer/datatype or name using a LayerInfo object. The respective
methods to address a shape's layer then are Shape#layer_info and Shape#layer_info=.

A shape can be transformed using one of the Shape#transform flavors.

Methods applying for box shapes

A Shape object represents a box if it returns true on Shape#is_box?. The only specific methods that are provided for box type shapes are
the Shape#box getter and Shape#box= setter. Shape#box_center, Shape#box_center=, Shape#box_p1, Shape#box_p1=, Shape#box_p2
and Shape#box_p2= get or modify individual aspects of the box.

For the floating-point equivalents in micrometer units see the Shape.

For more details visit
https://www.klayout.org

Page 459 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.4. The Database API

Methods applying for polygon and simple polygon shapes

A Shape object represents a polygon or simple polygon if it returns true on Shape#is_polygon?. If the object is a simple polygon, it will also
return true on Shape#is_simple_polygon?. A simple polygon is just a polygon that cannot have holes.

In every case, the Shape#each_edge iterator will deliver all edges (connections between points of the polygon). Shape#each_point_hull will
deliver the points of the outer (hull) contour and Shape#each_point_hole will deliver the points of a specific hole contour. Shape#holes will
deliver the number of holes. A simple polygon does not have holes and Shape#holes always gives zero.

The Shape#polygon getter delivers a Polygon object. The same way Shape#simple_polygon delivers a SimplePolygon object. A polygon
with holes is converted in that case to a simple polygon by introducing cut lines to connect the holes with the outer contour.

The Shape#polygon= and Shape#simple_polygon= setters will replace the current object by the given new one.

For the floating-point equivalents in micrometer units see the Shape.

Methods applying for path shapes

A Shape object represents a path if it returns true on Shape#is_path?. The path's width can be obtained through the Shape#path_width
method. The extensions of the path ends can be obtained with Shape#path_bgnext and Shape#path_endext for the start and end
extensions. The Path object can be obtained with the Shape#path getter. For the path width and extensions setters are also provided
(Shape#path_width=, Shape#path_bgnext= and Shape#path_endext=).

The path length can be obtained with Shape#path_length and includes the begin and end extensions. The round-ended path flag can be
obtained with Shape#round_path? flag and set with Shape#round_path=.

The points of the path's spine can be iterated with Shape#each_point. Shape#polygon can be used to obtain the path's contour.

For the floating-point equivalents in micrometer units see the Shape.

Methods applying for text shapes

A Shape object represents a text object if it returns true on Shape#is_text?. The text's text string can be obtained with Shape#text_string.
The text's origin and orientation is encoded in a transformation (a Trans object, see Trans) which can be obtained with the
Shape#text_trans method. The font code, text size and alignment flags can be obtained with the Shape#text_font, Shape#text_size,
Shape#text_halign and Shape#text_valign methods. See the description of the Text object for details about these attributes.

The text representation attributes can be set with Shape#text_font=, Shape#text_size=, Shape#text_halign= and Shape#text_valign=.
Shape#text_trans= will modify the text's transformation.

Shape#text will deliver the Text geometrical primitive and Shape#text= allows replacing the shape with the given Text object.

For the floating-point equivalents in micrometer units see the Shape.

Methods applying for edge shapes

A Shape object represents an edge if it returns true on Shape#is_edge?. Edge objects in general are not well supported in KLayout
currently. They can be created and manipulated by scripts, but cannot be drawn or modified on the user interface. In GDS files, edges are
represented by zero-width paths which is sometimes breaking the conventions of other tools.

The only specific methods that are provided for edge type shapes are the Shape#edge getter and Shape#edge= setter.

For the floating-point equivalents in micrometer units see the Shape.

For more details visit
https://www.klayout.org

Page 460 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.5. The Geometry API

3.5. The Geometry API

The Geometry API

The central class of the layout database is the Layout class, which provides a concept for layers, shape containers, cells and hierarchy.
Separate from that, a set of classes exist, which represent basic shapes and geometrical objects. While shapes embedded in a Layout
object are not independent and care has to be taken when manipulating them inside the database API, the free objects are easy to
manage, manipulate and in general to work with as they are normal objects in the script interpreter's context.

In addition, the gometry API provides basic objects such as points, edges and transformations for general use throughout the API. Higher
objects such as regions and edge collections provide implementations for geometrical algorithms like boolean operations and DRC checks.

Most classes of the geometry API provide a hash value so they can be used as keys in Ruby hashes.

The Point class

The Point object represents an integer coordinate in the 2-dimensional layout space, expressed in database units. That object provides the
x and y coordinates through the Point#x and Point#y attributes. Points can be added, subtracted, the euclidian distance and its square can
be computed using the Point#distance and Point#sq_distance methods. The * operator used with a factor as the second operand will scale
both the x and y coordinates.

Points and vectors

Next to points there is a corresponding vector class (Vector). A vector is basically the difference between two points. It is meant to describe
the distance and direction between two points. The following rules therefore apply:

• Subtracting a point from a point renders a vector

• Adding a vector to a point renders a point

As points, vectors have an x and a y component which can be accessed with Vector#x and Vector#y. Vectors offer two functions to
compute the vector product (Vector#vprod) and the scalar product (Vector#sprod). For some applications it's sufficient to know the sign of
the product. You can get that with Vector#vprod_sign and Vector#sprod_sign respectively.

Vectors don't transform the same way than points. On transformation, only rotation, mirror and scaling (if applicable) is applied.
Displacement is not applied. This way, the following two forms are equivalent:

(p1 - p2).transformed(t) == p1.transformed(t) - p2.transformed(t)

The Box class

For more details visit
https://www.klayout.org

Page 461 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.5. The Geometry API

The Box object represents a rectangle whose sides are parallel to the axes. The coordinates are integer values and express the rectangle's
dimensions in database units. The basic specification consists of two points, giving the lower left and upper right corner. The constructor
takes either two points (which are ordered internally) or four coordinates representing the left, bottom, right and top coordinates.

A box has a couple of attributes which are shown in the figure above. The Box#area method delivers the area of the rectangle. A box can
be "empty" (non-existing). Such a rectangle can be created by the default constructor without parameters. An empty box basically behaves
as a region without a point, i.e. testing the intersection with an empty box always returns false. An empty box returns true on Box#empty?.
A box whose lower left point is identical to the upper right one contains just a single point. Such a box returns true on Box#is_point?.

A box supports a couple of operations:

• Box & Box: this operator computes the intersection of two boxes. If the boxes do not intersect, an empty box is returned.

• Box * Box: computes the "convolution" of two boxes. This operation can basically be viewed as the box which results when the first
box is painted with a pen that has the size and displacement of the second box.

• Box * factor: scales the box, i.e. multiplies all coordinates with the given factor.

• Box + Box: computes the box that encloses both boxes given in the operation.

• Box + Point: computes the box that encloses the box and the point given as the second operand. It basically enlarges the first box so
it includes the second point as well.

• contains?(Point): returns true, if the point is inside the box or on its edges.

• enlarge(Point): will enlarge the box by the x and y coordinates of the Point. Basically the x value of the point is subtracted from the
left side and added to the right. The same way, the y coordinate is added to the top and subtracted from the bottom coordinate.

• enlarged(Point): returns the enlarged box without modifying the box this method is called on (out-of-place operation).

• move(Point): moves the box by the displacement given by the point. Basically the x value of the point is added to the left and right
coordinate while the y coordinate is added to the top and bottom coordinates.

• moved(Point): returns the moved box without modifying the box this method is called on (out-of-place operation).

• inside?(Box): returns true, if the box the method is called on is inside the box given by the method's argument.

• overlaps?(Box): returns true, if the given box overlaps with the box the method is called on.

• touches?(Box): returns true, if the given box touches the box the method is called on.

• transformed(Trans): returns the box transformed with the given transformation.

• transformed(ICplxTrans): returns the box transformed with the given complex, integer-based transformation (see ICplxTrans). Note,
that if the complex transformation includes a rotation by a non-90-degree angle (for example 45 degree), this operation does not
return a rotated box, because by definition a box has edges which are parallel to the axes. Hence the general solution is to convert
the box to a polygon:

Wrong result
box = RBA::Box::new(0, 0, 100, 200)
transformed_box = box.transformed(RBA::ICplxTrans::new(1, 45, false, RBA::Vector::new))
-> (-141,0;71,212)

Correct result
transformed_box_as_polygon = RBA::Polygon::new(box).transformed(RBA::ICplxTrans::new(1, 45, false,
 RBA::Vector::new))
-> (0,0;-141,141;-71,212;71,71)

• transformed(CplxTrans): behaves like the previous "transformed" method but returns a floating-point coordinate object which is the
target coordinate type of the CplxTrans object (see CplxTrans).

For more details visit
https://www.klayout.org

Page 462 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.5. The Geometry API

A box object can be constructed from a floating-point object (for floating-point objects see below). Lacking a database unit, no conversion
from micrometer units to database units is performed. Instead, the floating-point coordinates are rounded to the nearest integer
coordinates:

dbox = RBA::DBox::new(2.1, 3.1, 10.7, 11.8)
box = RBA::Box::new(dbox)
-> (2,3;11,12)

An integer box can be turned into a floating-point unit box using Box#to_dtype

Floating-point boxes can be transformed using the DTrans, the DCplxTrans or the VCplxTrans transformations. The latter delivers an
integer-type box and provides the reverse flavour transformation to "CplxTrans".

The SimplePolygon class

A SimplePolygon object is a polygon that does not have holes. It consists of a single, closed contour. Such polygons are compatible with
the GDS2 format for example. A SimplePolygon object can be created from a Box object or from an array of Point objects. Internally, the
points will be ordered into a clockwise orientation.

The class method SimplePolygon#from_dpoly creates a integer-coordinate type SimplePolygon object from a floating-point coordinate type
DSimplePolygon object (see below). The floating-point coordinates are rounded to the nearest integer coordinates.

The SimplePolygon#bbox method returns the bounding box of the polyon. SimplePolygon#area will return the area of the
polygon. SimplePolygon#num_points returns the number of points, while SimplePolygon#point returns the point for a given index.
SimplePolygon#points= replaces the polygon by a new polygon with the given array of points.

The SimplePolygon#each_point iterator will deliver each point in clockwise orienation, starting form the bottom/leftmost one.
SimplePolygon#each_edge will deliver all edges of the polygon (connecting every point with the next one).

SimplePolygon#compress will remove points that connect two collinear edges. It has a parameter that controls whether to remove reflecting
edges (spikes) as well. SimplePolygon#inside? returns true, if a given point is inside the polygon. SimplePolygon#minkowski_sum
computes the Minkowski sum between a polygon and another object in various flavors. SimplePolygon#move will displace the polygon
by the distance given by the Point argument. SimplePolygon#moved will return the moved polygon without modifying the polygon it is
called on (out-of-place operation). SimplePolygon#transformed will return the transformed polygon, either with a simple or a complex
transformation (see the description of the Box object and the section about transformations below for a discussion of transformations).
Finally, SimplePolygon#round_corners will apply a corner rounding to a copy of the polygon and return that copy without modifying the
polygon.

Please note that using the Point-array constructors it is possible to create polygons with self-intersecting or twisted contours. Such
polygons may not behave as expected.

For more details visit
https://www.klayout.org

Page 463 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.5. The Geometry API

The Polygon class

The Polygon object is basically an extension of the SimplePolygon object and in contrast to that object, supports holes. Polygon objects are
not compatible with the GDS2 or OASIS format and will be converted to SimplePolygon objects by introducing cutlines when writing them.

A polygon consists of an outer contour (the hull) and zero to many hole contours. The outer contour like for the SimplePolygon is oriented
clockwise while the hole contours are oriented counterclockwise. This orientation is established internally. For the API, contours are
represented by arrays of Point objects.

A Polygon differs from a SimplyPolygon by providing methods to modify holes and the hull. Holes can be inserted by using the
Polygon#insert_hole method. A hole is identified by an index. The Polygon#holes method returns the number of holes. The hole index runs
from 0 to the number of holes minus one.

The class method Polygon#from_dpoly creates a integer-coordinate type Polygon object from a floating-point coordinate type DPolygon
object (see below). The floating-point coordinates are rounded to the nearest integer coordinates. A constructor is provided that creates a
Polygon object from a SimplePolygon object.

Polygon#each_edge will deliver all edges. The orientation of the edges determines whether they belong to a hole or the hull contour.
Polygon#each_point_hull will iterated over all points of the hull and Polygon#each_point_hole over the points of the hole with the given
index. Polygon#num_points_hull will return the number of points for the hull and Polygon#num_points_hole the number of points for
the given hole. Polygon#point_hull will return a specific point from the hull and Polygon#point_hole a specific point for the given hole.
Polygon#num_points returns the total number of points.

Polygon#resolve_holes will remove all holes and connect them with the hull by introducing cutlines that connect the hole with the hull.
This operation introduces new vertexes and hence may apply some distortion due to grid snapping. Polygon#resolved_holes returns the
polygon with the holes removed without modifying the object it is called on (out-of-place operation). Polygon#to_simple_polygon basically
does the same but returns a SimplePolygon object.

Using Polygon#assign_hull (or Polygon#hull=) and Polygon#assign_hole the hull contour or a hole contour can be replaced with the given
array of Point objects. Please note that it is possible to create invalid polygons where the holes are not completely contained in the hull.
Such polygons may not behave as expected. The same is true for polygons with self-intersecting or twisted contours.

For more details visit
https://www.klayout.org

Page 464 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.5. The Geometry API

The Path class

A Path object represents a line with a certain width. The figure above depicts the basic properties of a path. The basic geometry of a path
is defined by its spine - a sequence of points that the path follows. By default, a path has rectangular end caps with variable length. The
end caps can be round, in which case the extension should be half the path width to avoid paths which are not compatible with the GDS2
format. Round-ended paths return true on Path#is_round?. An example for such a path is depicted in the following figure:

A path with is given in database units. The hull contour of paths with an odd width cannot be represented on-grid and should be avoided.
Such path objects are allowed in the GDS2 format, but not in OASIS.

The spine points of a path can be iterated with Path#each_point. Path#num_points returns the number of points. Path#points= allows
replacing of the spine with the given array of Point objects. Path#round= sets the "round ended" flag. Path#bbox and Path#area deliver the
bounding box and the area, where the area is only approximate and is computed from the spine's length including the extensions times the
width for efficiency. For certain acute-angle configurations that value may not be the exact area.

Path#polygon returns the polygon representing the path's hull. Path#simple_polygon returns a SimplePolygon object that represents the
hull. Path#move, Path#moved and Path#transformed basically work like for the other objects.

The class method Path#from_dpath creates a integer-coordinate type Path object from a floating-point coordinate type DPath object (see
below). The floating-point coordinates are rounded to the nearest integer coordinates.

The Text class

A Text object is basically a point with a label attached. The extension of a text object only includes the point, not the text itself. For display
purposes, a text orientation, font and alignment options can be specified.

For more details visit
https://www.klayout.org

Page 465 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.5. The Geometry API

The location and the orientation of the text are combined in a Trans object. That transformation can be read and written with the Text#trans
attribute. The text orientation is not always shown in the drawing. Whether the text is shown in the orientation specified depends on the
application settings.

Font number and alignment flags can be read and written using the Text#font, Text#halign and Text#valign attributes. If one of these
attributes is not set, the application-provided default is used. The font is currently just a number and is provided to support the respective
property of the GDS2 format. For the documentation of the alignment flags see the class documentation for the Text class.

The text string is accessible with the Text#string attribute. Not all characters are supported. Depending on the format, only a subset
of the ASCII character set are supported. Sometimes, line-feed control characters are found in text strings. Following the strict OASIS
specification for example, such characters are not allowed. The lower and upper case letters and most of the special printing characters of
the ASCII character set are usually safe for use in text strings.

Text#move, Text#moved and Text#transformed basically work like for the other objects.

Passing a DText object to the Text constructor creates an integer-coordinate type Text object from a floating-point coordinate type DText
object (see below). The floating-point coordinates are rounded to the nearest integer coordinates.

The Edge class

Edge objects are basically connections between two points. Edge objects are provided to support special applications and are mapped to
zero-width, two-point paths in the GDS2 format. Edge objects are not supported as editable objects in KLayout currently. Edge objects may
be created by script and are useful sometimes to represent the output of a design rule check tool for example.

Edge objects however a frequently used as raw objects in various applications, i.e. as one output option of a boolean operation. Therefore,
the Edge class provides a couple of operations on edges, mainly tests for the geometrical relationship of two edges and points in relation to
edges. An edge also may represent a straight line through the two endpoints of the edge, i.e. for the Edge#crossed_by? check.

An edge is defined by two points: the start and end point. Edge#p1 is the attribute for the start point, Edge#p2 the attribute for the end
point. Various properties deliver extensions of the edge (Edge#dx and Edge#dy for the horizontal and vertical extension, Edge#length
and Edge#sq_length for the length and the square of the length, Edge#ortho_length for the Manhattan distance between the points).
Edge#swap_points swaps p1 and p2 and effectively inverts the orientation of the edge. Edge#bbox is the bounding box of the edge.

Various methods test the relationship between two edges or an edge and a point. See the following figure for a summary of these methods:

Edge#move, Edge#moved and Edge#transformed basically work like for the other objects. The class method Edge#from_dedge creates
a integer-coordinate type Edge object from a floating-point coordinate type DEdge object (see below). The floating-point coordinates are
rounded to the nearest integer coordinates.

The floating-point geometrical primitives

Beside the integer-coordinate primitives like Box, Edge, Polygon etc., KLayout provides floating-point coordinate variants as well. These
objects require more memory and are subject to floating-point rounding issues and are therefore not employed inside the database. They
are provided however, to allow a temporary representation of micron-unit objects or for use int the Marker class for example.

The class names for the floating-point variants is the same the integer-coordinate type prefixed with a "D" (for example, DBox is the
floating-point variant of Box). Since floating-point variants support fractional coordinates, scaling with an arbitrary value is not connected

For more details visit
https://www.klayout.org

Page 466 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.5. The Geometry API

with a loss of accuracy due to rounding. That is why floating-point coordinates are the target type of general transformations including an
arbitrary scaling. For example:

RBA::Box.new(1,1,2,2)*2.5
-> (3,3;5,5)
but:
RBA::DBox.new(1,1,2,2)*2.5
-> (2.5,2.5;5,5)

However, the higher precision of floating-point coordinates comes with subtle issues originating from the finite-precision representation.
For example, the value of 0.1 cannot be precisely represented by a floating-point value. The value of 0.1 is approximated and therefore
depending on the way it is approximated, 0.1 is not necessarily equal to 0.1. For example (try this in the Ruby console):

a = 0.1
b = 1e-6*1e5
a
-> 0.1
b
-> 0.1
but:
a == b
-> false!
the reason is:
"%.21g"%a
-> 0.100000000000000005551
"%.21g"%b
-> 0.0999999999999999916733

Because of that, direct comparison of coordinate values should be avoided. The internal precision used is 0.00001. By convention, floating-
point type objects are supposed to be used for micrometer-unit objects, hence this precision corresponds to 0.01 nm which corresponds to
the tenth of an atom and should be well below physical tolerances.

Some operations which are implemented on integer coordinates (like the removal of holes in polygons) are not available for the floating-
point type objects.

All floating-point type objects have a "to_itype" method (i.e. DBox#to_itype) which convert the floating-point type object to the integer-
coordinate type object. This method can be given a database unit for scaling from micrometer units. Integer-coordinate type objects can be
converted to floating-point type objects the same way through the "to_dtype" method (i.e. Box#to_dtype. A database unit can be passed
to this method too for conversion to micrometer units. These methods however require some rounding and are therefore responsible for a
potential distortion of the geometry of the object.

For the point and vector object there is also a floating-point equivalent (DPoint and DVector). Both behaves like their integer-coordinate
equivalent.

Transformations

Transformations in KLayout are restricted affine transformations. Shear transformations and anisotropic scaling is not supported. All
transformation in KLayout follows the conventions implied by the GDS2 and OASIS formats and include in that order:

• Mirroring around the x axis (optional)

• Rotation

• Scaling

• Displacement

For memory performance, a restricted version of that transformation is used if possible. In that restricted version, the rotation angles are
confined to a multiple of 90 degree and scaling is not supported. This restricted affine transformation is provided through the Trans class.
The 8 possible rotation/mirror variants can be coded in a single rotation/mirror code which is used frequently throughout KLayout (see
Transformations in KLayout).

For transforming floating-point coordinates, the DTrans object is provided. The basic difference is that the displacement uses floating-point
coordinates (by employing a DVector object).

For more details visit
https://www.klayout.org

Page 467 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.5. The Geometry API

To support more complex affine transformations include arbitrary-angle rotations and scaling, the complex transformation objects are
provided. In addition, the complex transformation object can translate between integer and floating-point coordinate types.

• CplxTrans: takes integer coordinates and delivers floating-point coordinates. Therefore it uses a DVector for the displacement. The
inverse of this transformation is a VCplxTrans class (see below).

• DCplxTrans: takes floating-point coordinates and delivers floating-point coordinates. Therefore it also uses a DVector for the
displacement.

• ICplxTrans: takes integer coordinates and delivers integer coordinates. Therefore it uses a Vector for the displacement. This
transformation is convenient to provide complex transformations for database operations but implies rounding errors due to rounding
to integer coordinates on output. It is safe to use however for integer-factor scaling operations for example.

• VCplxTrans: takes floating-point coordinates and integer coordinates. Therefore it also uses a Vector for the displacement. The
inverse of this transformation is a CplxTrans object.

Multiplication of a transformation with an object renders the transformed object:

t = ... # a transformation
p = ... # some point

compute the transformed point:
q = t * p

Multiplication of two transformations corresponds to concatenation of two transformations:

t1 = ... # a transformation
t2 = ... # another transformation

Multiplication of t2 and t1 renders an equivalent transformation
that corresponds to "apply t1 first and then t2":
(t2 * t1) * p == t2 * (t1 * p)

When multiplying two complex transformations, the resulting transformation type will have the corresponding input and output types. For
example when multiplying a VCplxTrans with a CplxTrans, a ICplxTrans object will be created. This is because the first transformation
takes integers and the second one delivers integers. Hence the resulting transformation is ICplxTrans.

The Region class

Regions are basically collections of polygons. Regions provide higher functions such as boolean operations and sizing which cannot be
implemented on pure polygons because their output may be a number of polygons. A Region is a general representation of a set of points
in a two-dimensional area while a polygon is a coherence set of points.

Regions can be created by starting with an empty region and filling the latter with polygons. Regions can also be created from a
RecursiveShapeIterator which allows feeding layout data into the region in a very flexible way. In the latter case, boxes and paths will be
converted to polygons when feeding them into the region.

Regions feature some important concepts:

• Merged semantics: A region can be created from a series of polygons which potentially overlap or touch. In "merged semantics" the
region will merge the polygons forming big polygons from touching ones and removing overlaps.

• Minimum coherence: In certain cases, the output of merging polygons is ambiguous. In the "kissing corner" case, the touching
polygons may be either considered separate ("minimum coherence") or belonging together.

• strict mode: In strict mode, some operations are performed even if they are not necessary. For example, an XOR between a region
and an empty region will render the first input. Hence the implementation can simply copy the first input in that case. With strict mode,
the operation will be performed in every case which is less efficient but renders merged polygons.

The region object is very mighty and easy to use. Here is an example which computes the difference of two boxes (rendering a ring) and
sizes the latter:

For more details visit
https://www.klayout.org

Page 468 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.5. The Geometry API

r1 = RBA::Region::new
r1.insert(RBA::Box::new(-2000, -3000, 2000, 3000))

r2 = RBA::Region::new
r2.insert(RBA::Box::new(-1500, -2000, 1500, 2000))

r = (r1 - r2).sized(100)

puts r

Using a Region object with input from a cell is almost as simple as this. The following example will take the input from layer 11 and 21 from
the top cell and the hierarchy below (as is flat) and compute the intersection in layer 100:

ly = RBA::CellView::active.layout

l11 = ly.layer(11, 0)
l21 = ly.layer(21, 0)

r11 = RBA::Region::new(ly.top_cell.begin_shapes_rec(l11))
r21 = RBA::Region::new(ly.top_cell.begin_shapes_rec(l21))

ly.top_cell.shapes(ly.layer(100, 0)).insert(r11 & r21)

A variety of operations is implemented on regions:

Region#&, Region#|, Region#- and Region#^ implement boolean operations (AND, OR, NOT and XOR). The operations can be combined
with assignment (in-place) using Region#&= etc. Region#+ adds the polygons from another region to self which is basically the same then
a boolean OR.

Region#area and Region#bbox deliver the area and bounding box of the region.

Region#each will deliver all original polygons (unless the region was already merged).

Region#each_merged will deliver the merged polygons.

Region#edges will translate the polygons to edges covering their boundaries. If merged semantics is specified, the edges will only cover
the outer edges, not inner ones.

Region#enclosing_check, Region#inside_check, Region#isolated_check, Region#notch_check, Region#separation_check,
Region#space_check and Region#width_check implement DRC functions. DRC functions deliver EdgePairs edge pair collections, not
regions. Each edge pair marks a violation of the given check.

Region#extents replaces each polygon with its bounding box.

Region#grid_check performs an on-grid check returning edge pairs for off-grid markers.

Region#holes identifies holes and delivers a new region with the holes as filled polygons.

Region#hulls identifies holes and delivers a new region without the holes.

Region#insert adds polygons in various flavors.

Region#interacting and Region#not_interacting select polygons interacting (overlapping or touching) or not interacting with polygons from
another region.

Region#members_of selects polygons which are contained in the same way in another region.

Region#merge and Region#merged merge the polygons. This feature allows selecting overlapping polygons (minimum wrap count
parameter).

Region#minkowski_sum computes the Minkowski sum of the region with other objects (edges, single polygons and other regions).

Region#move, Region#moved, Region#transform and Region#transformed apply geometrical transformations.

Region#rectangles, Region#rectilinear, Region#non_rectangles and Region#non_rectilinear filter out polygons by their appearance.

Region#inside, Region#outside, Region#not_inside and Region#not_outside filter out polygons by their relation to the polygons in the other
region.

Region#round_corners and Region#rounded_corners apply corner rounding to polygons.

For more details visit
https://www.klayout.org

Page 469 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.5. The Geometry API

Region#size and Region#sized will size the polygons (shift edges).

Region#smooth smoothes out coarse steps of the polygons.

Region#snap and Region#snapped apply grid snapping.

Region#with_angle marks polygon vertices which satisfy a certain angle criterion.

Region#with_perimeter, Region#with_area and many more "with_..." methods select polygons based on their properties.

The Edges class

Edges represents a collection of edges which comprise either full polygons (forming closed contours) or parts of polygons. Edges can be
derived from Region objects using the Region#edges

A variety of operations is implemented on regions:

Edges#&, Edges#|, Edges#- and Edges#^ implement boolean operations (AND, OR, NOT and XOR). The operations can be combined
with assignment (in-place) using Region#&= etc. Edges#+ adds the polygons from another edge set to self which is basically the same then
a boolean OR. Boolean AND and NOT are available between edges and regions as well and will deliver the edge parts inside the given
region or not inside the given region.

Edges#length and Edges#bbox deliver the total length and bounding box of the edge set.

Edges#each will deliver the edges in the collection.

Edges#centers will deliver the center parts of the edges.

Edges#enclosing_check, Edges#inside_check, Edges#separation_check, Edges#space_check and Edges#width_check implement DRC
functions. DRC functions deliver EdgePairs edge pair collections, not edge sets. Each edge pair marks a violation of the given check.

Edges#start_segments and Edges#end_segments replaces each edge with a part at the beginning or end.

Edges#extended, Edges#extended_in and Edges#extended_out create polygons on that represent the edge with a certain width.

Edges#extents returns a region with the bounding boxes of the edges.

Edges#inside_part and Edges#outside_part return the parts of the edge set which are inside or outside a given region. The effect is
comparable to the boolean operations but differs at the exact boundary of the polygons of the region.

Edges#interacting and Edges#not_interacting select edges interacting (overlapping or touching) or not interacting with edges of another
edge set or polygons from another region.

Edges#members_of selects edges which are contained in the same way in another edge set.

Edges#merge and Edges#merged merge (join) the edges.

Edges#move, Edges#moved, Region#transform and Edges#transformed apply geometrical transformations.

Edges#with_length, Region#with_angle and many more "with_..." methods select edges based on their properties.

The EdgePair class

Edge pairs are handy objects to describe the output of a DRC violation. A space violation marker for example will consist of two edges
which mark the opposite parts of the space violation. Such markers are represented by objects of EdgePair.

Edge pairs are simple objects consisting of two edges ("first" and "second"). Polygons can generated from edge pairs covering the marked
edges and their connecting files using EdgePair#polygon. Edge pairs can be transformed using EdgePair#transformed.

Edge pairs can be "normalized" using EdgePair#normalized. This method returns the normalized version of the edge pair. Normalization
will bring the edge pairs in a form such that when connecting their start and end points a closed loop without intersections is formed.
Normalized edge pairs will produce nicer polygons later on.

A floating-point version of the EdgePair class exists as well: DEdgePair.

The EdgePairs class

EdgePairs provides a collection of edge pairs and is the preferred output of DRC functions which deliver one DRC marker for each
violation.

EdgePair collections can be conveniently split into individual edges using EdgePairs#edges or converted into polygons covering the
markers with EdgePairs#polygons. The first and second edges can be extracted as a Edges edge collection with EdgePairs#first_edges
and EdgePairs#second_edges. EdgePairs#extents will deliver a region containing the bounding boxes of the edge pairs.

For more details visit
https://www.klayout.org

Page 470 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.6. Events And Callbacks

3.6. Events And Callbacks

Introduction

In some places, the API requires to attach code to an event. An event could be a menu item which is selected or a change of some status
which might require some action. The API allows implementation of specific code which is called in that case. This enables us to implement
the functionality behind a menu item. In this text we will refer to such functionality by the general term "callback". In general a callback is
custom code that is called from the API in contrast to API code that is called from the custom code.

There are basically two ways to attach specific code to a callback:

• Reimplementation: some API classes provide "virtual" methods. "virtual" is a C++ term and means a method that can be overridden
in a derived class. This technique is employed for example in the "Strategy" design pattern. In strictly typed C++ this is quite a
common pattern which allows definition of interfaces and concrete implementations based on those interfaces. Ruby as a dynamic
language doesn't care much about classes and their relationship: an object either has a method or it hasn't. So, reimplementation is
just a matter of providing the right method. An examples for the strategy pattern is the BrowserSource class (BrowserSource).

• Events: events allow attaching a piece of code to an event. In Ruby, such a block is "Proc" object, in "Python" it is a "callable" object
("lambda function" is a term used in both languages for this kind of concept). In case the event is triggered, this attached code is
executed. Multiple lambda functions can be attached to the same event and removed from the latter. Events can be cleared of
attached code, where only the blocks attached from one language can be cleared together - code attached from Python cannot be
cleared from Ruby. An example for events is the Action class (Action) which provides both the reimplementation interface ("triggered"
method) and the event interface ("on_triggered"). By the way, Qt signals are mapped to events in KLayout's Qt binding (The Qt
Binding).

The "Observer" class which was there prior to KLayout 0.25 has been dropped in favour of the more flexible events. It is no longer
supported.

Reimplementation (Strategy Pattern)

The BrowserSource (BrowserSource) class is a nice example for the Strategy pattern. It is used by the BrowserDialog class
(BrowserDialog) as a kind of internal HTML server which handles URL's starting with "int:". For this, a script has to provide a class that
reimplements the "get(url)" method. In the following example, a BrowserSource is created that takes an URL with an integer index number
and delivers a HTML text with a link to the URL with the next index.

Here is the code:

module MyMacro

 include RBA

 class MyBrowserSource < BrowserSource
 def get(url)
 next_url = url.sub(/\d+/) { |num| (num.to_i+1).to_s }
 "This is #{url}. Goto next (#{next_url})"
 end
 end

 dialog = BrowserDialog::new
 dialog.source = MyBrowserSource::new
 dialog.home = "int:0"
 dialog.exec

end

This example demonstrates how the "get" method is reimplemented to deliver the actual text. Ruby even allows reimplementation of a
method without deriving a new class, because it allows to define methods per instance:

module MyMacro

 include RBA

For more details visit
https://www.klayout.org

Page 471 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.6. Events And Callbacks

 source = BrowserSource::new
 def source.get(url)
 next_url = url.sub(/\d+/) { |num| (num.to_i+1).to_s }
 "This is #{url}. Goto next (#{next_url})"
 end

 dialog = BrowserDialog::new
 dialog.source = source
 dialog.home = "int:0"
 dialog.exec

end

Events

Events are the callback variant which is the easiest one to use. Using an event it is possible to directly attach a block of code to a callback.
An event has a specific signature, i.e. the parameters it provides. The block can obtain this parameters by listing them in its argument list.

Here is a simple example that uses the parameterless "on_triggered" event of the Action class (Action). It puts a new entry into the tool bar
and if it is clicked, it displays a message box:

module MyMacro

 include RBA

 action = Action::new
 action.on_triggered do
 MessageBox::info("A message", "The action was triggered", MessageBox::Ok)
 end
 action.title = "My Action"

 Application::instance.main_window.menu.insert_item("@toolbar.end", "my_action", action)

end

Specifying a block to an event will make the event only execute that block. A more flexible way of controlling the code attached to events is
available through the += and -= operators:

module MyMacro

 include RBA

 code = lambda do
 MessageBox::info("A message", "The action was triggered", MessageBox::Ok)
 end

 action = Action::new
 action.on_triggered += code

 ...

 # to remove the code from the event, use:
 action.on_triggered -= code

 # to replace all event handlers by the one given by "code":
 action.on_triggered = code

 # to clear all event handlers use:
 action.on_triggered.clear

If the Qt binding is available (see The Qt Binding), Qt signals are implemented as events. This way it's very simple to create a Qt dialog. In
following example, the "textChanged" signal of QLineEdit is attached a code block which copies the text of the input field to the label below:

For more details visit
https://www.klayout.org

Page 472 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.6. Events And Callbacks

module MyMacro

 include RBA

 dialog = QDialog::new(Application::instance.main_window)
 layout = QVBoxLayout::new(dialog)
 input = QLineEdit::new(dialog)
 label = QLabel::new(dialog)
 layout.addWidget(input)
 layout.addWidget(label)

 # implement the textChanged signal as event:
 input.textChanged { |text| label.text = text }

 dialog.exec

end

Using the += operator on the event, multiple handlers can be added to a signal:

module MyMacro

 include RBA

 dialog = QDialog::new(Application::instance.main_window)
 layout = QVBoxLayout::new(dialog)
 input = QLineEdit::new(dialog)
 label1 = QLabel::new(dialog)
 label2 = QLabel::new(dialog)
 layout.addWidget(input)
 layout.addWidget(label1)
 layout.addWidget(label2)

 # two signal consumers:
 input.textChanged += lambda { |text| label1.text = text }
 input.textChanged += lambda { |text| label2.text = text.reverse }

 dialog.exec

end

For more details visit
https://www.klayout.org

Page 473 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.7. The Ruby Language Binding

3.7. The Ruby Language Binding
This article covers the basics of the Ruby binding provided by KLayout. The Ruby binding is basically a way to access the native code
classes of KLayout through a Ruby interface. KLayout is written in C++, hence the topic covered here is the interface between C++ and
Ruby objects. The Ruby API (RBA) is based on the Ruby binding of a selection of C++ classes. RBA is also the framework that implements
the Ruby side of the binding. The C++ side is a more generic form which is not strictly confined to a certain programming language. The C+
+ side of the framework is referred to as GSI (generic scripting interface) in the KLayout sources.

Joining Two Worlds: Ruby and C++

The usual and most simple case of a Ruby/C++ binding is a Ruby wrapper over a C++ object. When Ruby code likes to access a C++
object, the first thing that happens is that a Ruby proxy object is created that is linked to the C++ object. That link can be unidirectional (the
Ruby object knows about the C++ object, but the C++ object does not know about the Ruby object) or bidirectional (each know of each
other). The kind of linking is important because a bidirectional link is stronger than a unidirectional link and allows lifetime tracking of the
other object. For performance reason, not all objects implement the ability of bidirectional links, in particular not the ones that live in the
layout database. That has certain consequences we will discuss in the lifetime management section below.

The Ruby proxy object serves as a connection point to the C++ object. It defines methods that correspond to methods in the C++ object.
When one of these methods is called, their implementation collects the arguments of the method call and converts them to a binary
representation that C++ understands. That process is usually called marshalling. Having done so, the execution continues in C++ space
where the GSI framework will use the binary representation of the arguments to call the target method of the C++ object. After the call has
returned the same happens on the way back, this time with the return value instead of the arguments. Having converted the return value
back into Ruby objects the execution returns to the Ruby script.

The following image illustrates the relationship:

While that operation is simple in theory there are some pitfalls when implementing that scheme. One of them is the inherent compatibility
issue between C++ and Ruby's lifetime management. In Ruby, the interpreter knows about all references to a Ruby object. When there are
no more references to an object, the object is marked as "no longer used" and deleted. In other words: as long as any reference exists, the
object is valid and a reference will never become invalid.

In C++, it is responsibility of the code to explicitly delete an object when it is no longer used. In other words: as long as any reference
exists, the object is valid and a reference will never become invalid. Often there is a clear ownership: an object belongs to another object
which controls the lifetime of the owned object (aggregation). That scheme is more efficient and predictable but it bears the danger of
holding references to objects which are deleted already.

That raises the question how the lifetime of the Ruby proxy object is controlled and how the lifetime of the C++ object is related to that.

Lifetime management

RBA/GSI follows a simple principle that significantly simplifies the implementation: who created an object is responsible for cleaning it up.
In other words: a ownership of an object is usually not transferred between C++ and Ruby space. Thus we have to consider two cases:
The object is created in Ruby or the object is created in C++ code. Literally the object "lives" in Ruby space or in C++ space. In both cases,
there is a pair of objects, but one of them is controlling the other.

Case 1: The object lives in Ruby space

When the object is created in Ruby, the Ruby proxy owns the C++ object and when the Ruby object goes out of scope, not only the Ruby
object but also the C++ object is deleted. That means, that except if that case is handled by special measures, a reference to such an

For more details visit
https://www.klayout.org

Page 474 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.7. The Ruby Language Binding

object must not be stored in C++ space, because we will never know when Ruby will delete the object. A reference can be passed safely as
an argument of a method however, provided the method does not store the reference somewhere.

But then: how do we then permanently store an object we have created in Ruby? The answer is simply by creating a copy on the C++ side.
That is exactly what happens in that piece of code:

creates an object that lives in Ruby space:
box = RBA::Box.new(0, 0, 10, 20)
insert creates a copy of the box:
cell.shapes(layer).insert(box)

That is not an option for heavy objects such as layouts. If such objects need to be stored in C++ space, they are not created in Ruby code.
Instead, several methods are provided to create objects that live in C++ space. For example a LayoutView object is not created in Ruby,
but rather created inside the MainWindow object with create_layout. After that, the reference is obtained with MainWindow::current_view or
MainWindow::view.

An exception to the lifetime control rule given above are Qt objects: a common pattern is to create Qt objects and add them to a container
(i.e. widgets to a dialog). This implies a lifetime control transfer from Ruby to C++. RBA handles that case by explicitly transferring control
when a QObject or one of the derived objects is created with a parent reference in Ruby code. Qt implements its own mechanism of
controlling the lifetime which includes monitoring of the lifetime of child objects. This feature makes transferring the control feasible for
these kind of objects. For some Qt methods which are know to transfer the ownership of an object, the ownership is transferred explicitly.

An object living in Ruby space can be explicitly deleted to free resources for example. For this, the "_destroy" method is provided. This
method will only deleted the C++ object and not the Ruby object. However, the Ruby object will become invalid and calling a method on
such an object will result in an error.

Case 2: the object lives in C++ space

In that case, the Ruby proxy object simply acts as a pointer to a C++ object. An issue arises when the Ruby object is still alive but the C+
+ object is deleted. In that case, the flavor of the link between the Ruby proxy and C++ object is important: if the link is bidirectional, the C
++ object will inform the Ruby proxy that the reference will become invalid. The Ruby proxy will mark itself as being invalid and will block
further calls to methods. Object supporting this reference binding are the API classes and "bigger" database objects such as Cell or Layout.

For example:

main_window = ... # the RBA::MainWindow object
returns a reference to a RBA::LayoutView object living in C++ space:
view = main_window.current_view
deletes all views and also the object we have a reference to
main_window.close_all
this will fail, because the view is a Ruby proxy that knows that the C++ object
has been deleted:
view.load_layout(...)
You can check this by asking "_destroyed?". This will return "true":
view._destroyed?

For "lightweight" objects such as the geometry primitives (Box, Polygon etc.), the link is unidirectional and lifetime monitoring is not
possible. This situation bears the danger of invalid references with fatal consequences if an attempt is made to call a method then.
Fortunately this case is rare and usually mitigated by providing an object clone.

Calling "_destroy" on an object living in C++ space is not safe in general. In some cases, this can have fatal consequences (i.e. destroying
the MainWindow object). An exception from that rule are Qt objects because Qt does lifetime monitoring internally and destroying an object
from the outside (Ruby) is a valid operation in most cases (although there are exceptions).

Transfer Of Ownership And Object Lifetime

Some C++ methods accept pointers to objects and take over ownership over this object. This happens specifically inside the Qt methods.
In that case, the Ruby object has to release ownership over that object. For example, "QApplication::postEvent" takes over the ownership
over the event object passed to it and will finally destroy this object:

event = RBA::QKeyEvent::new
takes over ownership over the event object:
RBA::QApplication::postEvent(RBA::MainWindow::instance, event)
...

For more details visit
https://www.klayout.org

Page 475 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.7. The Ruby Language Binding

later on, when "event" goes out of scope, the GC will try to
delete the QKeyEvent object and without further provisions, the
application will crash!

Luckily, there are such provisions. The "postEvent" method is tagged specially, so the interpreter knows that it has to transfer ownership of
the event object to Qt.

If that was not the case, one could use "_unmanage" to mark the event object no longer being managed by the script:

event = RBA::QKeyEvent::new
event._unmanage
Now, somebody else is responsible for managing the object's lifetime

The reverse is true for methods delivering new objects which the Ruby interpreter is supposed to manage. For example "QLayout::takeAt"
returns a free objects which the caller is responsible for deleting. Without further provisions this would lead to a memory leak, because
Ruby does not delete the borrowed object:

layout = ... # A RBA::QLayout object
child = layout.takeAt(0)
later on, when child goes out of scope, Ruby needs to delete the object.
Here is does, because it knows that "takeAt" delivers a free object.

If the declaration of "takeAt" was not aware of the return mode, one could use "_manage" to mark the event object as to be managed by
the script:

obj = createObjectForMe()
event._manage
Now, when event goes out of scope, the object will be destroyed too.

Static And Local Methods, Access

Static C++ methods is simply implemented as class methods while local methods are implemented as instance methods.

RBA also supports binding of protected methods. A Ruby class derived from a C++ class exposed to Ruby can call those methods while
code outside that class cannot access those methods. Public methods can be called from anywhere.

Data types, Arguments and Return values

Ruby and C++ feature different types of data. While in Ruby, a variable is of any type, in C++ a variable has a fixed type. This also is
the case for arguments of methods and return values. A C++ method requires an argument to be of a certain type. In addition, C++
features pointers, references and a variety of containers. Therefore a mapping of Ruby types to C++ types is required. The following table
summarizes the mapping for the simple types:

C++ Ruby Comment

(signed, unsigned) char,
int, short, long, long long

FixNum

float, double Float

const char *, std::string,
QString, QByteArray

String KLayout uses UTF-8 encoding for std::string. Binary strings can
be passed to and from QByteArray.

bool nil, true, false When passing a Ruby value to a bool parameter, the Ruby's
nil and false values are converted to false. All other values are
converted to true. This follows the usual Ruby semantics.

void * FixNum Passing pointers between Ruby and C++ is not possible. But
often, a "void *" value is used as a handle or as an arbitrary
value. The Ruby binding allows storing of such values as
FixNum.

For more details visit
https://www.klayout.org

Page 476 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.7. The Ruby Language Binding

QVariant, tl::Variant
(KLayout)

any Any simple Ruby type that can be mapped to a C++ value can
be stored in a QVariant. tl::Variant also supports a selection
of complex types (i.e. RBA::Point, RBA::DPoint, RBA::Box,
RBA::DBox etc.).

Arguments that expect objects of classes known to RBA can be passed references from Ruby objects. The linear containers (std::vector,
QList etc.) are mapped to Ruby arrays. Their values can be any scalar type and objects of known classes. Nested arrays are not supported
currently. Since the declaration is uniform in C++ (all members of an array must be of the same type), all members of a Ruby array must be
convertible to the target type.

Pointers and references are a special topic for C++ to Ruby binding. Ruby does not have the concept of a reference. Instead, all object
values are references by definition. RBA can convert between Ruby variables and pointers/references and also supports "out" parameters.

"void" as return value

While a "void" return value indicates "no return value" in C++, this concept is not common in Ruby. Ruby methods will always return the last
value generated in a method.

For consistency, KLayout's Ruby binding returns "self" from methods in this case. This allows chaining of methods in many cases and
fosters compact code:

// C++
class A {
public:
 virtual void f() { ... }
 virtual void g() { ... }
};

Ruby
a = A::new.f.g

References and pointers to simple types (FixNum, Float, String)

Simple types can be passed as values to arguments expecting pointers and references. RBA will convert the value to a pointer to that value
and pass that pointer to the method. Pointer arguments also support the "nil" value which is converted to a null pointer. Beware that not all
C++ methods expecting a pointer argument are aware of null pointers and may have trouble digesting that value.

Often, (non-const) reference and pointer arguments are used as "out" parameters, i.e. the method alters the value of the memory location
passed by the pointer value. That imposes a problem for the Ruby binding: since Ruby does not pass references for simple types, the value
of a variable cannot be altered and the following code does not work as expected:

// C++: use x as an "out" parameter:
void A::f(int &x) { x = 5; }

Ruby:
x = 1
A::new.f(x)
x is NOT 5!

RBA solves that problem by providing a "boxing" mechanism: a value is stored inside an object which is passed by reference. RBA
provides the class Value for that purpose. This class serves as a container for any type and can be used to solve the "out" parameter
problem this way:

// C++: use x as an "out" parameter:
void A::f(int &x) { x = 5; }

Ruby:
x = RBA::Value.new(1)
A::new.f(x)
x.value is 5 now

For more details visit
https://www.klayout.org

Page 477 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.7. The Ruby Language Binding

The RBA::Value object has a attribute "value" which can hold any type. RBA will convert that member into the value required by the
method's argument. The method will receive a pointer or reference to that value and can modify that memory location. After the method has
returned, the modified value can be accessed by reading the "value" attribute.

Reference and pointer return values are simply converted to copies of the value.

Special pointers: const char *, void *

"const char *" pointers are mapped to Ruby strings. The same is true for "const unsigned char *". The non-const versions "char *" and
"unsiged char *" are somewhat ambiguous and are mapped to strings currently.

"void *" is mapped to an integer value representing the address the pointer points at. Since it is not possible to address a value by a pointer
in Ruby as well as getting the address of a value, there is noch much use for the "void *" values expect if those values are delivered and
digested by C++ methods. This is the case for some "handle" values (i.e. Windows object handles) and some cases, where "void *" stands
for "some arbitrary value which can be a pointer or an integer".

Pointers as arrays

In "C style" C++, pointers are sometimes used as the start position of an array and point to a number of items, not only one. Usually there
is another parameter telling the number of items the pointer points to. Since there is no declaration for that kind of calling convention, the
Ruby binding cannot support that case. Only "char *" and "const char *" are supported and it is assumed that arguments of these type
expect a zero-terminated byte string in UTF-8 encoding.

Fortunately that case is rare. Specifically the Qt API uses references to QByteArray, QVector, QList and similar container classes which
can be mapped to Ruby arrays.

References and pointers to complex types

References and pointers to complex types and objects of Ruby classes for which a C++ class exists are simply converted to pointers
or references to the C++ class. Pointer arguments can also be passed "nil" which renders a null pointer. Again, not all method
implementations may be prepared for that value and the application may crash in that case.

Hash arguments and return values

Associative containers (std::map, QHash etc.) are mapped to Ruby hashes. Unlike Ruby, C++ associative containers are strictly typed, so
it's important to provide the right key and value pairs.

Default arguments

Some functions provide defaults for certain arguments. If these arguments are omitted, the default value is used instead.

Constness

C++ has the concept of "constness". That means that if a pointer or a reference to an object is declared "const", the object cannot be
modified. Also, methods can be declared "const" meaning that such methods do no alter the (externally visible) state of an object. C++
ensures constness, because it only allows calling of const methods on const references of objects.

The concept of constness is part of the contract between a caller of a method and the method's implementation: if a method declares an
argument to be a const reference or pointer, it tells the caller that it will not modify the object. Similar, returning a const reference is a safe
way to expose internal objects because the implementor of the method can be sure that code outside a method will not modify the state of
the object returned. Thus, constness is a vital part of a contract and somehow needs to be mapped in the Ruby binding.

Unfortunately that is not as easy as it may look. The problem is basically that Ruby does not have the concept of constness, but it has
references. Remember that there is always a pair of Ruby/C++ objects. When a reference to a C++ object is returned into Ruby space, the
Ruby counterpart of the object is created and a reference to that object is returned.

But where do we have to attach the constness of the reference? The answer is that there is no other place except the Ruby object. Hence,
if a const reference is returned, a "const Ruby object" is created. That object will refuse to execute non-const methods. That way, the const
semantics is maintained.

Trouble starts when another non-const reference is returned to the same object. In that case, the Ruby object needs to be reused but this
time with non-const semantics. That is a contradiction to the previous const state. RBA solves this issue by switching the object to non-
const state in that case and will allow to call non-const methods after that.

In other words: constness is part of the object identity in Ruby and it can change. That actually makes some sense: when I obtained a const
reference there may be another way to obtain a non-const reference. Once I have a non-const reference I can modify the object which also
is behind the const reference. Thus keeping a const reference is no longer a safety feature and the const reference can be dropped.

For more details visit
https://www.klayout.org

Page 478 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.7. The Ruby Language Binding

To avoid lifetime issues, RBA does not work with references a lot. Objects returned by a const reference are always copied. Only const
pointers are kept as const object references in Ruby.

Reimplementing Virtual Methods

The Ruby binding supports reimplementation of virtual C++ methods in derived classes. This works as expected:

// C++
class A {
public:
 virtual void f() { }
};

Ruby
class B < A
 def f
 # f is called when A::f is called on the C++ side
 end
end

Virtual methods are often used as callbacks and provide a reverse call path from C++ to Ruby:

The parameters of the Ruby implementation must match the parameters of the C++ method. Mapping of Ruby to C++ types applies to the
Ruby method arguments the same way than for return values of ordinary methods. Virtual functions can also return values. In that case the
same mapping rules than for ordinary method arguments apply.

Iterators

A special feature of KLayout's Ruby binding are iterators. C++ iterators are mapped to Ruby iterators. For example:

// C++
class A {
public:
 // begin()..end() are mapped to the "each" method in Ruby:
 iterator begin();
 iterator end();
};

Ruby
a = A::new
a.each { |i| ... }

If no block is given, an Enumerator object is created. Enumerators are a Ruby feature. Enumerators support many convenient methods like
sort, inject, collect, select etc. Here is an example:

turns all elements returned by the iterator into strings and sorts them

For more details visit
https://www.klayout.org

Page 479 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.7. The Ruby Language Binding

sorted = a.each.collect(&:to_s).sort

Iterators match very well between C++ and Ruby so there are no real issues here. The return type of the iterators is mapped to Ruby's
block arguments using the same rules than for values returned from C++ methods.

Exceptions

Raising an error in Ruby is a valid way to terminate the execution of the method. A Ruby error is mapped to a C++ exception which usually
is caught in the C++ code and handled properly. There are some cases, where raising an exception can crash the application. That is the
case in particular in event handlers of Qt objects. Usually, raising an exception is safe.

Events

Events are a special feature of KLayout's Ruby binding. Events are similar to reimplementations of virtual functions except that no derived
class is required and the call is handled by a Ruby block. Events can have return values but using "return" inside a block does not have the
expected effect. Instead, the value of the last expression in the block is used. That is a feature of Ruby, not a speciality of RBA.

There is always one receiver for an event. If a new block is assigned to an event, the old block will no longer be called. Here is an example
of using events:

// C++
class A {
public:
 // e is an event with an integer argument
 void f(i) { e(i); }
};

Ruby
a = A::new
a.e { |i| puts i; }
a.f(15) # calls the block attached to e with the argument 15

Events are extensively used for an alternative to Qt slots. The Qt binding of KLayout maps every signal to an event. That means, that it is
possible to connect a block to a Qt signal directly at the sender object without having to create a receiver. For example:

Ruby
b = RBA::QPushButton::new
print a message, when the button is clicked
b.clicked { puts "Ouch." }

There is one significant difference between Qt signals and events: A Qt signal can have many receivers while an event always has one
block which is executed when the signal is emitted. Connecting signals and slots still is supported with the "connect" method, but it is not
possible to define slots on Ruby methods. The events fill that gap and, in the authors opinion, in a much more convenient way.

For more details visit
https://www.klayout.org

Page 480 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.8. Coding PCells In Ruby

3.8. Coding PCells In Ruby
A good starting point for Ruby PCells is the PCell sample. Create a macro in the macro development IDE (use the "+" button) and choose
"PCell sample" from the templates.

The Sample

We'll do a code walk through that sample here and explain the concepts while doing so. Here is the complete sample:

Sample PCell
#
This sample PCell implements a library called "MyLib" with a single PCell that
draws a circle. It demonstrates the basic implementation techniques for a PCell
and how to use the "guiding shape" feature to implement a handle for the circle
radius.

NOTE: after changing the code, the macro needs to be rerun to install the new
implementation. The macro is also set to "auto run" to install the PCell
when KLayout is run.

module MyLib

 include RBA

 # Remove any definition of our classes (this helps when
 # reexecuting this code after a change has been applied)
 MyLib.constants.member?(:Circle) && remove_const(:Circle)
 MyLib.constants.member?(:MyLib) && remove_const(:MyLib)

 # The PCell declaration for the circle
 class Circle < PCellDeclarationHelper

 include RBA

 def initialize

 # Important: initialize the super class
 super

 # declare the parameters
 param(:l, TypeLayer, "Layer", :default => LayerInfo::new(1, 0))
 param(:s, TypeShape, "", :default => DPoint::new(0, 0))
 param(:r, TypeDouble, "Radius", :default => 0.1)
 param(:n, TypeInt, "Number of points", :default => 64)
 # this hidden parameter is used to determine whether the radius has changed
 # or the "s" handle has been moved
 param(:ru, TypeDouble, "Radius", :default => 0.0, :hidden => true)

 end

 def display_text_impl
 # Provide a descriptive text for the cell
 "Circle(L=#{l.to_s},R=#{'%.3f' % r.to_f})"
 end

 def coerce_parameters_impl

 # We employ coerce_parameters_impl to decide whether the handle or the
 # numeric parameter has changed (by comparing against the effective
 # radius ru) and set ru to the effective radius. We also update the
 # numerical value or the shape, depending on which on has not changed.
 rs = nil
 if s.is_a?(DPoint)
 # compute distance in micron
 rs = s.distance(DPoint::new(0, 0))

For more details visit
https://www.klayout.org

Page 481 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.8. Coding PCells In Ruby

 end
 if rs && (r-ru).abs < 1e-6
 set_ru rs
 set_r rs
 else
 set_ru r
 set_s DPoint::new(-r, 0)
 end

 # n must be larger or equal than 4
 n > 4 || (set_n 4)

 end

 def can_create_from_shape_impl
 # Implement the "Create PCell from shape" protocol: we can use any shape which
 # has a finite bounding box
 shape.is_box? || shape.is_polygon? || shape.is_path?
 end

 def parameters_from_shape_impl
 # Implement the "Create PCell from shape" protocol: we set r and l from the shape's
 # bounding box width and layer
 set_r shape.bbox.width * layout.dbu / 2
 set_l layout.get_info(layer)
 end

 def transformation_from_shape_impl
 # Implement the "Create PCell from shape" protocol: we use the center of the shape's
 # bounding box to determine the transformation
 Trans.new(shape.bbox.center)
 end

 def produce_impl

 # This is the main part of the implementation: create the layout

 # fetch the parameters
 ru_dbu = ru / layout.dbu

 # compute the circle
 pts = []
 da = Math::PI * 2 / n
 n.times do |i|
 pts.push(Point.from_dpoint(DPoint.new(ru_dbu * Math::cos(i * da), ru_dbu * Math::sin(i * da))))
 end

 # create the shape
 cell.shapes(l_layer).insert(Polygon.new(pts))

 end

 end

 # The library where we will put the PCell into
 class MyLib < Library

 def initialize

 # Set the description
 self.description = "My First Library"

 # Create the PCell declarations
 layout.register_pcell("Circle", Circle::new)
 # That would be the place to put in more PCells ...

 # Register us with the name "MyLib".
 # If a library with that name already existed, it will be replaced then.

For more details visit
https://www.klayout.org

Page 482 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.8. Coding PCells In Ruby

 register("MyLib")

 end

 end

 # Instantiate and register the library
 MyLib::new

end

Preamble

The first important concepts are PCell class and library. A PCell is provided by implementing a certain class and providing the functionality
of the PCell through various methods. In fact there are only three methods which must be implemented. In the sample we use
PCellDeclarationHelper as the base class for our PCell. This is a convenience wrapper around the basic interface, PCellDeclaration. Since
that interface is too much "C++"-like and is somewhat tedious to use, the PCellDeclarationHelper is the recommended starting point.

Using the same concept, a library is an object derived from the Library class. It is basically a container for PCells and static layout cells.
A library has to be initialized (most conveniently in the constructor), registered and initialized once. That makes the library available to the
system and it can be used in layouts.

Please note, that the sample PCell is configured for auto-run. This way, the library is installed when KLayout starts and before any layouts
are loaded. That way, the library is available for layouts read from the command-line for example.

Let's now start with our code walk:

module MyLib

 include RBA

 # Remove any definition of our classes (this helps when
 # reexecuting this code after a change has been applied)
 MyLib.constants.member?(:Circle) && remove_const(:Circle)
 MyLib.constants.member?(:MyLib) && remove_const(:MyLib)

It is recommended to put the library code into a separate module. That allows mixing in other modules (in that case RBA) without affecting
the main module. The second recommendation is to remove classes which are already defined with the names we are going to create.
While developing a PCell is it necessary to frequently rerun the script to register the new version of the library and PCell. If we do not
remove the existing class, Ruby will refuse to reopen a class for example if we change the super class or methods we have deleted will still
remain. That is avoided by removing the classes before the create them again. In Ruby, a class can be removed by removing the constant
with the class name. Note the way, the script checks whether a class is defined by using "member?" on the list of constants. This method
should be preferred over "const_defined?" which behaves differently on Ruby 1.8 and Ruby 1.9.

The PCell Class

First we define a PCell class derived from PCellDeclarationHelper. This is the most convenient way to declare a PCell:

 # The PCell declaration for the circle
 class Circle < PCellDeclarationHelper

 include RBA

Again we include RBA which allows us to use RBA classes inside the PCell without having to write "RBA::" in front of the class names.

The initialization of the object is already a very important step. First, it must initialize the super class. Then it has to declare the PCell
parameters. Each PCell has a set of parameters that define the appearance of the PCell. Parameters have a symbolic name, a type, a
description and optionally a default value and further attributes. The name is important because it identifies the parameter throughout the
system and in layout files as well. It should not be changed. The description is an arbitrary string and can be changed or localized.

Parameters are declared using the "param" method of PCellDeclarationHelper:

 def initialize

For more details visit
https://www.klayout.org

Page 483 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.8. Coding PCells In Ruby

 # Important: initialize the super class
 super

 # declare the parameters
 param(:l, TypeLayer, "Layer", :default => LayerInfo::new(1, 0))
 param(:s, TypeShape, "", :default => DPoint::new(0, 0))
 param(:r, TypeDouble, "Radius", :default => 0.1)
 param(:n, TypeInt, "Number of points", :default => 64)
 # this hidden parameter is used to determine whether the radius has changed
 # or the "s" handle has been moved
 param(:ru, TypeDouble, "Radius", :default => 0.0, :hidden => true)

 end

In that sample we declared a PCell parameter "l" with type "TypeLayer" which indicates that this is a layer in the layout. "s" is a parameter
shape represents the handle and is a shape. A shape is either of type DBox, DText, DPath, DPolygon or DPoint. Shape parameters
implement the "guiding shape feature" that KLayout offers to manipulate that parameter graphically. "r" and "n" are simple numerical
parameters. All parameters have default values which are set with the "default" symbolic parameter. As a layer, "l" must have a LayerInfo
value. "s" is a DPoint which reflects the handle. Since default values not only preset the parameters to a reasonable value but also define
the subtype of a parameter (here the DPoint shape), providing a default is strongly recommended. As shapes need to be independent from
the database unit for portability, they are expressed in micron units. Hence the use of the "D" forms (DPoint etc.).

"ru" is a special parameter. Because we have two ways to modify the radius (the handle and the numerical value), it is used as a shadow
parameter do determine which one of these two values has changed. Depending on that information, either the handle or the radius is
updated. Because this parameter should not be shown in the parameter page, it is marked "hidden".

There are some more options for parameters. See the documentation of PCellDeclarationHelper for more details about the further
attributes.

The parameter declaration will create accessor methods for each parameter. These accessor methods can be used to get and set the
current value of the parameter inside the production method and other methods. For that, it will use the symbolic name of the parameter.
The setter is called "set_x" (where x is the parameter name). Although Ruby would allow using "x=" to mimic an assignment, this option
leads to some confusion with definition of local variables and was not considered here. The following methods are created in the sample:

• l, set_l, l_layer: getter and setter for the current value of "l". l_layer is the layer index in the context of the PCell production
method. The layer index can be used to access the layer in the layout or cell.

• s, set_s: getter and setter for the current value of "s".

• r, set_r, n, set_n, ru, set_ru: same for "r", "n" and "ru".

After the PCell initialization is finished, we can start with the production code. These are the methods that KLayout will call on certain
opportunities. The first method that a PCell must implement is the display text callback:

 def display_text_impl
 # Provide a descriptive text for the cell
 "Circle(L=#{l.to_s},R=#{'%.3f' % r.to_f})"
 end

KLayout will call this method to fetch a formatted string that represents the content of a PCell. This text is used for the cell tree and cell box
labels. To avoid confusion, it should start with the name of the PCell. The bracket notation is not mandatory, but it's always a good idea to
follow some common style. The information delivered by this method should be short but contain enough information so that a PCell variant
can be distinguished from its sibling.

The next method is called whenever something on the parameters has changed. This method allows to adjust the parameters so that
they obey certain limitations. It can also raise exceptions for invalid parameter combinations. In our case we use this method to adjust
the handle or the numeric radius to the effective value. We also enforce a minimum number of vertex counts for the resulting polygon.
Implementing this method in general is optional. By default, no modification of the parameters is done:

 def coerce_parameters_impl

 # We employ coerce_parameters_impl to decide whether the handle or the
 # numeric parameter has changed (by comparing against the effective
 # radius ru) and set ru to the effective radius. We also update the

For more details visit
https://www.klayout.org

Page 484 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.8. Coding PCells In Ruby

 # numerical value or the shape, depending on which on has not changed.
 rs = nil
 if s.is_a?(DPoint)
 # compute distance in micron
 rs = s.distance(DPoint::new(0, 0))
 end
 if rs && (r-ru).abs < 1e-6
 set_ru rs
 set_r rs
 else
 set_ru r
 set_s DPoint::new(-r, 0)
 end

 # n must be larger or equal than 4
 n > 4 || (set_n 4)

 end

The implementation of the following three methods is optional: they are used to implement the "PCell from shape" protocol. If "Create PCell
from shape" is selected in KLayout's Edit menu, it will call "can_create_from_shape_impl" for each known PCell. This method will be given
the shape, layout and layer. If this method responds with "true", KLayout offers this PCell as a conversion target in the list. When this PCell
has been selected, KLayout calls "parameters_from_shape_impl" and "transformation_from_shape_impl" to obtain the initial parameters
and the initial transformation for the new PCell created from that shape. "parameter_from_shape_impl" will use the default values for all
parameters unless they are set with the respective setters in the implementation body.

 def can_create_from_shape_impl
 # Implement the "Create PCell from shape" protocol: we can use any shape which
 # has a finite bounding box
 shape.is_box? || shape.is_polygon? || shape.is_path?
 end

 def parameters_from_shape_impl
 # Implement the "Create PCell from shape" protocol: we set r and l from the shape's
 # bounding box width and layer
 set_r shape.bbox.width * layout.dbu / 2
 set_l layout.get_info(layer)
 end

 def transformation_from_shape_impl
 # Implement the "Create PCell from shape" protocol: we use the center of the shape's
 # bounding box to determine the transformation
 Trans.new(shape.bbox.center)
 end

The most important method is "produce_impl" which actually creates the layout. For that, it can use all methods of Layout and Cell and
most other RBA classes. It can even create instances. Although that is possible, it is not recommended to create cells in the production
code. This would pretty much degrade performance and lead to a confusing variety of cells. It is possible to use boolean operations by
using the methods of EdgeProcessor for example. Some care must be taken to avoid interaction with the user interface, in particular calling
methods of LayoutView and MainWindow should be avoided.

The actual layout of the PCell is cached and the production code is called only when the PCell parameters have changed. However, to
reduce the risk of performance degradation, the method should run quickly and not spend too much time in long loops or huge data sets.

 def produce_impl

 # This is the main part of the implementation: create the layout

 # fetch the parameters
 ru_dbu = ru / layout.dbu

 # compute the circle
 pts = []
 da = Math::PI * 2 / n
 n.times do |i|

For more details visit
https://www.klayout.org

Page 485 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.8. Coding PCells In Ruby

 pts.push(Point.from_dpoint(DPoint.new(ru_dbu * Math::cos(i * da), ru_dbu * Math::sin(i * da))))
 end

 # create the shape
 cell.shapes(l_layer).insert(Polygon.new(pts))

 end

 end

Of course, more than one PCell class can be declared. Each PCell type must have an own implementation class which we will use later to
create the PCells from.

The Library

The library is the container for the PCells. All important code is packed into the constructor of the library.

 # The library where we will put the PCell into
 class MyLib < Library

 def initialize

 # Set the description
 self.description = "My First Library"

 # Create the PCell declarations
 layout.register_pcell("Circle", Circle::new)
 # That would be the place to put in more PCells ...

 # Register us with the name "MyLib".
 # If a library with that name already existed, it will be replaced then.
 register("MyLib")

 end

 end

First, a library needs a description that we set with the description setter. Then, we instantiate all PCell classes once and register that
instance in the library space.

The library is basically an ordinary Layout object that we can access through the "layout" method. The library can consist of more that
PCells - all cells that we put into the layout will become available as library components (more precisely: all top cells). We could use
RBA::Layout::read for example to feed the layout with cells from a file.

At the end of the constructor we register our instance inside the system with the given name. To avoid confusion, it is recommended to use
the same name for the class and the library.

Finally we only need to instantiate the library:

 # Instantiate and register the library
 MyLib::new

This line of code will instantiate the library and, through the constructor, instantiate the PCells and register the library. We are done now
and can use the library and our PCell.

Debugging The Code

When you have modified the code, you need to rerun the script. That will create the classes again and re-register the PCells and the
Library with the new implementation. PCells already living in the layout will be migrated to the new implementation by mapping their
parameters by their symbolic names.

The PCell code can be debugged with KLayout's built-in Ruby debugger. If the macro development IDE window is open, just load the PCell
code and set a breakpoint. When KLayout calls the PCell implementation, the breakpoint will be triggered. Local variables can be inspected

For more details visit
https://www.klayout.org

Page 486 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.8. Coding PCells In Ruby

and modified in the console for example. Single-stepping is supported as well. If the execution is stopped, KLayout will finish the operation
with some error message.

It is also possible to print output to the console if the macro development IDE is open. Just use the methods of stdout that Ruby offers or
simply "puts".

Please note that while the macro development IDE is opened, macro execution is considerably slower than usually, because the IDE will
plug itself into the Ruby interpreter and trace the execution. When the IDE window is closed, Ruby runs at full speed. While in a breakpoint,
KLayout's main window is only half alive. Only the IDE is active and the main window will not even repaint correctly. This prevents possible
interactions with the executed code.

For more details visit
https://www.klayout.org

Page 487 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.9. The Qt Binding

3.9. The Qt Binding
Starting with 0.22 comes with a large set of Qt classes available through the Ruby binding mechanism. This allows integration of Qt user
interfaces with Ruby scripts and to use the Qt API, for example the network or SQL classes. To use the Qt bindings, KLayout must be
compiled with Qt binding, i.e.

build.sh -with-qtbinding ...

The API provided covers the functionality of a certain Qt version. Currently this is Qt 4.6 and Qt 5.5. The API covers the following Qt 4 and
Qt 5 modules:

• QtCore: the basic Qt API

• QtGui: the user interface widgets and supporting classes

• QtXml: support for XML

• QtXmlPatterns (Qt5): XML schema and queries

• QtSql: database support

• QtNetwork: various network protocols and supporting classes

• QtDesigner: dynamically load designer files (.ui)

• QtUiTools: dynamically load designer files (.ui)

• QtMultimedia (Qt5): multimedia support

• QtPrintSupport (Qt5): print support

• QtSvg (Qt5): SVG implementation

This article covers the use of the Qt API and special topics related to that. It is recommended to read the article about the Ruby binding
(The Ruby Language Binding) for a deeper understanding of the mapping of the Qt API to Ruby.

There is some overlap with the "qtruby" project. This project also makes the Qt API available for Ruby. The approach of "qtruby" is similar.
Yet there are some differences, in particular the event feature of KLayout, which allows a convient binding of code blocks to signals.

A First Sample

This is a first sample of how to use the Qt API. To run that sample, open the Macro Development IDE from the "Macros" menu. Add a new
macro with the "+" button in the left top tool bar. Choose "General KLayout Macro" from the "General" group as the template. Paste the
code above into the macro and run the macro with F5.

module MyMacro

 include RBA

 dialog = QDialog::new(Application.instance.main_window)
 dialog.windowTitle = "My Dialog"

 layout = QHBoxLayout::new(dialog)
 dialog.setLayout(layout)

 button = QPushButton.new(dialog)
 layout.addWidget(button)
 button.text = "Click Me"
 button.clicked do
 QMessageBox::information(dialog, "Message", "I was clicked!")
 end

For more details visit
https://www.klayout.org

Page 488 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.9. The Qt Binding

 dialog.exec

end

The sample creates a QDialog with a layout and a button in it. When the button is clicked, a message box appears. This code
demonstrates some features of the Ruby binding of the Qt library. For example, the button's text is set with an attribute assignment
("button.text = ...") rather than a method call ("button.setText(...)").

A noteworthy feature is the event binding which allows associating code blocks with signals. In pure Qt, the "clicked" signal of the button
would have to be connected to a slot. This is not possible without creating a receiver object. With events, that receiver is created internally
and a code block can be attached to the signal directly:

 button.clicked do
 QMessageBox::information(dialog, "Message", "I was clicked!")
 end

That binding includes the ability to receive signal arguments through block arguments.

Binding Details

Given the rules stated in the general Ruby binding documentation (The Ruby Language Binding) the ruby versions of most methods can be
derived readily. There are some exceptions however that we will cover here.

First, the C++ to Ruby binding lacks some features that are required for some methods. Those methods cannot be bound. Specifically that
concerns:

• Methods that return or require unsupported containers

• Methods that return or require function pointers

• Methods that return or require pointers to pointers or references to pointers

• Methods that require pointers to pass arrays (i.e. QPolygon::putPoints)

• Methods that return or require objects which are not available in Ruby for some reason (i.e. QGenericArgument or some template
classes like GenericMatrix)

• Template members

• Methods which are not available on one of the platforms (i.e. QPrinter::printerSelectionOption, which is not available on
Windows)

• Some operators, like the cast operators

• Methods that require "char *" arguments which will be manipulated (i.e. QFile::readLineData)

• Methods that require C++ resources (i.e FILE arguments)

• Methods for which an alternative exists which cannot be distiguished (i.e. variants acceptings QByteArray and QString - only the
QString variant is bound in that case)

• Methods and operators which requires a typed argument as disambiguator (i.e. operator>>, where the variant is selected by
examining the type of the argument. For that case, alternatives exists which explicitly state the type in the name, for example
"read_i32")

Some template types are made available to Ruby. In particular that is valid for some QPair specializations. For example
"QPair<double, double>" is available as "QDoublePair".

The naming of some methods has been aligned to Ruby:

• isX is available as isX?, i.e. QAction::isSeparator?

For more details visit
https://www.klayout.org

Page 489 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.9. The Qt Binding

• setX is available as x=, i.e. QAction::iconText=

In those cases, the original declaration is still available also.

The inheritance hierarchy of classes is mapped to Ruby in most cases. Sometimes that is not possible. For example, if the base class is a
template (i.e. QPolygon, where the base class is a QVector<QPoint>). In that case, methods are provided that implement the features
from the base class in the derived class.

Operators are bound to Ruby operators where that makes sense. For example, for QPoint the operators are available as expected ("==",
"+" etc.).

"destroy" and "create" have been renamed to "qt_destroy" and "qt_create" to avoid name clashes with identical methods inherited
from the RBA binding. "destroy" and "create" are standard methods which KLayout's Ruby binding defines for every object exposed to
Ruby.

When a Qt object is created in Ruby space with a parent, its ownership is passed to the parent. It is safe however to keep a reference to
that object, because KLayout's Ruby binding employs a special Ruby class internally (a proxy) which keeps track of the lifetime of the Qt
object. If the parent is destroyed, the Qt object is destroyed as well. The internal Qt object will be notified and the reference to the Qt object
will be invalidated. As a consequence, the Ruby proxy will refuse to execute methods on that object.

Destroying a Qt object can be necessary for example to free resources. To perform the equivalent of the C++ delete operator, use the
"destroy" method that comes with every class exposed to Ruby. After an object is destroyed, the Ruby part of the binding still persists
until all references to that object are removed. However, it is no longer possible to call methods on these objects.

The Qt binding significantly benefits from the dynamic binding of C++ objects. If a C++ pointer is returned, this pointer often is a pointer
to a base class. Behind the pointer often is an object of a derived class. C++ allows calling of base class methods on that pointer, but not
methods of the derived class - the identity of the object is reduced to the base class.

For example, if a method returns a QWidget pointer for a QPushButton, it is not possible to directly set the buttons text, because the
method required for that is not part of the QWidget interface. In C++ one would dynamic_cast the pointer to QWidget and set the text
then.

The Ruby binding automatically upcasts the pointer to the actual object, so the value returned has the real object's identity. In that case,
delivering a QWidget would render a Ruby object that has a QPushButton identity and it's possible to set the text immediately. If the
object was not a QPushButton, an error would be issued when an attempt is made to call a QPushButton method.

Enums

Enum types are available as classes to give them a specific context. Since Ruby does not allow declaration of classes within classes,
enums declared inside a class must be declared as separate classes outside that class. The relationship is indicated by the Enum's class
name. For example, QMessageBox::Icon (C++) is available as the Ruby class QMessageBox_Icon. The enum values are defined as
constants within that class and the enclosing class. For example QMessageBox::Critical which is a value for QMessageBox::Icon is
available as QMessageBox_Icon::Critical and QMessageBox::Critical in Ruby.

Starting with version 0.24, the QFlags template is supported as a separate class. The name of the class indicates the relationship to the
enum class. For example, QFlags<QMessageBox::Icon> is available as QMessageBox_QFlags_Icon. Enum classes are derived
from their respective flags class, so they can serve to initialize arguments expecting flags. It's hardly required to operate with the flags
classes directly, since they are created automatically when joining enum's with the "or" (|) operator:

 QMessageBox::Ok # A QMessageBox_StandardButton object
 QMessageBox::Ok | QMessageBox::Cancel # A QMessageBox_QFlags_StandardButton object

With these definitions, the following is allowed:

 QMessageBox::information(parent, title, text, QMessageBox::Ok | QMessageBox::Cancel)
 QMessageBox::information(parent, title, text, QMessageBox::Ok)

Using the designer

It is possible to load a dialog from a UI designer (.ui) file. Have a look at the following sample:

module MyMacro

 include RBA

For more details visit
https://www.klayout.org

Page 490 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 3.9. The Qt Binding

 ui_file = QFile::new(QFileInfo::new($0).dir.filePath("MyDialog.ui"))
 ui_file.open(QIODevice::ReadOnly)
 dialog = QFormBuilder::new.load(ui_file, Application::instance.main_window)
 ui_file.close

 def dialog.setup
 button.clicked do
 slider.value = (slider.value + 1) % 100
 end
 end

 dialog.setup
 dialog.exec

end

This sample tries to locate a designer file called "MyDialog.ui" relative to the macro's path (in $0). It uses the QFormBuilder class to load
and create the dialog. In that sample, "MyDialog" defines a dialog with two widgets: a QPushButton ("button") and a QSlider ("slider").
Because of the dynamic binding in Ruby, "dialog" will already have the correct class and we don't have to cast the pointer delivered by
QFormBuilder::load before we can call "exec".

This sample exploits a nice Ruby feature: in Ruby it is possible to dynamically add methods to an instance. This allows extending the
QDialog object we got from QFormLoader by custom code. In our case we add a "setup" method. This method installs the custom logic
of the dialog. It makes use of a convenience feature implemented in QObject's Ruby binding: all named child objects of an object are
available through accessor methods. Therefore we can access "button" and "slider" by their name to install an event handler that updates
the slider value each time the button is clicked.

After calling setup on the dialog we have initialized it and we can show it with "exec".

Behind The Scenes

The mechanism behind the Ruby binding a based on the RBA/GSI framework of KLayout. In order to be able to derive from existing
classes, that framework needs to add a kind of interfacing class atop of existing classes. Thus, the framework exposes every Qt class in
two ways:

• Directly, without the ability to reimplement virtual methods. This is the way, existing Qt objects are addressed. The Ruby classes
for that case are called "X_Native" where "X" is the name of the Qt class (for example, "QObject_Native"). When you receive a
reference to a Qt object created by C++ code, this reference will have the native class type.

• Indirectly through an interface class. This is the object created when you instantiate a Qt object in Ruby. All virtual methods will be
rerouted to the Ruby dispatcher. That allows to reimplement every virtual method, but also adds some overhead to every virtual
method call. The name of these classes is identical to the name of the Qt class. In the swig tool, those classes are called "director
classes".

The difference between the native and interface classes is important if you test the type of a object. The difference between both cases is
the scope. The native classes will always match. The interface classes will only match if the object was created by Ruby code:

b = dialog.button
this will not render true, if the button was created by QFormBuilder for example
b.is_a?(QPushButton)
this is correct:
b.is_a?(QPushButton_Native)

To avoid confusion, the native classes do not appear in the documentation. They would just add another level of inheritance without
providing additional methods.

For more details visit
https://www.klayout.org

Page 491 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4. Class Index

4. Class Index
Per-Module documentation:

• Core Module db

• Core Module lay

• Core Module mebes

• Core Module rdb

• Core Module tl

KLayout classes

AbsoluteProgress tl A progress reporter counting progress in absolute units

AbstractMenu lay An abstraction for the application menus

AbstractProgress tl The abstract progress reporter

Action lay The abstraction for an action (i.e. used inside menus)

Annotation lay A layout annotation (i.e. ruler)

Application lay The application object

Box db A box class with integer coordinates

BrowserDialog lay A HTML display and browser dialog

BrowserPanel lay A HTML display and browser widget

BrowserSource lay The BrowserDialog's source for "int" URL's

ButtonState lay The namespace for the button state flags in the mouse events of
the Plugin class.

Cell db A cell

CellInstArray db A single or array cell instance

CellMapping db A cell mapping (source to target layout)

CellView lay A class describing what is shown inside a layout view

Circuit db Circuits are the basic building blocks of the netlist

CompoundRegionOperationNode db A base class for compound DRC operations

CompoundRegionOperationNode::GeometricalOpdb This class represents the
CompoundRegionOperationNode::GeometricalOp enum

CompoundRegionOperationNode::LogicalOp db This class represents the
CompoundRegionOperationNode::LogicalOp enum

For more details visit
https://www.klayout.org

Page 492 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4. Class Index

CompoundRegionOperationNode::ParameterTypedb This class represents the parameter type enum used in
\CompoundRegionOperationNode#new_bbox_filter

CompoundRegionOperationNode::RatioParameterTypedb This class represents the parameter type enum used in
\CompoundRegionOperationNode#new_ratio_filter

CompoundRegionOperationNode::ResultTypedb This class represents the
CompoundRegionOperationNode::ResultType enum

Connectivity db This class specifies connections between different layers.

CplxTrans db A complex transformation

Cursor lay The namespace for the cursor constants

D25View lay The 2.5d View Dialog

DBox db A box class with floating-point coordinates

DCellInstArray db A single or array cell instance in micrometer units

DCplxTrans db A complex transformation

DEdge db An edge class

DEdgePair db An edge pair (a pair of two edges)

DPath db A path class

DPoint db A point class with double (floating-point) coordinates

DPolygon db A polygon class

DSimplePolygon db A simple polygon class

DText db A text object

DTrans db A simple transformation

DVector db A vector class with double (floating-point) coordinates

DeepShapeStore db An opaque layout heap for the deep region processor

Device db A device inside a circuit.

DeviceAbstract db A geometrical device abstract

DeviceAbstractRef db Describes an additional device abstract reference for combined
devices.

DeviceClass db A class describing a specific type of device.

DeviceClassBJT3Transistor db A device class for a bipolar transistor.

DeviceClassBJT4Transistor db A device class for a 4-terminal bipolar transistor.

DeviceClassCapacitor db A device class for a capacitor.

For more details visit
https://www.klayout.org

Page 493 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4. Class Index

DeviceClassCapacitorWithBulk db A device class for a capacitor with a bulk terminal (substrate,
well).

DeviceClassDiode db A device class for a diode.

DeviceClassFactory db A factory for creating specific device classes for the standard
device extractors

DeviceClassInductor db A device class for an inductor.

DeviceClassMOS3Transistor db A device class for a 3-terminal MOS transistor.

DeviceClassMOS4Transistor db A device class for a 4-terminal MOS transistor.

DeviceClassResistor db A device class for a resistor.

DeviceClassResistorWithBulk db A device class for a resistor with a bulk terminal (substrate, well).

DeviceExtractorBJT3Transistor db A device extractor for a bipolar transistor (BJT)

DeviceExtractorBJT4Transistor db A device extractor for a four-terminal bipolar transistor (BJT)

DeviceExtractorBase db The base class for all device extractors.

DeviceExtractorCapacitor db A device extractor for a two-terminal capacitor

DeviceExtractorCapacitorWithBulk db A device extractor for a capacitor with a bulk terminal

DeviceExtractorDiode db A device extractor for a planar diode

DeviceExtractorMOS3Transistor db A device extractor for a three-terminal MOS transistor

DeviceExtractorMOS4Transistor db A device extractor for a four-terminal MOS transistor

DeviceExtractorResistor db A device extractor for a two-terminal resistor

DeviceExtractorResistorWithBulk db A device extractor for a resistor with a bulk terminal

DeviceParameterDefinition db A parameter descriptor

DeviceReconnectedTerminal db Describes a terminal rerouting in combined devices.

DeviceTerminalDefinition db A terminal descriptor

Dispatcher lay Root of the configuration space in the plugin context and menu
dispatcher

Edge db An edge class

EdgePair db An edge pair (a pair of two edges)

EdgePairs db EdgePairs (a collection of edge pairs)

EdgeProcessor db The edge processor (boolean, sizing, merge)

Edges db A collection of edges (Not necessarily describing closed
contours)

For more details visit
https://www.klayout.org

Page 494 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4. Class Index

EmptyClass tl

EqualDeviceParameters db A device parameter equality comparer.

Executable tl A generic executable object

Expression tl Evaluation of Expressions

ExpressionContext tl Represents the context of an expression evaluation

FileDialog lay Various methods to request a file name

GenericDeviceCombiner db A class implementing the combination of two devices (parallel or
serial mode).

GenericDeviceExtractor db The basic class for implementing custom device extractors.

GenericDeviceParameterCompare db A class implementing the comparison of device parameters.

GenericNetlistCompareLogger db An event receiver for the netlist compare feature.

GlobPattern tl A glob pattern matcher

HAlign db This class represents the horizontal alignment modes.

HelpDialog lay The help dialog

HelpSource lay A BrowserSource implementation delivering the help text for the
help dialog

ICplxTrans db A complex transformation

IMatrix2d db A 2d matrix object used mainly for representing rotation and
shear transformations (integer coordinate version).

IMatrix3d db A 3d matrix object used mainly for representing rotation,
shear, displacement and perspective transformations (integer
coordinate version).

Image lay An image to be stored as a layout annotation

ImageDataMapping lay A structure describing the data mapping of an image object

InputDialog lay Various methods to open a dialog requesting data entry

InstElement db An element in an instantiation path

Instance db An instance proxy

Interpreter tl A generalization of script interpreters

LEFDEFReaderConfiguration db Detailed LEF/DEF reader options

LayerInfo db A structure encapsulating the layer properties

LayerMap db An object representing an arbitrary mapping of physical layers to
logical layers

For more details visit
https://www.klayout.org

Page 495 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4. Class Index

LayerMapping db A layer mapping (source to target layout)

LayerProperties lay The layer properties structure

LayerPropertiesIterator lay Layer properties iterator

LayerPropertiesNode lay A layer properties node structure

LayerPropertiesNodeRef lay A class representing a reference to a layer properties node

Layout db The layout object

LayoutDiff db The layout compare tool

LayoutMetaInfo db A piece of layout meta information

LayoutQuery db A layout query

LayoutQueryIterator db Provides the results of the query

LayoutToNetlist db A generic framework for extracting netlists from layouts

LayoutToNetlist::BuildNetHierarchyMode db This class represents the
LayoutToNetlist::BuildNetHierarchyMode enum

LayoutView lay The view object presenting one or more layout objects

LayoutView::SelectionMode lay Specifies how selected objects interact with already selected
ones.

LayoutVsSchematic db A generic framework for doing LVS (layout vs. schematic)

Library db A Library

LoadLayoutOptions db Layout reader options

LoadLayoutOptions::CellConflictResolution db This enum specifies how cell conflicts are handled if a layout
read into another layout and a cell name conflict arises.

Logger tl A logger

MEBESFracturedData mebes An opaque class that represents one tile of fractured data

MEBESWriter mebes A MEBES writer implementation

Macro lay A macro class

Macro::Format lay Specifies the format of a macro

Macro::Interpreter lay Specifies the interpreter used for executing a macro

MacroExecutionContext lay Support for various debugger features

MacroInterpreter lay A custom interpreter for a DSL (domain specific language)

MainWindow lay The main application window and central controller object

Manager db A transaction manager class

For more details visit
https://www.klayout.org

Page 496 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4. Class Index

Marker lay The floating-point coordinate marker object

Matrix2d db A 2d matrix object used mainly for representing rotation and
shear transformations.

Matrix3d db A 3d matrix object used mainly for representing rotation, shear,
displacement and perspective transformations.

MessageBox lay Various methods to display message boxes

Net db A single net.

NetElement db A net element for the NetTracer net tracing facility

NetPinRef db A connection to an outgoing pin of the circuit.

NetSubcircuitPinRef db A connection to a pin of a subcircuit.

NetTerminalRef db A connection to a terminal of a device.

NetTracer db The net tracer feature

NetTracerTechnology db A technology description for the net tracer

Netlist db The netlist top-level class

NetlistBrowserDialog lay Represents the netlist browser dialog.

NetlistCompareLogger db A base class for netlist comparer event receivers

NetlistComparer db Compares two netlists

NetlistCrossReference db Represents the identity mapping between the objects of two
netlists.

NetlistCrossReference::CircuitPairData db A circuit match entry.

NetlistCrossReference::DevicePairData db A device match entry.

NetlistCrossReference::NetPairData db A net match entry.

NetlistCrossReference::NetPinRefPair db A match entry for a net pin pair.

NetlistCrossReference::NetSubcircuitPinRefPairdb A match entry for a net subcircuit pin pair.

NetlistCrossReference::NetTerminalRefPair db A match entry for a net terminal pair.

NetlistCrossReference::PinPairData db A pin match entry.

NetlistCrossReference::Status db This class represents the NetlistCrossReference::Status enum

NetlistCrossReference::SubCircuitPairData db A subcircuit match entry.

NetlistDeviceExtractorError db An error that occurred during device extraction

NetlistDeviceExtractorLayerDefinition db Describes a layer used in the device extraction

NetlistObject db The base class for some netlist objects.

For more details visit
https://www.klayout.org

Page 497 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4. Class Index

NetlistObjectPath lay An object describing the instantiation of a netlist object.

NetlistObjectsPath lay An object describing the instantiation of a single netlist object or
a pair of those.

NetlistReader db Base class for netlist readers

NetlistSpiceReader db Implements a netlist Reader for the SPICE format.

NetlistSpiceReaderDelegate db Provides a delegate for the SPICE reader for translating device
statements

NetlistSpiceWriter db Implements a netlist writer for the SPICE format.

NetlistSpiceWriterDelegate db Provides a delegate for the SPICE writer for doing special
formatting for devices

NetlistWriter db Base class for netlist writers

ObjectInstPath lay A class describing a selected shape or instance

PCellDeclaration db A PCell declaration providing the parameters and code to
produce the PCell

PCellDeclarationHelper db A helper class to simplify the declaration of a PCell (Python
version)

PCellDeclarationHelper db A helper class to simplify the declaration of a PCell (Ruby
version)

PCellParameterDeclaration db A PCell parameter declaration

ParentInstArray db A parent instance

ParseElementComponentsData db Supplies the return value for
\NetlistSpiceReaderDelegate#parse_element_components.

ParseElementData db Supplies the return value for
\NetlistSpiceReaderDelegate#parse_element.

Path db A path class

Pin db A pin of a circuit.

Plugin lay The plugin object

PluginFactory lay The plugin framework's plugin factory object

Point db An integer point class

Polygon db A polygon class

PreferredOrientation db This class represents the PreferredOrientation enum used within
polygon decomposition

Progress tl A progress reporter

RdbCategory rdb A category inside the report database

For more details visit
https://www.klayout.org

Page 498 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4. Class Index

RdbCell rdb A cell inside the report database

RdbItem rdb An item inside the report database

RdbItemValue rdb A value object inside the report database

RdbReference rdb A cell reference inside the report database

Recipe tl A facility for providing reproducible recipes

RecursiveInstanceIterator db An iterator delivering instances recursively

RecursiveShapeIterator db An iterator delivering shapes recursively

Region db A region (a potentially complex area consisting of multiple
polygons)

Region::Metrics db This class represents the metrics type for \Region#width and
related checks.

Region::OppositeFilter db This class represents the opposite error filter mode for
\Region#separation and related checks.

Region::RectFilter db This class represents the error filter mode on rectangles for
\Region#separation and related checks.

RelativeProgress tl A progress reporter counting progress in relative units

ReportDatabase rdb The report database object

SaveLayoutOptions db Options for saving layouts

Shape db An object representing a shape in the layout database

ShapeCollection db A base class for the shape collections (\Region, \Edges,
\EdgePairs and \Texts)

ShapeProcessor db The shape processor (boolean, sizing, merge on shapes)

Shapes db A collection of shapes

SimplePolygon db A simple polygon class

SubCircuit db A subcircuit inside a circuit.

Technology db Represents a technology

TechnologyComponent db A part of a technology definition

Text db A text object

TextGenerator db A text generator class

Texts db Texts (a collection of texts)

TileOutputReceiver db A receiver abstraction for the tiling processor.

TilingProcessor db A processor for layout which distributes tasks over tiles

For more details visit
https://www.klayout.org

Page 499 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4. Class Index

Timer tl A timer (stop watch)

Trans db A simple transformation

TrapezoidDecompositionMode db This class represents the TrapezoidDecompositionMode enum
used within trapezoid decomposition

Utils db This namespace provides a collection of utility functions

VAlign db This class represents the vertical alignment modes.

VCplxTrans db A complex transformation

Value tl Encapsulates a value (preferably a plain data type) in an object

Vector db A integer vector class

For more details visit
https://www.klayout.org

Page 500 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.1. API reference - Class EmptyClass

4.1. API reference - Class EmptyClass
Notation used in Ruby API documentation

Module: tl

Description:

Public constructors

new EmptyClass ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
EmptyClass
other)

Assigns another object to self

[const] new EmptyClass ptr dup Creates a copy of self

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 501 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.1. API reference - Class EmptyClass

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const EmptyClass other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

For more details visit
https://www.klayout.org

Page 502 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.1. API reference - Class EmptyClass

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new EmptyClass ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new EmptyClass ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 503 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.2. API reference - Class Value

4.2. API reference - Class Value
Notation used in Ruby API documentation

Module: tl

Description: Encapsulates a value (preferably a plain data type) in an object

This class is provided to 'box' a value (encapsulate the value in an object). This class is required to interface to pointer or reference types
in a method call. By using that class, the method can alter the value and thus implement 'out parameter' semantics. The value may be 'nil'
which acts as a null pointer in pointer type arguments. This class has been introduced in version 0.22.

Public constructors

new Value ptr new Constructs a nil object.

new Value ptr new (variant value) Constructs a non-nil object with the given value.

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
Value
other)

Assigns another object to self

[const] new Value ptr dup Creates a copy of self

[const] string to_s Convert this object to a string

[const] variant value Gets the actual value.

void value= (variant
value)

Set the actual value.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

For more details visit
https://www.klayout.org

Page 504 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.2. API reference - Class Value

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const Value other)

Description: Assigns another object to self

For more details visit
https://www.klayout.org

Page 505 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.2. API reference - Class Value

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new Value ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

(1) Signature: [static] new Value ptr new

Description: Constructs a nil object.

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new Value ptr new (variant value)

Description: Constructs a non-nil object with the given value.

This constructor has been introduced in version 0.22.

Python specific notes:
This method is the default initializer of the object

to_s
Signature: [const] string to_s

Description: Convert this object to a string

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 506 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.2. API reference - Class Value

value
Signature: [const] variant value

Description: Gets the actual value.

Python specific notes:
The object exposes a readable attribute 'value'. This is the getter.

value=
Signature: void value= (variant value)

Description: Set the actual value.

Python specific notes:
The object exposes a writable attribute 'value'. This is the setter.

For more details visit
https://www.klayout.org

Page 507 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.3. API reference - Class Interpreter

4.3. API reference - Class Interpreter
Notation used in Ruby API documentation

Module: tl

Description: A generalization of script interpreters

The main purpose of this class is to provide cross-language call options. Using the Python interpreter, it is possible to execute Python code
from Ruby for example.

The following example shows how to use the interpreter class to execute Python code from Ruby and how to pass values from Ruby to
Python and back using the Value wrapper object:

pya = RBA::Interpreter::python_interpreter
out_param = RBA::Value::new(17)
pya.define_variable("out_param", out_param)
pya.eval_string(<<END)
print("This is Python now!")
out_param.value = out_param.value + 25
END
puts out_param.value # gives '42'

This class was introduced in version 0.27.5.

Public constructors

new Interpreter ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void define_variable (string name,
variant value)

Defines a (global) variable with the given name
and value

variant eval_expr (string string,
string filename =
nil,
int line = 1)

Executes the expression inside the given string
and returns the result value

void eval_string (string string,
string filename =
nil,
int line = 1)

Executes the code inside the given string

For more details visit
https://www.klayout.org

Page 508 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.3. API reference - Class Interpreter

void load_file (string path) Loads the given file into the interpreter

Public static methods and constants

Interpreter ptr python_interpreter Gets the instance of the Python interpreter

Interpreter ptr ruby_interpreter Gets the instance of the Ruby interpreter

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is

For more details visit
https://www.klayout.org

Page 509 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.3. API reference - Class Interpreter

known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

define_variable
Signature: void define_variable (string name, variant value)

Description: Defines a (global) variable with the given name and value

You can use the Value class to provide 'out' or 'inout' parameters which can be modified by code
executed inside the interpreter and read back by the caller.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

eval_expr
Signature: variant eval_expr (string string, string filename = nil, int line = 1)

Description: Executes the expression inside the given string and returns the result value

Use 'filename' and 'line' to indicate the original source for the error messages.

eval_string
Signature: void eval_string (string string, string filename = nil, int line = 1)

Description: Executes the code inside the given string

Use 'filename' and 'line' to indicate the original source for the error messages.

For more details visit
https://www.klayout.org

Page 510 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.3. API reference - Class Interpreter

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

load_file
Signature: void load_file (string path)

Description: Loads the given file into the interpreter

This will execute the code inside the file.

new
Signature: [static] new Interpreter ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

python_interpreter
Signature: [static] Interpreter ptr python_interpreter

Description: Gets the instance of the Python interpreter

ruby_interpreter
Signature: [static] Interpreter ptr ruby_interpreter

Description: Gets the instance of the Ruby interpreter

For more details visit
https://www.klayout.org

Page 511 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.4. API reference - Class Logger

4.4. API reference - Class Logger
Notation used in Ruby API documentation

Module: tl

Description: A logger

The logger outputs messages to the log channels. If the log viewer is open, the log messages will be shown in the logger view. Otherwise
they will be printed to the terminal on Linux for example.

A code example:

RBA::Logger::error("An error message")
RBA::Logger::warn("A warning")

This class has been introduced in version 0.23.

Public constructors

new Logger ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
Logger
other)

Assigns another object to self

[const] new Logger ptr dup Creates a copy of self

Public static methods and constants

void error (string msg) Writes the given string to the error channel

void info (string msg) Writes the given string to the info channel

void log (string msg) Writes the given string to the log channel

int verbosity Returns the verbosity level

For more details visit
https://www.klayout.org

Page 512 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.4. API reference - Class Logger

void verbosity= (int v) Sets the verbosity level for the application

void warn (string msg) Writes the given string to the warning channel

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 513 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.4. API reference - Class Logger

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const Logger other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new Logger ptr dup

Description: Creates a copy of self

error
Signature: [static] void error (string msg)

Description: Writes the given string to the error channel

The error channel is formatted as an error (i.e. red in the logger window) and output unconditionally.

info
Signature: [static] void info (string msg)

Description: Writes the given string to the info channel

The info channel is printed as neutral messages unconditionally.

is_const_object?
Signature: [const] bool is_const_object?

For more details visit
https://www.klayout.org

Page 514 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.4. API reference - Class Logger

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

log
Signature: [static] void log (string msg)

Description: Writes the given string to the log channel

Log messages are printed as neutral messages and are output only if the verbosity is above 0.

new
Signature: [static] new Logger ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

verbosity
Signature: [static] int verbosity

Description: Returns the verbosity level

The verbosity level is defined by the application (see -d command line option for example). Level 0 is
silent, levels 10, 20, 30 etc. denote levels with increasing verbosity. 11, 21, 31 .. are sublevels which
also enable timing logs in addition to messages.

Python specific notes:
The object exposes a readable attribute 'verbosity'. This is the getter.

verbosity=
Signature: [static] void verbosity= (int v)

Description: Sets the verbosity level for the application

See verbosity for a definition of the verbosity levels. Please note that this method changes the
verbosity level for the whole application.

Python specific notes:
The object exposes a writable attribute 'verbosity'. This is the setter.

warn
Signature: [static] void warn (string msg)

Description: Writes the given string to the warning channel

The warning channel is formatted as a warning (i.e. blue in the logger window) and output
unconditionally.

For more details visit
https://www.klayout.org

Page 515 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.5. API reference - Class Timer

4.5. API reference - Class Timer
Notation used in Ruby API documentation

Module: tl

Description: A timer (stop watch)

The timer provides a way to measure CPU time. It provides two basic methods: start and stop. After it has been started and stopped again,
the time can be retrieved using the user and sys attributes, i.e.:

t = RBA::Timer::new
t.start
... do something
t.stop
puts "it took #{t.sys} seconds (kernel), #{t.user} seconds (user) on the CPU"

The time is reported in seconds.

This class has been introduced in version 0.23.

Public constructors

new Timer ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
Timer
other)

Assigns another object to self

[const] new Timer ptr dup Creates a copy of self

void start Starts the timer

void stop Stops the timer

[const] double sys Returns the elapsed CPU time in kernel mode from
start to stop in seconds

[const] string to_s Produces a string with the currently elapsed times

For more details visit
https://www.klayout.org

Page 516 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.5. API reference - Class Timer

[const] double user Returns the elapsed CPU time in user mode from start
to stop in seconds

[const] double wall Returns the elapsed real time from start to stop in
seconds

Public static methods and constants

unsigned long memory_size Gets the current memory usage of the process in Bytes

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is

For more details visit
https://www.klayout.org

Page 517 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.5. API reference - Class Timer

known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const Timer other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new Timer ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

For more details visit
https://www.klayout.org

Page 518 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.5. API reference - Class Timer

memory_size
Signature: [static] unsigned long memory_size

Description: Gets the current memory usage of the process in Bytes

This method has been introduced in version 0.27.

new
Signature: [static] new Timer ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

start
Signature: void start

Description: Starts the timer

stop
Signature: void stop

Description: Stops the timer

sys
Signature: [const] double sys

Description: Returns the elapsed CPU time in kernel mode from start to stop in seconds

to_s
Signature: [const] string to_s

Description: Produces a string with the currently elapsed times

Python specific notes:
This method is also available as 'str(object)'

user
Signature: [const] double user

Description: Returns the elapsed CPU time in user mode from start to stop in seconds

wall
Signature: [const] double wall

Description: Returns the elapsed real time from start to stop in seconds

This method has been introduced in version 0.26.

For more details visit
https://www.klayout.org

Page 519 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.6. API reference - Class Progress

4.6. API reference - Class Progress
Notation used in Ruby API documentation

Module: tl

Description: A progress reporter

This is the base class for all progress reporter objects. Progress reporter objects are used to report the progress of some operation and
to allow aborting an operation. Progress reporter objects must be triggered periodically, i.e. a value must be set. On the display side, a
progress bar usually is used to represent the progress of an operation.

Actual implementations of the progress reporter class are RelativeProgress and AbsoluteProgress.

This class has been introduced in version 0.23.

Public constructors

new Progress ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

[const] string desc Gets the description text of the progress object

void desc= (string
desc)

Sets the description text of the progress object

void title= (string
title)

Sets the title text of the progress object

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

For more details visit
https://www.klayout.org

Page 520 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.6. API reference - Class Progress

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

For more details visit
https://www.klayout.org

Page 521 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.6. API reference - Class Progress

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

desc
Signature: [const] string desc

Description: Gets the description text of the progress object

Python specific notes:
The object exposes a readable attribute 'desc'. This is the getter.

desc=
Signature: void desc= (string desc)

Description: Sets the description text of the progress object

Python specific notes:
The object exposes a writable attribute 'desc'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new Progress ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

title=
Signature: void title= (string title)

Description: Sets the title text of the progress object

Initially the title is equal to the description.

Python specific notes:
The object exposes a writable attribute 'title'. This is the setter.

For more details visit
https://www.klayout.org

Page 522 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.7. API reference - Class AbstractProgress

4.7. API reference - Class AbstractProgress
Notation used in Ruby API documentation

Module: tl

Description: The abstract progress reporter

Class hierarchy: AbstractProgress » Progress

The abstract progress reporter acts as a 'bracket' for a sequence of operations which are connected logically. For example, a DRC script
consists of multiple operations. An abstract progress reportert is instantiated during the run time of the DRC script. This way, the application
leaves the UI open while the DRC executes and log messages can be collected.

The abstract progress does not have a value.

This class has been introduced in version 0.27.

Public constructors

new AbstractProgress ptr new (string desc) Creates an abstract progress reporter with the given
description

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
AbstractProgress
other)

Assigns another object to self

[const] new
AbstractProgress ptr

dup Creates a copy of self

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 523 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.7. API reference - Class AbstractProgress

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const AbstractProgress other)

Description: Assigns another object to self

dup
Signature: [const] new AbstractProgress ptr dup

Description: Creates a copy of self

new
Signature: [static] new AbstractProgress ptr new (string desc)

Description: Creates an abstract progress reporter with the given description

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 524 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.8. API reference - Class RelativeProgress

4.8. API reference - Class RelativeProgress
Notation used in Ruby API documentation

Module: tl

Description: A progress reporter counting progress in relative units

Class hierarchy: RelativeProgress » Progress

A relative progress reporter counts from 0 to some maximum value representing 0 to 100 percent completion of a task. The progress can
be configured to have a description text, a title and a format. The "inc" method increments the value, the "set" or "value=" methods set the
value to a specific value.

While one of these three methods is called, they will run the event loop in regular intervals. That makes the application respond to mouse
clicks, specifically the Cancel button on the progress bar. If that button is clicked, an exception will be raised by these methods.

The progress object must be destroyed explicitly in order to remove the progress status bar.

A code example:

p = RBA::RelativeProgress::new("test", 10000000)
begin
 10000000.times { p.inc }
ensure
 p.destroy
end

This class has been introduced in version 0.23.

Public constructors

new RelativeProgress
ptr

new (string desc,
unsigned long max_value)

Creates a relative progress reporter with the
given description and maximum value

new RelativeProgress
ptr

new (string desc,
unsigned long max_value,
unsigned long yield_interval)

Creates a relative progress reporter with the
given description and maximum value

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
RelativeProgress
other)

Assigns another object to self

For more details visit
https://www.klayout.org

Page 525 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.8. API reference - Class RelativeProgress

[const] new RelativeProgress
ptr

dup Creates a copy of self

void format= (string format) sets the output format (sprintf notation) for the
progress text

RelativeProgress inc Increments the progress value

void set (unsigned long
value,
bool
force_yield)

Sets the progress value

void value= (unsigned long
value)

Sets the progress value

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

For more details visit
https://www.klayout.org

Page 526 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.8. API reference - Class RelativeProgress

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const RelativeProgress other)

Description: Assigns another object to self

dup
Signature: [const] new RelativeProgress ptr dup

Description: Creates a copy of self

format=
Signature: void format= (string format)

Description: sets the output format (sprintf notation) for the progress text

Python specific notes:
The object exposes a writable attribute 'format'. This is the setter.

inc
Signature: RelativeProgress inc

Description: Increments the progress value

(1) Signature: [static] new RelativeProgress ptr new (string desc, unsigned long max_value)

Description: Creates a relative progress reporter with the given description and maximum value

The reported progress will be 0 to 100% for values between 0 and the maximum value. The values are
always integers. Double values cannot be used property.

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new RelativeProgress ptr new (string desc, unsigned long max_value,
unsigned long yield_interval)

Description: Creates a relative progress reporter with the given description and maximum value

The reported progress will be 0 to 100% for values between 0 and the maximum value. The values are
always integers. Double values cannot be used property.

The yield interval specifies, how often the event loop will be triggered. When the yield interval is 10 for
example, the event loop will be executed every tenth call of inc or set.

Python specific notes:
This method is the default initializer of the object

set
Signature: void set (unsigned long value, bool force_yield)

Description: Sets the progress value

This method is equivalent to value=, but it allows forcing the event loop to be triggered. If "force_yield"
is true, the event loop will be triggered always, irregardless of the yield interval specified in the
constructor.

value=
Signature: void value= (unsigned long value)

Description: Sets the progress value

For more details visit
https://www.klayout.org

Page 527 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.8. API reference - Class RelativeProgress

Python specific notes:
The object exposes a writable attribute 'value'. This is the setter.

For more details visit
https://www.klayout.org

Page 528 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.9. API reference - Class AbsoluteProgress

4.9. API reference - Class AbsoluteProgress
Notation used in Ruby API documentation

Module: tl

Description: A progress reporter counting progress in absolute units

Class hierarchy: AbsoluteProgress » Progress

An absolute progress reporter counts from 0 upwards without a known limit. A unit value is used to convert the value to a bar value. One
unit corresponds to 1% on the bar. For formatted output, a format string can be specified as well as a unit value by which the current value
is divided before it is formatted.

The progress can be configured to have a description text, a title and a format. The "inc" method increments the value, the "set" or "value="
methods set the value to a specific value.

While one of these three methods is called, they will run the event loop in regular intervals. That makes the application respond to mouse
clicks, specifically the Cancel button on the progress bar. If that button is clicked, an exception will be raised by these methods.

The progress object must be destroyed explicitly in order to remove the progress status bar.

The following sample code creates a progress bar which displays the current count as "Megabytes". For the progress bar, one percent
corresponds to 16 kByte:

p = RBA::AbsoluteProgress::new("test")
p.format = "%.2f MBytes"
p.unit = 1024*16
p.format_unit = 1024*1024
begin
 10000000.times { p.inc }
ensure
 p.destroy
end

This class has been introduced in version 0.23.

Public constructors

new AbsoluteProgress ptr new (string desc) Creates an absolute progress reporter with the
given description

new AbsoluteProgress ptr new (string desc,
unsigned long yield_interval)

Creates an absolute progress reporter with the
given description

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

For more details visit
https://www.klayout.org

Page 529 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.9. API reference - Class AbsoluteProgress

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
AbsoluteProgress
other)

Assigns another object to self

[const] new
AbsoluteProgress ptr

dup Creates a copy of self

void format= (string format) sets the output format (sprintf notation) for the
progress text

void format_unit= (double unit) Sets the format unit

AbsoluteProgress inc Increments the progress value

void set (unsigned long
value,
bool force_yield)

Sets the progress value

void unit= (double unit) Sets the unit

void value= (unsigned long
value)

Sets the progress value

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

For more details visit
https://www.klayout.org

Page 530 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.9. API reference - Class AbsoluteProgress

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const AbsoluteProgress other)

Description: Assigns another object to self

dup
Signature: [const] new AbsoluteProgress ptr dup

Description: Creates a copy of self

format=
Signature: void format= (string format)

Description: sets the output format (sprintf notation) for the progress text

Python specific notes:
The object exposes a writable attribute 'format'. This is the setter.

format_unit=
Signature: void format_unit= (double unit)

Description: Sets the format unit

This is the unit used for formatted output. The current count is divided by the format unit to render the
value passed to the format string.

Python specific notes:
The object exposes a writable attribute 'format_unit'. This is the setter.

inc
Signature: AbsoluteProgress inc

Description: Increments the progress value

(1) Signature: [static] new AbsoluteProgress ptr new (string desc)

Description: Creates an absolute progress reporter with the given description

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new AbsoluteProgress ptr new (string desc, unsigned long yield_interval)

Description: Creates an absolute progress reporter with the given description

The yield interval specifies, how often the event loop will be triggered. When the yield interval is 10 for
example, the event loop will be executed every tenth call of inc or set.

Python specific notes:

For more details visit
https://www.klayout.org

Page 531 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.9. API reference - Class AbsoluteProgress

This method is the default initializer of the object

set
Signature: void set (unsigned long value, bool force_yield)

Description: Sets the progress value

This method is equivalent to value=, but it allows forcing the event loop to be triggered. If "force_yield"
is true, the event loop will be triggered always, irregardless of the yield interval specified in the
constructor.

unit=
Signature: void unit= (double unit)

Description: Sets the unit

Specifies the count value corresponding to 1 percent on the progress bar. By default, the current value
divided by the unit is used to create the formatted value from the output string. Another attribute is
provided (format_unit=) to specify a separate unit for that purpose.

Python specific notes:
The object exposes a writable attribute 'unit'. This is the setter.

value=
Signature: void value= (unsigned long value)

Description: Sets the progress value

Python specific notes:
The object exposes a writable attribute 'value'. This is the setter.

For more details visit
https://www.klayout.org

Page 532 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.10. API reference - Class ExpressionContext

4.10. API reference - Class ExpressionContext
Notation used in Ruby API documentation

Module: tl

Description: Represents the context of an expression evaluation

The context provides a variable namespace for the expression evaluation.

This class has been introduced in version 0.26 when Expression was separated into the execution and context part.

Public constructors

new ExpressionContext ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
ExpressionContext
other)

Assigns another object to self

[const] new
ExpressionContext
ptr

dup Creates a copy of self

variant eval (string expr) Compiles and evaluates the given expression in
this context

void var (string name,
variant value)

Defines a variable with the given name and value

Public static methods and constants

void global_var (string name,
variant value)

Defines a global variable with the given
name and value

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

For more details visit
https://www.klayout.org

Page 533 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.10. API reference - Class ExpressionContext

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 534 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.10. API reference - Class ExpressionContext

assign
Signature: void assign (const ExpressionContext other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new ExpressionContext ptr dup

Description: Creates a copy of self

eval
Signature: variant eval (string expr)

Description: Compiles and evaluates the given expression in this context

This method has been introduced in version 0.26.

global_var
Signature: [static] void global_var (string name, variant value)

Description: Defines a global variable with the given name and value

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new ExpressionContext ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 535 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.10. API reference - Class ExpressionContext

var
Signature: void var (string name, variant value)

Description: Defines a variable with the given name and value

For more details visit
https://www.klayout.org

Page 536 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.11. API reference - Class Expression

4.11. API reference - Class Expression
Notation used in Ruby API documentation

Module: tl

Description: Evaluation of Expressions

Class hierarchy: Expression » ExpressionContext

This class allows evaluation of expressions. Expressions are used in many places throughout KLayout and provide computation features
for various applications. Having a script language, there is no real use for expressions inside a script client. This class is provided mainly for
testing purposes.

An expression is 'compiled' into an Expression object and can be evaluated multiple times.

This class has been introduced in version 0.25. In version 0.26 it was separated into execution and context.

Public constructors

new Expression ptr new (string expr) Creates an expression evaluator

new Expression ptr new (string expr,
map<string,variant> variables)

Creates an expression evaluator

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script side.

variant eval Evaluates the current expression and returns the result

void text= (string
expr)

Sets the given text as the expression.

Public static methods and constants

variant eval (string expr) A convience function to evaluate the given expression and
directly return the result

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

For more details visit
https://www.klayout.org

Page 537 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.11. API reference - Class Expression

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

(1) Signature: variant eval

Description: Evaluates the current expression and returns the result

Python specific notes:
This attribute is available as '_inst_eval' in Python

eval

(2) Signature: [static] variant eval (string expr)

Description: A convience function to evaluate the given expression and directly return the result

This is a static method that does not require instantiation of the expression object first.

Python specific notes:
This attribute is available as '_class_eval' in Python

For more details visit
https://www.klayout.org

Page 538 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.11. API reference - Class Expression

(1) Signature: [static] new Expression ptr new (string expr)

Description: Creates an expression evaluator

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new Expression ptr new (string expr, map<string,variant> variables)

Description: Creates an expression evaluator

This version of the constructor takes a hash of variables available to the expressions.

Python specific notes:
This method is the default initializer of the object

text=
Signature: void text= (string expr)

Description: Sets the given text as the expression.

Python specific notes:
The object exposes a writable attribute 'text'. This is the setter.

For more details visit
https://www.klayout.org

Page 539 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.12. API reference - Class GlobPattern

4.12. API reference - Class GlobPattern
Notation used in Ruby API documentation

Module: tl

Description: A glob pattern matcher

This class is provided to make KLayout's glob pattern matching available to scripts too. The intention is to provide an implementation which
is compatible with KLayout's pattern syntax.

This class has been introduced in version 0.26.

Public constructors

new GlobPattern ptr new (string pattern) Creates a new glob pattern match object

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
GlobPattern
other)

Assigns another object to self

[const] bool case_sensitive Gets a value indicating whether the glob pattern
match is case sensitive.

void case_sensitive= (bool
case_sensitive)

Sets a value indicating whether the glob pattern
match is case sensitive.

[const] new GlobPattern
ptr

dup Creates a copy of self

[const] bool head_match Gets a value indicating whether trailing characters
are allowed.

void head_match= (bool
head_match)

Sets a value indicating whether trailing characters
are allowed.

[const] variant match (string
subject)

Matches the subject string against the pattern.

For more details visit
https://www.klayout.org

Page 540 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.12. API reference - Class GlobPattern

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method

For more details visit
https://www.klayout.org

Page 541 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.12. API reference - Class GlobPattern

will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const GlobPattern other)

Description: Assigns another object to self

case_sensitive
Signature: [const] bool case_sensitive

Description: Gets a value indicating whether the glob pattern match is case sensitive.

Python specific notes:
The object exposes a readable attribute 'case_sensitive'. This is the getter.

case_sensitive=
Signature: void case_sensitive= (bool case_sensitive)

Description: Sets a value indicating whether the glob pattern match is case sensitive.

Python specific notes:
The object exposes a writable attribute 'case_sensitive'. This is the setter.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new GlobPattern ptr dup

Description: Creates a copy of self

head_match
Signature: [const] bool head_match

Description: Gets a value indicating whether trailing characters are allowed.

Python specific notes:
The object exposes a readable attribute 'head_match'. This is the getter.

For more details visit
https://www.klayout.org

Page 542 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.12. API reference - Class GlobPattern

head_match=
Signature: void head_match= (bool head_match)

Description: Sets a value indicating whether trailing characters are allowed.

If this predicate is false, the glob pattern needs to match the full subject string. If true, the match
function will ignore trailing characters and return true if the front part of the subject string matches.

Python specific notes:
The object exposes a writable attribute 'head_match'. This is the setter.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

match
Signature: [const] variant match (string subject)

Description: Matches the subject string against the pattern.

Returns nil if the subject string does not match the pattern. Otherwise returns a list with the
substrings captured in round brackets.

new
Signature: [static] new GlobPattern ptr new (string pattern)

Description: Creates a new glob pattern match object

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 543 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.13. API reference - Class Executable

4.13. API reference - Class Executable
Notation used in Ruby API documentation

Module: tl

Description: A generic executable object

Class hierarchy: Executable

This object is a delegate for implementing the actual function of some generic executable function. In addition to the plain execution, if
offers a post-mortem cleanup callback which is always executed, even if execute's implementation is cancelled in the debugger.

Parameters are kept as a generic key/value map.

This class has been introduced in version 0.27.

Public constructors

new Executable ptr new Creates a new object of this class

Public methods

void _assign (const
Executable
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] new Executable ptr _dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
Executable
other)

Assigns another object to self

[virtual] void cleanup Reimplement this method to provide post-mortem
cleanup functionality.

[const] new Executable ptr dup Creates a copy of self

[virtual] variant execute Reimplement this method to provide the
functionality of the executable.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

For more details visit
https://www.klayout.org

Page 544 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.13. API reference - Class Executable

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_assign
Signature: void _assign (const Executable other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new Executable ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

For more details visit
https://www.klayout.org

Page 545 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.13. API reference - Class Executable

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const Executable other)

Description: Assigns another object to self

cleanup
Signature: [virtual] void cleanup

Description: Reimplement this method to provide post-mortem cleanup functionality.

This method is always called after execute terminated.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new Executable ptr dup

Description: Creates a copy of self

execute
Signature: [virtual] variant execute

Description: Reimplement this method to provide the functionality of the executable.

This method is supposed to execute the operation with the given parameters and return the desired
output.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

For more details visit
https://www.klayout.org

Page 546 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.13. API reference - Class Executable

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new Executable ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 547 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.14. API reference - Class Recipe

4.14. API reference - Class Recipe
Notation used in Ruby API documentation

Module: tl

Description: A facility for providing reproducible recipes

The idea of this facility is to provide a service by which an object can be reproduced in a parametrized way. The intended use case is a
DRC report for example, where the DRC script is the generator.

In this use case, the DRC engine will register a recipe. It will put the serialized version of the recipe into the DRC report. If the user requests
a re-run of the DRC, the recipe will be called and the implementation is supposed to deliver a new database.

To register a recipe, reimplement the Recipe class and create an instance. To serialize a recipe, use "generator", to execute the recipe, use
"make".

Parameters are kept as a generic key/value map.

This class has been introduced in version 0.26.

Public constructors

new Recipe ptr new (string name,
string description = "")

Creates a new recipe object with the given name
and (optional) description

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

[const] string description Gets the description of the recipe.

[virtual,const] Executable ptr executable (map<string,variant>
params)

Reimplement this method to provide an executable
object for the actual implementation.

string generator (map<string,variant>
params)

Delivers the generator string from the given
parameters.

[const] string name Gets the name of the recipe.

Public static methods and constants

variant make (string generator,
map<string,variant> add_params = {})

Executes the recipe given by the
generator string.

For more details visit
https://www.klayout.org

Page 548 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.14. API reference - Class Recipe

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method

For more details visit
https://www.klayout.org

Page 549 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.14. API reference - Class Recipe

will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

description
Signature: [const] string description

Description: Gets the description of the recipe.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

executable
Signature: [virtual,const] Executable ptr executable (map<string,variant> params)

Description: Reimplement this method to provide an executable object for the actual
implementation.

The reasoning behind this architecture is to supply a cleanup callback. This is useful when the actual
function is executed as a script and the script terminates in the debugger. The cleanup callback
allows implementing any kind of post-mortem action despite being cancelled in the debugger.

This method has been introduced in version 0.27 and replaces 'execute'.

generator
Signature: string generator (map<string,variant> params)

Description: Delivers the generator string from the given parameters.

The generator string can be used with make to re-run the recipe.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

For more details visit
https://www.klayout.org

Page 550 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.14. API reference - Class Recipe

make
Signature: [static] variant make (string generator, map<string,variant> add_params = {})

Description: Executes the recipe given by the generator string.

The generator string is the one delivered with generator. Additional parameters can be passed in
"add_params". They have lower priority than the parameters kept inside the generator string.

name
Signature: [const] string name

Description: Gets the name of the recipe.

new
Signature: [static] new Recipe ptr new (string name, string description = "")

Description: Creates a new recipe object with the given name and (optional) description

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 551 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.15. API reference - Class Box

4.15. API reference - Class Box
Notation used in Ruby API documentation

Module: db

Description: A box class with integer coordinates

This object represents a box (a rectangular shape).

The definition of the attributes is: p1 is the lower left point, p2 the upper right one. If a box is constructed from two points (or four
coordinates), the coordinates are sorted accordingly.

A box can be empty. An empty box represents no area (not even a point). Empty boxes behave neutral with respect to most operations.
Empty boxes return true on empty?.

A box can be a point or a single line. In this case, the area is zero but the box still can overlap other boxes for example and it is not empty.

See The Database API for more details about the database objects.

Public constructors

new Box ptr new (const DBox dbox) Creates an integer coordinate box from a
floating-point coordinate box

new Box ptr new Creates an empty (invalid) box

new Box ptr new (int left,
int bottom,
int right,
int top)

Creates a box with four coordinates

new Box ptr new (const Point lower_left,
const Point upper_right)

Creates a box from two points

Public methods

[const] bool != (const Box box) Returns true if this box is not equal to the other
box

[const] Box & (const Box box) Returns the intersection of this box with
another box

[const] Box * (const Box box) Returns the convolution product from this box
with another box

[const] Box * (double
scale_factor)

Returns the scaled box

[const] Box + (const Point point) Joins box with a point

[const] Box + (const Box box) Joins two boxes

[const] bool < (const Box box) Returns true if this box is 'less' than another
box

[const] bool == (const Box box) Returns true if this box is equal to the other box

void _create Ensures the C++ object is created

For more details visit
https://www.klayout.org

Page 552 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.15. API reference - Class Box

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] double area Computes the box area

void assign (const Box other) Assigns another object to self

[const] Box bbox Returns the bounding box

[const] int bottom Gets the bottom coordinate of the box

void bottom= (int c) Sets the bottom coordinate of the box

[const] Point center Gets the center of the box

[const] bool contains? (int x,
int y)

Returns true if the box contains the given point

[const] bool contains? (const Point point) Returns true if the box contains the given point

[const] new Box ptr dup Creates a copy of self

[const] bool empty? Returns a value indicating whether the box is
empty

Box enlarge (int dx,
int dy)

Enlarges the box by a certain amount.

Box enlarge (const Vector
enlargement)

Enlarges the box by a certain amount.

[const] Box enlarged (int dx,
int dy)

Enlarges the box by a certain amount.

[const] Box enlarged (const Vector
enlargement)

Returns the enlarged box.

[const] unsigned long hash Computes a hash value

[const] unsigned int height Gets the height of the box

[const] bool inside? (const Box box) Tests if this box is inside the argument box

[const] bool is_point? Returns true, if the box is a single point

[const] int left Gets the left coordinate of the box

For more details visit
https://www.klayout.org

Page 553 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.15. API reference - Class Box

void left= (int c) Sets the left coordinate of the box

Box move (int dx,
int dy)

Moves the box by a certain distance

Box move (const Vector
distance)

Moves the box by a certain distance

[const] Box moved (int dx,
int dy)

Moves the box by a certain distance

[const] Box moved (const Vector
distance)

Returns the box moved by a certain distance

[const] bool overlaps? (const Box box) Tests if this box overlaps the argument box

[const] Point p1 Gets the lower left point of the box

void p1= (const Point p) Sets the lower left point of the box

[const] Point p2 Gets the upper right point of the box

void p2= (const Point p) Sets the upper right point of the box

[const] unsigned long perimeter Returns the perimeter of the box

[const] int right Gets the right coordinate of the box

void right= (int c) Sets the right coordinate of the box

[const] DBox to_dtype (double dbu = 1) Converts the box to a floating-point coordinate
box

[const] string to_s (double dbu = 0) Returns a string representing this box

[const] int top Gets the top coordinate of the box

void top= (int c) Sets the top coordinate of the box

[const] bool touches? (const Box box) Tests if this box touches the argument box

[const] Box transformed (const ICplxTrans
t)

Transforms the box with the given complex
transformation

[const] Box transformed (const Trans t) Returns the box transformed with the given
simple transformation

[const] DBox transformed (const CplxTrans
t)

Returns the box transformed with the given
complex transformation

[const] unsigned int width Gets the width of the box

Public static methods and constants

new Box ptr from_s (string s) Creates a box object from a string

Box world Gets the 'world' box

For more details visit
https://www.klayout.org

Page 554 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.15. API reference - Class Box

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[static] new Box ptr from_dbox (const
DBox
dbox)

Use of this method is deprecated. Use new instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

Detailed description

!=
Signature: [const] bool != (const Box box)

Description: Returns true if this box is not equal to the other box

Returns true, if this box and the given box are not equal

&
Signature: [const] Box & (const Box box)

Description: Returns the intersection of this box with another box

box: The box to take the intersection with

Returns: The intersection box

The intersection of two boxes is the largest box common to both boxes. The intersection may be
empty if both boxes to not touch. If the boxes do not overlap but touch the result may be a single line
or point with an area of zero. Overwrites this box with the result.

(1) Signature: [const] Box * (const Box box)

Description: Returns the convolution product from this box with another box

box: The box to convolve with this box.

Returns: The convolved box

The * operator convolves the firstbox with the one given as the second argument. The box resulting
from "convolution" is the outer boundary of the union set formed by placing the second box at every
point of the first. In other words, the returned box of (p1,p2)*(q1,q2) is (p1+q1,p2+q2).

Python specific notes:
This method is also available as '__mul__'

*

(2) Signature: [const] Box * (double scale_factor)

Description: Returns the scaled box

scale_factor: The scaling factor

Returns: The scaled box

The * operator scales the box with the given factor and returns the result.

For more details visit
https://www.klayout.org

Page 555 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.15. API reference - Class Box

This method has been introduced in version 0.22.

Python specific notes:
This method is also available as '__mul__'

(1) Signature: [const] Box + (const Point point)

Description: Joins box with a point

point: The point to join with this box.

Returns: The box joined with the point

The + operator joins a point with the box. The resulting box will enclose both the original box and the
point.

+

(2) Signature: [const] Box + (const Box box)

Description: Joins two boxes

box: The box to join with this box.

Returns: The joined box

The + operator joins the first box with the one given as the second argument. Joining constructs a
box that encloses both boxes given. Empty boxes are neutral: they do not change another box when
joining. Overwrites this box with the result.

<
Signature: [const] bool < (const Box box)

Description: Returns true if this box is 'less' than another box

Returns true, if this box is 'less' with respect to first and second point (in this order)

==
Signature: [const] bool == (const Box box)

Description: Returns true if this box is equal to the other box

Returns true, if this box and the given box are equal

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

For more details visit
https://www.klayout.org

Page 556 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.15. API reference - Class Box

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

area
Signature: [const] double area

Description: Computes the box area

Returns the box area or 0 if the box is empty

assign
Signature: void assign (const Box other)

Description: Assigns another object to self

bbox
Signature: [const] Box bbox

Description: Returns the bounding box

This method is provided for consistency of the shape API is returns the box itself.

This method has been introduced in version 0.27.

bottom
Signature: [const] int bottom

Description: Gets the bottom coordinate of the box

Python specific notes:
The object exposes a readable attribute 'bottom'. This is the getter.

bottom=
Signature: void bottom= (int c)

Description: Sets the bottom coordinate of the box

Python specific notes:
The object exposes a writable attribute 'bottom'. This is the setter.

center
Signature: [const] Point center

Description: Gets the center of the box

For more details visit
https://www.klayout.org

Page 557 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.15. API reference - Class Box

(1) Signature: [const] bool contains? (int x, int y)

Description: Returns true if the box contains the given point

Returns: true if the point is inside the box.

Tests whether a point (x, y) is inside the box. It also returns true if the point is exactly on the box
contour.

contains?

(2) Signature: [const] bool contains? (const Point point)

Description: Returns true if the box contains the given point

p: The point to test against.

Returns: true if the point is inside the box.

Tests whether a point is inside the box. It also returns true if the point is exactly on the box contour.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new Box ptr dup

Description: Creates a copy of self

empty?
Signature: [const] bool empty?

Description: Returns a value indicating whether the box is empty

An empty box may be created with the default constructor for example. Such a box is neutral when
combining it with other boxes and renders empty boxes if used in box intersections and false in
geometrical relationship tests.

enlarge
(1) Signature: Box enlarge (int dx, int dy)

Description: Enlarges the box by a certain amount.

Returns: A reference to this box.

For more details visit
https://www.klayout.org

Page 558 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.15. API reference - Class Box

This is a convenience method which takes two values instead of a Point object. This method has been
introduced in version 0.23.

(2) Signature: Box enlarge (const Vector enlargement)

Description: Enlarges the box by a certain amount.

enlargement: The grow or shrink amount in x and y direction

Returns: A reference to this box.

Enlarges the box by x and y value specified in the vector passed. Positive values with grow the box,
negative ones will shrink the box. The result may be an empty box if the box disappears. The amount
specifies the grow or shrink per edge. The width and height will change by twice the amount. Does not
check for coordinate overflows.

(1) Signature: [const] Box enlarged (int dx, int dy)

Description: Enlarges the box by a certain amount.

Returns: The enlarged box.

This is a convenience method which takes two values instead of a Point object. This method has been
introduced in version 0.23.

enlarged

(2) Signature: [const] Box enlarged (const Vector enlargement)

Description: Returns the enlarged box.

enlargement: The grow or shrink amount in x and y direction

Returns: The enlarged box.

Enlarges the box by x and y value specified in the vector passed. Positive values with grow the box,
negative ones will shrink the box. The result may be an empty box if the box disappears. The amount
specifies the grow or shrink per edge. The width and height will change by twice the amount. Does not
modify this box. Does not check for coordinate overflows.

from_dbox
Signature: [static] new Box ptr from_dbox (const DBox dbox)

Description: Creates an integer coordinate box from a floating-point coordinate box

Use of this method is deprecated. Use new instead

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dbox'.

Python specific notes:
This method is the default initializer of the object

from_s
Signature: [static] new Box ptr from_s (string s)

Description: Creates a box object from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given box. This method enables boxes as hash keys.

This method has been introduced in version 0.25.

Python specific notes:

For more details visit
https://www.klayout.org

Page 559 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.15. API reference - Class Box

This method is also available as 'hash(object)'

height
Signature: [const] unsigned int height

Description: Gets the height of the box

inside?
Signature: [const] bool inside? (const Box box)

Description: Tests if this box is inside the argument box

Returns true, if this box is inside the given box, i.e. the box intersection renders this box

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_point?
Signature: [const] bool is_point?

Description: Returns true, if the box is a single point

left
Signature: [const] int left

Description: Gets the left coordinate of the box

Python specific notes:
The object exposes a readable attribute 'left'. This is the getter.

left=
Signature: void left= (int c)

Description: Sets the left coordinate of the box

Python specific notes:
The object exposes a writable attribute 'left'. This is the setter.

(1) Signature: Box move (int dx, int dy)

Description: Moves the box by a certain distance

Returns: A reference to this box.

This is a convenience method which takes two values instead of a Point object. This method has been
introduced in version 0.23.

move

(2) Signature: Box move (const Vector distance)

Description: Moves the box by a certain distance

distance: The offset to move the box.

Returns: A reference to this box.

Moves the box by a given offset and returns the moved box. Does not check for coordinate overflows.

moved
(1) Signature: [const] Box moved (int dx, int dy)

Description: Moves the box by a certain distance

Returns: The enlarged box.

For more details visit
https://www.klayout.org

Page 560 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.15. API reference - Class Box

This is a convenience method which takes two values instead of a Point object. This method has been
introduced in version 0.23.

(2) Signature: [const] Box moved (const Vector distance)

Description: Returns the box moved by a certain distance

distance: The offset to move the box.

Returns: The moved box.

Moves the box by a given offset and returns the moved box. Does not modify this box. Does not check
for coordinate overflows.

(1) Signature: [static] new Box ptr new (const DBox dbox)

Description: Creates an integer coordinate box from a floating-point coordinate box

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dbox'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new Box ptr new

Description: Creates an empty (invalid) box

Empty boxes don't modify a box when joined with it. The intersection between an empty and any other
box is also an empty box. The width, height, p1 and p2 attributes of an empty box are undefined. Use
empty? to get a value indicating whether the box is empty.

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new Box ptr new (int left, int bottom, int right, int top)

Description: Creates a box with four coordinates

Four coordinates are given to create a new box. If the coordinates are not provided in the correct order
(i.e. right < left), these are swapped.

Python specific notes:
This method is the default initializer of the object

new

(4) Signature: [static] new Box ptr new (const Point lower_left, const Point upper_right)

Description: Creates a box from two points

Two points are given to create a new box. If the coordinates are not provided in the correct order (i.e.
right < left), these are swapped.

Python specific notes:
This method is the default initializer of the object

overlaps?
Signature: [const] bool overlaps? (const Box box)

Description: Tests if this box overlaps the argument box

Returns true, if the intersection box of this box with the argument box exists and has a non-vanishing
area

For more details visit
https://www.klayout.org

Page 561 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.15. API reference - Class Box

p1
Signature: [const] Point p1

Description: Gets the lower left point of the box

Python specific notes:
The object exposes a readable attribute 'p1'. This is the getter.

p1=
Signature: void p1= (const Point p)

Description: Sets the lower left point of the box

Python specific notes:
The object exposes a writable attribute 'p1'. This is the setter.

p2
Signature: [const] Point p2

Description: Gets the upper right point of the box

Python specific notes:
The object exposes a readable attribute 'p2'. This is the getter.

p2=
Signature: void p2= (const Point p)

Description: Sets the upper right point of the box

Python specific notes:
The object exposes a writable attribute 'p2'. This is the setter.

perimeter
Signature: [const] unsigned long perimeter

Description: Returns the perimeter of the box

This method is equivalent to 2*(width+height). For empty boxes, this method returns 0.

This method has been introduced in version 0.23.

right
Signature: [const] int right

Description: Gets the right coordinate of the box

Python specific notes:
The object exposes a readable attribute 'right'. This is the getter.

right=
Signature: void right= (int c)

Description: Sets the right coordinate of the box

Python specific notes:
The object exposes a writable attribute 'right'. This is the setter.

to_dtype
Signature: [const] DBox to_dtype (double dbu = 1)

Description: Converts the box to a floating-point coordinate box

The database unit can be specified to translate the integer-coordinate box into a floating-point
coordinate box in micron units. The database unit is basically a scaling factor.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s (double dbu = 0)

Description: Returns a string representing this box

This string can be turned into a box again by using from_s . If a DBU is given, the output units will be
micrometers.

For more details visit
https://www.klayout.org

Page 562 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.15. API reference - Class Box

The DBU argument has been added in version 0.27.6.

Python specific notes:
This method is also available as 'str(object)'

top
Signature: [const] int top

Description: Gets the top coordinate of the box

Python specific notes:
The object exposes a readable attribute 'top'. This is the getter.

top=
Signature: void top= (int c)

Description: Sets the top coordinate of the box

Python specific notes:
The object exposes a writable attribute 'top'. This is the setter.

touches?
Signature: [const] bool touches? (const Box box)

Description: Tests if this box touches the argument box

Two boxes touch if they overlap or their boundaries share at least one common point. Touching is
equivalent to a non-empty intersection ('!(b1 & b2).empty?').

(1) Signature: [const] Box transformed (const ICplxTrans t)

Description: Transforms the box with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed box (in this case an integer coordinate box)

This method has been introduced in version 0.18.

(2) Signature: [const] Box transformed (const Trans t)

Description: Returns the box transformed with the given simple transformation

t: The transformation to apply

Returns: The transformed box

transformed

(3) Signature: [const] DBox transformed (const CplxTrans t)

Description: Returns the box transformed with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed box (a DBox now)

width
Signature: [const] unsigned int width

Description: Gets the width of the box

world
Signature: [static] Box world

Description: Gets the 'world' box

The world box is the biggest box that can be represented. So it is basically 'all'. The world box
behaves neutral on intersections for example. In other operations such as displacement or
transformations, the world box may render unexpected results because of coordinate overflow.

The world box can be used

For more details visit
https://www.klayout.org

Page 563 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.15. API reference - Class Box

• for comparison ('==', '!=', '<')

• in union and intersection ('+' and '&')

• in relations (contains?, overlaps?, touches?)

• as 'all' argument in region queries

This method has been introduced in version 0.28.

For more details visit
https://www.klayout.org

Page 564 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.16. API reference - Class DBox

4.16. API reference - Class DBox
Notation used in Ruby API documentation

Module: db

Description: A box class with floating-point coordinates

This object represents a box (a rectangular shape).

The definition of the attributes is: p1 is the lower left point, p2 the upper right one. If a box is constructed from two points (or four
coordinates), the coordinates are sorted accordingly.

A box can be empty. An empty box represents no area (not even a point). Empty boxes behave neutral with respect to most operations.
Empty boxes return true on empty?.

A box can be a point or a single line. In this case, the area is zero but the box still can overlap other boxes for example and it is not empty.

See The Database API for more details about the database objects.

Public constructors

new DBox ptr new (const Box box) Creates a floating-point coordinate box from
an integer coordinate box

new DBox ptr new Creates an empty (invalid) box

new DBox ptr new (double left,
double bottom,
double right,
double top)

Creates a box with four coordinates

new DBox ptr new (const DPoint lower_left,
const DPoint upper_right)

Creates a box from two points

Public methods

[const] bool != (const DBox box) Returns true if this box is not equal to the
other box

[const] DBox & (const DBox box) Returns the intersection of this box with
another box

[const] DBox * (const DBox box) Returns the convolution product from this
box with another box

[const] DBox * (double
scale_factor)

Returns the scaled box

[const] DBox + (const DPoint point) Joins box with a point

[const] DBox + (const DBox box) Joins two boxes

[const] bool < (const DBox box) Returns true if this box is 'less' than another
box

[const] bool == (const DBox box) Returns true if this box is equal to the other
box

void _create Ensures the C++ object is created

For more details visit
https://www.klayout.org

Page 565 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.16. API reference - Class DBox

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] double area Computes the box area

void assign (const DBox other) Assigns another object to self

[const] DBox bbox Returns the bounding box

[const] double bottom Gets the bottom coordinate of the box

void bottom= (double c) Sets the bottom coordinate of the box

[const] DPoint center Gets the center of the box

[const] bool contains? (double x,
double y)

Returns true if the box contains the given
point

[const] bool contains? (const DPoint point) Returns true if the box contains the given
point

[const] new DBox ptr dup Creates a copy of self

[const] bool empty? Returns a value indicating whether the box is
empty

DBox enlarge (double dx,
double dy)

Enlarges the box by a certain amount.

DBox enlarge (const DVector
enlargement)

Enlarges the box by a certain amount.

[const] DBox enlarged (double dx,
double dy)

Enlarges the box by a certain amount.

[const] DBox enlarged (const DVector
enlargement)

Returns the enlarged box.

[const] unsigned long hash Computes a hash value

[const] double height Gets the height of the box

[const] bool inside? (const DBox box) Tests if this box is inside the argument box

[const] bool is_point? Returns true, if the box is a single point

[const] double left Gets the left coordinate of the box

For more details visit
https://www.klayout.org

Page 566 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.16. API reference - Class DBox

void left= (double c) Sets the left coordinate of the box

DBox move (double dx,
double dy)

Moves the box by a certain distance

DBox move (const DVector
distance)

Moves the box by a certain distance

[const] DBox moved (double dx,
double dy)

Moves the box by a certain distance

[const] DBox moved (const DVector
distance)

Returns the box moved by a certain distance

[const] bool overlaps? (const DBox box) Tests if this box overlaps the argument box

[const] DPoint p1 Gets the lower left point of the box

void p1= (const DPoint p) Sets the lower left point of the box

[const] DPoint p2 Gets the upper right point of the box

void p2= (const DPoint p) Sets the upper right point of the box

[const] double perimeter Returns the perimeter of the box

[const] double right Gets the right coordinate of the box

void right= (double c) Sets the right coordinate of the box

[const] Box to_itype (double dbu = 1) Converts the box to an integer coordinate
box

[const] string to_s (double dbu = 0) Returns a string representing this box

[const] double top Gets the top coordinate of the box

void top= (double c) Sets the top coordinate of the box

[const] bool touches? (const DBox box) Tests if this box touches the argument box

[const] Box transformed (const VCplxTrans t) Transforms the box with the given complex
transformation

[const] DBox transformed (const DTrans t) Returns the box transformed with the given
simple transformation

[const] DBox transformed (const DCplxTrans t) Returns the box transformed with the given
complex transformation

[const] double width Gets the width of the box

Public static methods and constants

new DBox ptr from_s (string s) Creates a box object from a string

DBox world Gets the 'world' box

For more details visit
https://www.klayout.org

Page 567 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.16. API reference - Class DBox

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[static] new DBox ptr from_ibox (const
Box
box)

Use of this method is deprecated. Use new instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

Detailed description

!=
Signature: [const] bool != (const DBox box)

Description: Returns true if this box is not equal to the other box

Returns true, if this box and the given box are not equal

&
Signature: [const] DBox & (const DBox box)

Description: Returns the intersection of this box with another box

box: The box to take the intersection with

Returns: The intersection box

The intersection of two boxes is the largest box common to both boxes. The intersection may be
empty if both boxes to not touch. If the boxes do not overlap but touch the result may be a single line
or point with an area of zero. Overwrites this box with the result.

(1) Signature: [const] DBox * (const DBox box)

Description: Returns the convolution product from this box with another box

box: The box to convolve with this box.

Returns: The convolved box

The * operator convolves the firstbox with the one given as the second argument. The box resulting
from "convolution" is the outer boundary of the union set formed by placing the second box at every
point of the first. In other words, the returned box of (p1,p2)*(q1,q2) is (p1+q1,p2+q2).

Python specific notes:
This method is also available as '__mul__'

*

(2) Signature: [const] DBox * (double scale_factor)

Description: Returns the scaled box

scale_factor: The scaling factor

Returns: The scaled box

The * operator scales the box with the given factor and returns the result.

For more details visit
https://www.klayout.org

Page 568 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.16. API reference - Class DBox

This method has been introduced in version 0.22.

Python specific notes:
This method is also available as '__mul__'

(1) Signature: [const] DBox + (const DPoint point)

Description: Joins box with a point

point: The point to join with this box.

Returns: The box joined with the point

The + operator joins a point with the box. The resulting box will enclose both the original box and the
point.

+

(2) Signature: [const] DBox + (const DBox box)

Description: Joins two boxes

box: The box to join with this box.

Returns: The joined box

The + operator joins the first box with the one given as the second argument. Joining constructs a
box that encloses both boxes given. Empty boxes are neutral: they do not change another box when
joining. Overwrites this box with the result.

<
Signature: [const] bool < (const DBox box)

Description: Returns true if this box is 'less' than another box

Returns true, if this box is 'less' with respect to first and second point (in this order)

==
Signature: [const] bool == (const DBox box)

Description: Returns true if this box is equal to the other box

Returns true, if this box and the given box are equal

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

For more details visit
https://www.klayout.org

Page 569 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.16. API reference - Class DBox

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

area
Signature: [const] double area

Description: Computes the box area

Returns the box area or 0 if the box is empty

assign
Signature: void assign (const DBox other)

Description: Assigns another object to self

bbox
Signature: [const] DBox bbox

Description: Returns the bounding box

This method is provided for consistency of the shape API is returns the box itself.

This method has been introduced in version 0.27.

bottom
Signature: [const] double bottom

Description: Gets the bottom coordinate of the box

Python specific notes:
The object exposes a readable attribute 'bottom'. This is the getter.

bottom=
Signature: void bottom= (double c)

Description: Sets the bottom coordinate of the box

Python specific notes:
The object exposes a writable attribute 'bottom'. This is the setter.

center
Signature: [const] DPoint center

Description: Gets the center of the box

For more details visit
https://www.klayout.org

Page 570 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.16. API reference - Class DBox

(1) Signature: [const] bool contains? (double x, double y)

Description: Returns true if the box contains the given point

Returns: true if the point is inside the box.

Tests whether a point (x, y) is inside the box. It also returns true if the point is exactly on the box
contour.

contains?

(2) Signature: [const] bool contains? (const DPoint point)

Description: Returns true if the box contains the given point

p: The point to test against.

Returns: true if the point is inside the box.

Tests whether a point is inside the box. It also returns true if the point is exactly on the box contour.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new DBox ptr dup

Description: Creates a copy of self

empty?
Signature: [const] bool empty?

Description: Returns a value indicating whether the box is empty

An empty box may be created with the default constructor for example. Such a box is neutral when
combining it with other boxes and renders empty boxes if used in box intersections and false in
geometrical relationship tests.

enlarge
(1) Signature: DBox enlarge (double dx, double dy)

Description: Enlarges the box by a certain amount.

Returns: A reference to this box.

For more details visit
https://www.klayout.org

Page 571 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.16. API reference - Class DBox

This is a convenience method which takes two values instead of a Point object. This method has been
introduced in version 0.23.

(2) Signature: DBox enlarge (const DVector enlargement)

Description: Enlarges the box by a certain amount.

enlargement: The grow or shrink amount in x and y direction

Returns: A reference to this box.

Enlarges the box by x and y value specified in the vector passed. Positive values with grow the box,
negative ones will shrink the box. The result may be an empty box if the box disappears. The amount
specifies the grow or shrink per edge. The width and height will change by twice the amount. Does not
check for coordinate overflows.

(1) Signature: [const] DBox enlarged (double dx, double dy)

Description: Enlarges the box by a certain amount.

Returns: The enlarged box.

This is a convenience method which takes two values instead of a Point object. This method has been
introduced in version 0.23.

enlarged

(2) Signature: [const] DBox enlarged (const DVector enlargement)

Description: Returns the enlarged box.

enlargement: The grow or shrink amount in x and y direction

Returns: The enlarged box.

Enlarges the box by x and y value specified in the vector passed. Positive values with grow the box,
negative ones will shrink the box. The result may be an empty box if the box disappears. The amount
specifies the grow or shrink per edge. The width and height will change by twice the amount. Does not
modify this box. Does not check for coordinate overflows.

from_ibox
Signature: [static] new DBox ptr from_ibox (const Box box)

Description: Creates a floating-point coordinate box from an integer coordinate box

Use of this method is deprecated. Use new instead

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_ibox'.

Python specific notes:
This method is the default initializer of the object

from_s
Signature: [static] new DBox ptr from_s (string s)

Description: Creates a box object from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given box. This method enables boxes as hash keys.

This method has been introduced in version 0.25.

Python specific notes:

For more details visit
https://www.klayout.org

Page 572 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.16. API reference - Class DBox

This method is also available as 'hash(object)'

height
Signature: [const] double height

Description: Gets the height of the box

inside?
Signature: [const] bool inside? (const DBox box)

Description: Tests if this box is inside the argument box

Returns true, if this box is inside the given box, i.e. the box intersection renders this box

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_point?
Signature: [const] bool is_point?

Description: Returns true, if the box is a single point

left
Signature: [const] double left

Description: Gets the left coordinate of the box

Python specific notes:
The object exposes a readable attribute 'left'. This is the getter.

left=
Signature: void left= (double c)

Description: Sets the left coordinate of the box

Python specific notes:
The object exposes a writable attribute 'left'. This is the setter.

(1) Signature: DBox move (double dx, double dy)

Description: Moves the box by a certain distance

Returns: A reference to this box.

This is a convenience method which takes two values instead of a Point object. This method has been
introduced in version 0.23.

move

(2) Signature: DBox move (const DVector distance)

Description: Moves the box by a certain distance

distance: The offset to move the box.

Returns: A reference to this box.

Moves the box by a given offset and returns the moved box. Does not check for coordinate overflows.

moved
(1) Signature: [const] DBox moved (double dx, double dy)

Description: Moves the box by a certain distance

Returns: The enlarged box.

For more details visit
https://www.klayout.org

Page 573 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.16. API reference - Class DBox

This is a convenience method which takes two values instead of a Point object. This method has been
introduced in version 0.23.

(2) Signature: [const] DBox moved (const DVector distance)

Description: Returns the box moved by a certain distance

distance: The offset to move the box.

Returns: The moved box.

Moves the box by a given offset and returns the moved box. Does not modify this box. Does not check
for coordinate overflows.

(1) Signature: [static] new DBox ptr new (const Box box)

Description: Creates a floating-point coordinate box from an integer coordinate box

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_ibox'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new DBox ptr new

Description: Creates an empty (invalid) box

Empty boxes don't modify a box when joined with it. The intersection between an empty and any other
box is also an empty box. The width, height, p1 and p2 attributes of an empty box are undefined. Use
empty? to get a value indicating whether the box is empty.

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new DBox ptr new (double left, double bottom, double right, double top)

Description: Creates a box with four coordinates

Four coordinates are given to create a new box. If the coordinates are not provided in the correct order
(i.e. right < left), these are swapped.

Python specific notes:
This method is the default initializer of the object

new

(4) Signature: [static] new DBox ptr new (const DPoint lower_left, const DPoint upper_right)

Description: Creates a box from two points

Two points are given to create a new box. If the coordinates are not provided in the correct order (i.e.
right < left), these are swapped.

Python specific notes:
This method is the default initializer of the object

overlaps?
Signature: [const] bool overlaps? (const DBox box)

Description: Tests if this box overlaps the argument box

Returns true, if the intersection box of this box with the argument box exists and has a non-vanishing
area

For more details visit
https://www.klayout.org

Page 574 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.16. API reference - Class DBox

p1
Signature: [const] DPoint p1

Description: Gets the lower left point of the box

Python specific notes:
The object exposes a readable attribute 'p1'. This is the getter.

p1=
Signature: void p1= (const DPoint p)

Description: Sets the lower left point of the box

Python specific notes:
The object exposes a writable attribute 'p1'. This is the setter.

p2
Signature: [const] DPoint p2

Description: Gets the upper right point of the box

Python specific notes:
The object exposes a readable attribute 'p2'. This is the getter.

p2=
Signature: void p2= (const DPoint p)

Description: Sets the upper right point of the box

Python specific notes:
The object exposes a writable attribute 'p2'. This is the setter.

perimeter
Signature: [const] double perimeter

Description: Returns the perimeter of the box

This method is equivalent to 2*(width+height). For empty boxes, this method returns 0.

This method has been introduced in version 0.23.

right
Signature: [const] double right

Description: Gets the right coordinate of the box

Python specific notes:
The object exposes a readable attribute 'right'. This is the getter.

right=
Signature: void right= (double c)

Description: Sets the right coordinate of the box

Python specific notes:
The object exposes a writable attribute 'right'. This is the setter.

to_itype
Signature: [const] Box to_itype (double dbu = 1)

Description: Converts the box to an integer coordinate box

The database unit can be specified to translate the floating-point coordinate box in micron units to an
integer-coordinate box in database units. The boxes coordinates will be divided by the database unit.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s (double dbu = 0)

Description: Returns a string representing this box

This string can be turned into a box again by using from_s . If a DBU is given, the output units will be
micrometers.

For more details visit
https://www.klayout.org

Page 575 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.16. API reference - Class DBox

The DBU argument has been added in version 0.27.6.

Python specific notes:
This method is also available as 'str(object)'

top
Signature: [const] double top

Description: Gets the top coordinate of the box

Python specific notes:
The object exposes a readable attribute 'top'. This is the getter.

top=
Signature: void top= (double c)

Description: Sets the top coordinate of the box

Python specific notes:
The object exposes a writable attribute 'top'. This is the setter.

touches?
Signature: [const] bool touches? (const DBox box)

Description: Tests if this box touches the argument box

Two boxes touch if they overlap or their boundaries share at least one common point. Touching is
equivalent to a non-empty intersection ('!(b1 & b2).empty?').

(1) Signature: [const] Box transformed (const VCplxTrans t)

Description: Transforms the box with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed box (in this case an integer coordinate box)

This method has been introduced in version 0.25.

(2) Signature: [const] DBox transformed (const DTrans t)

Description: Returns the box transformed with the given simple transformation

t: The transformation to apply

Returns: The transformed box

transformed

(3) Signature: [const] DBox transformed (const DCplxTrans t)

Description: Returns the box transformed with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed box (a DBox now)

width
Signature: [const] double width

Description: Gets the width of the box

world
Signature: [static] DBox world

Description: Gets the 'world' box

The world box is the biggest box that can be represented. So it is basically 'all'. The world box
behaves neutral on intersections for example. In other operations such as displacement or
transformations, the world box may render unexpected results because of coordinate overflow.

The world box can be used

For more details visit
https://www.klayout.org

Page 576 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.16. API reference - Class DBox

• for comparison ('==', '!=', '<')

• in union and intersection ('+' and '&')

• in relations (contains?, overlaps?, touches?)

• as 'all' argument in region queries

This method has been introduced in version 0.28.

For more details visit
https://www.klayout.org

Page 577 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

4.17. API reference - Class Cell
Notation used in Ruby API documentation

Module: db

Description: A cell

A cell object consists of a set of shape containers (called layers), a set of child cell instances and auxiliary information such as the parent
instance list. A cell is identified through an index given to the cell upon instantiation. Cell instances refer to single instances or array
instances. Both are encapsulated in the same object, the CellInstArray object. In the simple case, this object refers to a single instance. In
the general case, this object may refer to a regular array of cell instances as well.

Starting from version 0.16, the child_inst and erase_inst methods are no longer available since they were using index addressing which is
no longer supported. Instead, instances are now addressed with the Instance reference objects.

See The Database API for more details about the database objects like the Cell class.

Public constructors

new Cell ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] string basic_name Returns the name of the library or PCell or
the real name of the cell

[const] Box bbox Gets the bounding box of the cell

[const] Box bbox_per_layer (unsigned int
layer_index)

Gets the per-layer bounding box of the cell

[const] RecursiveInstanceIteratorbegin_instances_rec Delivers a recursive instance iterator for the
instances below the cell

[const] RecursiveInstanceIteratorbegin_instances_rec_overlapping(Box region) Delivers a recursive instance iterator for
the instances below the cell using a region
search

[const] RecursiveInstanceIteratorbegin_instances_rec_overlapping(DBox region) Delivers a recursive instance iterator for
the instances below the cell using a region
search, with the region given in micrometer
units

For more details visit
https://www.klayout.org

Page 578 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

[const] RecursiveInstanceIteratorbegin_instances_rec_touching(Box region) Delivers a recursive instance iterator for the
instances below the cell

[const] RecursiveInstanceIteratorbegin_instances_rec_touching(DBox region) Delivers a recursive instance iterator for
the instances below the cell using a region
search, with the region given in micrometer
units

[const] RecursiveShapeIteratorbegin_shapes_rec (unsigned int layer) Delivers a recursive shape iterator for the
shapes below the cell on the given layer

[const] RecursiveShapeIteratorbegin_shapes_rec_overlapping(unsigned int layer,
Box region)

Delivers a recursive shape iterator for the
shapes below the cell on the given layer
using a region search

[const] RecursiveShapeIteratorbegin_shapes_rec_overlapping(unsigned int layer,
DBox region)

Delivers a recursive shape iterator for the
shapes below the cell on the given layer
using a region search, with the region given
in micrometer units

[const] RecursiveShapeIteratorbegin_shapes_rec_touching(unsigned int layer,
Box region)

Delivers a recursive shape iterator for the
shapes below the cell on the given layer
using a region search

[const] RecursiveShapeIteratorbegin_shapes_rec_touching(unsigned int layer,
DBox region)

Delivers a recursive shape iterator for the
shapes below the cell on the given layer
using a region search, with the region given
in micrometer units

[const] unsigned int[] called_cells Gets a list of all called cells

[const] unsigned int[] caller_cells Gets a list of all caller cells

[const] unsigned int cell_index Gets the cell index

Instance change_pcell_parameter(const Instance
instance,
string name,
variant value)

Changes a single parameter for an
individual PCell instance given by name

Instance change_pcell_parameters(const Instance
instance,
map<string,variant>
dict)

Changes the given parameter for an
individual PCell instance

Instance change_pcell_parameters(const Instance
instance,
variant[] parameters)

Changes the parameters for an individual
PCell instance

[const] unsigned long child_cells Gets the number of child cells

[const] unsigned long child_instances Gets the number of child instances

void clear (unsigned int
layer_index)

Clears the shapes on the given layer

void clear Clears the cell (deletes shapes and
instances)

For more details visit
https://www.klayout.org

Page 579 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

void clear_insts Clears the instance list

void clear_shapes Clears all shapes in the cell

void copy (unsigned int src,
unsigned int dest)

Copies the shapes from the source to the
target layer

void copy (Cell ptr src_cell,
unsigned int src_layer,
unsigned int dest)

Copies shapes from another cell to the
target layer in this cell

void copy_instances (const Cell source_cell) Copies the instances of child cells in the
source cell to this cell

void copy_shapes (const Cell source_cell) Copies the shapes from the given cell into
this cell

void copy_shapes (const Cell source_cell,
const LayerMapping
layer_mapping)

Copies the shapes from the given cell into
this cell

unsigned int[] copy_tree (const Cell source_cell) Copies the cell tree of the given cell into this
cell

void copy_tree_shapes (const Cell source_cell,
const CellMapping
cell_mapping)

Copies the shapes from the given cell and
the cell tree below into this cell or subcells
of this cell

void copy_tree_shapes (const Cell source_cell,
const CellMapping
cell_mapping,
const LayerMapping
layer_mapping)

Copies the shapes from the given cell and
the cell tree below into this cell or subcells
of this cell with layer mapping

[const] DBox dbbox Gets the bounding box of the cell in
micrometer units

[const] DBox dbbox_per_layer (unsigned int
layer_index)

Gets the per-layer bounding box of the cell
in micrometer units

void delete Deletes this cell

void delete_property (variant key) Deletes the user property with the given key

[const] string display_title Returns a nice looking name for display
purposes

[const] Cell ptr dup Creates a copy of the cell

[const,iter] unsigned int each_child_cell Iterates over all child cells

[iter] Instance each_inst Iterates over all child instances (which may
actually be instance arrays)

[const,iter] Instance each_overlapping_inst (const Box b) Gets the instances overlapping the given
rectangle

For more details visit
https://www.klayout.org

Page 580 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

[const,iter] Instance each_overlapping_inst (const DBox b) Gets the instances overlapping the given
rectangle, with the rectangle in micrometer
units

[const,iter] Shape each_overlapping_shape(unsigned int
layer_index,
const Box box,
unsigned int flags)

Iterates over all shapes of a given layer that
overlap the given box

[const,iter] Shape each_overlapping_shape(unsigned int
layer_index,
const Box box)

Iterates over all shapes of a given layer that
overlap the given box

[const,iter] Shape each_overlapping_shape(unsigned int
layer_index,
const DBox box,
unsigned int flags)

Iterates over all shapes of a given layer that
overlap the given box, with the box given in
micrometer units

[const,iter] Shape each_overlapping_shape(unsigned int
layer_index,
const DBox box)

Iterates over all shapes of a given layer that
overlap the given box, with the box given in
micrometer units

[const,iter] unsigned int each_parent_cell Iterates over all parent cells

[const,iter] ParentInstArray each_parent_inst Iterates over the parent instance list (which
may actually be instance arrays)

[const,iter] Shape each_shape (unsigned int
layer_index,
unsigned int flags)

Iterates over all shapes of a given layer

[const,iter] Shape each_shape (unsigned int
layer_index)

Iterates over all shapes of a given layer

[const,iter] Instance each_touching_inst (const Box b) Gets the instances touching the given
rectangle

[const,iter] Instance each_touching_inst (const DBox b) Gets the instances touching the given
rectangle, with the rectangle in micrometer
units

[const,iter] Shape each_touching_shape (unsigned int
layer_index,
const Box box,
unsigned int flags)

Iterates over all shapes of a given layer that
touch the given box

[const,iter] Shape each_touching_shape (unsigned int
layer_index,
const Box box)

Iterates over all shapes of a given layer that
touch the given box

[const,iter] Shape each_touching_shape (unsigned int
layer_index,
const DBox box,
unsigned int flags)

Iterates over all shapes of a given layer that
touch the given box, with the box given in
micrometer units

[const,iter] Shape each_touching_shape (unsigned int
layer_index,
const DBox box)

Iterates over all shapes of a given layer that
touch the given box, with the box given in
micrometer units

For more details visit
https://www.klayout.org

Page 581 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

void erase (const Instance inst) Erases the instance given by the Instance
object

void fill_region (const Region region,
unsigned int
fill_cell_index,
const Box fc_box,
const Point ptr origin =
(0, 0),
Region ptr
remaining_parts = nil,
const Vector fill_margin
= 0,0,
Region ptr
remaining_polygons =
nil,
const Box glue_box =
())

Fills the given region with cells of the given
type (extended version)

void fill_region (const Region region,
unsigned int
fill_cell_index,
const Box fc_bbox,
const Vector row_step,
const Vector
column_step,
const Point ptr origin =
(0, 0),
Region ptr
remaining_parts = nil,
const Vector fill_margin
= 0,0,
Region ptr
remaining_polygons =
nil,
const Box glue_box =
())

Fills the given region with cells of the given
type (skew step version)

void fill_region_multi (const Region region,
unsigned int
fill_cell_index,
const Box fc_bbox,
const Vector row_step,
const Vector
column_step,
const Vector fill_margin
= 0,0,
Region ptr
remaining_polygons =
nil,
const Box glue_box =
())

Fills the given region with cells of the given
type in enhanced mode with iterations

void flatten (bool prune) Flattens the given cell

void flatten (int levels,
bool prune)

Flattens the given cell

void ghost_cell= (bool flag) Sets the "ghost cell" flag

For more details visit
https://www.klayout.org

Page 582 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

[const] bool has_prop_id? Returns true, if the cell has user properties

[const] unsigned int hierarchy_levels Returns the number of hierarchy levels
below

Instance insert (const Instance inst) Inserts a cell instance given by another
reference

Instance insert (const CellInstArray
cell_inst_array)

Inserts a cell instance (array)

Instance insert (const DCellInstArray
cell_inst_array)

Inserts a cell instance (array) given in
micron units

Instance insert (const DCellInstArray
cell_inst_array,
unsigned long
property_id)

Inserts a cell instance (array) given in
micron units with properties

Instance insert (const CellInstArray
cell_inst_array,
unsigned long
property_id)

Inserts a cell instance (array) with properties

[const] bool is_empty? Returns a value indicating whether the cell
is empty

[const] bool is_ghost_cell? Returns a value indicating whether the cell
is a "ghost cell"

[const] bool is_leaf? Gets a value indicating whether the cell is a
leaf cell

[const] bool is_library_cell? Returns true, if the cell is a proxy cell
pointing to a library cell

[const] bool is_pcell_variant? Returns true, if this cell is a pcell variant

[const] bool is_pcell_variant? (const Instance
instance)

Returns true, if this instance is a PCell
variant

[const] bool is_proxy? Returns true, if the cell presents some
external entity

[const] bool is_top? Gets a value indicating whether the cell is a
top-level cell

[const] bool is_valid? (const Instance
instance)

Tests if the given Instance object is still
pointing to a valid object

Layout ptr layout Returns a reference to the layout where the
cell resides

[const] const Layout ptr layout Returns a reference to the layout where the
cell resides (const references)

[const] Library ptr library Returns a reference to the library from
which the cell is imported

For more details visit
https://www.klayout.org

Page 583 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

[const] unsigned int library_cell_index Returns the index of the cell in the layout of
the library (if it's a library proxy)

void move (unsigned int src,
unsigned int dest)

Moves the shapes from the source to the
target layer

void move (Cell ptr src_cell,
unsigned int src_layer,
unsigned int dest)

Moves shapes from another cell to the
target layer in this cell

void move_instances (Cell source_cell) Moves the instances of child cells in the
source cell to this cell

void move_shapes (Cell source_cell) Moves the shapes from the given cell into
this cell

void move_shapes (Cell source_cell,
const LayerMapping
layer_mapping)

Moves the shapes from the given cell into
this cell

unsigned int[] move_tree (Cell source_cell) Moves the cell tree of the given cell into this
cell

void move_tree_shapes (Cell source_cell,
const CellMapping
cell_mapping)

Moves the shapes from the given cell and
the cell tree below into this cell or subcells
of this cell

void move_tree_shapes (Cell source_cell,
const CellMapping
cell_mapping,
const LayerMapping
layer_mapping)

Moves the shapes from the given cell and
the cell tree below into this cell or subcells
of this cell with layer mapping

[const] string name Gets the cell's name

void name= (string name) Renames the cell

[const] unsigned long parent_cells Gets the number of parent cells

[const] const
PCellDeclaration
ptr

pcell_declaration Returns a reference to the PCell declaration

[const] const
PCellDeclaration
ptr

pcell_declaration (const Instance
instance)

Returns the PCell declaration of a pcell
instance

[const] unsigned int pcell_id Returns the PCell ID if the cell is a pcell
variant

[const] Library ptr pcell_library Returns the library where the PCell is
declared if this cell is a PCell and it is not
defined locally.

[const] variant pcell_parameter (string name) Gets a PCell parameter by name if the cell
is a PCell variant

[const] variant pcell_parameter (const Instance
instance,

Returns a PCell parameter by name for a
pcell instance

For more details visit
https://www.klayout.org

Page 584 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

string name)

[const] variant[] pcell_parameters Returns the PCell parameters for a pcell
variant

[const] variant[] pcell_parameters (const Instance
instance)

Returns the PCell parameters for a pcell
instance

[const] map<string,variant> pcell_parameters_by_name Returns the PCell parameters for a pcell
variant as a name to value dictionary

[const] map<string,variant> pcell_parameters_by_name(const Instance
instance)

Returns the PCell parameters for a pcell
instance as a name to value dictionary

[const] unsigned long prop_id Gets the properties ID associated with the
cell

void prop_id= (unsigned long id) Sets the properties ID associated with the
cell

variant property (variant key) Gets the user property with the given key

void prune_cell Deletes the cell plus subcells not used
otherwise

void prune_cell (int levels) Deletes the cell plus subcells not used
otherwise

void prune_subcells Deletes all sub cells of the cell which are not
used otherwise

void prune_subcells (int levels) Deletes all sub cells of the cell which are not
used otherwise down to the specified level
of hierarchy

[const] string qname Returns the library-qualified name

void refresh Refreshes the cell

Instance replace (const Instance
instance,
const CellInstArray
cell_inst_array)

Replaces a cell instance (array) with a
different one

Instance replace (const Instance
instance,
const CellInstArray
cell_inst_array,
unsigned long
property_id)

Replaces a cell instance (array) with a
different one with properties

Instance replace (const Instance
instance,
const DCellInstArray
cell_inst_array)

Replaces a cell instance (array) with a
different one, given in micrometer units

Instance replace (const Instance
instance,
const DCellInstArray
cell_inst_array,

Replaces a cell instance (array) with a
different one and new properties, where the
cell instance is given in micrometer units

For more details visit
https://www.klayout.org

Page 585 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

unsigned long
property_id)

Instance replace_prop_id (const Instance
instance,
unsigned long
property_id)

Replaces (or install) the properties of a cell

void set_property (variant key,
variant value)

Sets the user property with the given key to
the given value

Shapes shapes (unsigned int
layer_index)

Returns the shapes list of the given layer

[const] const Shapes ptr shapes (unsigned int
layer_index)

Returns the shapes list of the given layer
(const version)

void swap (unsigned int
layer_index1,
unsigned int
layer_index2)

Swaps the layers given

Instance transform (const Instance
instance,
const Trans trans)

Transforms the instance with the given
transformation

Instance transform (const Instance
instance,
const ICplxTrans trans)

Transforms the instance with the given
complex integer transformation

Instance transform (const Instance
instance,
const DTrans trans)

Transforms the instance with the
transformation given in micrometer units

Instance transform (const Instance
instance,
const DCplxTrans
trans)

Transforms the instance with the given
complex floating-point transformation given
in micrometer units

void transform (const Trans trans) Transforms the cell by the given integer
transformation

void transform (const ICplxTrans trans) Transforms the cell by the given complex
integer transformation

void transform (const DTrans trans) Transforms the cell by the given,
micrometer-unit transformation

void transform (const DCplxTrans
trans)

Transforms the cell by the given,
micrometer-unit transformation

Instance transform_into (const Instance
instance,
const Trans trans)

Transforms the instance into a new
coordinate system with the given
transformation

Instance transform_into (const Instance
instance,
const ICplxTrans trans)

Transforms the instance into a new
coordinate system with the given complex
integer transformation

For more details visit
https://www.klayout.org

Page 586 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

void transform_into (const Trans trans) Transforms the cell into a new coordinate
system with the given transformation

void transform_into (const ICplxTrans trans) Transforms the cell into a new coordinate
system with the given complex integer
transformation

Instance transform_into (const Instance
instance,
const DTrans trans)

Transforms the instance into a new
coordinate system with the given
transformation where the transformation is
in micrometer units

Instance transform_into (const Instance
instance,
const DCplxTrans
trans)

Transforms the instance into a new
coordinate system with the given complex
transformation where the transformation is
in micrometer units

void transform_into (const DTrans trans) Transforms the cell into a new coordinate
system with the given transformation where
the transformation is in micrometer units

void transform_into (const DCplxTrans
trans)

Transforms the cell into a new coordinate
system with the given complex integer
transformation where the transformation is
in micrometer units

[const] void write (string file_name) Writes the cell to a layout file

[const] void write (string file_name,
const
SaveLayoutOptions
options)

Writes the cell to a layout file

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 587 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

basic_name
Signature: [const] string basic_name

Description: Returns the name of the library or PCell or the real name of the cell

For non-proxy cells (see is_proxy?), this method simply returns the cell name. For proxy cells, this
method returns the PCells definition name or the library cell name. This name may differ from the
actual cell's name because to ensure that cell names are unique, KLayout may assign different
names to the actual cell compared to the source cell.

This method has been introduced in version 0.22.

bbox
Signature: [const] Box bbox

Description: Gets the bounding box of the cell

Returns: The bounding box of the cell

The bounding box is computed over all layers. To compute the bounding box over single layers, use
bbox_per_layer.

bbox_per_layer
Signature: [const] Box bbox_per_layer (unsigned int layer_index)

Description: Gets the per-layer bounding box of the cell

For more details visit
https://www.klayout.org

Page 588 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

Returns: The bounding box of the cell considering only the given layer

The bounding box is the box enclosing all shapes on the given layer.

begin_instances_rec
Signature: [const] RecursiveInstanceIterator begin_instances_rec

Description: Delivers a recursive instance iterator for the instances below the cell

Returns: A suitable iterator

For details see the description of the RecursiveInstanceIterator class.

This method has been added in version 0.27.

(1) Signature: [const] RecursiveInstanceIterator begin_instances_rec_overlapping (Box region)

Description: Delivers a recursive instance iterator for the instances below the cell using a region
search

region: The search region

Returns: A suitable iterator

For details see the description of the RecursiveInstanceIterator class. This version gives an iterator
delivering instances whose bounding box overlaps the given region.

This method has been added in version 0.27.

begin_instances_rec_overlapping

(2) Signature: [const] RecursiveInstanceIterator begin_instances_rec_overlapping (DBox
region)

Description: Delivers a recursive instance iterator for the instances below the cell using a region
search, with the region given in micrometer units

region: The search region as DBox object in micrometer units

Returns: A suitable iterator

For details see the description of the RecursiveInstanceIterator class. This version gives an iterator
delivering instances whose bounding box overlaps the given region.

This variant has been added in version 0.27.

(1) Signature: [const] RecursiveInstanceIterator begin_instances_rec_touching (Box region)

Description: Delivers a recursive instance iterator for the instances below the cell

region: The search region

Returns: A suitable iterator

For details see the description of the RecursiveInstanceIterator class. This version gives an iterator
delivering instances whose bounding box touches the given region.

This method has been added in version 0.27.

begin_instances_rec_touching

(2) Signature: [const] RecursiveInstanceIterator begin_instances_rec_touching (DBox region)

Description: Delivers a recursive instance iterator for the instances below the cell using a region
search, with the region given in micrometer units

region: The search region as DBox object in micrometer units

Returns: A suitable iterator

For details see the description of the RecursiveInstanceIterator class. This version gives an iterator
delivering instances whose bounding box touches the given region.

This variant has been added in version 0.27.

For more details visit
https://www.klayout.org

Page 589 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

begin_shapes_rec
Signature: [const] RecursiveShapeIterator begin_shapes_rec (unsigned int layer)

Description: Delivers a recursive shape iterator for the shapes below the cell on the given layer

layer: The layer from which to get the shapes

Returns: A suitable iterator

For details see the description of the RecursiveShapeIterator class.

This method has been added in version 0.23.

(1) Signature: [const] RecursiveShapeIterator begin_shapes_rec_overlapping (unsigned int
layer, Box region)

Description: Delivers a recursive shape iterator for the shapes below the cell on the given layer
using a region search

layer: The layer from which to get the shapes

region: The search region

Returns: A suitable iterator

For details see the description of the RecursiveShapeIterator class. This version gives an iterator
delivering shapes whose bounding box overlaps the given region.

This method has been added in version 0.23.

begin_shapes_rec_overlapping

(2) Signature: [const] RecursiveShapeIterator begin_shapes_rec_overlapping (unsigned int
layer, DBox region)

Description: Delivers a recursive shape iterator for the shapes below the cell on the given layer
using a region search, with the region given in micrometer units

layer: The layer from which to get the shapes

region: The search region as DBox object in micrometer units

Returns: A suitable iterator

For details see the description of the RecursiveShapeIterator class. This version gives an iterator
delivering shapes whose bounding box overlaps the given region.

This variant has been added in version 0.25.

(1) Signature: [const] RecursiveShapeIterator begin_shapes_rec_touching (unsigned int layer,
Box region)

Description: Delivers a recursive shape iterator for the shapes below the cell on the given layer
using a region search

layer: The layer from which to get the shapes

region: The search region

Returns: A suitable iterator

For details see the description of the RecursiveShapeIterator class. This version gives an iterator
delivering shapes whose bounding box touches the given region.

This method has been added in version 0.23.

begin_shapes_rec_touching

(2) Signature: [const] RecursiveShapeIterator begin_shapes_rec_touching (unsigned int layer,
DBox region)

Description: Delivers a recursive shape iterator for the shapes below the cell on the given layer
using a region search, with the region given in micrometer units

layer: The layer from which to get the shapes

For more details visit
https://www.klayout.org

Page 590 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

region: The search region as DBox object in micrometer units

Returns: A suitable iterator

For details see the description of the RecursiveShapeIterator class. This version gives an iterator
delivering shapes whose bounding box touches the given region.

This variant has been added in version 0.25.

called_cells
Signature: [const] unsigned int[] called_cells

Description: Gets a list of all called cells

Returns: A list of cell indices.

This method determines all cells which are called either directly or indirectly by the cell. It returns an
array of cell indexes. Use the 'cell' method of Layout to retrieve the corresponding Cell object.

This method has been introduced in version 0.19.

caller_cells
Signature: [const] unsigned int[] caller_cells

Description: Gets a list of all caller cells

Returns: A list of cell indices.

This method determines all cells which call this cell either directly or indirectly. It returns an array of
cell indexes. Use the 'cell' method of Layout to retrieve the corresponding Cell object.

This method has been introduced in version 0.19.

cell_index
Signature: [const] unsigned int cell_index

Description: Gets the cell index

Returns: The cell index of the cell

change_pcell_parameter
Signature: Instance change_pcell_parameter (const Instance instance, string name, variant
value)

Description: Changes a single parameter for an individual PCell instance given by name

Returns: The new instance (the old may be invalid)

This will set the PCell parameter named 'name' to the given value for the instance addressed by
'instance'. If no parameter with that name exists, the method will do nothing.

This method has been introduced in version 0.23.

(1) Signature: Instance change_pcell_parameters (const Instance instance, map<string,variant>
dict)

Description: Changes the given parameter for an individual PCell instance

Returns: The new instance (the old may be invalid)

This version receives a dictionary of names and values. It will change the parameters given by the
names to the values given by the values of the dictionary. The functionality is similar to the same
function with an array, but more convenient to use. Values with unknown names are ignored.

This method has been introduced in version 0.24.

change_pcell_parameters

(2) Signature: Instance change_pcell_parameters (const Instance instance, variant[] parameters)

Description: Changes the parameters for an individual PCell instance

Returns: The new instance (the old may be invalid)

For more details visit
https://www.klayout.org

Page 591 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

If necessary, this method creates a new variant and replaces the given instance by an instance of
this variant.

The parameters are given in the order the parameters are declared. Use pcell_declaration on the
instance to get the PCell declaration object of the cell. That PCellDeclaration object delivers the
parameter declaration with it's 'get_parameters' method. Each parameter in the variant list passed to
the second list of values corresponds to one parameter declaration.

There is a more convenient method (change_pcell_parameter) that changes a single parameter by
name.

This method has been introduced in version 0.22.

child_cells
Signature: [const] unsigned long child_cells

Description: Gets the number of child cells

The number of child cells (not child instances!) is returned. CAUTION: this method is SLOW, in
particular if many instances are present.

child_instances
Signature: [const] unsigned long child_instances

Description: Gets the number of child instances

Returns: Returns the number of cell instances

(1) Signature: void clear (unsigned int layer_index)

Description: Clears the shapes on the given layerclear

(2) Signature: void clear

Description: Clears the cell (deletes shapes and instances)

This method has been introduced in version 0.23.

clear_insts
Signature: void clear_insts

Description: Clears the instance list

clear_shapes
Signature: void clear_shapes

Description: Clears all shapes in the cell

(1) Signature: void copy (unsigned int src, unsigned int dest)

Description: Copies the shapes from the source to the target layer

src: The layer index of the source layer

dest: The layer index of the destination layer

The destination layer is not overwritten. Instead, the shapes are added to the shapes of the
destination layer. If source are target layer are identical, this method does nothing. This method will
copy shapes within the cell. To copy shapes from another cell to this cell, use the copy method with
the cell parameter.

This method has been introduced in version 0.19.

copy

(2) Signature: void copy (Cell ptr src_cell, unsigned int src_layer, unsigned int dest)

Description: Copies shapes from another cell to the target layer in this cell

src_cell: The cell where to take the shapes from

For more details visit
https://www.klayout.org

Page 592 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

src_layer: The layer index of the layer from which to take the shapes

dest: The layer index of the destination layer

This method will copy all shapes on layer 'src_layer' of cell 'src_cell' to the layer 'dest' of this cell. The
destination layer is not overwritten. Instead, the shapes are added to the shapes of the destination
layer. If the source cell lives in a layout with a different database unit than that current cell is in, the
shapes will be transformed accordingly. The same way, shape properties are transformed as well.
Note that the shape transformation may require rounding to smaller coordinates. This may result in
a slight distortion of the original shapes, in particular when transforming into a layout with a bigger
database unit.

copy_instances
Signature: void copy_instances (const Cell source_cell)

Description: Copies the instances of child cells in the source cell to this cell

source_cell: The cell where the instances are copied from

The source cell must reside in the same layout than this cell. The instances of child cells inside the
source cell are copied to this cell. No new cells are created, just new instances are created to already
existing cells in the target cell.

The instances will be added to any existing instances in the cell.

More elaborate methods of copying hierarchy trees between layouts or duplicating trees are provided
through the copy_tree_shapes (in cooperation with the CellMapping class) or copy_tree methods.

This method has been added in version 0.23.

(1) Signature: void copy_shapes (const Cell source_cell)

Description: Copies the shapes from the given cell into this cell

source_cell: The cell from where to copy shapes

All shapes are copied from the source cell to this cell. Instances are not copied.

The source cell can reside in a different layout. In this case, the shapes are copied over from the
other layout into this layout. Database unit conversion is done automatically if the database units
differ between the layouts. Note that this may lead to grid snapping effects if the database unit of the
target layout is not an integer fraction of the source layout.

If source and target layout are different, the layers of the source and target layout are identified by
their layer/datatype number or name (if no layer/datatype is present). The shapes will be added to
any shapes already in the cell.

This method has been added in version 0.23.

copy_shapes

(2) Signature: void copy_shapes (const Cell source_cell, const LayerMapping layer_mapping)

Description: Copies the shapes from the given cell into this cell

source_cell: The cell from where to copy shapes

layer_mapping: A LayerMapping object that specifies which layers are
copied and where

All shapes on layers specified in the layer mapping object are copied from the source cell to this cell.
Instances are not copied. The target layer is taken from the mapping table.

The shapes will be added to any shapes already in the cell.

This method has been added in version 0.23.

copy_tree
Signature: unsigned int[] copy_tree (const Cell source_cell)

Description: Copies the cell tree of the given cell into this cell

source_cell: The cell from where to copy the cell tree

For more details visit
https://www.klayout.org

Page 593 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

Returns: A list of indexes of newly created cells

The complete cell tree of the source cell is copied to the target cell plus all shapes in that tree are
copied as well. This method will basically duplicate the cell tree of the source cell.

The source cell may reside in a separate layout. This method therefore provides a way to copy over
complete cell trees from one layout to another.

The shapes and instances will be added to any shapes or instances already in the cell.

This method has been added in version 0.23.

(1) Signature: void copy_tree_shapes (const Cell source_cell, const CellMapping cell_mapping)

Description: Copies the shapes from the given cell and the cell tree below into this cell or subcells of
this cell

source_cell: The starting cell from where to copy shapes

cell_mapping: The cell mapping object that determines how cells are
identified between source and target layout

This method is provided if source and target cell reside in different layouts. If will copy the shapes
from all cells below the given source cell, but use a cell mapping object that provides a specification
how cells are identified between the layouts. Cells in the source tree, for which no mapping is
provided, will be flattened - their shapes will be propagated into parent cells for which a mapping is
provided.

The cell mapping object provides various methods to map cell trees between layouts. See the
CellMapping class for details about the mapping methods available. The cell mapping object is also
responsible for creating a proper hierarchy of cells in the target layout if that is required.

Layers are identified between the layouts by the layer/datatype number of name if no layer/datatype
number is present.

The shapes copied will be added to any shapes already in the cells.

This method has been added in version 0.23.

copy_tree_shapes

(2) Signature: void copy_tree_shapes (const Cell source_cell, const CellMapping cell_mapping,
const LayerMapping layer_mapping)

Description: Copies the shapes from the given cell and the cell tree below into this cell or subcells of
this cell with layer mapping

source_cell: The cell from where to copy shapes and instances

cell_mapping: The cell mapping object that determines how cells are
identified between source and target layout

This method is provided if source and target cell reside in different layouts. If will copy the shapes
from all cells below the given source cell, but use a cell mapping object that provides a specification
how cells are identified between the layouts. Cells in the source tree, for which no mapping is
provided, will be flattened - their shapes will be propagated into parent cells for which a mapping is
provided.

The cell mapping object provides various methods to map cell trees between layouts. See the
CellMapping class for details about the mapping methods available. The cell mapping object is also
responsible for creating a proper hierarchy of cells in the target layout if that is required.

In addition, the layer mapping object can be specified which maps source to target layers. This
feature can be used to restrict the copy operation to a subset of layers or to convert shapes to
different layers in that step.

The shapes copied will be added to any shapes already in the cells.

This method has been added in version 0.23.

For more details visit
https://www.klayout.org

Page 594 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

dbbox
Signature: [const] DBox dbbox

Description: Gets the bounding box of the cell in micrometer units

Returns: The bounding box of the cell

The bounding box is computed over all layers. To compute the bounding box over single layers, use
dbbox_per_layer.

This method has been introduced in version 0.25.

dbbox_per_layer
Signature: [const] DBox dbbox_per_layer (unsigned int layer_index)

Description: Gets the per-layer bounding box of the cell in micrometer units

Returns: The bounding box of the cell considering only the given layer

The bounding box is the box enclosing all shapes on the given layer.

This method has been introduced in version 0.25.

delete
Signature: void delete

Description: Deletes this cell

This deletes the cell but not the sub cells of the cell. These subcells will likely become new top cells
unless they are used otherwise. All instances of this cell are deleted as well. Hint: to delete multiple
cells, use "delete_cells" which is far more efficient in this case.

After the cell has been deleted, the Cell object becomes invalid. Do not access methods or attributes
of this object after deleting the cell.

This method has been introduced in version 0.23.

delete_property
Signature: void delete_property (variant key)

Description: Deletes the user property with the given key

This method is a convenience method that deletes the property with the given key. It does nothing if
no property with that key exists. Using that method is more convenient than creating a new property
set with a new ID and assigning that properties ID. This method may change the properties ID.

This method has been introduced in version 0.23.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

For more details visit
https://www.klayout.org

Page 595 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

display_title
Signature: [const] string display_title

Description: Returns a nice looking name for display purposes

For example, this name include PCell parameters for PCell proxy cells.

This method has been introduced in version 0.22.

dup
Signature: [const] Cell ptr dup

Description: Creates a copy of the cell

This method will create a copy of the cell. The new cell will be member of the same layout the
original cell was member of. The copy will inherit all shapes and instances, but get a different
cell_index and a modified name as duplicate cell names are not allowed in the same layout.

This method has been introduced in version 0.27.

each_child_cell
Signature: [const,iter] unsigned int each_child_cell

Description: Iterates over all child cells

This iterator will report the child cell indices, not every instance.

each_inst
Signature: [iter] Instance each_inst

Description: Iterates over all child instances (which may actually be instance arrays)

Starting with version 0.15, this iterator delivers Instance objects rather than CellInstArray objects.

(1) Signature: [const,iter] Instance each_overlapping_inst (const Box b)

Description: Gets the instances overlapping the given rectangle

b: The region to iterate over

This will iterate over all child cell instances overlapping with the given rectangle b.

Starting with version 0.15, this iterator delivers Instance objects rather than CellInstArray objects.

each_overlapping_inst

(2) Signature: [const,iter] Instance each_overlapping_inst (const DBox b)

Description: Gets the instances overlapping the given rectangle, with the rectangle in micrometer
units

b: The region to iterate over

This will iterate over all child cell instances overlapping with the given rectangle b. This method is
identical to the each_overlapping_inst version that takes a Box object, but instead of taking database
unit coordinates in will take a micrometer unit DBox object.

This variant has been introduced in version 0.25.

each_overlapping_shape
(1) Signature: [const,iter] Shape each_overlapping_shape (unsigned int layer_index, const Box
box, unsigned int flags)

Description: Iterates over all shapes of a given layer that overlap the given box

flags: An "or"-ed combination of the S.. constants of the Shapes
class

For more details visit
https://www.klayout.org

Page 596 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

box: The box by which to query the shapes

layer_index: The layer on which to run the query

(2) Signature: [const,iter] Shape each_overlapping_shape (unsigned int layer_index, const Box
box)

Description: Iterates over all shapes of a given layer that overlap the given box

box: The box by which to query the shapes

layer_index: The layer on which to run the query

This call is equivalent to each_overlapping_shape(layer_index,box,RBA::Shapes::SAll). This
convenience method has been introduced in version 0.16.

(3) Signature: [const,iter] Shape each_overlapping_shape (unsigned int layer_index, const DBox
box, unsigned int flags)

Description: Iterates over all shapes of a given layer that overlap the given box, with the box given
in micrometer units

flags: An "or"-ed combination of the S.. constants of the Shapes
class

box: The box by which to query the shapes as a DBox object in
micrometer units

layer_index: The layer on which to run the query

(4) Signature: [const,iter] Shape each_overlapping_shape (unsigned int layer_index, const DBox
box)

Description: Iterates over all shapes of a given layer that overlap the given box, with the box given
in micrometer units

box: The box by which to query the shapes as a DBox object in
micrometer units

layer_index: The layer on which to run the query

This call is equivalent to each_overlapping_shape(layer_index,box,RBA::Shapes::SAll). This
convenience method has been introduced in version 0.16.

each_parent_cell
Signature: [const,iter] unsigned int each_parent_cell

Description: Iterates over all parent cells

This iterator will iterate over the parent cells, just returning their cell index.

each_parent_inst
Signature: [const,iter] ParentInstArray each_parent_inst

Description: Iterates over the parent instance list (which may actually be instance arrays)

The parent instances are basically inversions of the instances. Using parent instances it is possible
to determine how a specific cell is called from where.

each_shape
(1) Signature: [const,iter] Shape each_shape (unsigned int layer_index, unsigned int flags)

Description: Iterates over all shapes of a given layer

flags: An "or"-ed combination of the S.. constants of the Shapes
class

layer_index: The layer on which to run the query

For more details visit
https://www.klayout.org

Page 597 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

This iterator is equivalent to 'shapes(layer).each'.

(2) Signature: [const,iter] Shape each_shape (unsigned int layer_index)

Description: Iterates over all shapes of a given layer

layer_index: The layer on which to run the query

This call is equivalent to each_shape(layer_index,RBA::Shapes::SAll). This convenience method has
been introduced in version 0.16.

(1) Signature: [const,iter] Instance each_touching_inst (const Box b)

Description: Gets the instances touching the given rectangle

b: The region to iterate over

This will iterate over all child cell instances overlapping with the given rectangle b.

Starting with version 0.15, this iterator delivers Instance objects rather than CellInstArray objects.

each_touching_inst

(2) Signature: [const,iter] Instance each_touching_inst (const DBox b)

Description: Gets the instances touching the given rectangle, with the rectangle in micrometer units

b: The region to iterate over

This will iterate over all child cell instances touching the given rectangle b. This method is identical
to the each_touching_inst version that takes a Box object, but instead of taking database unit
coordinates in will take a micrometer unit DBox object.

This variant has been introduced in version 0.25.

(1) Signature: [const,iter] Shape each_touching_shape (unsigned int layer_index, const Box box,
unsigned int flags)

Description: Iterates over all shapes of a given layer that touch the given box

flags: An "or"-ed combination of the S.. constants of the Shapes
class

box: The box by which to query the shapes

layer_index: The layer on which to run the query

(2) Signature: [const,iter] Shape each_touching_shape (unsigned int layer_index, const Box box)

Description: Iterates over all shapes of a given layer that touch the given box

box: The box by which to query the shapes

layer_index: The layer on which to run the query

This call is equivalent to each_touching_shape(layer_index,box,RBA::Shapes::SAll). This
convenience method has been introduced in version 0.16.

each_touching_shape

(3) Signature: [const,iter] Shape each_touching_shape (unsigned int layer_index, const DBox
box, unsigned int flags)

Description: Iterates over all shapes of a given layer that touch the given box, with the box given in
micrometer units

flags: An "or"-ed combination of the S.. constants of the Shapes
class

box: The box by which to query the shapes as a DBox object in
micrometer units

For more details visit
https://www.klayout.org

Page 598 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

layer_index: The layer on which to run the query

(4) Signature: [const,iter] Shape each_touching_shape (unsigned int layer_index, const DBox
box)

Description: Iterates over all shapes of a given layer that touch the given box, with the box given in
micrometer units

box: The box by which to query the shapes as a DBox object in
micrometer units

layer_index: The layer on which to run the query

This call is equivalent to each_touching_shape(layer_index,box,RBA::Shapes::SAll). This
convenience method has been introduced in version 0.16.

erase
Signature: void erase (const Instance inst)

Description: Erases the instance given by the Instance object

This method has been introduced in version 0.16. It can only be used in editable mode.

fill_region
(1) Signature: void fill_region (const Region region, unsigned int fill_cell_index, const Box fc_box,
const Point ptr origin = (0, 0), Region ptr remaining_parts = nil, const Vector fill_margin = 0,0, Region
ptr remaining_polygons = nil, const Box glue_box = ())

Description: Fills the given region with cells of the given type (extended version)

region: The region to fill

fill_cell_index: The fill cell to place

fc_box: The fill cell's footprint

origin: The global origin of the fill pattern or nil to allow local
(per-polygon) optimization

remaining_parts: See explanation below

fill_margin: See explanation below

remaining_polygons: See explanation below

glue_box: Guarantees fill cell compatibility to neighbor regions in
enhanced mode

This method creates a regular pattern of fill cells to cover the interior of the given region as far
as possible. This process is also known as tiling. This implementation supports rectangular (not
necessarily square) tile cells. The tile cell's footprint is given by the fc_box parameter and the cells
will be arranged with their footprints forming a seamless array.

The algorithm supports a global fill raster as well as local (per-polygon) origin optimization. In the
latter case the origin of the regular raster is optimized per individual polygon of the fill region. To
enable optimization, pass 'nil' to the 'origin' argument.

The implementation will basically try to find a repetition pattern of the tile cell's footprint and produce
instances which fit entirely into the fill region.

There is also a version available which offers skew step vectors as a generalization of the orthogonal
ones.

If the 'remaining_parts' argument is non-nil, the corresponding region will receive the parts of the
polygons which are not covered by tiles. Basically the tiles are subtracted from the original polygons.
A margin can be specified which is applied separately in x and y direction before the subtraction is
done ('fill_margin' parameter).

If the 'remaining_polygons' argument is non-nil, the corresponding region will receive all polygons
from the input region which could not be filled and where there is no chance of filling because not a
single tile will fit into them.

For more details visit
https://www.klayout.org

Page 599 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

'remaining_parts' and 'remaining_polygons' can be identical with the input. In that case the input will
be overwritten with the respective output. Otherwise, the respective polygons are added to these
regions.

This allows setting up a more elaborate fill scheme using multiple iterations and local origin-
optimization ('origin' is nil):

r = ... # region to fill
c = ... # cell in which to produce the fill cells
fc_index = ... # fill cell index
fc_box = ... # fill cell footprint

fill_margin = RBA::Point::new(0, 0) # x/y distance between tile cells with
 different origin

Iteration: fill a region and fill the remaining parts as long as there is
 anything left.
Polygons not worth being considered further are dropped (last argument is
 nil).
while !r.is_empty?
 c.fill_region(r, fc_index, fc_box, nil, r, fill_margin, nil)
end

The glue box parameter supports fill cell array compatibility with neighboring regions. This is
specifically useful when putting the fill_cell method into a tiling processor. Fill cell array compatibility
means that the fill cell array continues over tile boundaries. This is easy with an origin: you can chose
the origin identically over all tiles which is sufficient to guarantee fill cell array compatibility across
the tiles. However there is no freedom of choice of the origin then and fill cell placement may not be
optimal. To enable the origin for the tile boundary only, a glue box can given. The origin will then be
used only when the polygons to fill not entirely inside and not at the border of the glue box. Hence,
while a certain degree of freedom is present for the placement of fill cells inside the glue box, the fill
cells are guaranteed to be placed at the raster implied by origin at the glue box border and beyond.
To ensure fill cell compatibility inside the tiling processor, it is sufficient to use the tile box as the glue
box.

This method has been introduced in version 0.23 and enhanced in version 0.27.

(2) Signature: void fill_region (const Region region, unsigned int fill_cell_index, const Box
fc_bbox, const Vector row_step, const Vector column_step, const Point ptr origin = (0, 0), Region ptr
remaining_parts = nil, const Vector fill_margin = 0,0, Region ptr remaining_polygons = nil, const Box
glue_box = ())

Description: Fills the given region with cells of the given type (skew step version)

region: The region to fill

fill_cell_index: The fill cell to place

fc_bbox: The fill cell's box to place

row_step: The 'rows' step vector

column_step: The 'columns' step vector

origin: The global origin of the fill pattern or nil to allow local
(per-polygon) optimization

remaining_parts: See explanation in other version

fill_margin: See explanation in other version

remaining_polygons: See explanation in other version

This version is similar to the version providing an orthogonal fill, but it offers more generic stepping
of the fill cell. The step pattern is defined by an origin and two vectors (row_step and column_step)
which span the axes of the fill cell pattern.

For more details visit
https://www.klayout.org

Page 600 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

The fill box and the step vectors are decoupled which means the fill box can be larger or smaller
than the step pitch - it can be overlapping and there can be space between the fill box instances. Fill
boxes are placed where they fit entirely into a polygon of the region. The fill boxes lower left corner is
the reference for the fill pattern and aligns with the origin if given.

This variant has been introduced in version 0.27.

fill_region_multi
Signature: void fill_region_multi (const Region region, unsigned int fill_cell_index, const Box
fc_bbox, const Vector row_step, const Vector column_step, const Vector fill_margin = 0,0, Region ptr
remaining_polygons = nil, const Box glue_box = ())

Description: Fills the given region with cells of the given type in enhanced mode with iterations

This version operates like fill_region, but repeats the fill generation until no further fill cells can be
placed. As the fill pattern origin changes between the iterations, narrow regions can be filled which
cannot with a fixed fill pattern origin. The fill_margin parameter is important as it controls the distance
between fill cells with a different origin and therefore introduces a safety distance between pitch-
incompatible arrays.

The origin is ignored unless a glue box is given. See fill_region for a description of this concept.

This method has been introduced in version 0.27.

(1) Signature: void flatten (bool prune)

Description: Flattens the given cell

prune: Set to true to remove orphan cells.

This method propagates all shapes from the hierarchy below into the given cell. It also removes the
instances of the cells from which the shapes came from, but does not remove the cells themselves if
prune is set to false. If prune is set to true, these cells are removed if not used otherwise.

A version of this method exists which allows one to specify the number of hierarchy levels to which
subcells are considered.

This method has been introduced in version 0.23.

flatten

(2) Signature: void flatten (int levels, bool prune)

Description: Flattens the given cell

levels: The number of hierarchy levels to flatten (-1: all, 0: none, 1: one
level etc.)

prune: Set to true to remove orphan cells.

This method propagates all shapes from the specified number of hierarchy levels below into the
given cell. It also removes the instances of the cells from which the shapes came from, but does not
remove the cells themselves if prune is set to false. If prune is set to true, these cells are removed if
not used otherwise.

This method has been introduced in version 0.23.

ghost_cell=
Signature: void ghost_cell= (bool flag)

Description: Sets the "ghost cell" flag

See is_ghost_cell? for a description of this property.

This method has been introduced in version 0.20.

Python specific notes:
The object exposes a writable attribute 'ghost_cell'. This is the setter.

has_prop_id?
Signature: [const] bool has_prop_id?

Description: Returns true, if the cell has user properties

For more details visit
https://www.klayout.org

Page 601 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

This method has been introduced in version 0.23.

hierarchy_levels
Signature: [const] unsigned int hierarchy_levels

Description: Returns the number of hierarchy levels below

This method returns the number of call levels below the current cell. If there are no child cells, this
method will return 0, if there are only direct children, it will return 1.

CAUTION: this method may be expensive!

(1) Signature: Instance insert (const Instance inst)

Description: Inserts a cell instance given by another reference

Returns: An Instance object representing the new instance

This method allows one to copy instances taken from a reference (an Instance object). This method
is not suited to inserting instances from other Layouts into this cell. For this purpose, the hierarchical
copy methods of Layout have to be used.

It has been added in version 0.16.

(2) Signature: Instance insert (const CellInstArray cell_inst_array)

Description: Inserts a cell instance (array)

Returns: An Instance object representing the new instance

With version 0.16, this method returns an Instance object that represents the new instance. It's use is
discouraged in readonly mode, since it invalidates other Instance references.

(3) Signature: Instance insert (const DCellInstArray cell_inst_array)

Description: Inserts a cell instance (array) given in micron units

Returns: An Instance object representing the new instance

This method inserts an instance array, similar to insert with a CellInstArray parameter. But in this
version, the argument is a cell instance array given in micrometer units. It is translated to database
units internally.

This variant has been introduced in version 0.25.

(4) Signature: Instance insert (const DCellInstArray cell_inst_array, unsigned long property_id)

Description: Inserts a cell instance (array) given in micron units with properties

Returns: An Instance object representing the new instance

This method inserts an instance array, similar to insert with a CellInstArray parameter and a property
set ID. But in this version, the argument is a cell instance array given in micrometer units. It is
translated to database units internally.

This variant has been introduced in version 0.25.

insert

(5) Signature: Instance insert (const CellInstArray cell_inst_array, unsigned long property_id)

Description: Inserts a cell instance (array) with properties

Returns: An Instance object representing the new instance

The property Id must be obtained from the Layout object's property_id method which associates
a property set with a property Id. With version 0.16, this method returns an Instance object that

For more details visit
https://www.klayout.org

Page 602 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

represents the new instance. It's use is discouraged in readonly mode, since it invalidates other
Instance references.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_empty?
Signature: [const] bool is_empty?

Description: Returns a value indicating whether the cell is empty

An empty cell is a cell not containing instances nor any shapes.

This method has been introduced in version 0.20.

is_ghost_cell?
Signature: [const] bool is_ghost_cell?

Description: Returns a value indicating whether the cell is a "ghost cell"

The ghost cell flag is used by the GDS reader for example to indicate that the cell is not located
inside the file. Upon writing the reader can determine whether to write the cell or not. To satisfy the
references inside the layout, a dummy cell is created in this case which has the "ghost cell" flag set
to true.

This method has been introduced in version 0.20.

is_leaf?
Signature: [const] bool is_leaf?

Description: Gets a value indicating whether the cell is a leaf cell

A cell is a leaf cell if there are no child instantiations.

is_library_cell?
Signature: [const] bool is_library_cell?

Description: Returns true, if the cell is a proxy cell pointing to a library cell

If the cell is imported from some library, this attribute returns true. Please note, that this attribute can
combine with is_pcell? for PCells imported from a library.

This method has been introduced in version 0.22.

(1) Signature: [const] bool is_pcell_variant?

Description: Returns true, if this cell is a pcell variant

this method returns true, if this cell represents a pcell with a distinct set of parameters (a PCell
proxy). This also is true, if the PCell is imported from a library.

Technically, PCells imported from a library are library proxies which are pointing to PCell variant
proxies. This scheme can even proceed over multiple indirections, i.e. a library using PCells from
another library.

This method has been introduced in version 0.22.

is_pcell_variant?

(2) Signature: [const] bool is_pcell_variant? (const Instance instance)

Description: Returns true, if this instance is a PCell variant

This method returns true, if this instance represents a PCell with a distinct set of parameters. This
method also returns true, if it is a PCell imported from a library.

For more details visit
https://www.klayout.org

Page 603 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

This method has been introduced in version 0.22.

is_proxy?
Signature: [const] bool is_proxy?

Description: Returns true, if the cell presents some external entity

A cell may represent some data which is imported from some other source, i.e. a library. Such cells
are called "proxy cells". For a library reference, the proxy cell is some kind of pointer to the library
and the cell within the library.

For PCells, this data can even be computed through some script. A PCell proxy represents all
instances with a given set of parameters.

Proxy cells cannot be modified, except that pcell parameters can be modified and PCell instances
can be recomputed.

This method has been introduced in version 0.22.

is_top?
Signature: [const] bool is_top?

Description: Gets a value indicating whether the cell is a top-level cell

A cell is a top-level cell if there are no parent instantiations.

is_valid?
Signature: [const] bool is_valid? (const Instance instance)

Description: Tests if the given Instance object is still pointing to a valid object

This method has been introduced in version 0.16. If the instance represented by the given reference
has been deleted, this method returns false. If however, another instance has been inserted already
that occupies the original instances position, this method will return true again.

(1) Signature: Layout ptr layout

Description: Returns a reference to the layout where the cell resides

this method has been introduced in version 0.22.

layout

(2) Signature: [const] const Layout ptr layout

Description: Returns a reference to the layout where the cell resides (const references)

this method has been introduced in version 0.22.

library
Signature: [const] Library ptr library

Description: Returns a reference to the library from which the cell is imported

if the cell is not imported from a library, this reference is nil.

this method has been introduced in version 0.22.

library_cell_index
Signature: [const] unsigned int library_cell_index

Description: Returns the index of the cell in the layout of the library (if it's a library proxy)

Together with the library method, it is possible to locate the source cell of a library proxy. The source
cell can be retrieved from a cell "c" with

c.library.layout.cell(c.library_cell_index)

This cell may be itself a proxy, i.e. for pcell libraries, where the library cells are pcell variants which
itself are proxies to a pcell.

For more details visit
https://www.klayout.org

Page 604 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

This method has been introduced in version 0.22.

(1) Signature: void move (unsigned int src, unsigned int dest)

Description: Moves the shapes from the source to the target layer

src: The layer index of the source layer

dest: The layer index of the destination layer

The destination layer is not overwritten. Instead, the shapes are added to the shapes of the
destination layer. This method will move shapes within the cell. To move shapes from another cell to
this cell, use the copy method with the cell parameter.

This method has been introduced in version 0.19.

move

(2) Signature: void move (Cell ptr src_cell, unsigned int src_layer, unsigned int dest)

Description: Moves shapes from another cell to the target layer in this cell

src_cell: The cell where to take the shapes from

src_layer: The layer index of the layer from which to take the shapes

dest: The layer index of the destination layer

This method will move all shapes on layer 'src_layer' of cell 'src_cell' to the layer 'dest' of this
cell. The destination layer is not overwritten. Instead, the shapes are added to the shapes of the
destination layer. If the source cell lives in a layout with a different database unit than that current cell
is in, the shapes will be transformed accordingly. The same way, shape properties are transformed
as well. Note that the shape transformation may require rounding to smaller coordinates. This may
result in a slight distortion of the original shapes, in particular when transforming into a layout with a
bigger database unit.

move_instances
Signature: void move_instances (Cell source_cell)

Description: Moves the instances of child cells in the source cell to this cell

source_cell: The cell where the instances are moved from

The source cell must reside in the same layout than this cell. The instances of child cells inside
the source cell are moved to this cell. No new cells are created, just new instances are created to
already existing cells in the target cell.

The instances will be added to any existing instances in the cell.

More elaborate methods of moving hierarchy trees between layouts are provided through the
move_tree_shapes (in cooperation with the CellMapping class) or move_tree methods.

This method has been added in version 0.23.

move_shapes
(1) Signature: void move_shapes (Cell source_cell)

Description: Moves the shapes from the given cell into this cell

source_cell: The cell from where to move shapes

All shapes are moved from the source cell to this cell. Instances are not moved.

The source cell can reside in a different layout. In this case, the shapes are moved over from the
other layout into this layout. Database unit conversion is done automatically if the database units
differ between the layouts. Note that this may lead to grid snapping effects if the database unit of the
target layout is not an integer fraction of the source layout.

If source and target layout are different, the layers of the source and target layout are identified by
their layer/datatype number or name (if no layer/datatype is present). The shapes will be added to
any shapes already in the cell.

For more details visit
https://www.klayout.org

Page 605 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

This method has been added in version 0.23.

(2) Signature: void move_shapes (Cell source_cell, const LayerMapping layer_mapping)

Description: Moves the shapes from the given cell into this cell

source_cell: The cell from where to move shapes

layer_mapping: A LayerMapping object that specifies which layers are
moved and where

All shapes on layers specified in the layer mapping object are moved from the source cell to this cell.
Instances are not moved. The target layer is taken from the mapping table.

The shapes will be added to any shapes already in the cell.

This method has been added in version 0.23.

move_tree
Signature: unsigned int[] move_tree (Cell source_cell)

Description: Moves the cell tree of the given cell into this cell

source_cell: The cell from where to move the cell tree

Returns: A list of indexes of newly created cells

The complete cell tree of the source cell is moved to the target cell plus all shapes in that tree are
moved as well. This method will basically rebuild the cell tree of the source cell and empty the source
cell.

The source cell may reside in a separate layout. This method therefore provides a way to move over
complete cell trees from one layout to another.

The shapes and instances will be added to any shapes or instances already in the cell.

This method has been added in version 0.23.

(1) Signature: void move_tree_shapes (Cell source_cell, const CellMapping cell_mapping)

Description: Moves the shapes from the given cell and the cell tree below into this cell or subcells of
this cell

source_cell: The starting cell from where to move shapes

cell_mapping: The cell mapping object that determines how cells are
identified between source and target layout

This method is provided if source and target cell reside in different layouts. If will move the shapes
from all cells below the given source cell, but use a cell mapping object that provides a specification
how cells are identified between the layouts. Cells in the source tree, for which no mapping is
provided, will be flattened - their shapes will be propagated into parent cells for which a mapping is
provided.

The cell mapping object provides various methods to map cell trees between layouts. See the
CellMapping class for details about the mapping methods available. The cell mapping object is also
responsible for creating a proper hierarchy of cells in the target layout if that is required.

Layers are identified between the layouts by the layer/datatype number of name if no layer/datatype
number is present.

The shapes moved will be added to any shapes already in the cells.

This method has been added in version 0.23.

move_tree_shapes

(2) Signature: void move_tree_shapes (Cell source_cell, const CellMapping cell_mapping, const
LayerMapping layer_mapping)

Description: Moves the shapes from the given cell and the cell tree below into this cell or subcells of
this cell with layer mapping

For more details visit
https://www.klayout.org

Page 606 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

source_cell: The cell from where to move shapes and instances

cell_mapping: The cell mapping object that determines how cells are
identified between source and target layout

This method is provided if source and target cell reside in different layouts. If will move the shapes
from all cells below the given source cell, but use a cell mapping object that provides a specification
how cells are identified between the layouts. Cells in the source tree, for which no mapping is
provided, will be flattened - their shapes will be propagated into parent cells for which a mapping is
provided.

The cell mapping object provides various methods to map cell trees between layouts. See the
CellMapping class for details about the mapping methods available. The cell mapping object is also
responsible for creating a proper hierarchy of cells in the target layout if that is required.

In addition, the layer mapping object can be specified which maps source to target layers. This
feature can be used to restrict the move operation to a subset of layers or to convert shapes to
different layers in that step.

The shapes moved will be added to any shapes already in the cells.

This method has been added in version 0.23.

name
Signature: [const] string name

Description: Gets the cell's name

This may be an internal name for proxy cells. See basic_name for the formal name (PCell name or
library cell name).

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'name'. This is the getter.

name=
Signature: void name= (string name)

Description: Renames the cell

Renaming a cell may cause name clashes, i.e. the name may be identical to the name of another
cell. This does not have any immediate effect, but the cell needs to be renamed, for example when
writing the layout to a GDS file.

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a writable attribute 'name'. This is the setter.

new
Signature: [static] new Cell ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

parent_cells
Signature: [const] unsigned long parent_cells

Description: Gets the number of parent cells

The number of parent cells (cells which reference our cell) is reported.

pcell_declaration
(1) Signature: [const] const PCellDeclaration ptr pcell_declaration

Description: Returns a reference to the PCell declaration

If this cell is not a PCell variant, this method returns nil. PCell variants are proxy cells which are PCell
incarnations for a specific parameter set. The PCellDeclaration object allows one to retrieve PCell
parameter definitions for example.

For more details visit
https://www.klayout.org

Page 607 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

This method has been introduced in version 0.22.

(2) Signature: [const] const PCellDeclaration ptr pcell_declaration (const Instance instance)

Description: Returns the PCell declaration of a pcell instance

If the instance is not a PCell instance, this method returns nil. The PCellDeclaration object allows one
to retrieve PCell parameter definitions for example.

This method has been introduced in version 0.22.

pcell_id
Signature: [const] unsigned int pcell_id

Description: Returns the PCell ID if the cell is a pcell variant

This method returns the ID which uniquely identifies the PCell within the layout where it's declared. It
can be used to retrieve the PCell declaration or to create new PCell variants.

The method will be rarely used. It's more convenient to use pcell_declaration to directly retrieve the
PCellDeclaration object for example.

This method has been introduced in version 0.22.

pcell_library
Signature: [const] Library ptr pcell_library

Description: Returns the library where the PCell is declared if this cell is a PCell and it is not defined
locally.

A PCell often is not declared within the current layout but in some library. This method returns a
reference to that library, which technically is the last of the chained library proxies. If this cell is not a
PCell or it is not located in a library, this method returns nil.

This method has been introduced in version 0.22.

(1) Signature: [const] variant pcell_parameter (string name)

Description: Gets a PCell parameter by name if the cell is a PCell variant

If the cell is a PCell variant, this method returns the parameter with the given name. If the cell is not a
PCell variant or the name is not a valid PCell parameter name, the return value is nil.

This method has been introduced in version 0.25.

pcell_parameter

(2) Signature: [const] variant pcell_parameter (const Instance instance, string name)

Description: Returns a PCell parameter by name for a pcell instance

If the given instance is a PCell instance, this method returns the value of the PCell parameter with
the given name. If the instance is not a PCell instance or the name is not a valid PCell parameter
name, this method returns nil.

This method has been introduced in version 0.25.

(1) Signature: [const] variant[] pcell_parameters

Description: Returns the PCell parameters for a pcell variant

If the cell is a PCell variant, this method returns a list of values for the PCell parameters. If the cell is
not a PCell variant, this method returns an empty list. This method also returns the PCell parameters
if the cell is a PCell imported from a library.

This method has been introduced in version 0.22.

pcell_parameters

(2) Signature: [const] variant[] pcell_parameters (const Instance instance)

Description: Returns the PCell parameters for a pcell instance

For more details visit
https://www.klayout.org

Page 608 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

If the given instance is a PCell instance, this method returns a list of values for the PCell parameters.
If the instance is not a PCell instance, this method returns an empty list.

This method has been introduced in version 0.22.

(1) Signature: [const] map<string,variant> pcell_parameters_by_name

Description: Returns the PCell parameters for a pcell variant as a name to value dictionary

If the cell is a PCell variant, this method returns a dictionary of values for the PCell parameters with
the parameter names as the keys. If the cell is not a PCell variant, this method returns an empty
dictionary. This method also returns the PCell parameters if the cell is a PCell imported from a
library.

This method has been introduced in version 0.24.

pcell_parameters_by_name

(2) Signature: [const] map<string,variant> pcell_parameters_by_name (const Instance instance)

Description: Returns the PCell parameters for a pcell instance as a name to value dictionary

If the given instance is a PCell instance, this method returns a dictionary of values for the PCell
parameters with the parameter names as the keys. If the instance is not a PCell instance, this
method returns an empty dictionary.

This method has been introduced in version 0.24.

prop_id
Signature: [const] unsigned long prop_id

Description: Gets the properties ID associated with the cell

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a readable attribute 'prop_id'. This is the getter.

prop_id=
Signature: void prop_id= (unsigned long id)

Description: Sets the properties ID associated with the cell

This method is provided, if a properties ID has been derived already. Usually it's more convenient to
use delete_property, set_property or property.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'prop_id'. This is the setter.

property
Signature: variant property (variant key)

Description: Gets the user property with the given key

This method is a convenience method that gets the property with the given key. If no property with
that key exists, it will return nil. Using that method is more convenient than using the layout object
and the properties ID to retrieve the property value. This method has been introduced in version
0.23.

prune_cell
(1) Signature: void prune_cell

Description: Deletes the cell plus subcells not used otherwise

This deletes the cell and also all sub cells of the cell which are not used otherwise. All instances of
this cell are deleted as well. A version of this method exists which allows one to specify the number
of hierarchy levels to which subcells are considered.

After the cell has been deleted, the Cell object becomes invalid. Do not access methods or attributes
of this object after deleting the cell.

For more details visit
https://www.klayout.org

Page 609 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

This method has been introduced in version 0.23.

(2) Signature: void prune_cell (int levels)

Description: Deletes the cell plus subcells not used otherwise

levels: The number of hierarchy levels to consider (-1: all, 0: none, 1: one
level etc.)

This deletes the cell and also all sub cells of the cell which are not used otherwise. The number of
hierarchy levels to consider can be specified as well. One level of hierarchy means that only the
direct children of the cell are deleted with the cell itself. All instances of this cell are deleted as well.

After the cell has been deleted, the Cell object becomes invalid. Do not access methods or attributes
of this object after deleting the cell.

This method has been introduced in version 0.23.

(1) Signature: void prune_subcells

Description: Deletes all sub cells of the cell which are not used otherwise

This deletes all sub cells of the cell which are not used otherwise. All instances of the deleted cells
are deleted as well. A version of this method exists which allows one to specify the number of
hierarchy levels to which subcells are considered.

This method has been introduced in version 0.23.

prune_subcells

(2) Signature: void prune_subcells (int levels)

Description: Deletes all sub cells of the cell which are not used otherwise down to the specified level
of hierarchy

levels: The number of hierarchy levels to consider (-1: all, 0: none, 1: one
level etc.)

This deletes all sub cells of the cell which are not used otherwise. All instances of the deleted cells
are deleted as well. It is possible to specify how many levels of hierarchy below the given root cell
are considered.

This method has been introduced in version 0.23.

qname
Signature: [const] string qname

Description: Returns the library-qualified name

Library cells will be indicated by returning a qualified name composed of the library name, a dot and
the basic cell name. For example: "Basic.TEXT" will be the qname of the TEXT cell of the Basic
library. For non-library cells, the qname is identical to the basic name (see name).

This method has been introduced in version 0.25.

refresh
Signature: void refresh

Description: Refreshes the cell

If the cell is a PCell or a proxy to a PCell in a library, this method recomputes the PCell. If the cell is a
library proxy, this method reloads the information from the library, but not the library itself.

This method has been introduced in version 0.22.

replace
(1) Signature: Instance replace (const Instance instance, const CellInstArray cell_inst_array)

Description: Replaces a cell instance (array) with a different one

Returns: An Instance object representing the new instance

For more details visit
https://www.klayout.org

Page 610 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

This method has been introduced in version 0.16. It can only be used in editable mode. The instance
given by the instance object (first argument) is replaced by the given instance (second argument).
The new object will not have any properties.

(2) Signature: Instance replace (const Instance instance, const CellInstArray cell_inst_array,
unsigned long property_id)

Description: Replaces a cell instance (array) with a different one with properties

Returns: An Instance object representing the new instance

This method has been introduced in version 0.16. It can only be used in editable mode. The instance
given by the instance object (first argument) is replaced by the given instance (second argument)
with the given properties Id. The property Id must be obtained from the Layout object's property_id
method which associates a property set with a property Id. The new object will not have any
properties.

(3) Signature: Instance replace (const Instance instance, const DCellInstArray cell_inst_array)

Description: Replaces a cell instance (array) with a different one, given in micrometer units

Returns: An Instance object representing the new instance

This method is identical to the corresponding replace variant with a CellInstArray argument. It
however accepts a micrometer-unit DCellInstArray object which is translated to database units
internally.

This variant has been introduced in version 0.25.

(4) Signature: Instance replace (const Instance instance, const DCellInstArray cell_inst_array,
unsigned long property_id)

Description: Replaces a cell instance (array) with a different one and new properties, where the cell
instance is given in micrometer units

Returns: An Instance object representing the new instance

This method is identical to the corresponding replace variant with a CellInstArray argument and
a property ID. It however accepts a micrometer-unit DCellInstArray object which is translated to
database units internally.

This variant has been introduced in version 0.25.

replace_prop_id
Signature: Instance replace_prop_id (const Instance instance, unsigned long property_id)

Description: Replaces (or install) the properties of a cell

Returns: An Instance object representing the new instance

This method has been introduced in version 0.16. It can only be used in editable mode. Changes the
properties Id of the given instance or install a properties Id on that instance if it does not have one
yet. The property Id must be obtained from the Layout object's property_id method which associates
a property set with a property Id.

set_property
Signature: void set_property (variant key, variant value)

Description: Sets the user property with the given key to the given value

This method is a convenience method that sets the property with the given key to the given value.
If no property with that key exists, it will create one. Using that method is more convenient than
creating a new property set with a new ID and assigning that properties ID. This method may change
the properties ID. Note: GDS only supports integer keys. OASIS supports numeric and string keys.
This method has been introduced in version 0.23.

For more details visit
https://www.klayout.org

Page 611 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

(1) Signature: Shapes shapes (unsigned int layer_index)

Description: Returns the shapes list of the given layer

index: The layer index of the shapes list to retrieve

Returns: A reference to the shapes list

This method gives access to the shapes list on a certain layer. If the layer does not exist yet, it is
created.

shapes

(2) Signature: [const] const Shapes ptr shapes (unsigned int layer_index)

Description: Returns the shapes list of the given layer (const version)

index: The layer index of the shapes list to retrieve

Returns: A reference to the shapes list

This method gives access to the shapes list on a certain layer. This is the const version - only const
(reading) methods can be called on the returned object.

This variant has been introduced in version 0.26.4.

swap
Signature: void swap (unsigned int layer_index1, unsigned int layer_index2)

Description: Swaps the layers given

This method swaps two layers inside this cell.

(1) Signature: Instance transform (const Instance instance, const Trans trans)

Description: Transforms the instance with the given transformation

Returns: A reference (an Instance object) to the new instance

This method has been introduced in version 0.16. The original instance may be deleted and re-
inserted by this method. Therefore, a new reference is returned. It is permitted in editable mode only.

(2) Signature: Instance transform (const Instance instance, const ICplxTrans trans)

Description: Transforms the instance with the given complex integer transformation

Returns: A reference (an Instance object) to the new instance

This method has been introduced in version 0.23. The original instance may be deleted and re-
inserted by this method. Therefore, a new reference is returned. It is permitted in editable mode only.

(3) Signature: Instance transform (const Instance instance, const DTrans trans)

Description: Transforms the instance with the transformation given in micrometer units

Returns: A reference (an Instance object) to the new instance

This method is identical to the corresponding transform method with a Trans argument. For this
variant however, the transformation is given in micrometer units and is translated to database units
internally.

This variant has been introduced in version 0.25.

transform

(4) Signature: Instance transform (const Instance instance, const DCplxTrans trans)

Description: Transforms the instance with the given complex floating-point transformation given in
micrometer units

Returns: A reference (an Instance object) to the new instance

For more details visit
https://www.klayout.org

Page 612 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

This method is identical to the corresponding transform method with a ICplxTrans argument. For this
variant however, the transformation is given in micrometer units and is translated to database units
internally.

This variant has been introduced in version 0.25.

(5) Signature: void transform (const Trans trans)

Description: Transforms the cell by the given integer transformation

This method transforms all instances and all shapes by the given transformation. There is a variant
called transform_into which applies the transformation to instances in a way such that it can be
applied recursively to the child cells.

This method has been introduced in version 0.26.7.

(6) Signature: void transform (const ICplxTrans trans)

Description: Transforms the cell by the given complex integer transformation

This method transforms all instances and all shapes by the given transformation. There is a variant
called transform_into which applies the transformation to instances in a way such that it can be
applied recursively to the child cells. The difference is important in the presence of magnifications:
"transform" will leave magnified instances while "transform_into" will not do so but expect the
magnification to be applied inside the called cells too.

This method has been introduced in version 0.26.7.

(7) Signature: void transform (const DTrans trans)

Description: Transforms the cell by the given, micrometer-unit transformation

This method transforms all instances and all shapes by the given transformation. There is a variant
called transform_into which applies the transformation to instances in a way such that it can be
applied recursively to the child cells.

This method has been introduced in version 0.26.7.

(8) Signature: void transform (const DCplxTrans trans)

Description: Transforms the cell by the given, micrometer-unit transformation

This method transforms all instances and all shapes by the given transformation. There is a variant
called transform_into which applies the transformation to instances in a way such that it can be
applied recursively to the child cells. The difference is important in the presence of magnifications:
"transform" will leave magnified instances while "transform_into" will not do so but expect the
magnification to be applied inside the called cells too.

This method has been introduced in version 0.26.7.

transform_into
(1) Signature: Instance transform_into (const Instance instance, const Trans trans)

Description: Transforms the instance into a new coordinate system with the given transformation

Returns: A reference (an Instance object) to the new instance

In contrast to the transform method, this method allows propagation of the transformation into child
cells. More precisely: it applies just a part of the given transformation to the instance, such that
when transforming the cell instantiated and it's shapes with the same transformation, the result will
reflect the desired transformation. Mathematically spoken, the transformation of the instance (A) is
transformed with the given transformation T using "A' = T * A * Tinv" where Tinv is the inverse of T. In
effect, the transformation T commutes with the new instance transformation A' and can be applied to
child cells as well. This method is therefore useful to transform a hierarchy of cells.

For more details visit
https://www.klayout.org

Page 613 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

This method has been introduced in version 0.23. The original instance may be deleted and re-
inserted by this method. Therefore, a new reference is returned. It is permitted in editable mode only.

(2) Signature: Instance transform_into (const Instance instance, const ICplxTrans trans)

Description: Transforms the instance into a new coordinate system with the given complex integer
transformation

Returns: A reference (an Instance object) to the new instance

See the comments for the simple-transformation version for a description of this method. This
method has been introduced in version 0.23. The original instance may be deleted and re-inserted by
this method. Therefore, a new reference is returned. It is permitted in editable mode only.

(3) Signature: void transform_into (const Trans trans)

Description: Transforms the cell into a new coordinate system with the given transformation

This method transforms all instances and all shapes. The instances are transformed in a way that
allows propagation of the transformation into child cells. For this, it applies just a part of the given
transformation to the instance such that when transforming the shapes of the cell instantiated,
the result will reflect the desired transformation. Mathematically spoken, the transformation of the
instance (A) is transformed with the given transformation T using "A' = T * A * Tinv" where Tinv is the
inverse of T. In effect, the transformation T commutes with the new instance transformation A' and
can be applied to child cells as well. This method is therefore useful to transform a hierarchy of cells.

It has been introduced in version 0.23.

(4) Signature: void transform_into (const ICplxTrans trans)

Description: Transforms the cell into a new coordinate system with the given complex integer
transformation

See the comments for the simple-transformation version for a description of this method. This
method has been introduced in version 0.23.

(5) Signature: Instance transform_into (const Instance instance, const DTrans trans)

Description: Transforms the instance into a new coordinate system with the given transformation
where the transformation is in micrometer units

Returns: A reference (an Instance object) to the new instance

This method is identical to the corresponding transform_into method with a Trans argument. For this
variant however, the transformation is given in micrometer units and is translated to database units
internally.

This variant has been introduced in version 0.25.

(6) Signature: Instance transform_into (const Instance instance, const DCplxTrans trans)

Description: Transforms the instance into a new coordinate system with the given complex
transformation where the transformation is in micrometer units

Returns: A reference (an Instance object) to the new instance

This method is identical to the corresponding transform_into method with a ICplxTrans argument. For
this variant however, the transformation is given in micrometer units and is translated to database
units internally.

This variant has been introduced in version 0.25.

(7) Signature: void transform_into (const DTrans trans)

For more details visit
https://www.klayout.org

Page 614 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.17. API reference - Class Cell

Description: Transforms the cell into a new coordinate system with the given transformation where
the transformation is in micrometer units

This method is identical to the corresponding transform_into method with a Trans argument. For this
variant however, the transformation is given in micrometer units and is translated to database units
internally.

This variant has been introduced in version 0.25.

(8) Signature: void transform_into (const DCplxTrans trans)

Description: Transforms the cell into a new coordinate system with the given complex integer
transformation where the transformation is in micrometer units

This method is identical to the corresponding transform_into method with a ICplxTrans argument. For
this variant however, the transformation is given in micrometer units and is translated to database
units internally.

This variant has been introduced in version 0.25.

(1) Signature: [const] void write (string file_name)

Description: Writes the cell to a layout file

The format of the file will be determined from the file name. Only the cell and it's subtree below will
be saved.

This method has been introduced in version 0.23.

write

(2) Signature: [const] void write (string file_name, const SaveLayoutOptions options)

Description: Writes the cell to a layout file

The format of the file will be determined from the file name. Only the cell and it's subtree below will
be saved. In contrast to the other 'write' method, this version allows one to specify save options, i.e.
scaling etc.

This method has been introduced in version 0.23.

For more details visit
https://www.klayout.org

Page 615 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

4.18. API reference - Class Instance
Notation used in Ruby API documentation

Module: db

Description: An instance proxy

An instance proxy is basically a pointer to an instance of different kinds, similar to Shape, the shape proxy. Instance objects can be
duplicated without creating copies of the instances itself: the copy will still point to the same instance than the original.

When the Instance object is modified, the actual instance behind it is modified. The Instance object acts as a simplified interface for single
and array instances with or without properties.

See The Database API for more details about the database objects.

Public constructors

new Instance ptr new Creates a new object of this class

Public methods

[const] bool != (const Instance
b)

Tests for inequality of two Instance objects

[const] bool < (const Instance
b)

Provides an order criterion for two Instance objects

[const] bool == (const Instance
b)

Tests for equality of two Instance objects

[const] variant [] (variant key) Gets the user property with the given key or, if
available, the PCell parameter with the name given
by the key

void []= (variant key,
variant value)

Sets the user property with the given key or, if
available, the PCell parameter with the name given
by the key

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

[const] Vector a Returns the displacement vector for the 'a' axis

void a= (const Vector a) Sets the displacement vector for the 'a' axis

For more details visit
https://www.klayout.org

Page 616 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

void a= (const DVector a) Sets the displacement vector for the 'a' axis in
micrometer units

void assign (const Instance
other)

Assigns another object to self

[const] Vector b Returns the displacement vector for the 'b' axis

void b= (const Vector b) Sets the displacement vector for the 'b' axis

void b= (const DVector b) Sets the displacement vector for the 'b' axis in
micrometer units

[const] Box bbox Gets the bounding box of the instance

[const] Box bbox_per_layer (unsigned int
layer_index)

Gets the bounding box of the instance for a given
layer

Cell ptr cell Gets the Cell object of the cell this instance refers
to

[const] const Cell ptr cell Gets the Cell object of the cell this instance refers
to

void cell= (const Cell ptr
cell)

Sets the Cell object this instance refers to

[const] unsigned int cell_index Get the index of the cell this instance refers to

void cell_index= (unsigned int
cell_index)

Sets the index of the cell this instance refers to

[const] CellInstArray cell_inst Gets the basic CellInstArray object associated with
this instance reference.

void cell_inst= (const
CellInstArray
inst)

Changes the CellInstArray object to the given one.

void cell_inst= (const
DCellInstArray
inst)

Returns the basic cell instance array object by
giving a micrometer unit object.

void change_pcell_parameter(string name,
variant value)

Changes a single parameter of a PCell instance to
the given value

void change_pcell_parameters(variant[]
params)

Changes the parameters of a PCell instance to the
list of parameters

void change_pcell_parameters(map<string,variant>
dict)

Changes the parameters of a PCell instance to the
dictionary of parameters

void convert_to_static Converts a PCell instance to a static cell

[const] ICplxTrans cplx_trans Gets the complex transformation of the instance or
the first instance in the array

void cplx_trans= (const
ICplxTrans arg1)

Sets the complex transformation of the instance or
the first instance in the array

For more details visit
https://www.klayout.org

Page 617 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

void cplx_trans= (const
DCplxTrans
arg1)

Sets the complex transformation of the instance or
the first instance in the array (in micrometer units)

[const] DVector da Returns the displacement vector for the 'a' axis in
micrometer units

void da= (const DVector a) Sets the displacement vector for the 'a' axis in
micrometer units

[const] DVector db Returns the displacement vector for the 'b' axis in
micrometer units

void db= (const DVector b) Sets the displacement vector for the 'b' axis in
micrometer units

[const] DBox dbbox Gets the bounding box of the instance in micron
units

[const] DBox dbbox_per_layer (unsigned int
layer_index)

Gets the bounding box of the instance in micron
units

DCellInstArray dcell_inst Returns the micrometer unit version of the basic
cell instance array object.

void dcell_inst= (const
DCellInstArray
inst)

Returns the basic cell instance array object by
giving a micrometer unit object.

[const] DCplxTrans dcplx_trans Gets the complex transformation of the instance or
the first instance in the array (in micrometer units)

void dcplx_trans= (const
DCplxTrans
arg1)

Sets the complex transformation of the instance or
the first instance in the array (in micrometer units)

void delete Deletes this instance

void delete_property (variant key) Deletes the user property with the given key

[const] DTrans dtrans Gets the transformation of the instance or the first
instance in the array (in micrometer units)

void dtrans= (const DTrans
arg1)

Sets the transformation of the instance or the first
instance in the array (in micrometer units)

[const] new Instance ptr dup Creates a copy of self

void explode Explodes the instance array

void flatten Flattens the instance

void flatten (int levels) Flattens the instance

[const] bool has_prop_id? Returns true, if the instance has properties

[const] bool is_complex? Tests, if the array is a complex array

For more details visit
https://www.klayout.org

Page 618 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

[const] bool is_null? Checks, if the instance is a valid one

[const] bool is_pcell? Returns a value indicating whether the instance is
a PCell instance

[const] bool is_regular_array? Tests, if this instance is a regular array

[const] bool is_valid? Tests if the Instance object is still pointing to a
valid instance

Layout ptr layout Gets the layout this instance is contained in

[const] const Layout ptr layout Gets the layout this instance is contained in

[const] unsigned long na Returns the number of instances in the 'a' axis

void na= (unsigned long
na)

Sets the number of instances in the 'a' axis

[const] unsigned long nb Returns the number of instances in the 'b' axis

void nb= (unsigned long
nb)

Sets the number of instances in the 'b' axis

Cell ptr parent_cell Gets the cell this instance is contained in

[const] const Cell ptr parent_cell Gets the cell this instance is contained in

void parent_cell= (Cell ptr arg1) Moves the instance to a different cell

[const] const
PCellDeclaration
ptr

pcell_declaration Returns the PCell declaration object

[const] variant pcell_parameter (string name) Gets a PCell parameter by the name of the
parameter

[const] variant[] pcell_parameters Gets the parameters of a PCell instance as a list of
values

[const] map<string,variant> pcell_parameters_by_name Gets the parameters of a PCell instance as a
dictionary of values vs. names

[const] unsigned long prop_id Gets the properties ID associated with the instance

void prop_id= (unsigned long
id)

Sets the properties ID associated with the instance

[const] variant property (variant key) Gets the user property with the given key

void set_property (variant key,
variant value)

Sets the user property with the given key to the
given value

[const] unsigned long size Gets the number of single instances in the
instance array

[const] string to_s Creates a string showing the contents of the
reference

For more details visit
https://www.klayout.org

Page 619 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

[const] string to_s (bool
with_cellname)

Creates a string showing the contents of the
reference

[const] Trans trans Gets the transformation of the instance or the first
instance in the array

void trans= (const Trans
arg1)

Sets the transformation of the instance or the first
instance in the array

void trans= (const DTrans
arg1)

Sets the transformation of the instance or the first
instance in the array (in micrometer units)

void transform (const Trans t) Transforms the instance array with the given
transformation

void transform (const
ICplxTrans t)

Transforms the instance array with the given
complex transformation

void transform (const DTrans t) Transforms the instance array with the given
transformation (given in micrometer units)

void transform (const
DCplxTrans t)

Transforms the instance array with the given
complex transformation (given in micrometer units)

void transform_into (const Trans t) Transforms the instance array with the given
transformation

void transform_into (const
ICplxTrans t)

Transforms the instance array with the given
transformation

void transform_into (const DTrans t) Transforms the instance array with the given
transformation (given in micrometer units)

void transform_into (const
DCplxTrans t)

Transforms the instance array with the given
complex transformation (given in micrometer units)

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

!=
Signature: [const] bool != (const Instance b)

Description: Tests for inequality of two Instance objects

Warning: this operator returns true if both objects refer to the same instance, not just identical ones.

For more details visit
https://www.klayout.org

Page 620 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

<
Signature: [const] bool < (const Instance b)

Description: Provides an order criterion for two Instance objects

Warning: this operator is just provided to establish any order, not a particular one.

==
Signature: [const] bool == (const Instance b)

Description: Tests for equality of two Instance objects

See the hint on the < operator.

[]
Signature: [const] variant [] (variant key)

Description: Gets the user property with the given key or, if available, the PCell parameter with the
name given by the key

Getting the PCell parameter has priority over the user property. This method has been introduced in
version 0.25.

[]=
Signature: void []= (variant key, variant value)

Description: Sets the user property with the given key or, if available, the PCell parameter with the
name given by the key

Setting the PCell parameter has priority over the user property. This method has been introduced in
version 0.25.

Python specific notes:
This method is not available for Python

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

For more details visit
https://www.klayout.org

Page 621 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

a
Signature: [const] Vector a

Description: Returns the displacement vector for the 'a' axis

Starting with version 0.25 the displacement is of vector type.

Python specific notes:
The object exposes a readable attribute 'a'. This is the getter.

(1) Signature: void a= (const Vector a)

Description: Sets the displacement vector for the 'a' axis

If the instance was not an array instance before it is made one.

This method has been introduced in version 0.23. Starting with version 0.25 the displacement is of
vector type.

Python specific notes:
The object exposes a writable attribute 'a'. This is the setter.

a=

(2) Signature: void a= (const DVector a)

Description: Sets the displacement vector for the 'a' axis in micrometer units

Like a= with an integer displacement, this method will set the displacement vector but it accepts a
vector in micrometer units that is of DVector type. The vector will be translated to database units
internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'a'. This is the setter. The object exposes a writable attribute
'da'. This is the setter.

assign
Signature: void assign (const Instance other)

Description: Assigns another object to self

b
Signature: [const] Vector b

Description: Returns the displacement vector for the 'b' axis

Starting with version 0.25 the displacement is of vector type.

Python specific notes:

For more details visit
https://www.klayout.org

Page 622 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

The object exposes a readable attribute 'b'. This is the getter.

(1) Signature: void b= (const Vector b)

Description: Sets the displacement vector for the 'b' axis

If the instance was not an array instance before it is made one.

This method has been introduced in version 0.23. Starting with version 0.25 the displacement is of
vector type.

Python specific notes:
The object exposes a writable attribute 'b'. This is the setter.

b=

(2) Signature: void b= (const DVector b)

Description: Sets the displacement vector for the 'b' axis in micrometer units

Like b= with an integer displacement, this method will set the displacement vector but it accepts a
vector in micrometer units that is of DVector type. The vector will be translated to database units
internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'b'. This is the setter. The object exposes a writable attribute
'db'. This is the setter.

bbox
Signature: [const] Box bbox

Description: Gets the bounding box of the instance

The bounding box incorporates all instances that the array represents. It gives the overall extension
of the child cell as seen in the calling cell (or all array members if the instance forms an array). This
method has been introduced in version 0.23.

bbox_per_layer
Signature: [const] Box bbox_per_layer (unsigned int layer_index)

Description: Gets the bounding box of the instance for a given layer

layer_index: The index of the layer the bounding box will be computed
for.

The bounding box incorporates all instances that the array represents. It gives the overall extension
of the child cell as seen in the calling cell (or all array members if the instance forms an array) for
the given layer. If the layer is empty in this cell and all it's children', an empty bounding box will be
returned. This method has been introduced in version 0.25.

(1) Signature: Cell ptr cell

Description: Gets the Cell object of the cell this instance refers to

Please note that before version 0.23 this method returned the cell the instance is contained in. For
consistency, this method has been renamed parent_cell.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a readable attribute 'cell'. This is the getter.

cell

(2) Signature: [const] const Cell ptr cell

Description: Gets the Cell object of the cell this instance refers to

For more details visit
https://www.klayout.org

Page 623 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

This is the const version of the cell method. It will return a const Cell object and itself can be called on
a const Instance object.

This variant has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'cell'. This is the getter.

cell=
Signature: void cell= (const Cell ptr cell)

Description: Sets the Cell object this instance refers to

Setting the cell object to nil is equivalent to deleting the instance.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'cell'. This is the setter.

cell_index
Signature: [const] unsigned int cell_index

Description: Get the index of the cell this instance refers to

Python specific notes:
The object exposes a readable attribute 'cell_index'. This is the getter.

cell_index=
Signature: void cell_index= (unsigned int cell_index)

Description: Sets the index of the cell this instance refers to

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'cell_index'. This is the setter.

cell_inst
Signature: [const] CellInstArray cell_inst

Description: Gets the basic CellInstArray object associated with this instance reference.

Python specific notes:
The object exposes a readable attribute 'cell_inst'. This is the getter.

(1) Signature: void cell_inst= (const CellInstArray inst)

Description: Changes the CellInstArray object to the given one.

This method replaces the instance by the given CellInstArray object.

This method has been introduced in version 0.22

Python specific notes:
The object exposes a writable attribute 'cell_inst'. This is the setter.

cell_inst=

(2) Signature: void cell_inst= (const DCellInstArray inst)

Description: Returns the basic cell instance array object by giving a micrometer unit object.

This method replaces the instance by the given CellInstArray object and it internally transformed into
database units.

This method has been introduced in version 0.25

Python specific notes:
The object exposes a writable attribute 'cell_inst'. This is the setter. The object exposes a writable
attribute 'dcell_inst'. This is the setter.

For more details visit
https://www.klayout.org

Page 624 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

change_pcell_parameter
Signature: void change_pcell_parameter (string name, variant value)

Description: Changes a single parameter of a PCell instance to the given value

This method changes a parameter of a PCell instance to the given value. The name identifies the
PCell parameter and must correspond to one parameter listed in the PCell declaration.

This method has been introduced in version 0.24.

(1) Signature: void change_pcell_parameters (variant[] params)

Description: Changes the parameters of a PCell instance to the list of parameters

This method changes the parameters of a PCell instance to the given list of parameters. The list
must correspond to the parameters listed in the pcell declaration. A more convenient method is
provided with the same name which accepts a dictionary of names and values . This method has
been introduced in version 0.24.

change_pcell_parameters

(2) Signature: void change_pcell_parameters (map<string,variant> dict)

Description: Changes the parameters of a PCell instance to the dictionary of parameters

This method changes the parameters of a PCell instance to the given values. The values are specifies
as a dictionary of names (keys) vs. values. Unknown names are ignored and only the parameters
listed in the dictionary are changed.

This method has been introduced in version 0.24.

convert_to_static
Signature: void convert_to_static

Description: Converts a PCell instance to a static cell

If the instance is a PCell instance, this method will convert the cell into a static cell and remove the
PCell variant if required. A new cell will be created containing the PCell content but being a static cell.
If the instance is not a PCell instance, this method won't do anything.

This method has been introduced in version 0.24.

cplx_trans
Signature: [const] ICplxTrans cplx_trans

Description: Gets the complex transformation of the instance or the first instance in the array

This method is always valid compared to trans, since simple transformations can be expressed as
complex transformations as well.

Python specific notes:
The object exposes a readable attribute 'cplx_trans'. This is the getter.

(1) Signature: void cplx_trans= (const ICplxTrans arg1)

Description: Sets the complex transformation of the instance or the first instance in the array

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'cplx_trans'. This is the setter.

cplx_trans=

(2) Signature: void cplx_trans= (const DCplxTrans arg1)

Description: Sets the complex transformation of the instance or the first instance in the array (in
micrometer units)

This method sets the transformation the same way as cplx_trans=, but the displacement of this
transformation is given in micrometer units. It is internally translated into database units.

For more details visit
https://www.klayout.org

Page 625 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'cplx_trans'. This is the setter. The object exposes a writable
attribute 'dcplx_trans'. This is the setter.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

da
Signature: [const] DVector da

Description: Returns the displacement vector for the 'a' axis in micrometer units

Like a, this method returns the displacement, but it will be translated to database units internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'da'. This is the getter.

da=
Signature: void da= (const DVector a)

Description: Sets the displacement vector for the 'a' axis in micrometer units

Like a= with an integer displacement, this method will set the displacement vector but it accepts a
vector in micrometer units that is of DVector type. The vector will be translated to database units
internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'a'. This is the setter. The object exposes a writable attribute
'da'. This is the setter.

db
Signature: [const] DVector db

Description: Returns the displacement vector for the 'b' axis in micrometer units

Like b, this method returns the displacement, but it will be translated to database units internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'db'. This is the getter.

db=
Signature: void db= (const DVector b)

Description: Sets the displacement vector for the 'b' axis in micrometer units

Like b= with an integer displacement, this method will set the displacement vector but it accepts a
vector in micrometer units that is of DVector type. The vector will be translated to database units
internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'b'. This is the setter. The object exposes a writable attribute
'db'. This is the setter.

For more details visit
https://www.klayout.org

Page 626 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

dbbox
Signature: [const] DBox dbbox

Description: Gets the bounding box of the instance in micron units

Gets the bounding box (see bbox) of the instance, but will compute the micrometer unit box by
multiplying bbox with the database unit.

This method has been introduced in version 0.25.

dbbox_per_layer
Signature: [const] DBox dbbox_per_layer (unsigned int layer_index)

Description: Gets the bounding box of the instance in micron units

layer_index: The index of the layer the bounding box will be computed
for.

Gets the bounding box (see bbox_per_layer) of the instance, but will compute the micrometer unit box
by multiplying bbox_per_layer with the database unit.

This method has been introduced in version 0.25.

dcell_inst
Signature: DCellInstArray dcell_inst

Description: Returns the micrometer unit version of the basic cell instance array object.

This method has been introduced in version 0.25

Python specific notes:
The object exposes a readable attribute 'dcell_inst'. This is the getter.

dcell_inst=
Signature: void dcell_inst= (const DCellInstArray inst)

Description: Returns the basic cell instance array object by giving a micrometer unit object.

This method replaces the instance by the given CellInstArray object and it internally transformed into
database units.

This method has been introduced in version 0.25

Python specific notes:
The object exposes a writable attribute 'cell_inst'. This is the setter. The object exposes a writable
attribute 'dcell_inst'. This is the setter.

dcplx_trans
Signature: [const] DCplxTrans dcplx_trans

Description: Gets the complex transformation of the instance or the first instance in the array (in
micrometer units)

This method returns the same transformation as cplx_trans, but the displacement of this
transformation is given in micrometer units. It is internally translated from database units into
micrometers.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'dcplx_trans'. This is the getter.

dcplx_trans=
Signature: void dcplx_trans= (const DCplxTrans arg1)

Description: Sets the complex transformation of the instance or the first instance in the array (in
micrometer units)

This method sets the transformation the same way as cplx_trans=, but the displacement of this
transformation is given in micrometer units. It is internally translated into database units.

This method has been introduced in version 0.25.

Python specific notes:

For more details visit
https://www.klayout.org

Page 627 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

The object exposes a writable attribute 'cplx_trans'. This is the setter. The object exposes a writable
attribute 'dcplx_trans'. This is the setter.

delete
Signature: void delete

Description: Deletes this instance

After this method was called, the instance object is pointing to nothing.

This method has been introduced in version 0.23.

delete_property
Signature: void delete_property (variant key)

Description: Deletes the user property with the given key

This method is a convenience method that deletes the property with the given key. It does nothing if
no property with that key exists. Using that method is more convenient than creating a new property
set with a new ID and assigning that properties ID. This method may change the properties ID. Calling
this method may invalidate any iterators. It should not be called inside a loop iterating over instances.

This method has been introduced in version 0.22.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dtrans
Signature: [const] DTrans dtrans

Description: Gets the transformation of the instance or the first instance in the array (in micrometer
units)

This method returns the same transformation as cplx_trans, but the displacement of this
transformation is given in micrometer units. It is internally translated from database units into
micrometers.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'dtrans'. This is the getter.

dtrans=
Signature: void dtrans= (const DTrans arg1)

Description: Sets the transformation of the instance or the first instance in the array (in micrometer
units)

This method sets the transformation the same way as cplx_trans=, but the displacement of this
transformation is given in micrometer units. It is internally translated into database units.

This method has been introduced in version 0.25.

Python specific notes:

For more details visit
https://www.klayout.org

Page 628 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

The object exposes a writable attribute 'trans'. This is the setter. The object exposes a writable
attribute 'dtrans'. This is the setter.

dup
Signature: [const] new Instance ptr dup

Description: Creates a copy of self

explode
Signature: void explode

Description: Explodes the instance array

This method does nothing if the instance was not an array before. The instance object will point to the
first instance of the array afterwards.

This method has been introduced in version 0.23.

(1) Signature: void flatten

Description: Flattens the instance

This method will convert the instance to a number of shapes which are equivalent to the content of
the cell. The instance itself will be removed. There is another variant of this method which allows
specification of the number of hierarchy levels to flatten.

This method has been introduced in version 0.24.

flatten

(2) Signature: void flatten (int levels)

Description: Flattens the instance

This method will convert the instance to a number of shapes which are equivalent to the content of
the cell. The instance itself will be removed. This version of the method allows specification of the
number of hierarchy levels to remove. Specifying 1 for 'levels' will remove the instance and replace it
by the contents of the cell. Specifying a negative value or zero for the number of levels will flatten the
instance completely.

This method has been introduced in version 0.24.

has_prop_id?
Signature: [const] bool has_prop_id?

Description: Returns true, if the instance has properties

is_complex?
Signature: [const] bool is_complex?

Description: Tests, if the array is a complex array

Returns true if the array represents complex instances (that is, with magnification and arbitrary
rotation angles).

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_null?
Signature: [const] bool is_null?

Description: Checks, if the instance is a valid one

For more details visit
https://www.klayout.org

Page 629 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

is_pcell?
Signature: [const] bool is_pcell?

Description: Returns a value indicating whether the instance is a PCell instance

This method has been introduced in version 0.24.

is_regular_array?
Signature: [const] bool is_regular_array?

Description: Tests, if this instance is a regular array

is_valid?
Signature: [const] bool is_valid?

Description: Tests if the Instance object is still pointing to a valid instance

If the instance represented by the given reference has been deleted, this method returns false. If
however, another instance has been inserted already that occupies the original instances position, this
method will return true again.

This method has been introduced in version 0.23 and is a shortcut for "inst.cell.is_valid?(inst)".

(1) Signature: Layout ptr layout

Description: Gets the layout this instance is contained in

This method has been introduced in version 0.22.

layout

(2) Signature: [const] const Layout ptr layout

Description: Gets the layout this instance is contained in

This const version of the method has been introduced in version 0.25.

na
Signature: [const] unsigned long na

Description: Returns the number of instances in the 'a' axis

Python specific notes:
The object exposes a readable attribute 'na'. This is the getter.

na=
Signature: void na= (unsigned long na)

Description: Sets the number of instances in the 'a' axis

If the instance was not an array instance before it is made one.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'na'. This is the setter.

nb
Signature: [const] unsigned long nb

Description: Returns the number of instances in the 'b' axis

Python specific notes:
The object exposes a readable attribute 'nb'. This is the getter.

nb=
Signature: void nb= (unsigned long nb)

Description: Sets the number of instances in the 'b' axis

If the instance was not an array instance before it is made one.

This method has been introduced in version 0.23.

For more details visit
https://www.klayout.org

Page 630 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

Python specific notes:
The object exposes a writable attribute 'nb'. This is the setter.

new
Signature: [static] new Instance ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

(1) Signature: Cell ptr parent_cell

Description: Gets the cell this instance is contained in

Returns nil if the instance does not live inside a cell. This method was named "cell" previously which
lead to confusion with cell_index. It was renamed to "parent_cell" in version 0.23.

Python specific notes:
The object exposes a readable attribute 'parent_cell'. This is the getter.

parent_cell

(2) Signature: [const] const Cell ptr parent_cell

Description: Gets the cell this instance is contained in

Returns nil if the instance does not live inside a cell.

This const version of the parent_cell method has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'parent_cell'. This is the getter.

parent_cell=
Signature: void parent_cell= (Cell ptr arg1)

Description: Moves the instance to a different cell

Both the current and the target cell must live in the same layout.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'parent_cell'. This is the setter.

pcell_declaration
Signature: [const] const PCellDeclaration ptr pcell_declaration

Description: Returns the PCell declaration object

If the instance is a PCell instance, this method returns the PCell declaration object for that PCell. If
not, this method will return nil. This method has been introduced in version 0.24.

pcell_parameter
Signature: [const] variant pcell_parameter (string name)

Description: Gets a PCell parameter by the name of the parameter

Returns: The parameter value or nil if the instance is not a PCell or does not
have a parameter with given name

This method has been introduced in version 0.25.

pcell_parameters
Signature: [const] variant[] pcell_parameters

Description: Gets the parameters of a PCell instance as a list of values

Returns: A list of values

For more details visit
https://www.klayout.org

Page 631 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

If the instance is a PCell instance, this method will return an array of values where each value
corresponds to one parameter. The order of the values is the order the parameters are declared in the
PCell declaration. If the instance is not a PCell instance, this list returned will be empty.

This method has been introduced in version 0.24.

pcell_parameters_by_name
Signature: [const] map<string,variant> pcell_parameters_by_name

Description: Gets the parameters of a PCell instance as a dictionary of values vs. names

Returns: A dictionary of values by parameter name

If the instance is a PCell instance, this method will return a map of values vs. parameter names.
The names are the ones defined in the PCell declaration.If the instance is not a PCell instance, the
dictionary returned will be empty.

This method has been introduced in version 0.24.

prop_id
Signature: [const] unsigned long prop_id

Description: Gets the properties ID associated with the instance

Python specific notes:
The object exposes a readable attribute 'prop_id'. This is the getter.

prop_id=
Signature: void prop_id= (unsigned long id)

Description: Sets the properties ID associated with the instance

This method is provided, if a properties ID has been derived already. Usually it's more convenient to
use delete_property, set_property or property.

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a writable attribute 'prop_id'. This is the setter.

property
Signature: [const] variant property (variant key)

Description: Gets the user property with the given key

This method is a convenience method that gets the property with the given key. If no property with
that key exists, it will return nil. Using that method is more convenient than using the layout object and
the properties ID to retrieve the property value. This method has been introduced in version 0.22.

set_property
Signature: void set_property (variant key, variant value)

Description: Sets the user property with the given key to the given value

This method is a convenience method that sets the property with the given key to the given value. If
no property with that key exists, it will create one. Using that method is more convenient than creating
a new property set with a new ID and assigning that properties ID. This method may change the
properties ID. Note: GDS only supports integer keys. OASIS supports numeric and string keys. Calling
this method may invalidate any iterators. It should not be called inside a loop iterating over instances.

This method has been introduced in version 0.22.

size
Signature: [const] unsigned long size

Description: Gets the number of single instances in the instance array

If the instance represents a single instance, the count is 1. Otherwise it is na*nb.

Python specific notes:
This method is also available as 'len(object)'

For more details visit
https://www.klayout.org

Page 632 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

(1) Signature: [const] string to_s

Description: Creates a string showing the contents of the reference

This method has been introduced with version 0.16.

Python specific notes:
This method is also available as 'str(object)'

to_s

(2) Signature: [const] string to_s (bool with_cellname)

Description: Creates a string showing the contents of the reference

Passing true to with_cellname makes the string contain the cellname instead of the cell index

This method has been introduced with version 0.23.

Python specific notes:
This method is also available as 'str(object)'

trans
Signature: [const] Trans trans

Description: Gets the transformation of the instance or the first instance in the array

The transformation returned is only valid if the array does not represent a complex transformation
array

Python specific notes:
The object exposes a readable attribute 'trans'. This is the getter.

(1) Signature: void trans= (const Trans arg1)

Description: Sets the transformation of the instance or the first instance in the array

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'trans'. This is the setter.

trans=

(2) Signature: void trans= (const DTrans arg1)

Description: Sets the transformation of the instance or the first instance in the array (in micrometer
units)

This method sets the transformation the same way as cplx_trans=, but the displacement of this
transformation is given in micrometer units. It is internally translated into database units.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'trans'. This is the setter. The object exposes a writable
attribute 'dtrans'. This is the setter.

(1) Signature: void transform (const Trans t)

Description: Transforms the instance array with the given transformation

See Cell#transform for a description of this method.

This method has been introduced in version 0.23.

transform

(2) Signature: void transform (const ICplxTrans t)

Description: Transforms the instance array with the given complex transformation

See Cell#transform for a description of this method.

For more details visit
https://www.klayout.org

Page 633 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.18. API reference - Class Instance

This method has been introduced in version 0.23.

(3) Signature: void transform (const DTrans t)

Description: Transforms the instance array with the given transformation (given in micrometer units)

Transforms the instance like transform does, but with a transformation given in micrometer units. The
displacement of this transformation is given in micrometers and is internally translated to database
units.

This method has been introduced in version 0.25.

(4) Signature: void transform (const DCplxTrans t)

Description: Transforms the instance array with the given complex transformation (given in
micrometer units)

Transforms the instance like transform does, but with a transformation given in micrometer units. The
displacement of this transformation is given in micrometers and is internally translated to database
units.

This method has been introduced in version 0.25.

(1) Signature: void transform_into (const Trans t)

Description: Transforms the instance array with the given transformation

See Cell#transform_into for a description of this method.

This method has been introduced in version 0.23.

(2) Signature: void transform_into (const ICplxTrans t)

Description: Transforms the instance array with the given transformation

See Cell#transform_into for a description of this method.

This method has been introduced in version 0.23.

(3) Signature: void transform_into (const DTrans t)

Description: Transforms the instance array with the given transformation (given in micrometer units)

Transforms the instance like transform_into does, but with a transformation given in micrometer
units. The displacement of this transformation is given in micrometers and is internally translated to
database units.

This method has been introduced in version 0.25.

transform_into

(4) Signature: void transform_into (const DCplxTrans t)

Description: Transforms the instance array with the given complex transformation (given in
micrometer units)

Transforms the instance like transform_into does, but with a transformation given in micrometer
units. The displacement of this transformation is given in micrometers and is internally translated to
database units.

This method has been introduced in version 0.25.

For more details visit
https://www.klayout.org

Page 634 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.19. API reference - Class ParentInstArray

4.19. API reference - Class ParentInstArray
Notation used in Ruby API documentation

Module: db

Description: A parent instance

A parent instance is basically an inverse instance: instead of pointing to the child cell, it is pointing to the parent cell and the transformation
is representing the shift of the parent cell relative to the child cell. For memory performance, a parent instance is not stored as a instance
but rather as a reference to a child instance and a reference to the cell which is the parent. The parent instance itself is computed on the
fly. It is representative for a set of instances belonging to the same cell index. The special parent instance iterator takes care of producing
the right sequence (Cell#each_parent_inst).

See The Database API for more details about the database objects.

Public constructors

new ParentInstArray ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
ParentInstArray
other)

Assigns another object to self

[const] Instance child_inst Retrieve the child instance associated with this
parent instance

[const] new ParentInstArray
ptr

dup Creates a copy of self

[const] CellInstArray inst Compute the inverse instance by which the parent
is seen from the child

[const] unsigned int parent_cell_index Gets the index of the parent cell

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

For more details visit
https://www.klayout.org

Page 635 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.19. API reference - Class ParentInstArray

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 636 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.19. API reference - Class ParentInstArray

assign
Signature: void assign (const ParentInstArray other)

Description: Assigns another object to self

child_inst
Signature: [const] Instance child_inst

Description: Retrieve the child instance associated with this parent instance

Starting with version 0.15, this method returns an Instance object rather than a CellInstArray
reference.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new ParentInstArray ptr dup

Description: Creates a copy of self

inst
Signature: [const] CellInstArray inst

Description: Compute the inverse instance by which the parent is seen from the child

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new ParentInstArray ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 637 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.19. API reference - Class ParentInstArray

parent_cell_index
Signature: [const] unsigned int parent_cell_index

Description: Gets the index of the parent cell

For more details visit
https://www.klayout.org

Page 638 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.20. API reference - Class CellInstArray

4.20. API reference - Class CellInstArray
Notation used in Ruby API documentation

Module: db

Description: A single or array cell instance

This object represents either single or array cell instances. A cell instance array is a regular array, described by two displacement vectors
(a, b) and the instance count along that axes (na, nb).

In addition, this object represents either instances with simple transformations or instances with complex transformations. The latter
includes magnified instances and instances rotated by an arbitrary angle.

The cell which is instantiated is given by a cell index. The cell index can be converted to a cell pointer by using Layout#cell. The cell index
of a cell can be obtained using Cell#cell_index.

See The Database API for more details about the database objects.

Public constructors

new CellInstArray ptr new Creates en empty cell instance with
size 0

new CellInstArray ptr new (unsigned int cell_index,
const Trans trans)

Creates a single cell instance

new CellInstArray ptr new (unsigned int cell_index,
const Vector disp)

Creates a single cell instance

new CellInstArray ptr new (unsigned int cell_index,
const ICplxTrans trans)

Creates a single cell instance with a
complex transformation

new CellInstArray ptr new (unsigned int cell_index,
const Trans trans,
const Vector a,
const Vector b,
unsigned int na,
unsigned int nb)

Creates a single cell instance

new CellInstArray ptr new (unsigned int cell_index,
const Vector disp,
const Vector a,
const Vector b,
unsigned int na,
unsigned int nb)

Creates a single cell instance

new CellInstArray ptr new (unsigned int cell_index,
const ICplxTrans trans,
const Vector a,
const Vector b,
unsigned int na,
unsigned int nb)

Creates a single cell instance with a
complex transformation

Public methods

[const] bool != (const
CellInstArray
other)

Compares two arrays for inequality

For more details visit
https://www.klayout.org

Page 639 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.20. API reference - Class CellInstArray

[const] bool < (const
CellInstArray
other)

Compares two arrays for 'less'

[const] bool == (const
CellInstArray
other)

Compares two arrays for equality

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] Vector a Gets the displacement vector for the 'a' axis

void a= (const Vector
vector)

Sets the displacement vector for the 'a' axis

void assign (const
CellInstArray
other)

Assigns another object to self

[const] Vector b Gets the displacement vector for the 'b' axis

void b= (const Vector
vector)

Sets the displacement vector for the 'b' axis

[const] Box bbox (const Layout
layout)

Gets the bounding box of the array

[const] Box bbox_per_layer (const Layout
layout,
unsigned int
layer_index)

Gets the bounding box of the array with respect
to one layer

[const] unsigned int cell_index Gets the cell index of the cell instantiated

void cell_index= (unsigned int
index)

Sets the index of the cell this instance refers to

[const] ICplxTrans cplx_trans Gets the complex transformation of the first
instance in the array

void cplx_trans= (const
ICplxTrans
trans)

Sets the complex transformation of the instance
or the first instance in the array

[const] new CellInstArray
ptr

dup Creates a copy of self

For more details visit
https://www.klayout.org

Page 640 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.20. API reference - Class CellInstArray

[const,iter] ICplxTrans each_cplx_trans Gets the complex transformations represented
by this instance

[const,iter] Trans each_trans Gets the simple transformations represented by
this instance

[const] unsigned long hash Computes a hash value

void invert Inverts the array reference

[const] bool is_complex? Gets a value indicating whether the array is a
complex array

[const] bool is_regular_array? Gets a value indicating whether this instance is
a regular array

[const] unsigned long na Gets the number of instances in the 'a' axis

void na= (unsigned long
n)

Sets the number of instances in the 'a' axis

[const] unsigned long nb Gets the number of instances in the 'b' axis

void nb= (unsigned long
n)

Sets the number of instances in the 'b' axis

[const] unsigned long size Gets the number of single instances in the array

[const] string to_s Converts the array to a string

[const] Trans trans Gets the transformation of the first instance in
the array

void trans= (const Trans t) Sets the transformation of the instance or the
first instance in the array

void transform (const Trans
trans)

Transforms the cell instance with the given
transformation

void transform (const
ICplxTrans
trans)

Transforms the cell instance with the given
complex transformation

[const] CellInstArray transformed (const Trans
trans)

Gets the transformed cell instance

[const] CellInstArray transformed (const
ICplxTrans
trans)

Gets the transformed cell instance (complex
transformation)

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

For more details visit
https://www.klayout.org

Page 641 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.20. API reference - Class CellInstArray

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

!=
Signature: [const] bool != (const CellInstArray other)

Description: Compares two arrays for inequality

<
Signature: [const] bool < (const CellInstArray other)

Description: Compares two arrays for 'less'

The comparison provides an arbitrary sorting criterion and not specific sorting order. It is guaranteed
that if an array a is less than b, b is not less than a. In addition, it a is not less than b and b is not less
than a, then a is equal to b.

==
Signature: [const] bool == (const CellInstArray other)

Description: Compares two arrays for equality

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

For more details visit
https://www.klayout.org

Page 642 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.20. API reference - Class CellInstArray

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

a
Signature: [const] Vector a

Description: Gets the displacement vector for the 'a' axis

Starting with version 0.25 the displacement is of vector type.

Python specific notes:
The object exposes a readable attribute 'a'. This is the getter.

a=
Signature: void a= (const Vector vector)

Description: Sets the displacement vector for the 'a' axis

If the instance was not regular before this property is set, it will be initialized to a regular instance.

This method was introduced in version 0.22. Starting with version 0.25 the displacement is of vector
type.

Python specific notes:
The object exposes a writable attribute 'a'. This is the setter.

assign
Signature: void assign (const CellInstArray other)

Description: Assigns another object to self

b
Signature: [const] Vector b

Description: Gets the displacement vector for the 'b' axis

Starting with version 0.25 the displacement is of vector type.

Python specific notes:
The object exposes a readable attribute 'b'. This is the getter.

b=
Signature: void b= (const Vector vector)

Description: Sets the displacement vector for the 'b' axis

If the instance was not regular before this property is set, it will be initialized to a regular instance.

This method was introduced in version 0.22. Starting with version 0.25 the displacement is of vector
type.

Python specific notes:
The object exposes a writable attribute 'b'. This is the setter.

bbox
Signature: [const] Box bbox (const Layout layout)

Description: Gets the bounding box of the array

For more details visit
https://www.klayout.org

Page 643 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.20. API reference - Class CellInstArray

The bounding box incorporates all instances that the array represents. It needs the layout object to
access the actual cell from the cell index.

bbox_per_layer
Signature: [const] Box bbox_per_layer (const Layout layout, unsigned int layer_index)

Description: Gets the bounding box of the array with respect to one layer

The bounding box incorporates all instances that the array represents. It needs the layout object to
access the actual cell from the cell index.

cell_index
Signature: [const] unsigned int cell_index

Description: Gets the cell index of the cell instantiated

Python specific notes:
The object exposes a readable attribute 'cell_index'. This is the getter.

cell_index=
Signature: void cell_index= (unsigned int index)

Description: Sets the index of the cell this instance refers to

Python specific notes:
The object exposes a writable attribute 'cell_index'. This is the setter.

cplx_trans
Signature: [const] ICplxTrans cplx_trans

Description: Gets the complex transformation of the first instance in the array

This method is always applicable, compared to trans, since simple transformations can be expressed
as complex transformations as well.

Python specific notes:
The object exposes a readable attribute 'cplx_trans'. This is the getter.

cplx_trans=
Signature: void cplx_trans= (const ICplxTrans trans)

Description: Sets the complex transformation of the instance or the first instance in the array

This method was introduced in version 0.22.

Python specific notes:
The object exposes a writable attribute 'cplx_trans'. This is the setter.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

For more details visit
https://www.klayout.org

Page 644 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.20. API reference - Class CellInstArray

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new CellInstArray ptr dup

Description: Creates a copy of self

each_cplx_trans
Signature: [const,iter] ICplxTrans each_cplx_trans

Description: Gets the complex transformations represented by this instance

For a single instance, this iterator will deliver the single, complex transformation. For array instances,
the iterator will deliver each complex transformation of the expanded array. This iterator is a
generalization of each_trans for general complex transformations.

This method has been introduced in version 0.25.

each_trans
Signature: [const,iter] Trans each_trans

Description: Gets the simple transformations represented by this instance

For a single instance, this iterator will deliver the single, simple transformation. For array instances, the
iterator will deliver each simple transformation of the expanded array.

This iterator will only deliver valid transformations if the instance array is not of complex type (see
is_complex?). A more general iterator that delivers the complex transformations is each_cplx_trans.

This method has been introduced in version 0.25.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given cell instance. This method enables cell instances as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

invert
Signature: void invert

Description: Inverts the array reference

The inverted array reference describes in which transformations the parent cell is seen from the
current cell.

is_complex?
Signature: [const] bool is_complex?

Description: Gets a value indicating whether the array is a complex array

Returns true if the array represents complex instances (that is, with magnification and arbitrary rotation
angles).

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

For more details visit
https://www.klayout.org

Page 645 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.20. API reference - Class CellInstArray

is_regular_array?
Signature: [const] bool is_regular_array?

Description: Gets a value indicating whether this instance is a regular array

na
Signature: [const] unsigned long na

Description: Gets the number of instances in the 'a' axis

Python specific notes:
The object exposes a readable attribute 'na'. This is the getter.

na=
Signature: void na= (unsigned long n)

Description: Sets the number of instances in the 'a' axis

If the instance was not regular before this property is set to a value larger than zero, it will be initialized
to a regular instance. To make an instance a single instance, set na or nb to 0.

This method was introduced in version 0.22.

Python specific notes:
The object exposes a writable attribute 'na'. This is the setter.

nb
Signature: [const] unsigned long nb

Description: Gets the number of instances in the 'b' axis

Python specific notes:
The object exposes a readable attribute 'nb'. This is the getter.

nb=
Signature: void nb= (unsigned long n)

Description: Sets the number of instances in the 'b' axis

If the instance was not regular before this property is set to a value larger than zero, it will be initialized
to a regular instance. To make an instance a single instance, set na or nb to 0.

This method was introduced in version 0.22.

Python specific notes:
The object exposes a writable attribute 'nb'. This is the setter.

(1) Signature: [static] new CellInstArray ptr new

Description: Creates en empty cell instance with size 0

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new CellInstArray ptr new (unsigned int cell_index, const Trans trans)

Description: Creates a single cell instance

cell_index: The cell to instantiate

trans: The transformation by which to instantiate the cell

Python specific notes:
This method is the default initializer of the object

new

(3) Signature: [static] new CellInstArray ptr new (unsigned int cell_index, const Vector disp)

Description: Creates a single cell instance

cell_index: The cell to instantiate

disp: The displacement

For more details visit
https://www.klayout.org

Page 646 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.20. API reference - Class CellInstArray

This convenience initializer has been introduced in version 0.28.

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new CellInstArray ptr new (unsigned int cell_index, const ICplxTrans trans)

Description: Creates a single cell instance with a complex transformation

cell_index: The cell to instantiate

trans: The complex transformation by which to instantiate the cell

Python specific notes:
This method is the default initializer of the object

(5) Signature: [static] new CellInstArray ptr new (unsigned int cell_index, const Trans trans, const
Vector a, const Vector b, unsigned int na, unsigned int nb)

Description: Creates a single cell instance

cell_index: The cell to instantiate

trans: The transformation by which to instantiate the cell

a: The displacement vector of the array in the 'a' axis

b: The displacement vector of the array in the 'b' axis

na: The number of placements in the 'a' axis

nb: The number of placements in the 'b' axis

Starting with version 0.25 the displacements are of vector type.

Python specific notes:
This method is the default initializer of the object

(6) Signature: [static] new CellInstArray ptr new (unsigned int cell_index, const Vector disp, const
Vector a, const Vector b, unsigned int na, unsigned int nb)

Description: Creates a single cell instance

cell_index: The cell to instantiate

disp: The basic displacement of the first instance

a: The displacement vector of the array in the 'a' axis

b: The displacement vector of the array in the 'b' axis

na: The number of placements in the 'a' axis

nb: The number of placements in the 'b' axis

This convenience initializer has been introduced in version 0.28.

Python specific notes:
This method is the default initializer of the object

(7) Signature: [static] new CellInstArray ptr new (unsigned int cell_index, const ICplxTrans trans,
const Vector a, const Vector b, unsigned int na, unsigned int nb)

Description: Creates a single cell instance with a complex transformation

cell_index: The cell to instantiate

trans: The complex transformation by which to instantiate the cell

a: The displacement vector of the array in the 'a' axis

b: The displacement vector of the array in the 'b' axis

na: The number of placements in the 'a' axis

For more details visit
https://www.klayout.org

Page 647 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.20. API reference - Class CellInstArray

nb: The number of placements in the 'b' axis

Starting with version 0.25 the displacements are of vector type.

Python specific notes:
This method is the default initializer of the object

size
Signature: [const] unsigned long size

Description: Gets the number of single instances in the array

If the instance represents a single instance, the count is 1. Otherwise it is na*nb. Starting with version
0.27, there may be iterated instances for which the size is larger than 1, but is_regular_array? will
return false. In this case, use each_trans or each_cplx_trans to retrieve the individual placements of
the iterated instance.

Python specific notes:
This method is also available as 'len(object)'

to_s
Signature: [const] string to_s

Description: Converts the array to a string

This method was introduced in version 0.22.

Python specific notes:
This method is also available as 'str(object)'

trans
Signature: [const] Trans trans

Description: Gets the transformation of the first instance in the array

The transformation returned is only valid if the array does not represent a complex transformation
array

Python specific notes:
The object exposes a readable attribute 'trans'. This is the getter.

trans=
Signature: void trans= (const Trans t)

Description: Sets the transformation of the instance or the first instance in the array

This method was introduced in version 0.22.

Python specific notes:
The object exposes a writable attribute 'trans'. This is the setter.

(1) Signature: void transform (const Trans trans)

Description: Transforms the cell instance with the given transformation

This method has been introduced in version 0.20.

transform

(2) Signature: void transform (const ICplxTrans trans)

Description: Transforms the cell instance with the given complex transformation

This method has been introduced in version 0.20.

transformed
(1) Signature: [const] CellInstArray transformed (const Trans trans)

Description: Gets the transformed cell instance

This method has been introduced in version 0.20.

For more details visit
https://www.klayout.org

Page 648 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.20. API reference - Class CellInstArray

(2) Signature: [const] CellInstArray transformed (const ICplxTrans trans)

Description: Gets the transformed cell instance (complex transformation)

This method has been introduced in version 0.20.

For more details visit
https://www.klayout.org

Page 649 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.21. API reference - Class DCellInstArray

4.21. API reference - Class DCellInstArray
Notation used in Ruby API documentation

Module: db

Description: A single or array cell instance in micrometer units

This object is identical to CellInstArray, except that it holds coordinates in micron units instead of database units.

This class has been introduced in version 0.25.

Public constructors

new DCellInstArray ptr new Creates en empty cell instance with
size 0

new DCellInstArray ptr new (unsigned int cell_index,
const DTrans trans)

Creates a single cell instance

new DCellInstArray ptr new (unsigned int cell_index,
const DVector disp)

Creates a single cell instance

new DCellInstArray ptr new (unsigned int cell_index,
const DCplxTrans trans)

Creates a single cell instance with a
complex transformation

new DCellInstArray ptr new (unsigned int cell_index,
const DTrans trans,
const DVector a,
const DVector b,
unsigned int na,
unsigned int nb)

Creates a single cell instance

new DCellInstArray ptr new (unsigned int cell_index,
const DVector disp,
const DVector a,
const DVector b,
unsigned int na,
unsigned int nb)

Creates a single cell instance

new DCellInstArray ptr new (unsigned int cell_index,
const DCplxTrans trans,
const DVector a,
const DVector b,
unsigned int na,
unsigned int nb)

Creates a single cell instance with a
complex transformation

Public methods

[const] bool != (const
DCellInstArray
other)

Compares two arrays for inequality

[const] bool < (const
DCellInstArray
other)

Compares two arrays for 'less'

For more details visit
https://www.klayout.org

Page 650 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.21. API reference - Class DCellInstArray

[const] bool == (const
DCellInstArray
other)

Compares two arrays for equality

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] DVector a Gets the displacement vector for the 'a' axis

void a= (const DVector
vector)

Sets the displacement vector for the 'a' axis

void assign (const
DCellInstArray
other)

Assigns another object to self

[const] DVector b Gets the displacement vector for the 'b' axis

void b= (const DVector
vector)

Sets the displacement vector for the 'b' axis

[const] DBox bbox (const Layout
layout)

Gets the bounding box of the array

[const] DBox bbox_per_layer (const Layout
layout,
unsigned int
layer_index)

Gets the bounding box of the array with respect
to one layer

[const] unsigned int cell_index Gets the cell index of the cell instantiated

void cell_index= (unsigned int
index)

Sets the index of the cell this instance refers to

[const] DCplxTrans cplx_trans Gets the complex transformation of the first
instance in the array

void cplx_trans= (const
DCplxTrans
trans)

Sets the complex transformation of the instance
or the first instance in the array

[const] new DCellInstArray
ptr

dup Creates a copy of self

[const,iter] DCplxTrans each_cplx_trans Gets the complex transformations represented
by this instance

For more details visit
https://www.klayout.org

Page 651 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.21. API reference - Class DCellInstArray

[const,iter] DTrans each_trans Gets the simple transformations represented by
this instance

[const] unsigned long hash Computes a hash value

void invert Inverts the array reference

[const] bool is_complex? Gets a value indicating whether the array is a
complex array

[const] bool is_regular_array? Gets a value indicating whether this instance is
a regular array

[const] unsigned long na Gets the number of instances in the 'a' axis

void na= (unsigned long
n)

Sets the number of instances in the 'a' axis

[const] unsigned long nb Gets the number of instances in the 'b' axis

void nb= (unsigned long
n)

Sets the number of instances in the 'b' axis

[const] unsigned long size Gets the number of single instances in the
array

[const] string to_s Converts the array to a string

[const] DTrans trans Gets the transformation of the first instance in
the array

void trans= (const DTrans t) Sets the transformation of the instance or the
first instance in the array

void transform (const DTrans
trans)

Transforms the cell instance with the given
transformation

void transform (const
DCplxTrans
trans)

Transforms the cell instance with the given
complex transformation

[const] DCellInstArray transformed (const DTrans
trans)

Gets the transformed cell instance

[const] DCellInstArray transformed (const
DCplxTrans
trans)

Gets the transformed cell instance (complex
transformation)

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

For more details visit
https://www.klayout.org

Page 652 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.21. API reference - Class DCellInstArray

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

!=
Signature: [const] bool != (const DCellInstArray other)

Description: Compares two arrays for inequality

<
Signature: [const] bool < (const DCellInstArray other)

Description: Compares two arrays for 'less'

The comparison provides an arbitrary sorting criterion and not specific sorting order. It is guaranteed
that if an array a is less than b, b is not less than a. In addition, it a is not less than b and b is not less
than a, then a is equal to b.

==
Signature: [const] bool == (const DCellInstArray other)

Description: Compares two arrays for equality

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 653 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.21. API reference - Class DCellInstArray

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

a
Signature: [const] DVector a

Description: Gets the displacement vector for the 'a' axis

Python specific notes:
The object exposes a readable attribute 'a'. This is the getter.

a=
Signature: void a= (const DVector vector)

Description: Sets the displacement vector for the 'a' axis

If the instance was not regular before this property is set, it will be initialized to a regular instance.

Python specific notes:
The object exposes a writable attribute 'a'. This is the setter.

assign
Signature: void assign (const DCellInstArray other)

Description: Assigns another object to self

b
Signature: [const] DVector b

Description: Gets the displacement vector for the 'b' axis

Python specific notes:
The object exposes a readable attribute 'b'. This is the getter.

b=
Signature: void b= (const DVector vector)

Description: Sets the displacement vector for the 'b' axis

If the instance was not regular before this property is set, it will be initialized to a regular instance.

Python specific notes:
The object exposes a writable attribute 'b'. This is the setter.

bbox
Signature: [const] DBox bbox (const Layout layout)

Description: Gets the bounding box of the array

The bounding box incorporates all instances that the array represents. It needs the layout object to
access the actual cell from the cell index.

bbox_per_layer
Signature: [const] DBox bbox_per_layer (const Layout layout, unsigned int layer_index)

Description: Gets the bounding box of the array with respect to one layer

The bounding box incorporates all instances that the array represents. It needs the layout object to
access the actual cell from the cell index.

For more details visit
https://www.klayout.org

Page 654 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.21. API reference - Class DCellInstArray

cell_index
Signature: [const] unsigned int cell_index

Description: Gets the cell index of the cell instantiated

Python specific notes:
The object exposes a readable attribute 'cell_index'. This is the getter.

cell_index=
Signature: void cell_index= (unsigned int index)

Description: Sets the index of the cell this instance refers to

Python specific notes:
The object exposes a writable attribute 'cell_index'. This is the setter.

cplx_trans
Signature: [const] DCplxTrans cplx_trans

Description: Gets the complex transformation of the first instance in the array

This method is always applicable, compared to trans, since simple transformations can be expressed
as complex transformations as well.

Python specific notes:
The object exposes a readable attribute 'cplx_trans'. This is the getter.

cplx_trans=
Signature: void cplx_trans= (const DCplxTrans trans)

Description: Sets the complex transformation of the instance or the first instance in the array

Python specific notes:
The object exposes a writable attribute 'cplx_trans'. This is the setter.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new DCellInstArray ptr dup

Description: Creates a copy of self

For more details visit
https://www.klayout.org

Page 655 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.21. API reference - Class DCellInstArray

each_cplx_trans
Signature: [const,iter] DCplxTrans each_cplx_trans

Description: Gets the complex transformations represented by this instance

For a single instance, this iterator will deliver the single, complex transformation. For array instances,
the iterator will deliver each complex transformation of the expanded array. This iterator is a
generalization of each_trans for general complex transformations.

each_trans
Signature: [const,iter] DTrans each_trans

Description: Gets the simple transformations represented by this instance

For a single instance, this iterator will deliver the single, simple transformation. For array instances,
the iterator will deliver each simple transformation of the expanded array.

This iterator will only deliver valid transformations if the instance array is not of complex type (see
is_complex?). A more general iterator that delivers the complex transformations is each_cplx_trans.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given cell instance. This method enables cell instances as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

invert
Signature: void invert

Description: Inverts the array reference

The inverted array reference describes in which transformations the parent cell is seen from the
current cell.

is_complex?
Signature: [const] bool is_complex?

Description: Gets a value indicating whether the array is a complex array

Returns true if the array represents complex instances (that is, with magnification and arbitrary
rotation angles).

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_regular_array?
Signature: [const] bool is_regular_array?

Description: Gets a value indicating whether this instance is a regular array

na
Signature: [const] unsigned long na

Description: Gets the number of instances in the 'a' axis

Python specific notes:
The object exposes a readable attribute 'na'. This is the getter.

For more details visit
https://www.klayout.org

Page 656 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.21. API reference - Class DCellInstArray

na=
Signature: void na= (unsigned long n)

Description: Sets the number of instances in the 'a' axis

If the instance was not regular before this property is set to a value larger than zero, it will be
initialized to a regular instance. To make an instance a single instance, set na or nb to 0.

Python specific notes:
The object exposes a writable attribute 'na'. This is the setter.

nb
Signature: [const] unsigned long nb

Description: Gets the number of instances in the 'b' axis

Python specific notes:
The object exposes a readable attribute 'nb'. This is the getter.

nb=
Signature: void nb= (unsigned long n)

Description: Sets the number of instances in the 'b' axis

If the instance was not regular before this property is set to a value larger than zero, it will be
initialized to a regular instance. To make an instance a single instance, set na or nb to 0.

Python specific notes:
The object exposes a writable attribute 'nb'. This is the setter.

(1) Signature: [static] new DCellInstArray ptr new

Description: Creates en empty cell instance with size 0

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new DCellInstArray ptr new (unsigned int cell_index, const DTrans trans)

Description: Creates a single cell instance

cell_index: The cell to instantiate

trans: The transformation by which to instantiate the cell

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new DCellInstArray ptr new (unsigned int cell_index, const DVector disp)

Description: Creates a single cell instance

cell_index: The cell to instantiate

disp: The displacement

This convenience initializer has been introduced in version 0.28.

Python specific notes:
This method is the default initializer of the object

new

(4) Signature: [static] new DCellInstArray ptr new (unsigned int cell_index, const DCplxTrans trans)

Description: Creates a single cell instance with a complex transformation

cell_index: The cell to instantiate

trans: The complex transformation by which to instantiate the cell

Python specific notes:

For more details visit
https://www.klayout.org

Page 657 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.21. API reference - Class DCellInstArray

This method is the default initializer of the object

(5) Signature: [static] new DCellInstArray ptr new (unsigned int cell_index, const DTrans trans,
const DVector a, const DVector b, unsigned int na, unsigned int nb)

Description: Creates a single cell instance

cell_index: The cell to instantiate

trans: The transformation by which to instantiate the cell

a: The displacement vector of the array in the 'a' axis

b: The displacement vector of the array in the 'b' axis

na: The number of placements in the 'a' axis

nb: The number of placements in the 'b' axis

Python specific notes:
This method is the default initializer of the object

(6) Signature: [static] new DCellInstArray ptr new (unsigned int cell_index, const DVector disp,
const DVector a, const DVector b, unsigned int na, unsigned int nb)

Description: Creates a single cell instance

cell_index: The cell to instantiate

disp: The basic displacement of the first instance

a: The displacement vector of the array in the 'a' axis

b: The displacement vector of the array in the 'b' axis

na: The number of placements in the 'a' axis

nb: The number of placements in the 'b' axis

This convenience initializer has been introduced in version 0.28.

Python specific notes:
This method is the default initializer of the object

(7) Signature: [static] new DCellInstArray ptr new (unsigned int cell_index, const DCplxTrans trans,
const DVector a, const DVector b, unsigned int na, unsigned int nb)

Description: Creates a single cell instance with a complex transformation

cell_index: The cell to instantiate

trans: The complex transformation by which to instantiate the cell

a: The displacement vector of the array in the 'a' axis

b: The displacement vector of the array in the 'b' axis

na: The number of placements in the 'a' axis

nb: The number of placements in the 'b' axis

Python specific notes:
This method is the default initializer of the object

size
Signature: [const] unsigned long size

Description: Gets the number of single instances in the array

If the instance represents a single instance, the count is 1. Otherwise it is na*nb. Starting with version
0.27, there may be iterated instances for which the size is larger than 1, but is_regular_array? will
return false. In this case, use each_trans or each_cplx_trans to retrieve the individual placements of
the iterated instance.

Python specific notes:

For more details visit
https://www.klayout.org

Page 658 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.21. API reference - Class DCellInstArray

This method is also available as 'len(object)'

to_s
Signature: [const] string to_s

Description: Converts the array to a string

Python specific notes:
This method is also available as 'str(object)'

trans
Signature: [const] DTrans trans

Description: Gets the transformation of the first instance in the array

The transformation returned is only valid if the array does not represent a complex transformation
array

Python specific notes:
The object exposes a readable attribute 'trans'. This is the getter.

trans=
Signature: void trans= (const DTrans t)

Description: Sets the transformation of the instance or the first instance in the array

Python specific notes:
The object exposes a writable attribute 'trans'. This is the setter.

(1) Signature: void transform (const DTrans trans)

Description: Transforms the cell instance with the given transformationtransform

(2) Signature: void transform (const DCplxTrans trans)

Description: Transforms the cell instance with the given complex transformation

(1) Signature: [const] DCellInstArray transformed (const DTrans trans)

Description: Gets the transformed cell instancetransformed

(2) Signature: [const] DCellInstArray transformed (const DCplxTrans trans)

Description: Gets the transformed cell instance (complex transformation)

For more details visit
https://www.klayout.org

Page 659 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.22. API reference - Class CellMapping

4.22. API reference - Class CellMapping
Notation used in Ruby API documentation

Module: db

Description: A cell mapping (source to target layout)

A cell mapping is an association of cells in two layouts forming pairs of cells, i.e. one cell corresponds to another cell in the other layout.
The CellMapping object describes the mapping of cells of a source layout B to a target layout A. The cell mapping object is basically a table
associating a cell in layout B with a cell in layout A.

The mapping object is used to create and hold that table. There are three basic modes in which a table can be generated:

• Top-level identity

• Geometrical identity

• Name identity

Top-level identity means that only one cell (the top cell) is regarded identical. All child cells are not considered identical. In full mode (see
below), this will create a new, identical cell tree below the top cell in layout A.

Geometrical identity is defined by the exact identity of the set of expanded instances in each starting cell. Therefore, when a cell is mapped
to another cell, shapes can be transferred from one cell to another while effectively rendering the same flat geometry (in the context of the
given starting cells). Location identity is basically the safest way to map cells from one hierarchy into another, because it preserves the flat
shape geometry. However in some cases the algorithm may find multiple mapping candidates. In that case it will make a guess about what
mapping to choose.

Name identity means that cells are identified by their names - for a source cell in layer B, a target cell with the same name is looked up in
the target layout A and a mapping is created if a cell with the same name is found. However, name identity does not mean that the cells
are actually equivalent because they may be placed differently. Hence, cell mapping by name is not a good choice when it is important to
preserve the shape geometry of a layer.

A cell might not be mapped to another cell which basically means that there is no corresponding cell. In this case, flattening to the next
mapped cell is an option to transfer geometries despite the missing mapping. You can enforce a mapping by using the mapping generator
methods in 'full' mode, i.e. from_names_full or from_geometry_full. These versions will create new cells and their corresponding instances
in the target layout if no suitable target cell is found.

CellMapping objects play a role mainly in the hierarchical copy or move operations of Layout. However, use is not restricted to these
applications.

Here is one example for using CellMapping. It extracts cells 'A', 'B' and 'C' from one layout and copies them to another. It will also copy all
shapes and all child cells. Child cells which are shared between the three initial cells will be shared in the target layout too.

cell_names = ["A", "B", "C"]

source = RBA::Layout::new
source.read("input.gds")

target = RBA::Layout::new

source_cells = cell_names.collect { |n| source.cell_by_name(n).cell_index }
target_cells = cell_names.collect { |n| target.create_cell(n).cell_index }

cm = RBA::CellMapping::new
cm.for_multi_cells_full(source, source_cells, target, target_cells)
target.copy_tree_shapes(source, cm)

Public constructors

new CellMapping ptr new Creates a new object of this class

For more details visit
https://www.klayout.org

Page 660 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.22. API reference - Class CellMapping

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the
script side.

void _unmanage Marks the object as no longer owned by
the script side.

void assign (const CellMapping other) Assigns another object to self

[const] unsigned int cell_mapping (unsigned int cell_index_b) Determines cell mapping of a layout_b
cell to the corresponding layout_a cell.

void clear Clears the mapping.

[const] new CellMapping
ptr

dup Creates a copy of self

void for_multi_cells (const Layout layout_a,
unsigned int[] cell_indexes_a,
const Layout layout_b,
unsigned int[] cell_indexes_b)

Initializes the cell mapping for top-level
identity

unsigned int[] for_multi_cells_full (Layout layout_a,
unsigned int[] cell_indexes_a,
const Layout layout_b,
unsigned int[] cell_indexes_b)

Initializes the cell mapping for top-level
identity

void for_single_cell (const Layout layout_a,
unsigned int cell_index_a,
const Layout layout_b,
unsigned int cell_index_b)

Initializes the cell mapping for top-level
identity

unsigned int[] for_single_cell_full (Layout layout_a,
unsigned int cell_index_a,
const Layout layout_b,
unsigned int cell_index_b)

Initializes the cell mapping for top-level
identity

void from_geometry (const Layout layout_a,
unsigned int cell_index_a,
const Layout layout_b,
unsigned int cell_index_b)

Initializes the cell mapping using the
geometrical identity

unsigned int[] from_geometry_full (Layout layout_a,
unsigned int cell_index_a,
const Layout layout_b,
unsigned int cell_index_b)

Initializes the cell mapping using the
geometrical identity in full mapping mode

For more details visit
https://www.klayout.org

Page 661 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.22. API reference - Class CellMapping

void from_names (const Layout layout_a,
unsigned int cell_index_a,
const Layout layout_b,
unsigned int cell_index_b)

Initializes the cell mapping using the
name identity

unsigned int[] from_names_full (Layout layout_a,
unsigned int cell_index_a,
const Layout layout_b,
unsigned int cell_index_b)

Initializes the cell mapping using the
name identity in full mapping mode

[const] bool has_mapping? (unsigned int cell_index_b) Returns as value indicating whether a cell
of layout_b has a mapping to a layout_a
cell.

void map (unsigned int cell_index_b,
unsigned int cell_index_a)

Explicitly specifies a mapping.

[const] map<unsigned
int,unsigned int>

table Returns the mapping table.

Public static methods and constants

unsigned int DropCell A constant indicating the reques to drop a cell

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

DropCell
Signature: [static] unsigned int DropCell

Description: A constant indicating the reques to drop a cell

If used as a pseudo-target for the cell mapping, this index indicates that the cell shall be dropped
rather than created on the target side or skipped by flattening. Instead, all shapes of this cell are
discarded and it's children are not translated unless explicitly requested or if required are children for
other cells.

This constant has been introduced in version 0.25.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 662 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.22. API reference - Class CellMapping

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const CellMapping other)

Description: Assigns another object to self

cell_mapping
Signature: [const] unsigned int cell_mapping (unsigned int cell_index_b)

Description: Determines cell mapping of a layout_b cell to the corresponding layout_a cell.

cell_index_b: The index of the cell in layout_b whose mapping is
requested.

Returns: The cell index in layout_a.

Note that the returned index can be DropCell to indicate the cell shall be dropped.

clear
Signature: void clear

Description: Clears the mapping.

For more details visit
https://www.klayout.org

Page 663 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.22. API reference - Class CellMapping

This method has been introduced in version 0.23.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new CellMapping ptr dup

Description: Creates a copy of self

for_multi_cells
Signature: void for_multi_cells (const Layout layout_a, unsigned int[] cell_indexes_a, const Layout
layout_b, unsigned int[] cell_indexes_b)

Description: Initializes the cell mapping for top-level identity

layout_a: The target layout.

cell_indexes_a: A list of cell indexes for the target cells.

layout_b: The source layout.

cell_indexes_b: A list of cell indexes for the source cells (same number of
indexes than cell_indexes_a).

The cell mapping is created for cells from cell_indexes_b to cell from cell_indexes_a in the respective
layouts. This method clears the mapping and creates one for each cell pair from cell_indexes_b vs.
cell_indexes_a. If used for Layout#copy_tree_shapes or Layout#move_tree_shapes, this cell mapping
will essentially flatten the source cells in the target layout.

This method is equivalent to clear, followed by map(cell_index_a, cell_index_b) for each cell pair.

This method has been introduced in version 0.27.

for_multi_cells_full
Signature: unsigned int[] for_multi_cells_full (Layout layout_a, unsigned int[] cell_indexes_a, const
Layout layout_b, unsigned int[] cell_indexes_b)

Description: Initializes the cell mapping for top-level identity

layout_a: The target layout.

cell_indexes_a: A list of cell indexes for the target cells.

layout_b: The source layout.

For more details visit
https://www.klayout.org

Page 664 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.22. API reference - Class CellMapping

cell_indexes_b: A list of cell indexes for the source cells (same number of
indexes than cell_indexes_a).

The cell mapping is created for cells from cell_indexes_b to cell from cell_indexes_a in the respective
layouts. This method clears the mapping and creates one for each cell pair from cell_indexes_b vs.
cell_indexes_a. In addition and in contrast to for_multi_cells, this method completes the mapping by
adding all the child cells of all cells in cell_indexes_b to layout_a and creating the proper instances.

This method has been introduced in version 0.27.

for_single_cell
Signature: void for_single_cell (const Layout layout_a, unsigned int cell_index_a, const Layout
layout_b, unsigned int cell_index_b)

Description: Initializes the cell mapping for top-level identity

layout_a: The target layout.

cell_index_a: The index of the target cell.

layout_b: The source layout.

cell_index_b: The index of the source cell.

The cell mapping is created for cell_b to cell_a in the respective layouts. This method clears the
mapping and creates one for the single cell pair. If used for Cell#copy_tree or Cell#move_tree, this cell
mapping will essentially flatten the cell.

This method is equivalent to clear, followed by map(cell_index_a, cell_index_b).

This method has been introduced in version 0.23.

for_single_cell_full
Signature: unsigned int[] for_single_cell_full (Layout layout_a, unsigned int cell_index_a, const
Layout layout_b, unsigned int cell_index_b)

Description: Initializes the cell mapping for top-level identity

layout_a: The target layout.

cell_index_a: The index of the target cell.

layout_b: The source layout.

cell_index_b: The index of the source cell.

The cell mapping is created for cell_b to cell_a in the respective layouts. This method clears the
mapping and creates one for the single cell pair. In addition and in contrast to for_single_cell, this
method completes the mapping by adding all the child cells of cell_b to layout_a and creating the
proper instances.

This method has been introduced in version 0.23.

from_geometry
Signature: void from_geometry (const Layout layout_a, unsigned int cell_index_a, const Layout
layout_b, unsigned int cell_index_b)

Description: Initializes the cell mapping using the geometrical identity

layout_a: The target layout.

cell_index_a: The index of the target starting cell.

layout_b: The source layout.

cell_index_b: The index of the source starting cell.

The cell mapping is created for cells below cell_a and cell_b in the respective layouts. This method
employs geometrical identity to derive mappings for the child cells of the starting cell in layout A and B.
If the geometrical identity is ambiguous, the algorithm will make an arbitrary choice.

This method has been introduced in version 0.23.

For more details visit
https://www.klayout.org

Page 665 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.22. API reference - Class CellMapping

from_geometry_full
Signature: unsigned int[] from_geometry_full (Layout layout_a, unsigned int cell_index_a, const
Layout layout_b, unsigned int cell_index_b)

Description: Initializes the cell mapping using the geometrical identity in full mapping mode

layout_a: The target layout.

cell_index_a: The index of the target starting cell.

layout_b: The source layout.

cell_index_b: The index of the source starting cell.

Returns: A list of indexes of cells created.

The cell mapping is created for cells below cell_a and cell_b in the respective layouts. This method
employs geometrical identity to derive mappings for the child cells of the starting cell in layout A and B.
If the geometrical identity is ambiguous, the algorithm will make an arbitrary choice.

Full mapping means that cells which are not found in the target layout A are created there plus their
corresponding instances are created as well. The returned list will contain the indexes of all cells
created for that reason.

This method has been introduced in version 0.23.

from_names
Signature: void from_names (const Layout layout_a, unsigned int cell_index_a, const Layout
layout_b, unsigned int cell_index_b)

Description: Initializes the cell mapping using the name identity

layout_a: The target layout.

cell_index_a: The index of the target starting cell.

layout_b: The source layout.

cell_index_b: The index of the source starting cell.

The cell mapping is created for cells below cell_a and cell_b in the respective layouts. This method
employs name identity to derive mappings for the child cells of the starting cell in layout A and B.

This method has been introduced in version 0.23.

from_names_full
Signature: unsigned int[] from_names_full (Layout layout_a, unsigned int cell_index_a, const
Layout layout_b, unsigned int cell_index_b)

Description: Initializes the cell mapping using the name identity in full mapping mode

layout_a: The target layout.

cell_index_a: The index of the target starting cell.

layout_b: The source layout.

cell_index_b: The index of the source starting cell.

Returns: A list of indexes of cells created.

The cell mapping is created for cells below cell_a and cell_b in the respective layouts. This method
employs name identity to derive mappings for the child cells of the starting cell in layout A and B.

Full mapping means that cells which are not found in the target layout A are created there plus their
corresponding instances are created as well. The returned list will contain the indexes of all cells
created for that reason.

This method has been introduced in version 0.23.

has_mapping?
Signature: [const] bool has_mapping? (unsigned int cell_index_b)

Description: Returns as value indicating whether a cell of layout_b has a mapping to a layout_a cell.

For more details visit
https://www.klayout.org

Page 666 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.22. API reference - Class CellMapping

cell_index_b: The index of the cell in layout_b whose mapping is
requested.

Returns: true, if the cell has a mapping

Note that if the cell is supposed to be dropped (see DropCell), the respective source cell will also be
regarded "mapped", so has_mapping? will return true in this case.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

map
Signature: void map (unsigned int cell_index_b, unsigned int cell_index_a)

Description: Explicitly specifies a mapping.

cell_index_b: The index of the cell in layout B (the "source")

cell_index_a: The index of the cell in layout A (the "target") - this index can
be DropCell

Beside using the mapping generator algorithms provided through from_names and from_geometry, it
is possible to explicitly specify cell mappings using this method.

This method has been introduced in version 0.23.

new
Signature: [static] new CellMapping ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

table
Signature: [const] map<unsigned int,unsigned int> table

Description: Returns the mapping table.

The mapping table is a dictionary where the keys are source layout cell indexes and the values are
the target layout cell indexes. Note that the target cell index can be DropCell to indicate that a cell is
supposed to be dropped.

This method has been introduced in version 0.25.

For more details visit
https://www.klayout.org

Page 667 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

4.23. API reference - Class CompoundRegionOperationNode
Notation used in Ruby API documentation

Module: db

Description: A base class for compound DRC operations

Sub-classes: LogicalOp, GeometricalOp, ResultType, ParameterType, RatioParameterType

This class is not intended to be used directly but rather provide a factory for various incarnations of compound operation nodes. Compound
operations are a way to specify complex DRC operations put together by building a tree of operations. This operation tree then is executed
with Region#complex_op and will act on individual clusters of shapes and their interacting neighbors.

A basic concept to the compound operations is the 'subject' (primary) and 'intruder' (secondary) input. The 'subject' is the Region,
'complex_op' with the operation tree is executed on. 'intruders' are regions inserted into the equation through secondary input nodes
created with new_secondary_node. The algorithm will execute the operation tree for every subject shape considering intruder shapes from
the secondary inputs. The algorithm will only act on subject shapes primarily. As a consequence, 'lonely' intruder shapes without a subject
shape are not considered at all. Only subject shapes trigger evaluation of the operation tree.

The search distance for intruder shapes is determined by the operation and computed from the operation's requirements.

NOTE: this feature is experimental and not deployed into the the DRC framework yet.

This class has been introduced in version 0.27.

Public constructors

new CompoundRegionOperationNode ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

[const] string description Gets the description for this node

void description= (string
d)

Sets the description for this node

[const] int distance Gets the distance value for this node

void distance= (int d) Sets the distance value for this nodeUsually it's not
required to provide a distance because the nodes
compute a distance based on their operation. If
necessary you can supply a distance. The processor
will use this distance or the computed one, whichever
is larger.

For more details visit
https://www.klayout.org

Page 668 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

[const] CompoundRegionOperationNode::ResultTyperesult_type Gets the result type of this node

Public static methods and constants

new
CompoundRegionOperationNode
ptr

new_area_filter (CompoundRegionOperationNode ptr
input,
bool inverse = false,
long amin = 0,
long amax = max)

Creates a node filtering the
input by area.

new
CompoundRegionOperationNode
ptr

new_area_sum_filter(CompoundRegionOperationNode ptr
input,
bool inverse = false,
long amin = 0,
long amax = max)

Creates a node filtering the
input by area sum.

new
CompoundRegionOperationNode
ptr

new_bbox_filter (CompoundRegionOperationNode ptr
input,
CompoundRegionOperationNode::ParameterType
parameter,
bool inverse = false,
unsigned int pmin = 0,
unsigned int pmax = max)

Creates a node filtering
the input by bounding box
parameters.

new
CompoundRegionOperationNode
ptr

new_case (CompoundRegionOperationNode ptr[]
inputs)

Creates a 'switch ladder' (case
statement) compound operation
node.

new
CompoundRegionOperationNode
ptr

new_centers (CompoundRegionOperationNode ptr
input,
unsigned int length,
double fraction)

Creates a node delivering a
part at the center of each input
edge.

new
CompoundRegionOperationNode
ptr

new_convex_decomposition(CompoundRegionOperationNode ptr
input,
PreferredOrientation mode)

Creates a node providing a
composition into convex pieces.

new
CompoundRegionOperationNode
ptr

new_corners_as_dots(CompoundRegionOperationNode ptr
input,
double angle_min,
bool include_angle_min,
double angle_max,
bool include_angle_max)

Creates a node turning corners
into dots (single-point edges).

new
CompoundRegionOperationNode
ptr

new_corners_as_edge_pairs(CompoundRegionOperationNode ptr
input,
double angle_min,
bool include_angle_min,
double angle_max,
bool include_angle_max)

Creates a node turning corners
into edge pairs containing the
two edges adjacent to the
corner.

new
CompoundRegionOperationNode
ptr

new_corners_as_rectangles(CompoundRegionOperationNode ptr
input,
double angle_min,
bool include_angle_min,
double angle_max,
bool include_angle_max,
int dim)

Creates a node turning corners
into rectangles.

For more details visit
https://www.klayout.org

Page 669 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

new
CompoundRegionOperationNode
ptr

new_count_filter (CompoundRegionOperationNode ptr
inputs,
bool invert = false,
unsigned long min_count = 0,
unsigned long max_count =
18446744073709551615)

Creates a node selecting
results but their shape count.

new
CompoundRegionOperationNode
ptr

new_edge_length_filter(CompoundRegionOperationNode ptr
input,
bool inverse = false,
unsigned int lmin = 0,
unsigned int lmax = max)

Creates a node filtering edges
by their length.

new
CompoundRegionOperationNode
ptr

new_edge_length_sum_filter(CompoundRegionOperationNode ptr
input,
bool inverse = false,
unsigned int lmin = 0,
unsigned int lmax = max)

Creates a node filtering edges
by their length sum (over the
local set).

new
CompoundRegionOperationNode
ptr

new_edge_orientation_filter(CompoundRegionOperationNode ptr
input,
bool inverse = false,
double amin,
bool include_amin,
double amax,
bool include_amax)

Creates a node filtering edges
by their orientation.

new
CompoundRegionOperationNode
ptr

new_edge_pair_to_first_edges(CompoundRegionOperationNode ptr
input)

Creates a node delivering the
first edge of each edges pair.

new
CompoundRegionOperationNode
ptr

new_edge_pair_to_second_edges(CompoundRegionOperationNode ptr
input)

Creates a node delivering the
second edge of each edges
pair.

new
CompoundRegionOperationNode
ptr

new_edges (CompoundRegionOperationNode ptr
input)

Creates a node converting
polygons into it's edges.

new
CompoundRegionOperationNode
ptr

new_empty (CompoundRegionOperationNode::ResultType
type)

Creates a node delivering an
empty result of the given type

new
CompoundRegionOperationNode
ptr

new_enclosed_check(CompoundRegionOperationNode ptr
other,
int d,
bool whole_edges = false,
Region::Metrics metrics = Euclidian,
variant ignore_angle = default,
variant min_projection = 0,
variant max_projection = max.,
bool shielded = true,
Region::OppositeFilter opposite_filter =
NoOppositeFilter,
Region::RectFilter rect_filter =
NoRectFilter,
bool negative = false)

Creates a node providing an
enclosed (secondary enclosing
primary) check.

For more details visit
https://www.klayout.org

Page 670 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

new
CompoundRegionOperationNode
ptr

new_enclosing (CompoundRegionOperationNode ptr
a,
CompoundRegionOperationNode ptr b,
bool inverse = false,
unsigned long min_count = 0,
unsigned long max_count = unlimited)

Creates a node representing
an inside selection operation
between the inputs.

new
CompoundRegionOperationNode
ptr

new_enclosing_check(CompoundRegionOperationNode ptr
other,
int d,
bool whole_edges = false,
Region::Metrics metrics = Euclidian,
variant ignore_angle = default,
variant min_projection = 0,
variant max_projection = max.,
bool shielded = true,
Region::OppositeFilter opposite_filter =
NoOppositeFilter,
Region::RectFilter rect_filter =
NoRectFilter,
bool negative = false)

Creates a node providing an
inside (enclosure) check.

new
CompoundRegionOperationNode
ptr

new_end_segments (CompoundRegionOperationNode ptr
input,
unsigned int length,
double fraction)

Creates a node delivering a
part at the end of each input
edge.

new
CompoundRegionOperationNode
ptr

new_extended (CompoundRegionOperationNode ptr
input,
int ext_b,
int ext_e,
int ext_o,
int ext_i)

Creates a node delivering a
polygonized version of the
edges with the four extension
parameters.

new
CompoundRegionOperationNode
ptr

new_extended_in (CompoundRegionOperationNode ptr
input,
int e)

Creates a node delivering a
polygonized, inside-extended
version of the edges.

new
CompoundRegionOperationNode
ptr

new_extended_out (CompoundRegionOperationNode ptr
input,
int e)

Creates a node delivering a
polygonized, inside-extended
version of the edges.

new
CompoundRegionOperationNode
ptr

new_extents (CompoundRegionOperationNode ptr
input,
int e = 0)

Creates a node returning the
extents of the objects.

new
CompoundRegionOperationNode
ptr

new_foreign Creates a node object
representing the primary input
without the current polygon

new
CompoundRegionOperationNode
ptr

new_geometrical_boolean(CompoundRegionOperationNode::GeometricalOp
op,
CompoundRegionOperationNode ptr a,
CompoundRegionOperationNode ptr b)

Creates a node representing a
geometrical boolean operation
between the inputs.

new
CompoundRegionOperationNode
ptr

new_hole_count_filter(CompoundRegionOperationNode ptr
input,
bool inverse = false,
unsigned long hmin = 0,

Creates a node filtering the
input by number of holes per
polygon.

For more details visit
https://www.klayout.org

Page 671 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

unsigned long hmax = max)

new
CompoundRegionOperationNode
ptr

new_holes (CompoundRegionOperationNode ptr
input)

Creates a node extracting the
holes from polygons.

new
CompoundRegionOperationNode
ptr

new_hulls (CompoundRegionOperationNode ptr
input)

Creates a node extracting the
hulls from polygons.

new
CompoundRegionOperationNode
ptr

new_inside (CompoundRegionOperationNode ptr
a,
CompoundRegionOperationNode ptr b,
bool inverse = false)

Creates a node representing
an inside selection operation
between the inputs.

new
CompoundRegionOperationNode
ptr

new_interacting (CompoundRegionOperationNode ptr
a,
CompoundRegionOperationNode ptr b,
bool inverse = false,
unsigned long min_count = 0,
unsigned long max_count = unlimited)

Creates a node representing an
interacting selection operation
between the inputs.

new
CompoundRegionOperationNode
ptr

new_isolated_check (int d,
bool whole_edges = false,
Region::Metrics metrics = Euclidian,
variant ignore_angle = default,
variant min_projection = 0,
variant max_projection = max.,
bool shielded = true,
Region::OppositeFilter opposite_filter =
NoOppositeFilter,
Region::RectFilter rect_filter =
NoRectFilter,
bool negative = false)

Creates a node providing
a isolated polygons (space
between different polygons)
check.

new
CompoundRegionOperationNode
ptr

new_join (CompoundRegionOperationNode ptr[]
inputs)

Creates a node that joins the
inputs.

new
CompoundRegionOperationNode
ptr

new_logical_boolean(CompoundRegionOperationNode::LogicalOp
op,
bool invert,
CompoundRegionOperationNode ptr[]
inputs)

Creates a node representing
a logical boolean operation
between the inputs.

new
CompoundRegionOperationNode
ptr

new_merged (CompoundRegionOperationNode ptr
input,
bool min_coherence = false,
unsigned int min_wc = 0)

Creates a node providing
merged input polygons.

new
CompoundRegionOperationNode
ptr

new_minkowski_sum(CompoundRegionOperationNode ptr
input,
const Edge e)

Creates a node providing a
Minkowski sum with an edge.

new
CompoundRegionOperationNode
ptr

new_minkowski_sum(CompoundRegionOperationNode ptr
input,
const Polygon p)

Creates a node providing a
Minkowski sum with a polygon.

For more details visit
https://www.klayout.org

Page 672 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

new
CompoundRegionOperationNode
ptr

new_minkowski_sum(CompoundRegionOperationNode ptr
input,
const Box p)

Creates a node providing a
Minkowski sum with a box.

new
CompoundRegionOperationNode
ptr

new_minkowski_sum(CompoundRegionOperationNode ptr
input,
Point[] p)

Creates a node providing a
Minkowski sum with a point
sequence forming a contour.

new
CompoundRegionOperationNode
ptr

new_notch_check (int d,
bool whole_edges = false,
Region::Metrics metrics = Euclidian,
variant ignore_angle = default,
variant min_projection = 0,
variant max_projection = max.,
bool shielded = true,
bool negative = false)

Creates a node providing a
intra-polygon space check.

new
CompoundRegionOperationNode
ptr

new_outside (CompoundRegionOperationNode ptr
a,
CompoundRegionOperationNode ptr b,
bool inverse = false)

Creates a node representing
an outside selection operation
between the inputs.

new
CompoundRegionOperationNode
ptr

new_overlap_check (CompoundRegionOperationNode ptr
other,
int d,
bool whole_edges = false,
Region::Metrics metrics = Euclidian,
variant ignore_angle = default,
variant min_projection = 0,
variant max_projection = max.,
bool shielded = true,
Region::OppositeFilter opposite_filter =
NoOppositeFilter,
Region::RectFilter rect_filter =
NoRectFilter,
bool negative = false)

Creates a node providing an
overlap check.

new
CompoundRegionOperationNode
ptr

new_overlapping (CompoundRegionOperationNode ptr
a,
CompoundRegionOperationNode ptr b,
bool inverse = false,
unsigned long min_count = 0,
unsigned long max_count = unlimited)

Creates a node representing an
overlapping selection operation
between the inputs.

new
CompoundRegionOperationNode
ptr

new_perimeter_filter (CompoundRegionOperationNode ptr
input,
bool inverse = false,
unsigned long pmin = 0,
unsigned long pmax = max)

Creates a node filtering the
input by perimeter.

new
CompoundRegionOperationNode
ptr

new_perimeter_sum_filter(CompoundRegionOperationNode ptr
input,
bool inverse = false,
unsigned long amin = 0,
unsigned long amax = max)

Creates a node filtering the
input by area sum.

new
CompoundRegionOperationNode
ptr

new_polygon_breaker(CompoundRegionOperationNode ptr
input,
unsigned long max_vertex_count,
double max_area_ratio)

Creates a node providing a
composition into parts with less
than the given number of points
and a smaller area ratio.

For more details visit
https://www.klayout.org

Page 673 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

new
CompoundRegionOperationNode
ptr

new_polygons (CompoundRegionOperationNode ptr
input,
int e = 0)

Creates a node converting the
input to polygons.

new
CompoundRegionOperationNode
ptr

new_primary Creates a node object
representing the primary input

new
CompoundRegionOperationNode
ptr

new_ratio_filter (CompoundRegionOperationNode ptr
input,
CompoundRegionOperationNode::RatioParameterType
parameter,
bool inverse = false,
double pmin = 0,
bool pmin_included,
double pmax = max,
bool pmax_included = true)

Creates a node filtering the
input by ratio parameters.

new
CompoundRegionOperationNode
ptr

new_rectangle_filter (CompoundRegionOperationNode ptr
input,
bool is_square = false,
bool inverse = false)

Creates a node filtering the
input for rectangular or square
shapes.

new
CompoundRegionOperationNode
ptr

new_rectilinear_filter(CompoundRegionOperationNode ptr
input,
bool inverse = false)

Creates a node filtering the
input for rectilinear shapes
(or non-rectilinear ones with
'inverse' set to 'true').

new
CompoundRegionOperationNode
ptr

new_relative_extents(CompoundRegionOperationNode ptr
input,
double fx1,
double fy1,
double fx2,
double fy2,
int dx,
int dy)

Creates a node returning
markers at specified locations
of the extent (e.g. at the
center).

new
CompoundRegionOperationNode
ptr

new_relative_extents_as_edges(CompoundRegionOperationNode ptr
input,
double fx1,
double fy1,
double fx2,
double fy2)

Creates a node returning edges
at specified locations of the
extent (e.g. at the center).

new
CompoundRegionOperationNode
ptr

new_rounded_corners(CompoundRegionOperationNode ptr
input,
double rinner,
double router,
unsigned int n)

Creates a node generating
rounded corners.

new
CompoundRegionOperationNode
ptr

new_secondary (Region ptr region) Creates a node object
representing the secondary
input from the given region

new
CompoundRegionOperationNode
ptr

new_separation_check(CompoundRegionOperationNode ptr
other,
int d,
bool whole_edges = false,
Region::Metrics metrics = Euclidian,
variant ignore_angle = default,

Creates a node providing a
separation check.

For more details visit
https://www.klayout.org

Page 674 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

variant min_projection = 0,
variant max_projection = max.,
bool shielded = true,
Region::OppositeFilter opposite_filter =
NoOppositeFilter,
Region::RectFilter rect_filter =
NoRectFilter,
bool negative = false)

new
CompoundRegionOperationNode
ptr

new_sized (CompoundRegionOperationNode ptr
input,
int dx,
int dy,
unsigned int mode)

Creates a node providing
sizing.

new
CompoundRegionOperationNode
ptr

new_smoothed (CompoundRegionOperationNode ptr
input,
int d,
bool keep_hv = false)

Creates a node smoothing the
polygons.

new
CompoundRegionOperationNode
ptr

new_space_check (int d,
bool whole_edges = false,
Region::Metrics metrics = Euclidian,
variant ignore_angle = default,
variant min_projection = 0,
variant max_projection = max.,
bool shielded = true,
Region::OppositeFilter opposite_filter =
NoOppositeFilter,
Region::RectFilter rect_filter =
NoRectFilter,
bool negative = false)

Creates a node providing a
space check.

new
CompoundRegionOperationNode
ptr

new_start_segments(CompoundRegionOperationNode ptr
input,
unsigned int length,
double fraction)

Creates a node delivering a
part at the beginning of each
input edge.

new
CompoundRegionOperationNode
ptr

new_strange_polygons_filter(CompoundRegionOperationNode ptr
input)

Creates a node extracting
strange polygons.

new
CompoundRegionOperationNode
ptr

new_trapezoid_decomposition(CompoundRegionOperationNode ptr
input,
TrapezoidDecompositionMode mode)

Creates a node providing a
composition into trapezoids.

new
CompoundRegionOperationNode
ptr

new_width_check (int d,
bool whole_edges = false,
Region::Metrics metrics = Euclidian,
variant ignore_angle = default,
variant min_projection = 0,
variant max_projection = max.,
bool shielded = true,
bool negative = false)

Creates a node providing a
width check.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use
_create instead

For more details visit
https://www.klayout.org

Page 675 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

void destroy Use of this method is deprecated. Use
_destroy instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[static] new
CompoundRegionOperationNode
ptr

new_minkowsky_sum (CompoundRegionOperationNode
ptr input,
const Edge e)

Use of this method is deprecated. Use
new_minkowski_sum instead

[static] new
CompoundRegionOperationNode
ptr

new_minkowsky_sum (CompoundRegionOperationNode
ptr input,
const Polygon p)

Use of this method is deprecated. Use
new_minkowski_sum instead

[static] new
CompoundRegionOperationNode
ptr

new_minkowsky_sum (CompoundRegionOperationNode
ptr input,
const Box p)

Use of this method is deprecated. Use
new_minkowski_sum instead

[static] new
CompoundRegionOperationNode
ptr

new_minkowsky_sum (CompoundRegionOperationNode
ptr input,
Point[] p)

Use of this method is deprecated. Use
new_minkowski_sum instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

For more details visit
https://www.klayout.org

Page 676 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

After calling this method on an object, the script side will be responsible for the management
of the object. This method may be called if an object is returned from a C++ function and the
object is known not to be owned by any C++ instance. If necessary, the script side may delete
the object if the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

description
Signature: [const] string description

Description: Gets the description for this node

Python specific notes:
The object exposes a readable attribute 'description'. This is the getter.

description=
Signature: void description= (string d)

Description: Sets the description for this node

Python specific notes:
The object exposes a writable attribute 'description'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

distance
Signature: [const] int distance

Description: Gets the distance value for this node

For more details visit
https://www.klayout.org

Page 677 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

Python specific notes:
The object exposes a readable attribute 'distance'. This is the getter.

distance=
Signature: void distance= (int d)

Description: Sets the distance value for this nodeUsually it's not required to provide a distance
because the nodes compute a distance based on their operation. If necessary you can supply a
distance. The processor will use this distance or the computed one, whichever is larger.

Python specific notes:
The object exposes a writable attribute 'distance'. This is the setter.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

new
Signature: [static] new CompoundRegionOperationNode ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

new_area_filter
Signature: [static] new CompoundRegionOperationNode ptr new_area_filter
(CompoundRegionOperationNode ptr input, bool inverse = false, long amin = 0, long amax =
max)

Description: Creates a node filtering the input by area.

This node renders the input if the area is between amin and amax (exclusively). If 'inverse' is set
to true, the input shape is returned if the area is less than amin (exclusively) or larger than amax
(inclusively).

new_area_sum_filter
Signature: [static] new CompoundRegionOperationNode ptr new_area_sum_filter
(CompoundRegionOperationNode ptr input, bool inverse = false, long amin = 0, long amax =
max)

Description: Creates a node filtering the input by area sum.

Like new_area_filter, but applies to the sum of all shapes in the current set.

new_bbox_filter
Signature: [static] new CompoundRegionOperationNode ptr new_bbox_filter
(CompoundRegionOperationNode ptr input, CompoundRegionOperationNode::ParameterType
parameter, bool inverse = false, unsigned int pmin = 0, unsigned int pmax = max)

Description: Creates a node filtering the input by bounding box parameters.

This node renders the input if the specified bounding box parameter of the input shape is
between pmin and pmax (exclusively). If 'inverse' is set to true, the input shape is returned if the
parameter is less than pmin (exclusively) or larger than pmax (inclusively).

new_case
Signature: [static] new CompoundRegionOperationNode ptr new_case
(CompoundRegionOperationNode ptr[] inputs)

Description: Creates a 'switch ladder' (case statement) compound operation node.

The inputs are treated as a sequence of condition/result pairs: c1,r1,c2,r2 etc. If there is an odd
number of inputs, the last element is taken as the default result. The implementation will evaluate
c1 and if not empty, will render r1. Otherwise, c2 will be evaluated and r2 rendered if c2 isn't

For more details visit
https://www.klayout.org

Page 678 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

empty etc. If none of the conditions renders a non-empty set and a default result is present, the
default will be returned. Otherwise, the result is empty.

new_centers
Signature: [static] new CompoundRegionOperationNode ptr new_centers
(CompoundRegionOperationNode ptr input, unsigned int length, double fraction)

Description: Creates a node delivering a part at the center of each input edge.

new_convex_decomposition
Signature: [static] new CompoundRegionOperationNode ptr new_convex_decomposition
(CompoundRegionOperationNode ptr input, PreferredOrientation mode)

Description: Creates a node providing a composition into convex pieces.

new_corners_as_dots
Signature: [static] new CompoundRegionOperationNode ptr new_corners_as_dots
(CompoundRegionOperationNode ptr input, double angle_min, bool include_angle_min, double
angle_max, bool include_angle_max)

Description: Creates a node turning corners into dots (single-point edges).

new_corners_as_edge_pairs
Signature: [static] new CompoundRegionOperationNode ptr new_corners_as_edge_pairs
(CompoundRegionOperationNode ptr input, double angle_min, bool include_angle_min, double
angle_max, bool include_angle_max)

Description: Creates a node turning corners into edge pairs containing the two edges adjacent
to the corner.

The first edge will be the incoming edge and the second one the outgoing edge.

This feature has been introduced in version 0.27.1.

new_corners_as_rectangles
Signature: [static] new CompoundRegionOperationNode ptr new_corners_as_rectangles
(CompoundRegionOperationNode ptr input, double angle_min, bool include_angle_min, double
angle_max, bool include_angle_max, int dim)

Description: Creates a node turning corners into rectangles.

new_count_filter
Signature: [static] new CompoundRegionOperationNode ptr new_count_filter
(CompoundRegionOperationNode ptr inputs, bool invert = false, unsigned long min_count = 0,
unsigned long max_count = 18446744073709551615)

Description: Creates a node selecting results but their shape count.

new_edge_length_filter
Signature: [static] new CompoundRegionOperationNode ptr new_edge_length_filter
(CompoundRegionOperationNode ptr input, bool inverse = false, unsigned int lmin = 0, unsigned
int lmax = max)

Description: Creates a node filtering edges by their length.

new_edge_length_sum_filter
Signature: [static] new CompoundRegionOperationNode ptr new_edge_length_sum_filter
(CompoundRegionOperationNode ptr input, bool inverse = false, unsigned int lmin = 0, unsigned
int lmax = max)

Description: Creates a node filtering edges by their length sum (over the local set).

new_edge_orientation_filter
Signature: [static] new CompoundRegionOperationNode ptr new_edge_orientation_filter
(CompoundRegionOperationNode ptr input, bool inverse = false, double amin, bool
include_amin, double amax, bool include_amax)

Description: Creates a node filtering edges by their orientation.

For more details visit
https://www.klayout.org

Page 679 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

new_edge_pair_to_first_edges
Signature: [static] new CompoundRegionOperationNode ptr new_edge_pair_to_first_edges
(CompoundRegionOperationNode ptr input)

Description: Creates a node delivering the first edge of each edges pair.

new_edge_pair_to_second_edges
Signature: [static] new CompoundRegionOperationNode ptr
new_edge_pair_to_second_edges (CompoundRegionOperationNode ptr input)

Description: Creates a node delivering the second edge of each edges pair.

new_edges
Signature: [static] new CompoundRegionOperationNode ptr new_edges
(CompoundRegionOperationNode ptr input)

Description: Creates a node converting polygons into it's edges.

new_empty
Signature: [static] new CompoundRegionOperationNode ptr new_empty
(CompoundRegionOperationNode::ResultType type)

Description: Creates a node delivering an empty result of the given type

new_enclosed_check
Signature: [static] new CompoundRegionOperationNode ptr new_enclosed_check
(CompoundRegionOperationNode ptr other, int d, bool whole_edges = false, Region::Metrics
metrics = Euclidian, variant ignore_angle = default, variant min_projection = 0, variant
max_projection = max., bool shielded = true, Region::OppositeFilter opposite_filter =
NoOppositeFilter, Region::RectFilter rect_filter = NoRectFilter, bool negative = false)

Description: Creates a node providing an enclosed (secondary enclosing primary) check.

This method has been added in version 0.27.5.

new_enclosing
Signature: [static] new CompoundRegionOperationNode ptr new_enclosing
(CompoundRegionOperationNode ptr a, CompoundRegionOperationNode ptr b, bool inverse =
false, unsigned long min_count = 0, unsigned long max_count = unlimited)

Description: Creates a node representing an inside selection operation between the inputs.

new_enclosing_check
Signature: [static] new CompoundRegionOperationNode ptr new_enclosing_check
(CompoundRegionOperationNode ptr other, int d, bool whole_edges = false, Region::Metrics
metrics = Euclidian, variant ignore_angle = default, variant min_projection = 0, variant
max_projection = max., bool shielded = true, Region::OppositeFilter opposite_filter =
NoOppositeFilter, Region::RectFilter rect_filter = NoRectFilter, bool negative = false)

Description: Creates a node providing an inside (enclosure) check.

new_end_segments
Signature: [static] new CompoundRegionOperationNode ptr new_end_segments
(CompoundRegionOperationNode ptr input, unsigned int length, double fraction)

Description: Creates a node delivering a part at the end of each input edge.

new_extended
Signature: [static] new CompoundRegionOperationNode ptr new_extended
(CompoundRegionOperationNode ptr input, int ext_b, int ext_e, int ext_o, int ext_i)

Description: Creates a node delivering a polygonized version of the edges with the four
extension parameters.

new_extended_in
Signature: [static] new CompoundRegionOperationNode ptr new_extended_in
(CompoundRegionOperationNode ptr input, int e)

Description: Creates a node delivering a polygonized, inside-extended version of the edges.

For more details visit
https://www.klayout.org

Page 680 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

new_extended_out
Signature: [static] new CompoundRegionOperationNode ptr new_extended_out
(CompoundRegionOperationNode ptr input, int e)

Description: Creates a node delivering a polygonized, inside-extended version of the edges.

new_extents
Signature: [static] new CompoundRegionOperationNode ptr new_extents
(CompoundRegionOperationNode ptr input, int e = 0)

Description: Creates a node returning the extents of the objects.

The 'e' parameter provides a generic enlargement which is applied to the boxes. This is helpful to
cover dot-like edges or edge pairs in the input.

new_foreign
Signature: [static] new CompoundRegionOperationNode ptr new_foreign

Description: Creates a node object representing the primary input without the current polygon

new_geometrical_boolean
Signature: [static] new CompoundRegionOperationNode ptr new_geometrical_boolean
(CompoundRegionOperationNode::GeometricalOp op, CompoundRegionOperationNode ptr a,
CompoundRegionOperationNode ptr b)

Description: Creates a node representing a geometrical boolean operation between the inputs.

new_hole_count_filter
Signature: [static] new CompoundRegionOperationNode ptr new_hole_count_filter
(CompoundRegionOperationNode ptr input, bool inverse = false, unsigned long hmin = 0,
unsigned long hmax = max)

Description: Creates a node filtering the input by number of holes per polygon.

This node renders the input if the hole count is between hmin and hmax (exclusively). If 'inverse'
is set to true, the input shape is returned if the hole count is less than hmin (exclusively) or larger
than hmax (inclusively).

new_holes
Signature: [static] new CompoundRegionOperationNode ptr new_holes
(CompoundRegionOperationNode ptr input)

Description: Creates a node extracting the holes from polygons.

new_hulls
Signature: [static] new CompoundRegionOperationNode ptr new_hulls
(CompoundRegionOperationNode ptr input)

Description: Creates a node extracting the hulls from polygons.

new_inside
Signature: [static] new CompoundRegionOperationNode ptr new_inside
(CompoundRegionOperationNode ptr a, CompoundRegionOperationNode ptr b, bool inverse =
false)

Description: Creates a node representing an inside selection operation between the inputs.

new_interacting
Signature: [static] new CompoundRegionOperationNode ptr new_interacting
(CompoundRegionOperationNode ptr a, CompoundRegionOperationNode ptr b, bool inverse =
false, unsigned long min_count = 0, unsigned long max_count = unlimited)

Description: Creates a node representing an interacting selection operation between the inputs.

new_isolated_check
Signature: [static] new CompoundRegionOperationNode ptr new_isolated_check (int d, bool
whole_edges = false, Region::Metrics metrics = Euclidian, variant ignore_angle = default, variant
min_projection = 0, variant max_projection = max., bool shielded = true, Region::OppositeFilter
opposite_filter = NoOppositeFilter, Region::RectFilter rect_filter = NoRectFilter, bool negative =
false)

For more details visit
https://www.klayout.org

Page 681 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

Description: Creates a node providing a isolated polygons (space between different polygons)
check.

new_join
Signature: [static] new CompoundRegionOperationNode ptr new_join
(CompoundRegionOperationNode ptr[] inputs)

Description: Creates a node that joins the inputs.

new_logical_boolean
Signature: [static] new CompoundRegionOperationNode ptr new_logical_boolean
(CompoundRegionOperationNode::LogicalOp op, bool invert, CompoundRegionOperationNode
ptr[] inputs)

Description: Creates a node representing a logical boolean operation between the inputs.

A logical AND operation will evaluate the arguments and render the subject shape when all
arguments are non-empty. The logical OR operation will evaluate the arguments and render
the subject shape when one argument is non-empty. Setting 'inverse' to true will reverse the
result and return the subject shape when one argument is empty in the AND case and when all
arguments are empty in the OR case.

new_merged
Signature: [static] new CompoundRegionOperationNode ptr new_merged
(CompoundRegionOperationNode ptr input, bool min_coherence = false, unsigned int min_wc =
0)

Description: Creates a node providing merged input polygons.

(1) Signature: [static] new CompoundRegionOperationNode ptr new_minkowski_sum
(CompoundRegionOperationNode ptr input, const Edge e)

Description: Creates a node providing a Minkowski sum with an edge.

(2) Signature: [static] new CompoundRegionOperationNode ptr new_minkowski_sum
(CompoundRegionOperationNode ptr input, const Polygon p)

Description: Creates a node providing a Minkowski sum with a polygon.

(3) Signature: [static] new CompoundRegionOperationNode ptr new_minkowski_sum
(CompoundRegionOperationNode ptr input, const Box p)

Description: Creates a node providing a Minkowski sum with a box.

new_minkowski_sum

(4) Signature: [static] new CompoundRegionOperationNode ptr new_minkowski_sum
(CompoundRegionOperationNode ptr input, Point[] p)

Description: Creates a node providing a Minkowski sum with a point sequence forming a
contour.

(1) Signature: [static] new CompoundRegionOperationNode ptr new_minkowsky_sum
(CompoundRegionOperationNode ptr input, const Edge e)

Description: Creates a node providing a Minkowski sum with an edge.

Use of this method is deprecated. Use new_minkowski_sum instead

new_minkowsky_sum

(2) Signature: [static] new CompoundRegionOperationNode ptr new_minkowsky_sum
(CompoundRegionOperationNode ptr input, const Polygon p)

Description: Creates a node providing a Minkowski sum with a polygon.

Use of this method is deprecated. Use new_minkowski_sum instead

For more details visit
https://www.klayout.org

Page 682 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

(3) Signature: [static] new CompoundRegionOperationNode ptr new_minkowsky_sum
(CompoundRegionOperationNode ptr input, const Box p)

Description: Creates a node providing a Minkowski sum with a box.

Use of this method is deprecated. Use new_minkowski_sum instead

(4) Signature: [static] new CompoundRegionOperationNode ptr new_minkowsky_sum
(CompoundRegionOperationNode ptr input, Point[] p)

Description: Creates a node providing a Minkowski sum with a point sequence forming a
contour.

Use of this method is deprecated. Use new_minkowski_sum instead

new_notch_check
Signature: [static] new CompoundRegionOperationNode ptr new_notch_check (int d, bool
whole_edges = false, Region::Metrics metrics = Euclidian, variant ignore_angle = default, variant
min_projection = 0, variant max_projection = max., bool shielded = true, bool negative = false)

Description: Creates a node providing a intra-polygon space check.

new_outside
Signature: [static] new CompoundRegionOperationNode ptr new_outside
(CompoundRegionOperationNode ptr a, CompoundRegionOperationNode ptr b, bool inverse =
false)

Description: Creates a node representing an outside selection operation between the inputs.

new_overlap_check
Signature: [static] new CompoundRegionOperationNode ptr new_overlap_check
(CompoundRegionOperationNode ptr other, int d, bool whole_edges = false, Region::Metrics
metrics = Euclidian, variant ignore_angle = default, variant min_projection = 0, variant
max_projection = max., bool shielded = true, Region::OppositeFilter opposite_filter =
NoOppositeFilter, Region::RectFilter rect_filter = NoRectFilter, bool negative = false)

Description: Creates a node providing an overlap check.

new_overlapping
Signature: [static] new CompoundRegionOperationNode ptr new_overlapping
(CompoundRegionOperationNode ptr a, CompoundRegionOperationNode ptr b, bool inverse =
false, unsigned long min_count = 0, unsigned long max_count = unlimited)

Description: Creates a node representing an overlapping selection operation between the
inputs.

new_perimeter_filter
Signature: [static] new CompoundRegionOperationNode ptr new_perimeter_filter
(CompoundRegionOperationNode ptr input, bool inverse = false, unsigned long pmin = 0,
unsigned long pmax = max)

Description: Creates a node filtering the input by perimeter.

This node renders the input if the perimeter is between pmin and pmax (exclusively). If 'inverse'
is set to true, the input shape is returned if the perimeter is less than pmin (exclusively) or larger
than pmax (inclusively).

new_perimeter_sum_filter
Signature: [static] new CompoundRegionOperationNode ptr new_perimeter_sum_filter
(CompoundRegionOperationNode ptr input, bool inverse = false, unsigned long amin = 0,
unsigned long amax = max)

Description: Creates a node filtering the input by area sum.

Like new_perimeter_filter, but applies to the sum of all shapes in the current set.

For more details visit
https://www.klayout.org

Page 683 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

new_polygon_breaker
Signature: [static] new CompoundRegionOperationNode ptr new_polygon_breaker
(CompoundRegionOperationNode ptr input, unsigned long max_vertex_count, double
max_area_ratio)

Description: Creates a node providing a composition into parts with less than the given number
of points and a smaller area ratio.

new_polygons
Signature: [static] new CompoundRegionOperationNode ptr new_polygons
(CompoundRegionOperationNode ptr input, int e = 0)

Description: Creates a node converting the input to polygons.

e: The enlargement parameter when converting edges or edge pairs to
polygons.

new_primary
Signature: [static] new CompoundRegionOperationNode ptr new_primary

Description: Creates a node object representing the primary input

new_ratio_filter
Signature: [static] new CompoundRegionOperationNode ptr
new_ratio_filter (CompoundRegionOperationNode ptr input,
CompoundRegionOperationNode::RatioParameterType parameter, bool inverse = false, double
pmin = 0, bool pmin_included, double pmax = max, bool pmax_included = true)

Description: Creates a node filtering the input by ratio parameters.

This node renders the input if the specified ratio parameter of the input shape is between pmin
and pmax. If 'pmin_included' is true, the range will include pmin. Same for 'pmax_included' and
pmax. If 'inverse' is set to true, the input shape is returned if the parameter is not within the
specified range.

new_rectangle_filter
Signature: [static] new CompoundRegionOperationNode ptr new_rectangle_filter
(CompoundRegionOperationNode ptr input, bool is_square = false, bool inverse = false)

Description: Creates a node filtering the input for rectangular or square shapes.

If 'is_square' is true, only squares will be selected. If 'inverse' is true, the non-rectangle/non-
square shapes are returned.

new_rectilinear_filter
Signature: [static] new CompoundRegionOperationNode ptr new_rectilinear_filter
(CompoundRegionOperationNode ptr input, bool inverse = false)

Description: Creates a node filtering the input for rectilinear shapes (or non-rectilinear ones with
'inverse' set to 'true').

new_relative_extents
Signature: [static] new CompoundRegionOperationNode ptr new_relative_extents
(CompoundRegionOperationNode ptr input, double fx1, double fy1, double fx2, double fy2, int dx,
int dy)

Description: Creates a node returning markers at specified locations of the extent (e.g. at the
center).

new_relative_extents_as_edges
Signature: [static] new CompoundRegionOperationNode ptr new_relative_extents_as_edges
(CompoundRegionOperationNode ptr input, double fx1, double fy1, double fx2, double fy2)

Description: Creates a node returning edges at specified locations of the extent (e.g. at the
center).

new_rounded_corners
Signature: [static] new CompoundRegionOperationNode ptr new_rounded_corners
(CompoundRegionOperationNode ptr input, double rinner, double router, unsigned int n)

For more details visit
https://www.klayout.org

Page 684 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

Description: Creates a node generating rounded corners.

rinner: The inner corner radius.@param router The outer corner
radius.@param n The number if points per full circle.

new_secondary
Signature: [static] new CompoundRegionOperationNode ptr new_secondary (Region ptr
region)

Description: Creates a node object representing the secondary input from the given region

new_separation_check
Signature: [static] new CompoundRegionOperationNode ptr new_separation_check
(CompoundRegionOperationNode ptr other, int d, bool whole_edges = false, Region::Metrics
metrics = Euclidian, variant ignore_angle = default, variant min_projection = 0, variant
max_projection = max., bool shielded = true, Region::OppositeFilter opposite_filter =
NoOppositeFilter, Region::RectFilter rect_filter = NoRectFilter, bool negative = false)

Description: Creates a node providing a separation check.

new_sized
Signature: [static] new CompoundRegionOperationNode ptr new_sized
(CompoundRegionOperationNode ptr input, int dx, int dy, unsigned int mode)

Description: Creates a node providing sizing.

new_smoothed
Signature: [static] new CompoundRegionOperationNode ptr new_smoothed
(CompoundRegionOperationNode ptr input, int d, bool keep_hv = false)

Description: Creates a node smoothing the polygons.

d: The tolerance to be applied for the smoothing.

keep_hv: If true, horizontal and vertical edges are maintained.

new_space_check
Signature: [static] new CompoundRegionOperationNode ptr new_space_check (int d, bool
whole_edges = false, Region::Metrics metrics = Euclidian, variant ignore_angle = default, variant
min_projection = 0, variant max_projection = max., bool shielded = true, Region::OppositeFilter
opposite_filter = NoOppositeFilter, Region::RectFilter rect_filter = NoRectFilter, bool negative =
false)

Description: Creates a node providing a space check.

new_start_segments
Signature: [static] new CompoundRegionOperationNode ptr new_start_segments
(CompoundRegionOperationNode ptr input, unsigned int length, double fraction)

Description: Creates a node delivering a part at the beginning of each input edge.

new_strange_polygons_filter
Signature: [static] new CompoundRegionOperationNode ptr new_strange_polygons_filter
(CompoundRegionOperationNode ptr input)

Description: Creates a node extracting strange polygons.

'strange polygons' are ones which cannot be oriented - e.g. '8' shape polygons.

new_trapezoid_decomposition
Signature: [static] new CompoundRegionOperationNode ptr new_trapezoid_decomposition
(CompoundRegionOperationNode ptr input, TrapezoidDecompositionMode mode)

Description: Creates a node providing a composition into trapezoids.

new_width_check
Signature: [static] new CompoundRegionOperationNode ptr new_width_check (int d, bool
whole_edges = false, Region::Metrics metrics = Euclidian, variant ignore_angle = default, variant
min_projection = 0, variant max_projection = max., bool shielded = true, bool negative = false)

For more details visit
https://www.klayout.org

Page 685 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.23. API reference - Class CompoundRegionOperationNode

Description: Creates a node providing a width check.

result_type
Signature: [const] CompoundRegionOperationNode::ResultType result_type

Description: Gets the result type of this node

For more details visit
https://www.klayout.org

Page 686 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.24. API reference - Class CompoundRegionOperationNode::LogicalOp

4.24. API reference - Class CompoundRegionOperationNode::LogicalOp
Notation used in Ruby API documentation

Module: db

Description: This class represents the CompoundRegionOperationNode::LogicalOp enum

This class is equivalent to the class CompoundRegionOperationNode::LogicalOp

This enum has been introduced in version 0.27.

Public constructors

new
CompoundRegionOperationNode::LogicalOp
ptr

new (int i) Creates an enum from an integer value

new
CompoundRegionOperationNode::LogicalOp
ptr

new (string s) Creates an enum from a string value

Public methods

[const] bool != (const
CompoundRegionOperationNode::LogicalOp
other)

Compares two enums for inequality

[const] bool < (const
CompoundRegionOperationNode::LogicalOp
other)

Returns true if the first enum is less (in the
enum symbol order) than the second

[const] bool == (const
CompoundRegionOperationNode::LogicalOp
other)

Compares two enums

[const] string inspect Converts an enum to a visual string

[const] int to_i Gets the integer value from the enum

[const] string to_s Gets the symbolic string from an enum

Public static methods and constants

[static,const] CompoundRegionOperationNode::LogicalOpLogAnd Indicates a logical '&&' (and).

[static,const] CompoundRegionOperationNode::LogicalOpLogOr Indicates a logical '||' (or).

Detailed description

!=
Signature: [const] bool != (const CompoundRegionOperationNode::LogicalOp other)

Description: Compares two enums for inequality

<
Signature: [const] bool < (const CompoundRegionOperationNode::LogicalOp other)

For more details visit
https://www.klayout.org

Page 687 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.24. API reference - Class CompoundRegionOperationNode::LogicalOp

Description: Returns true if the first enum is less (in the enum symbol order) than the second

==
Signature: [const] bool == (const CompoundRegionOperationNode::LogicalOp other)

Description: Compares two enums

LogAnd
Signature: [static,const] CompoundRegionOperationNode::LogicalOp LogAnd

Description: Indicates a logical '&&' (and).

LogOr
Signature: [static,const] CompoundRegionOperationNode::LogicalOp LogOr

Description: Indicates a logical '||' (or).

inspect
Signature: [const] string inspect

Description: Converts an enum to a visual string

Python specific notes:
This method is also available as 'repr(object)'

(1) Signature: [static] new CompoundRegionOperationNode::LogicalOp ptr new (int i)

Description: Creates an enum from an integer value

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new CompoundRegionOperationNode::LogicalOp ptr new (string s)

Description: Creates an enum from a string value

Python specific notes:
This method is the default initializer of the object

to_i
Signature: [const] int to_i

Description: Gets the integer value from the enum

to_s
Signature: [const] string to_s

Description: Gets the symbolic string from an enum

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 688 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.25. API reference - Class CompoundRegionOperationNode::GeometricalOp

4.25. API reference - Class CompoundRegionOperationNode::GeometricalOp
Notation used in Ruby API documentation

Module: db

Description: This class represents the CompoundRegionOperationNode::GeometricalOp enum

This class is equivalent to the class CompoundRegionOperationNode::GeometricalOp

This enum has been introduced in version 0.27.

Public constructors

new
CompoundRegionOperationNode::GeometricalOp
ptr

new (int i) Creates an enum from an integer value

new
CompoundRegionOperationNode::GeometricalOp
ptr

new (string s) Creates an enum from a string value

Public methods

[const] bool != (const
CompoundRegionOperationNode::GeometricalOp
other)

Compares two enums for inequality

[const] bool < (const
CompoundRegionOperationNode::GeometricalOp
other)

Returns true if the first enum is less (in the
enum symbol order) than the second

[const] bool == (const
CompoundRegionOperationNode::GeometricalOp
other)

Compares two enums

[const] string inspect Converts an enum to a visual string

[const] int to_i Gets the integer value from the enum

[const] string to_s Gets the symbolic string from an enum

Public static methods and constants

[static,const] CompoundRegionOperationNode::GeometricalOpAnd Indicates a geometrical '&' (and).

[static,const] CompoundRegionOperationNode::GeometricalOpNot Indicates a geometrical '-' (not).

[static,const] CompoundRegionOperationNode::GeometricalOpOr Indicates a geometrical '|' (or).

[static,const] CompoundRegionOperationNode::GeometricalOpXor Indicates a geometrical '^' (xor).

Detailed description

!=
Signature: [const] bool != (const CompoundRegionOperationNode::GeometricalOp other)

For more details visit
https://www.klayout.org

Page 689 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.25. API reference - Class CompoundRegionOperationNode::GeometricalOp

Description: Compares two enums for inequality

<
Signature: [const] bool < (const CompoundRegionOperationNode::GeometricalOp other)

Description: Returns true if the first enum is less (in the enum symbol order) than the second

==
Signature: [const] bool == (const CompoundRegionOperationNode::GeometricalOp other)

Description: Compares two enums

And
Signature: [static,const] CompoundRegionOperationNode::GeometricalOp And

Description: Indicates a geometrical '&' (and).

Not
Signature: [static,const] CompoundRegionOperationNode::GeometricalOp Not

Description: Indicates a geometrical '-' (not).

Or
Signature: [static,const] CompoundRegionOperationNode::GeometricalOp Or

Description: Indicates a geometrical '|' (or).

Xor
Signature: [static,const] CompoundRegionOperationNode::GeometricalOp Xor

Description: Indicates a geometrical '^' (xor).

inspect
Signature: [const] string inspect

Description: Converts an enum to a visual string

Python specific notes:
This method is also available as 'repr(object)'

(1) Signature: [static] new CompoundRegionOperationNode::GeometricalOp ptr new (int i)

Description: Creates an enum from an integer value

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new CompoundRegionOperationNode::GeometricalOp ptr new (string s)

Description: Creates an enum from a string value

Python specific notes:
This method is the default initializer of the object

to_i
Signature: [const] int to_i

Description: Gets the integer value from the enum

to_s
Signature: [const] string to_s

Description: Gets the symbolic string from an enum

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 690 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.26. API reference - Class CompoundRegionOperationNode::ResultType

4.26. API reference - Class CompoundRegionOperationNode::ResultType
Notation used in Ruby API documentation

Module: db

Description: This class represents the CompoundRegionOperationNode::ResultType enum

This class is equivalent to the class CompoundRegionOperationNode::ResultType

This enum has been introduced in version 0.27.

Public constructors

new
CompoundRegionOperationNode::ResultType
ptr

new (int i) Creates an enum from an integer value

new
CompoundRegionOperationNode::ResultType
ptr

new (string s) Creates an enum from a string value

Public methods

[const] bool != (const
CompoundRegionOperationNode::ResultType
other)

Compares two enums for inequality

[const] bool < (const
CompoundRegionOperationNode::ResultType
other)

Returns true if the first enum is less (in the
enum symbol order) than the second

[const] bool == (const
CompoundRegionOperationNode::ResultType
other)

Compares two enums

[const] string inspect Converts an enum to a visual string

[const] int to_i Gets the integer value from the enum

[const] string to_s Gets the symbolic string from an enum

Public static methods and constants

[static,const] CompoundRegionOperationNode::ResultTypeEdgePairs Indicates edge pair result type.

[static,const] CompoundRegionOperationNode::ResultTypeEdges Indicates edge result type.

[static,const] CompoundRegionOperationNode::ResultTypeRegion Indicates polygon result type.

Detailed description

!=
Signature: [const] bool != (const CompoundRegionOperationNode::ResultType other)

Description: Compares two enums for inequality

For more details visit
https://www.klayout.org

Page 691 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.26. API reference - Class CompoundRegionOperationNode::ResultType

<
Signature: [const] bool < (const CompoundRegionOperationNode::ResultType other)

Description: Returns true if the first enum is less (in the enum symbol order) than the second

==
Signature: [const] bool == (const CompoundRegionOperationNode::ResultType other)

Description: Compares two enums

EdgePairs
Signature: [static,const] CompoundRegionOperationNode::ResultType EdgePairs

Description: Indicates edge pair result type.

Edges
Signature: [static,const] CompoundRegionOperationNode::ResultType Edges

Description: Indicates edge result type.

Region
Signature: [static,const] CompoundRegionOperationNode::ResultType Region

Description: Indicates polygon result type.

inspect
Signature: [const] string inspect

Description: Converts an enum to a visual string

Python specific notes:
This method is also available as 'repr(object)'

(1) Signature: [static] new CompoundRegionOperationNode::ResultType ptr new (int i)

Description: Creates an enum from an integer value

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new CompoundRegionOperationNode::ResultType ptr new (string s)

Description: Creates an enum from a string value

Python specific notes:
This method is the default initializer of the object

to_i
Signature: [const] int to_i

Description: Gets the integer value from the enum

to_s
Signature: [const] string to_s

Description: Gets the symbolic string from an enum

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 692 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.27. API reference - Class CompoundRegionOperationNode::ParameterType

4.27. API reference - Class CompoundRegionOperationNode::ParameterType
Notation used in Ruby API documentation

Module: db

Description: This class represents the parameter type enum used in \CompoundRegionOperationNode#new_bbox_filter

This class is equivalent to the class CompoundRegionOperationNode::ParameterType

This enum has been introduced in version 0.27.

Public constructors

new
CompoundRegionOperationNode::ParameterType
ptr

new (int i) Creates an enum from an integer value

new
CompoundRegionOperationNode::ParameterType
ptr

new (string s) Creates an enum from a string value

Public methods

[const] bool != (const
CompoundRegionOperationNode::ParameterType
other)

Compares two enums for inequality

[const] bool < (const
CompoundRegionOperationNode::ParameterType
other)

Returns true if the first enum is less (in the
enum symbol order) than the second

[const] bool == (const
CompoundRegionOperationNode::ParameterType
other)

Compares two enums

[const] string inspect Converts an enum to a visual string

[const] int to_i Gets the integer value from the enum

[const] string to_s Gets the symbolic string from an enum

Public static methods and constants

[static,const] CompoundRegionOperationNode::ParameterTypeBoxAverageDim Measures the average of width and
height of the bounding box

[static,const] CompoundRegionOperationNode::ParameterTypeBoxHeight Measures the height of the bounding
box

[static,const] CompoundRegionOperationNode::ParameterTypeBoxMaxDim Measures the maximum dimension of
the bounding box

[static,const] CompoundRegionOperationNode::ParameterTypeBoxMinDim Measures the minimum dimension of
the bounding box

[static,const] CompoundRegionOperationNode::ParameterTypeBoxWidth Measures the width of the bounding
box

For more details visit
https://www.klayout.org

Page 693 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.27. API reference - Class CompoundRegionOperationNode::ParameterType

Detailed description

!=
Signature: [const] bool != (const CompoundRegionOperationNode::ParameterType other)

Description: Compares two enums for inequality

<
Signature: [const] bool < (const CompoundRegionOperationNode::ParameterType other)

Description: Returns true if the first enum is less (in the enum symbol order) than the second

==
Signature: [const] bool == (const CompoundRegionOperationNode::ParameterType other)

Description: Compares two enums

BoxAverageDim
Signature: [static,const] CompoundRegionOperationNode::ParameterType BoxAverageDim

Description: Measures the average of width and height of the bounding box

BoxHeight
Signature: [static,const] CompoundRegionOperationNode::ParameterType BoxHeight

Description: Measures the height of the bounding box

BoxMaxDim
Signature: [static,const] CompoundRegionOperationNode::ParameterType BoxMaxDim

Description: Measures the maximum dimension of the bounding box

BoxMinDim
Signature: [static,const] CompoundRegionOperationNode::ParameterType BoxMinDim

Description: Measures the minimum dimension of the bounding box

BoxWidth
Signature: [static,const] CompoundRegionOperationNode::ParameterType BoxWidth

Description: Measures the width of the bounding box

inspect
Signature: [const] string inspect

Description: Converts an enum to a visual string

Python specific notes:
This method is also available as 'repr(object)'

(1) Signature: [static] new CompoundRegionOperationNode::ParameterType ptr new (int i)

Description: Creates an enum from an integer value

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new CompoundRegionOperationNode::ParameterType ptr new (string s)

Description: Creates an enum from a string value

Python specific notes:
This method is the default initializer of the object

to_i
Signature: [const] int to_i

Description: Gets the integer value from the enum

For more details visit
https://www.klayout.org

Page 694 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.27. API reference - Class CompoundRegionOperationNode::ParameterType

to_s
Signature: [const] string to_s

Description: Gets the symbolic string from an enum

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 695 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.28. API reference - Class CompoundRegionOperationNode::RatioParameterType

4.28. API reference - Class CompoundRegionOperationNode::RatioParameterType
Notation used in Ruby API documentation

Module: db

Description: This class represents the parameter type enum used in \CompoundRegionOperationNode#new_ratio_filter

This class is equivalent to the class CompoundRegionOperationNode::RatioParameterType

This enum has been introduced in version 0.27.

Public constructors

new
CompoundRegionOperationNode::RatioParameterType
ptr

new (int i) Creates an enum from an integer value

new
CompoundRegionOperationNode::RatioParameterType
ptr

new (string s) Creates an enum from a string value

Public methods

[const] bool != (const
CompoundRegionOperationNode::RatioParameterType
other)

Compares two enums for inequality

[const] bool < (const
CompoundRegionOperationNode::RatioParameterType
other)

Returns true if the first enum is less (in the
enum symbol order) than the second

[const] bool == (const
CompoundRegionOperationNode::RatioParameterType
other)

Compares two enums

[const] string inspect Converts an enum to a visual string

[const] int to_i Gets the integer value from the enum

[const] string to_s Gets the symbolic string from an enum

Public static methods and constants

[static,const] CompoundRegionOperationNode::RatioParameterTypeAreaRatio Measures the area ratio (bounding box
area / polygon area)

[static,const] CompoundRegionOperationNode::RatioParameterTypeAspectRatio Measures the aspect ratio of the
bounding box (larger / smaller
dimension)

[static,const] CompoundRegionOperationNode::RatioParameterTypeRelativeHeight Measures the relative height (height /
width)

For more details visit
https://www.klayout.org

Page 696 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.28. API reference - Class CompoundRegionOperationNode::RatioParameterType

Detailed description

!=
Signature: [const] bool != (const CompoundRegionOperationNode::RatioParameterType other)

Description: Compares two enums for inequality

<
Signature: [const] bool < (const CompoundRegionOperationNode::RatioParameterType other)

Description: Returns true if the first enum is less (in the enum symbol order) than the second

==
Signature: [const] bool == (const CompoundRegionOperationNode::RatioParameterType other)

Description: Compares two enums

AreaRatio
Signature: [static,const] CompoundRegionOperationNode::RatioParameterType AreaRatio

Description: Measures the area ratio (bounding box area / polygon area)

AspectRatio
Signature: [static,const] CompoundRegionOperationNode::RatioParameterType AspectRatio

Description: Measures the aspect ratio of the bounding box (larger / smaller dimension)

RelativeHeight
Signature: [static,const] CompoundRegionOperationNode::RatioParameterType RelativeHeight

Description: Measures the relative height (height / width)

inspect
Signature: [const] string inspect

Description: Converts an enum to a visual string

Python specific notes:
This method is also available as 'repr(object)'

(1) Signature: [static] new CompoundRegionOperationNode::RatioParameterType ptr new (int i)

Description: Creates an enum from an integer value

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new CompoundRegionOperationNode::RatioParameterType ptr new (string
s)

Description: Creates an enum from a string value

Python specific notes:
This method is the default initializer of the object

to_i
Signature: [const] int to_i

Description: Gets the integer value from the enum

to_s
Signature: [const] string to_s

Description: Gets the symbolic string from an enum

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 697 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.29. API reference - Class TrapezoidDecompositionMode

4.29. API reference - Class TrapezoidDecompositionMode
Notation used in Ruby API documentation

Module: db

Description: This class represents the TrapezoidDecompositionMode enum used within trapezoid decomposition

This enum has been introduced in version 0.27.

Public constructors

new TrapezoidDecompositionMode ptr new (int i) Creates an enum from an integer value

new TrapezoidDecompositionMode ptr new (string s) Creates an enum from a string value

Public methods

[const] bool != (const
TrapezoidDecompositionMode
other)

Compares two enums for inequality

[const] bool < (const
TrapezoidDecompositionMode
other)

Returns true if the first enum is less (in the
enum symbol order) than the second

[const] bool == (const
TrapezoidDecompositionMode
other)

Compares two enums

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
TrapezoidDecompositionMode
other)

Assigns another object to self

[const] new
TrapezoidDecompositionMode
ptr

dup Creates a copy of self

[const] string inspect Converts an enum to a visual string

[const] int to_i Gets the integer value from the enum

[const] string to_s Gets the symbolic string from an enum

For more details visit
https://www.klayout.org

Page 698 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.29. API reference - Class TrapezoidDecompositionMode

Public static methods and constants

[static,const] TrapezoidDecompositionMode TD_htrapezoids Indicates horizontal trapezoid
decomposition.

[static,const] TrapezoidDecompositionMode TD_simple Indicates unspecific decomposition.

[static,const] TrapezoidDecompositionMode TD_vtrapezoids Indicates vertical trapezoid
decomposition.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

!=
Signature: [const] bool != (const TrapezoidDecompositionMode other)

Description: Compares two enums for inequality

<
Signature: [const] bool < (const TrapezoidDecompositionMode other)

Description: Returns true if the first enum is less (in the enum symbol order) than the second

==
Signature: [const] bool == (const TrapezoidDecompositionMode other)

Description: Compares two enums

TD_htrapezoids
Signature: [static,const] TrapezoidDecompositionMode TD_htrapezoids

Description: Indicates horizontal trapezoid decomposition.

TD_simple
Signature: [static,const] TrapezoidDecompositionMode TD_simple

Description: Indicates unspecific decomposition.

TD_vtrapezoids
Signature: [static,const] TrapezoidDecompositionMode TD_vtrapezoids

Description: Indicates vertical trapezoid decomposition.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 699 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.29. API reference - Class TrapezoidDecompositionMode

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const TrapezoidDecompositionMode other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

For more details visit
https://www.klayout.org

Page 700 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.29. API reference - Class TrapezoidDecompositionMode

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new TrapezoidDecompositionMode ptr dup

Description: Creates a copy of self

inspect
Signature: [const] string inspect

Description: Converts an enum to a visual string

Python specific notes:
This method is also available as 'repr(object)'

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

(1) Signature: [static] new TrapezoidDecompositionMode ptr new (int i)

Description: Creates an enum from an integer value

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new TrapezoidDecompositionMode ptr new (string s)

Description: Creates an enum from a string value

Python specific notes:
This method is the default initializer of the object

to_i
Signature: [const] int to_i

Description: Gets the integer value from the enum

to_s
Signature: [const] string to_s

Description: Gets the symbolic string from an enum

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 701 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.30. API reference - Class PreferredOrientation

4.30. API reference - Class PreferredOrientation
Notation used in Ruby API documentation

Module: db

Description: This class represents the PreferredOrientation enum used within polygon decomposition

This enum has been introduced in version 0.27.

Public constructors

new PreferredOrientation ptr new (int i) Creates an enum from an integer value

new PreferredOrientation ptr new (string s) Creates an enum from a string value

Public methods

[const] bool != (const
PreferredOrientation
other)

Compares two enums for inequality

[const] bool < (const
PreferredOrientation
other)

Returns true if the first enum is less (in the enum
symbol order) than the second

[const] bool == (const
PreferredOrientation
other)

Compares two enums

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
PreferredOrientation
other)

Assigns another object to self

[const] new
PreferredOrientation
ptr

dup Creates a copy of self

[const] string inspect Converts an enum to a visual string

[const] int to_i Gets the integer value from the enum

[const] string to_s Gets the symbolic string from an enum

For more details visit
https://www.klayout.org

Page 702 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.30. API reference - Class PreferredOrientation

Public static methods and constants

[static,const] PreferredOrientation PO_any Indicates any orientation.

[static,const] PreferredOrientation PO_horizontal Indicates horizontal orientation.

[static,const] PreferredOrientation PO_htrapezoids Indicates horizontal trapezoid
decomposition.

[static,const] PreferredOrientation PO_vertical Indicates vertical orientation.

[static,const] PreferredOrientation PO_vtrapezoids Indicates vertical trapezoid
decomposition.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

!=
Signature: [const] bool != (const PreferredOrientation other)

Description: Compares two enums for inequality

<
Signature: [const] bool < (const PreferredOrientation other)

Description: Returns true if the first enum is less (in the enum symbol order) than the second

==
Signature: [const] bool == (const PreferredOrientation other)

Description: Compares two enums

PO_any
Signature: [static,const] PreferredOrientation PO_any

Description: Indicates any orientation.

PO_horizontal
Signature: [static,const] PreferredOrientation PO_horizontal

Description: Indicates horizontal orientation.

PO_htrapezoids
Signature: [static,const] PreferredOrientation PO_htrapezoids

Description: Indicates horizontal trapezoid decomposition.

PO_vertical
Signature: [static,const] PreferredOrientation PO_vertical

Description: Indicates vertical orientation.

For more details visit
https://www.klayout.org

Page 703 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.30. API reference - Class PreferredOrientation

PO_vtrapezoids
Signature: [static,const] PreferredOrientation PO_vtrapezoids

Description: Indicates vertical trapezoid decomposition.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const PreferredOrientation other)

Description: Assigns another object to self

For more details visit
https://www.klayout.org

Page 704 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.30. API reference - Class PreferredOrientation

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new PreferredOrientation ptr dup

Description: Creates a copy of self

inspect
Signature: [const] string inspect

Description: Converts an enum to a visual string

Python specific notes:
This method is also available as 'repr(object)'

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

(1) Signature: [static] new PreferredOrientation ptr new (int i)

Description: Creates an enum from an integer value

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new PreferredOrientation ptr new (string s)

Description: Creates an enum from a string value

Python specific notes:
This method is the default initializer of the object

to_i
Signature: [const] int to_i

For more details visit
https://www.klayout.org

Page 705 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.30. API reference - Class PreferredOrientation

Description: Gets the integer value from the enum

to_s
Signature: [const] string to_s

Description: Gets the symbolic string from an enum

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 706 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.31. API reference - Class Edge

4.31. API reference - Class Edge
Notation used in Ruby API documentation

Module: db

Description: An edge class

An edge is a connection between points, usually participating in a larger context such as a polygon. An edge has a defined direction (from
p1 to p2). Edges play a role in the database as parts of polygons and to describe a line through both points. Although supported, edges are
rarely used as individual database objects.

See The Database API for more details about the database objects like the Edge class.

Public constructors

new Edge ptr new (const DEdge dedge) Creates an integer coordinate edge from a floating-
point coordinate edge

new Edge ptr new Default constructor: creates a degenerated edge
0,0 to 0,0

new Edge ptr new (int x1,
int y1,
int x2,
int y2)

Constructor with two coordinates given as single
values

new Edge ptr new (const Point p1,
const Point p2)

Constructor with two points

Public methods

[const] bool != (const Edge e) Inequality test

[const] Edge * (double
scale_factor)

Scale edge

[const] bool < (const Edge e) Less operator

[const] bool == (const Edge e) Equality test

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by
the script side.

void assign (const Edge other) Assigns another object to self

For more details visit
https://www.klayout.org

Page 707 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.31. API reference - Class Edge

[const] Box bbox Return the bounding box of the edge.

[const] variant clipped (const Box box) Returns the edge clipped at the given box

[const] variant clipped_line (const Box box) Returns the line through the edge clipped
at the given box

[const] bool coincident? (const Edge e) Coincidence check.

[const] bool contains? (const Point p) Test whether a point is on an edge.

[const] bool contains_excl? (const Point p) Test whether a point is on an edge
excluding the endpoints.

[const] bool crossed_by? (const Edge e) Check, if an edge is cut by a line (given by
an edge)

[const] Point crossing_point (const Edge e) Returns the crossing point on two edges.

[const] variant cut_point (const Edge e) Returns the intersection point of the lines
through the two edges.

[const] Vector d Gets the edge extension as a vector.

[const] int distance (const Point p) Distance between the edge and a point.

[const] unsigned int distance_abs (const Point p) Absolute distance between the edge and a
point.

[const] new Edge ptr dup Creates a copy of self

[const] int dx The horizontal extend of the edge.

[const] unsigned int dx_abs The absolute value of the horizontal extend
of the edge.

[const] int dy The vertical extend of the edge.

[const] unsigned int dy_abs The absolute value of the vertical extend of
the edge.

Edge enlarge (const Vector p) Enlarges the edge.

[const] Edge enlarged (const Vector p) Returns the enlarged edge (does not
modify self)

Edge extend (int d) Extends the edge (modifies self)

[const] Edge extended (int d) Returns the extended edge (does not
modify self)

[const] unsigned long hash Computes a hash value

[const] bool intersect? (const Edge e) Intersection test.

[const] variant intersection_point (const Edge e) Returns the intersection point of two
edges.

For more details visit
https://www.klayout.org

Page 708 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.31. API reference - Class Edge

[const] bool is_degenerate? Test for degenerated edge

[const] bool is_parallel? (const Edge e) Test for being parallel

[const] unsigned int length The length of the edge

Edge move (const Vector p) Moves the edge.

Edge move (int dx,
int dy)

Moves the edge.

[const] Edge moved (const Vector p) Returns the moved edge (does not modify
self)

[const] Edge moved (int dx,
int dy)

Returns the moved edge (does not modify
self)

[const] unsigned int ortho_length The orthogonal length of the edge
("manhattan-length")

[const] Point p1 The first point.

void p1= (const Point point) Sets the first point.

[const] Point p2 The second point.

void p2= (const Point point) Sets the second point.

Edge shift (int d) Shifts the edge (modifies self)

[const] Edge shifted (int d) Returns the shifted edge (does not modify
self)

[const] int side_of (const Point p) Indicates at which side the point is located
relative to the edge.

[const] long sq_length The square of the length of the edge

Edge swap_points Swap the points of the edge

[const] Edge swapped_points Returns an edge in which both points are
swapped

[const] DEdge to_dtype (double dbu = 1) Converts the edge to a floating-point
coordinate edge

[const] string to_s (double dbu = 0) Returns a string representing the edge

[const] Edge transformed (const ICplxTrans
t)

Transform the edge.

[const] Edge transformed (const Trans t) Transform the edge.

[const] DEdge transformed (const CplxTrans
t)

Transform the edge.

[const] int x1 Shortcut for p1.x

For more details visit
https://www.klayout.org

Page 709 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.31. API reference - Class Edge

void x1= (int coord) Sets p1.x

[const] int x2 Shortcut for p2.x

void x2= (int coord) Sets p2.x

[const] int y1 Shortcut for p1.y

void y1= (int coord) Sets p1.y

[const] int y2 Shortcut for p2.y

void y2= (int coord) Sets p2.y

Public static methods and constants

new Edge ptr from_s (string s) Creates an object from a string

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use
_destroy instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

[static] new Edge ptr from_dedge (const DEdge
dedge)

Use of this method is deprecated. Use new
instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[static] new Edge ptr new_pp (const Point p1,
const Point p2)

Use of this method is deprecated. Use new
instead

[static] new Edge ptr new_xyxy (int x1,
int y1,
int x2,
int y2)

Use of this method is deprecated. Use new
instead

[const] DEdge transformed_cplx (const CplxTrans
t)

Use of this method is deprecated. Use
transformed instead

Detailed description

!=
Signature: [const] bool != (const Edge e)

Description: Inequality test

e: The object to compare against

For more details visit
https://www.klayout.org

Page 710 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.31. API reference - Class Edge

*
Signature: [const] Edge * (double scale_factor)

Description: Scale edge

scale_factor: The scaling factor

Returns: The scaled edge

The * operator scales self with the given factor.

This method has been introduced in version 0.22.

Python specific notes:
This method is also available as '__mul__'

<
Signature: [const] bool < (const Edge e)

Description: Less operator

e: The object to compare against

Returns: True, if the edge is 'less' as the other edge with respect to first and
second point

==
Signature: [const] bool == (const Edge e)

Description: Equality test

e: The object to compare against

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known

For more details visit
https://www.klayout.org

Page 711 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.31. API reference - Class Edge

not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const Edge other)

Description: Assigns another object to self

bbox
Signature: [const] Box bbox

Description: Return the bounding box of the edge.

clipped
Signature: [const] variant clipped (const Box box)

Description: Returns the edge clipped at the given box

box: The clip box.

Returns: The clipped edge or nil if the edge does not intersect with the
box.

This method has been introduced in version 0.26.2.

clipped_line
Signature: [const] variant clipped_line (const Box box)

Description: Returns the line through the edge clipped at the given box

box: The clip box.

Returns: The part of the line through the box or nil if the line does not
intersect with the box.

In contrast to clipped, this method will consider the edge extended infinitely (a "line"). The returned
edge will be the part of this line going through the box.

This method has been introduced in version 0.26.2.

coincident?
Signature: [const] bool coincident? (const Edge e)

Description: Coincidence check.

e: the edge to test with

Returns: True if the edges are coincident.

Checks whether a edge is coincident with another edge. Coincidence is defined by being parallel and
that at least one point of one edge is on the other edge.

contains?
Signature: [const] bool contains? (const Point p)

Description: Test whether a point is on an edge.

p: The point to test with the edge.

For more details visit
https://www.klayout.org

Page 712 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.31. API reference - Class Edge

Returns: True if the point is on the edge.

A point is on a edge if it is on (or at least closer than a grid point to) the edge.

contains_excl?
Signature: [const] bool contains_excl? (const Point p)

Description: Test whether a point is on an edge excluding the endpoints.

p: The point to test with the edge.

Returns: True if the point is on the edge but not equal p1 or p2.

A point is on a edge if it is on (or at least closer than a grid point to) the edge.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

crossed_by?
Signature: [const] bool crossed_by? (const Edge e)

Description: Check, if an edge is cut by a line (given by an edge)

e: The edge representing the line that the edge must be crossing.

This method returns true if p1 is in one semispace while p2 is in the other or one of them is on the line
through the edge "e"

crossing_point
Signature: [const] Point crossing_point (const Edge e)

Description: Returns the crossing point on two edges.

e: The edge representing the line that self must be crossing.

Returns: The point where self crosses the line given by "e".

This method delivers the point where the given edge (self) crosses the line given by the edge in
argument "e". If self does not cross this line, the result is undefined. See crossed_by? for a description
of the crossing predicate.

This method has been introduced in version 0.19.

cut_point
Signature: [const] variant cut_point (const Edge e)

Description: Returns the intersection point of the lines through the two edges.

e: The edge to test.

Returns: The point where the lines intersect.

This method delivers the intersection point between the lines through the two edges. If the lines are
parallel and do not intersect, the result will be nil. In contrast to intersection_point, this method will
regard the edges as infinitely extended and intersection is not confined to the edge span.

This method has been introduced in version 0.27.1.

d
Signature: [const] Vector d

Description: Gets the edge extension as a vector.

This method is equivalent to p2 - p1. This method has been introduced in version 0.26.2.

For more details visit
https://www.klayout.org

Page 713 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.31. API reference - Class Edge

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

distance
Signature: [const] int distance (const Point p)

Description: Distance between the edge and a point.

p: The point to test.

Returns: The distance

Returns the distance between the edge and the point. The distance is signed which is negative if the
point is to the "right" of the edge and positive if the point is to the "left". The distance is measured by
projecting the point onto the line through the edge. If the edge is degenerated, the distance is not
defined.

distance_abs
Signature: [const] unsigned int distance_abs (const Point p)

Description: Absolute distance between the edge and a point.

p: The point to test.

Returns: The distance

Returns the distance between the edge and the point.

dup
Signature: [const] new Edge ptr dup

Description: Creates a copy of self

dx
Signature: [const] int dx

Description: The horizontal extend of the edge.

dx_abs
Signature: [const] unsigned int dx_abs

Description: The absolute value of the horizontal extend of the edge.

dy
Signature: [const] int dy

Description: The vertical extend of the edge.

dy_abs
Signature: [const] unsigned int dy_abs

Description: The absolute value of the vertical extend of the edge.

enlarge
Signature: Edge enlarge (const Vector p)

For more details visit
https://www.klayout.org

Page 714 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.31. API reference - Class Edge

Description: Enlarges the edge.

p: The distance to move the edge points.

Returns: The enlarged edge.

Enlarges the edge by the given distance and returns the enlarged edge. The edge is overwritten.
Enlargement means that the first point is shifted by -p, the second by p.

enlarged
Signature: [const] Edge enlarged (const Vector p)

Description: Returns the enlarged edge (does not modify self)

p: The distance to move the edge points.

Returns: The enlarged edge.

Enlarges the edge by the given offset and returns the enlarged edge. The edge is not modified.
Enlargement means that the first point is shifted by -p, the second by p.

extend
Signature: Edge extend (int d)

Description: Extends the edge (modifies self)

d: The distance by which to shift the end points.

Returns: The extended edge (self).

Extends the edge by the given distance and returns the extended edge. The edge is not modified.
Extending means that the first point is shifted by -d along the edge, the second by d. The length of the
edge will increase by 2*d.

extended is a version that does not modify self but returns the extended edges.

This method has been introduced in version 0.23.

extended
Signature: [const] Edge extended (int d)

Description: Returns the extended edge (does not modify self)

d: The distance by which to shift the end points.

Returns: The extended edge.

Extends the edge by the given distance and returns the extended edge. The edge is not modified.
Extending means that the first point is shifted by -d along the edge, the second by d. The length of the
edge will increase by 2*d.

extend is a version that modifies self (in-place).

This method has been introduced in version 0.23.

from_dedge
Signature: [static] new Edge ptr from_dedge (const DEdge dedge)

Description: Creates an integer coordinate edge from a floating-point coordinate edge

Use of this method is deprecated. Use new instead

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dedge'.

Python specific notes:
This method is the default initializer of the object

from_s
Signature: [static] new Edge ptr from_s (string s)

Description: Creates an object from a string

Creates the object from a string representation (as returned by to_s)

For more details visit
https://www.klayout.org

Page 715 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.31. API reference - Class Edge

This method has been added in version 0.23.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given edge. This method enables edges as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

intersect?
Signature: [const] bool intersect? (const Edge e)

Description: Intersection test.

e: The edge to test.

Returns true if the edges intersect. Two edges intersect if they share at least one point. If the edges
coincide, they also intersect. For degenerated edges, the intersection is mapped to point containment
tests.

intersection_point
Signature: [const] variant intersection_point (const Edge e)

Description: Returns the intersection point of two edges.

e: The edge to test.

Returns: The point where the edges intersect.

This method delivers the intersection point. If the edges do not intersect, the result will be nil.

This method has been introduced in version 0.19. From version 0.26.2, this method will return nil in
case of non-intersection.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_degenerate?
Signature: [const] bool is_degenerate?

Description: Test for degenerated edge

An edge is degenerate, if both end and start point are identical.

is_parallel?
Signature: [const] bool is_parallel? (const Edge e)

Description: Test for being parallel

e: The edge to test against

Returns: True if both edges are parallel

length
Signature: [const] unsigned int length

Description: The length of the edge

move
(1) Signature: Edge move (const Vector p)

Description: Moves the edge.

For more details visit
https://www.klayout.org

Page 716 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.31. API reference - Class Edge

p: The distance to move the edge.

Returns: The moved edge.

Moves the edge by the given offset and returns the moved edge. The edge is overwritten.

(2) Signature: Edge move (int dx, int dy)

Description: Moves the edge.

dx: The x distance to move the edge.

dy: The y distance to move the edge.

Returns: The moved edge.

Moves the edge by the given offset and returns the moved edge. The edge is overwritten.

This version has been added in version 0.23.

(1) Signature: [const] Edge moved (const Vector p)

Description: Returns the moved edge (does not modify self)

p: The distance to move the edge.

Returns: The moved edge.

Moves the edge by the given offset and returns the moved edge. The edge is not modified.

moved

(2) Signature: [const] Edge moved (int dx, int dy)

Description: Returns the moved edge (does not modify self)

dx: The x distance to move the edge.

dy: The y distance to move the edge.

Returns: The moved edge.

Moves the edge by the given offset and returns the moved edge. The edge is not modified.

This version has been added in version 0.23.

(1) Signature: [static] new Edge ptr new (const DEdge dedge)

Description: Creates an integer coordinate edge from a floating-point coordinate edge

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dedge'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new Edge ptr new

Description: Default constructor: creates a degenerated edge 0,0 to 0,0

Python specific notes:
This method is the default initializer of the object

new

(3) Signature: [static] new Edge ptr new (int x1, int y1, int x2, int y2)

Description: Constructor with two coordinates given as single values

Two points are given to create a new edge.

Python specific notes:

For more details visit
https://www.klayout.org

Page 717 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.31. API reference - Class Edge

This method is the default initializer of the object

(4) Signature: [static] new Edge ptr new (const Point p1, const Point p2)

Description: Constructor with two points

Two points are given to create a new edge.

Python specific notes:
This method is the default initializer of the object

new_pp
Signature: [static] new Edge ptr new_pp (const Point p1, const Point p2)

Description: Constructor with two points

Use of this method is deprecated. Use new instead

Two points are given to create a new edge.

Python specific notes:
This method is the default initializer of the object

new_xyxy
Signature: [static] new Edge ptr new_xyxy (int x1, int y1, int x2, int y2)

Description: Constructor with two coordinates given as single values

Use of this method is deprecated. Use new instead

Two points are given to create a new edge.

Python specific notes:
This method is the default initializer of the object

ortho_length
Signature: [const] unsigned int ortho_length

Description: The orthogonal length of the edge ("manhattan-length")

Returns: The orthogonal length (abs(dx)+abs(dy))

p1
Signature: [const] Point p1

Description: The first point.

Python specific notes:
The object exposes a readable attribute 'p1'. This is the getter.

p1=
Signature: void p1= (const Point point)

Description: Sets the first point.

This method has been added in version 0.23.

Python specific notes:
The object exposes a writable attribute 'p1'. This is the setter.

p2
Signature: [const] Point p2

Description: The second point.

Python specific notes:
The object exposes a readable attribute 'p2'. This is the getter.

p2=
Signature: void p2= (const Point point)

Description: Sets the second point.

For more details visit
https://www.klayout.org

Page 718 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.31. API reference - Class Edge

This method has been added in version 0.23.

Python specific notes:
The object exposes a writable attribute 'p2'. This is the setter.

shift
Signature: Edge shift (int d)

Description: Shifts the edge (modifies self)

d: The distance by which to shift the edge.

Returns: The shifted edge (self).

Shifts the edge by the given distance and returns the shifted edge. The edge is not modified. Shifting
by a positive value will produce an edge which is shifted by d to the left. Shifting by a negative value
will produce an edge which is shifted by d to the right.

shifted is a version that does not modify self but returns the extended edges.

This method has been introduced in version 0.23.

shifted
Signature: [const] Edge shifted (int d)

Description: Returns the shifted edge (does not modify self)

d: The distance by which to shift the edge.

Returns: The shifted edge.

Shifts the edge by the given distance and returns the shifted edge. The edge is not modified. Shifting
by a positive value will produce an edge which is shifted by d to the left. Shifting by a negative value
will produce an edge which is shifted by d to the right.

shift is a version that modifies self (in-place).

This method has been introduced in version 0.23.

side_of
Signature: [const] int side_of (const Point p)

Description: Indicates at which side the point is located relative to the edge.

p: The point to test.

Returns: The side value

Returns 1 if the point is "left" of the edge, 0 if on and -1 if the point is "right" of the edge.

sq_length
Signature: [const] long sq_length

Description: The square of the length of the edge

swap_points
Signature: Edge swap_points

Description: Swap the points of the edge

This version modifies self. A version that does not modify self is swapped_points. Swapping the points
basically reverses the direction of the edge.

This method has been introduced in version 0.23.

swapped_points
Signature: [const] Edge swapped_points

Description: Returns an edge in which both points are swapped

Swapping the points basically reverses the direction of the edge.

This method has been introduced in version 0.23.

For more details visit
https://www.klayout.org

Page 719 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.31. API reference - Class Edge

to_dtype
Signature: [const] DEdge to_dtype (double dbu = 1)

Description: Converts the edge to a floating-point coordinate edge

The database unit can be specified to translate the integer-coordinate edge into a floating-point
coordinate edge in micron units. The database unit is basically a scaling factor.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s (double dbu = 0)

Description: Returns a string representing the edge

If a DBU is given, the output units will be micrometers.

The DBU argument has been added in version 0.27.6.

Python specific notes:
This method is also available as 'str(object)'

(1) Signature: [const] Edge transformed (const ICplxTrans t)

Description: Transform the edge.

t: The transformation to apply.

Returns: The transformed edge (in this case an integer coordinate edge).

Transforms the edge with the given complex transformation. Does not modify the edge but returns the
transformed edge.

This method has been introduced in version 0.18.

(2) Signature: [const] Edge transformed (const Trans t)

Description: Transform the edge.

t: The transformation to apply.

Returns: The transformed edge.

Transforms the edge with the given transformation. Does not modify the edge but returns the
transformed edge.

transformed

(3) Signature: [const] DEdge transformed (const CplxTrans t)

Description: Transform the edge.

t: The transformation to apply.

Returns: The transformed edge.

Transforms the edge with the given complex transformation. Does not modify the edge but returns the
transformed edge.

transformed_cplx
Signature: [const] DEdge transformed_cplx (const CplxTrans t)

Description: Transform the edge.

t: The transformation to apply.

Returns: The transformed edge.

Use of this method is deprecated. Use transformed instead

Transforms the edge with the given complex transformation. Does not modify the edge but returns the
transformed edge.

For more details visit
https://www.klayout.org

Page 720 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.31. API reference - Class Edge

x1
Signature: [const] int x1

Description: Shortcut for p1.x

Python specific notes:
The object exposes a readable attribute 'x1'. This is the getter.

x1=
Signature: void x1= (int coord)

Description: Sets p1.x

This method has been added in version 0.23.

Python specific notes:
The object exposes a writable attribute 'x1'. This is the setter.

x2
Signature: [const] int x2

Description: Shortcut for p2.x

Python specific notes:
The object exposes a readable attribute 'x2'. This is the getter.

x2=
Signature: void x2= (int coord)

Description: Sets p2.x

This method has been added in version 0.23.

Python specific notes:
The object exposes a writable attribute 'x2'. This is the setter.

y1
Signature: [const] int y1

Description: Shortcut for p1.y

Python specific notes:
The object exposes a readable attribute 'y1'. This is the getter.

y1=
Signature: void y1= (int coord)

Description: Sets p1.y

This method has been added in version 0.23.

Python specific notes:
The object exposes a writable attribute 'y1'. This is the setter.

y2
Signature: [const] int y2

Description: Shortcut for p2.y

Python specific notes:
The object exposes a readable attribute 'y2'. This is the getter.

y2=
Signature: void y2= (int coord)

Description: Sets p2.y

This method has been added in version 0.23.

Python specific notes:
The object exposes a writable attribute 'y2'. This is the setter.

For more details visit
https://www.klayout.org

Page 721 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.32. API reference - Class DEdge

4.32. API reference - Class DEdge
Notation used in Ruby API documentation

Module: db

Description: An edge class

An edge is a connection between points, usually participating in a larger context such as a polygon. An edge has a defined direction (from
p1 to p2). Edges play a role in the database as parts of polygons and to describe a line through both points. The Edge object is also used
inside the boolean processor (EdgeProcessor). Although supported, edges are rarely used as individual database objects.

See The Database API for more details about the database objects like the Edge class.

Public constructors

new DEdge ptr new (const Edge edge) Creates a floating-point coordinate edge from an
integer coordinate edge

new DEdge ptr new Default constructor: creates a degenerated edge
0,0 to 0,0

new DEdge ptr new (double x1,
double y1,
double x2,
double y2)

Constructor with two coordinates given as single
values

new DEdge ptr new (const DPoint p1,
const DPoint p2)

Constructor with two points

Public methods

[const] bool != (const DEdge e) Inequality test

[const] DEdge * (double
scale_factor)

Scale edge

[const] bool < (const DEdge e) Less operator

[const] bool == (const DEdge e) Equality test

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by
the script side.

For more details visit
https://www.klayout.org

Page 722 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.32. API reference - Class DEdge

void assign (const DEdge
other)

Assigns another object to self

[const] DBox bbox Return the bounding box of the edge.

[const] variant clipped (const DBox box) Returns the edge clipped at the given box

[const] variant clipped_line (const DBox box) Returns the line through the edge clipped
at the given box

[const] bool coincident? (const DEdge e) Coincidence check.

[const] bool contains? (const DPoint p) Test whether a point is on an edge.

[const] bool contains_excl? (const DPoint p) Test whether a point is on an edge
excluding the endpoints.

[const] bool crossed_by? (const DEdge e) Check, if an edge is cut by a line (given by
an edge)

[const] DPoint crossing_point (const DEdge e) Returns the crossing point on two edges.

[const] variant cut_point (const DEdge e) Returns the intersection point of the lines
through the two edges.

[const] DVector d Gets the edge extension as a vector.

[const] double distance (const DPoint p) Distance between the edge and a point.

[const] double distance_abs (const DPoint p) Absolute distance between the edge and a
point.

[const] new DEdge ptr dup Creates a copy of self

[const] double dx The horizontal extend of the edge.

[const] double dx_abs The absolute value of the horizontal
extend of the edge.

[const] double dy The vertical extend of the edge.

[const] double dy_abs The absolute value of the vertical extend
of the edge.

DEdge enlarge (const DVector p) Enlarges the edge.

[const] DEdge enlarged (const DVector p) Returns the enlarged edge (does not
modify self)

DEdge extend (double d) Extends the edge (modifies self)

[const] DEdge extended (double d) Returns the extended edge (does not
modify self)

[const] unsigned long hash Computes a hash value

[const] bool intersect? (const DEdge e) Intersection test.

For more details visit
https://www.klayout.org

Page 723 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.32. API reference - Class DEdge

[const] variant intersection_point (const DEdge e) Returns the intersection point of two
edges.

[const] bool is_degenerate? Test for degenerated edge

[const] bool is_parallel? (const DEdge e) Test for being parallel

[const] double length The length of the edge

DEdge move (const DVector p) Moves the edge.

DEdge move (double dx,
double dy)

Moves the edge.

[const] DEdge moved (const DVector p) Returns the moved edge (does not modify
self)

[const] DEdge moved (double dx,
double dy)

Returns the moved edge (does not modify
self)

[const] double ortho_length The orthogonal length of the edge
("manhattan-length")

[const] DPoint p1 The first point.

void p1= (const DPoint point) Sets the first point.

[const] DPoint p2 The second point.

void p2= (const DPoint point) Sets the second point.

DEdge shift (double d) Shifts the edge (modifies self)

[const] DEdge shifted (double d) Returns the shifted edge (does not modify
self)

[const] int side_of (const DPoint p) Indicates at which side the point is located
relative to the edge.

[const] double sq_length The square of the length of the edge

DEdge swap_points Swap the points of the edge

[const] DEdge swapped_points Returns an edge in which both points are
swapped

[const] Edge to_itype (double dbu = 1) Converts the edge to an integer
coordinate edge

[const] string to_s (double dbu = 0) Returns a string representing the edge

[const] Edge transformed (const VCplxTrans
t)

Transforms the edge with the given
complex transformation

[const] DEdge transformed (const DTrans t) Transform the edge.

[const] DEdge transformed (const DCplxTrans
t)

Transform the edge.

For more details visit
https://www.klayout.org

Page 724 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.32. API reference - Class DEdge

[const] double x1 Shortcut for p1.x

void x1= (double coord) Sets p1.x

[const] double x2 Shortcut for p2.x

void x2= (double coord) Sets p2.x

[const] double y1 Shortcut for p1.y

void y1= (double coord) Sets p1.y

[const] double y2 Shortcut for p2.y

void y2= (double coord) Sets p2.y

Public static methods and constants

new DEdge ptr from_s (string s) Creates an object from a string

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use
_destroy instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

[static] new DEdge ptr from_iedge (const Edge
edge)

Use of this method is deprecated. Use new
instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[static] new DEdge ptr new_pp (const DPoint p1,
const DPoint p2)

Use of this method is deprecated. Use new
instead

[static] new DEdge ptr new_xyxy (double x1,
double y1,
double x2,
double y2)

Use of this method is deprecated. Use new
instead

[const] DEdge transformed_cplx (const
DCplxTrans t)

Use of this method is deprecated. Use
transformed instead

Detailed description

!=
Signature: [const] bool != (const DEdge e)

Description: Inequality test

e: The object to compare against

For more details visit
https://www.klayout.org

Page 725 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.32. API reference - Class DEdge

*
Signature: [const] DEdge * (double scale_factor)

Description: Scale edge

scale_factor: The scaling factor

Returns: The scaled edge

The * operator scales self with the given factor.

This method has been introduced in version 0.22.

Python specific notes:
This method is also available as '__mul__'

<
Signature: [const] bool < (const DEdge e)

Description: Less operator

e: The object to compare against

Returns: True, if the edge is 'less' as the other edge with respect to first and
second point

==
Signature: [const] bool == (const DEdge e)

Description: Equality test

e: The object to compare against

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known

For more details visit
https://www.klayout.org

Page 726 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.32. API reference - Class DEdge

not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const DEdge other)

Description: Assigns another object to self

bbox
Signature: [const] DBox bbox

Description: Return the bounding box of the edge.

clipped
Signature: [const] variant clipped (const DBox box)

Description: Returns the edge clipped at the given box

box: The clip box.

Returns: The clipped edge or nil if the edge does not intersect with the
box.

This method has been introduced in version 0.26.2.

clipped_line
Signature: [const] variant clipped_line (const DBox box)

Description: Returns the line through the edge clipped at the given box

box: The clip box.

Returns: The part of the line through the box or nil if the line does not
intersect with the box.

In contrast to clipped, this method will consider the edge extended infinitely (a "line"). The returned
edge will be the part of this line going through the box.

This method has been introduced in version 0.26.2.

coincident?
Signature: [const] bool coincident? (const DEdge e)

Description: Coincidence check.

e: the edge to test with

Returns: True if the edges are coincident.

Checks whether a edge is coincident with another edge. Coincidence is defined by being parallel and
that at least one point of one edge is on the other edge.

contains?
Signature: [const] bool contains? (const DPoint p)

Description: Test whether a point is on an edge.

p: The point to test with the edge.

For more details visit
https://www.klayout.org

Page 727 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.32. API reference - Class DEdge

Returns: True if the point is on the edge.

A point is on a edge if it is on (or at least closer than a grid point to) the edge.

contains_excl?
Signature: [const] bool contains_excl? (const DPoint p)

Description: Test whether a point is on an edge excluding the endpoints.

p: The point to test with the edge.

Returns: True if the point is on the edge but not equal p1 or p2.

A point is on a edge if it is on (or at least closer than a grid point to) the edge.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

crossed_by?
Signature: [const] bool crossed_by? (const DEdge e)

Description: Check, if an edge is cut by a line (given by an edge)

e: The edge representing the line that the edge must be crossing.

This method returns true if p1 is in one semispace while p2 is in the other or one of them is on the line
through the edge "e"

crossing_point
Signature: [const] DPoint crossing_point (const DEdge e)

Description: Returns the crossing point on two edges.

e: The edge representing the line that self must be crossing.

Returns: The point where self crosses the line given by "e".

This method delivers the point where the given edge (self) crosses the line given by the edge in
argument "e". If self does not cross this line, the result is undefined. See crossed_by? for a description
of the crossing predicate.

This method has been introduced in version 0.19.

cut_point
Signature: [const] variant cut_point (const DEdge e)

Description: Returns the intersection point of the lines through the two edges.

e: The edge to test.

Returns: The point where the lines intersect.

This method delivers the intersection point between the lines through the two edges. If the lines are
parallel and do not intersect, the result will be nil. In contrast to intersection_point, this method will
regard the edges as infinitely extended and intersection is not confined to the edge span.

This method has been introduced in version 0.27.1.

d
Signature: [const] DVector d

Description: Gets the edge extension as a vector.

This method is equivalent to p2 - p1. This method has been introduced in version 0.26.2.

For more details visit
https://www.klayout.org

Page 728 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.32. API reference - Class DEdge

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

distance
Signature: [const] double distance (const DPoint p)

Description: Distance between the edge and a point.

p: The point to test.

Returns: The distance

Returns the distance between the edge and the point. The distance is signed which is negative if the
point is to the "right" of the edge and positive if the point is to the "left". The distance is measured by
projecting the point onto the line through the edge. If the edge is degenerated, the distance is not
defined.

distance_abs
Signature: [const] double distance_abs (const DPoint p)

Description: Absolute distance between the edge and a point.

p: The point to test.

Returns: The distance

Returns the distance between the edge and the point.

dup
Signature: [const] new DEdge ptr dup

Description: Creates a copy of self

dx
Signature: [const] double dx

Description: The horizontal extend of the edge.

dx_abs
Signature: [const] double dx_abs

Description: The absolute value of the horizontal extend of the edge.

dy
Signature: [const] double dy

Description: The vertical extend of the edge.

dy_abs
Signature: [const] double dy_abs

Description: The absolute value of the vertical extend of the edge.

enlarge
Signature: DEdge enlarge (const DVector p)

For more details visit
https://www.klayout.org

Page 729 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.32. API reference - Class DEdge

Description: Enlarges the edge.

p: The distance to move the edge points.

Returns: The enlarged edge.

Enlarges the edge by the given distance and returns the enlarged edge. The edge is overwritten.
Enlargement means that the first point is shifted by -p, the second by p.

enlarged
Signature: [const] DEdge enlarged (const DVector p)

Description: Returns the enlarged edge (does not modify self)

p: The distance to move the edge points.

Returns: The enlarged edge.

Enlarges the edge by the given offset and returns the enlarged edge. The edge is not modified.
Enlargement means that the first point is shifted by -p, the second by p.

extend
Signature: DEdge extend (double d)

Description: Extends the edge (modifies self)

d: The distance by which to shift the end points.

Returns: The extended edge (self).

Extends the edge by the given distance and returns the extended edge. The edge is not modified.
Extending means that the first point is shifted by -d along the edge, the second by d. The length of the
edge will increase by 2*d.

extended is a version that does not modify self but returns the extended edges.

This method has been introduced in version 0.23.

extended
Signature: [const] DEdge extended (double d)

Description: Returns the extended edge (does not modify self)

d: The distance by which to shift the end points.

Returns: The extended edge.

Extends the edge by the given distance and returns the extended edge. The edge is not modified.
Extending means that the first point is shifted by -d along the edge, the second by d. The length of the
edge will increase by 2*d.

extend is a version that modifies self (in-place).

This method has been introduced in version 0.23.

from_iedge
Signature: [static] new DEdge ptr from_iedge (const Edge edge)

Description: Creates a floating-point coordinate edge from an integer coordinate edge

Use of this method is deprecated. Use new instead

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_iedge'.

Python specific notes:
This method is the default initializer of the object

from_s
Signature: [static] new DEdge ptr from_s (string s)

Description: Creates an object from a string

Creates the object from a string representation (as returned by to_s)

For more details visit
https://www.klayout.org

Page 730 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.32. API reference - Class DEdge

This method has been added in version 0.23.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given edge. This method enables edges as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

intersect?
Signature: [const] bool intersect? (const DEdge e)

Description: Intersection test.

e: The edge to test.

Returns true if the edges intersect. Two edges intersect if they share at least one point. If the edges
coincide, they also intersect. For degenerated edges, the intersection is mapped to point containment
tests.

intersection_point
Signature: [const] variant intersection_point (const DEdge e)

Description: Returns the intersection point of two edges.

e: The edge to test.

Returns: The point where the edges intersect.

This method delivers the intersection point. If the edges do not intersect, the result will be nil.

This method has been introduced in version 0.19. From version 0.26.2, this method will return nil in
case of non-intersection.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_degenerate?
Signature: [const] bool is_degenerate?

Description: Test for degenerated edge

An edge is degenerate, if both end and start point are identical.

is_parallel?
Signature: [const] bool is_parallel? (const DEdge e)

Description: Test for being parallel

e: The edge to test against

Returns: True if both edges are parallel

length
Signature: [const] double length

Description: The length of the edge

move
(1) Signature: DEdge move (const DVector p)

Description: Moves the edge.

For more details visit
https://www.klayout.org

Page 731 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.32. API reference - Class DEdge

p: The distance to move the edge.

Returns: The moved edge.

Moves the edge by the given offset and returns the moved edge. The edge is overwritten.

(2) Signature: DEdge move (double dx, double dy)

Description: Moves the edge.

dx: The x distance to move the edge.

dy: The y distance to move the edge.

Returns: The moved edge.

Moves the edge by the given offset and returns the moved edge. The edge is overwritten.

This version has been added in version 0.23.

(1) Signature: [const] DEdge moved (const DVector p)

Description: Returns the moved edge (does not modify self)

p: The distance to move the edge.

Returns: The moved edge.

Moves the edge by the given offset and returns the moved edge. The edge is not modified.

moved

(2) Signature: [const] DEdge moved (double dx, double dy)

Description: Returns the moved edge (does not modify self)

dx: The x distance to move the edge.

dy: The y distance to move the edge.

Returns: The moved edge.

Moves the edge by the given offset and returns the moved edge. The edge is not modified.

This version has been added in version 0.23.

(1) Signature: [static] new DEdge ptr new (const Edge edge)

Description: Creates a floating-point coordinate edge from an integer coordinate edge

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_iedge'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new DEdge ptr new

Description: Default constructor: creates a degenerated edge 0,0 to 0,0

Python specific notes:
This method is the default initializer of the object

new

(3) Signature: [static] new DEdge ptr new (double x1, double y1, double x2, double y2)

Description: Constructor with two coordinates given as single values

Two points are given to create a new edge.

Python specific notes:

For more details visit
https://www.klayout.org

Page 732 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.32. API reference - Class DEdge

This method is the default initializer of the object

(4) Signature: [static] new DEdge ptr new (const DPoint p1, const DPoint p2)

Description: Constructor with two points

Two points are given to create a new edge.

Python specific notes:
This method is the default initializer of the object

new_pp
Signature: [static] new DEdge ptr new_pp (const DPoint p1, const DPoint p2)

Description: Constructor with two points

Use of this method is deprecated. Use new instead

Two points are given to create a new edge.

Python specific notes:
This method is the default initializer of the object

new_xyxy
Signature: [static] new DEdge ptr new_xyxy (double x1, double y1, double x2, double y2)

Description: Constructor with two coordinates given as single values

Use of this method is deprecated. Use new instead

Two points are given to create a new edge.

Python specific notes:
This method is the default initializer of the object

ortho_length
Signature: [const] double ortho_length

Description: The orthogonal length of the edge ("manhattan-length")

Returns: The orthogonal length (abs(dx)+abs(dy))

p1
Signature: [const] DPoint p1

Description: The first point.

Python specific notes:
The object exposes a readable attribute 'p1'. This is the getter.

p1=
Signature: void p1= (const DPoint point)

Description: Sets the first point.

This method has been added in version 0.23.

Python specific notes:
The object exposes a writable attribute 'p1'. This is the setter.

p2
Signature: [const] DPoint p2

Description: The second point.

Python specific notes:
The object exposes a readable attribute 'p2'. This is the getter.

p2=
Signature: void p2= (const DPoint point)

Description: Sets the second point.

For more details visit
https://www.klayout.org

Page 733 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.32. API reference - Class DEdge

This method has been added in version 0.23.

Python specific notes:
The object exposes a writable attribute 'p2'. This is the setter.

shift
Signature: DEdge shift (double d)

Description: Shifts the edge (modifies self)

d: The distance by which to shift the edge.

Returns: The shifted edge (self).

Shifts the edge by the given distance and returns the shifted edge. The edge is not modified. Shifting
by a positive value will produce an edge which is shifted by d to the left. Shifting by a negative value
will produce an edge which is shifted by d to the right.

shifted is a version that does not modify self but returns the extended edges.

This method has been introduced in version 0.23.

shifted
Signature: [const] DEdge shifted (double d)

Description: Returns the shifted edge (does not modify self)

d: The distance by which to shift the edge.

Returns: The shifted edge.

Shifts the edge by the given distance and returns the shifted edge. The edge is not modified. Shifting
by a positive value will produce an edge which is shifted by d to the left. Shifting by a negative value
will produce an edge which is shifted by d to the right.

shift is a version that modifies self (in-place).

This method has been introduced in version 0.23.

side_of
Signature: [const] int side_of (const DPoint p)

Description: Indicates at which side the point is located relative to the edge.

p: The point to test.

Returns: The side value

Returns 1 if the point is "left" of the edge, 0 if on and -1 if the point is "right" of the edge.

sq_length
Signature: [const] double sq_length

Description: The square of the length of the edge

swap_points
Signature: DEdge swap_points

Description: Swap the points of the edge

This version modifies self. A version that does not modify self is swapped_points. Swapping the points
basically reverses the direction of the edge.

This method has been introduced in version 0.23.

swapped_points
Signature: [const] DEdge swapped_points

Description: Returns an edge in which both points are swapped

Swapping the points basically reverses the direction of the edge.

This method has been introduced in version 0.23.

For more details visit
https://www.klayout.org

Page 734 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.32. API reference - Class DEdge

to_itype
Signature: [const] Edge to_itype (double dbu = 1)

Description: Converts the edge to an integer coordinate edge

The database unit can be specified to translate the floating-point coordinate edge in micron units to an
integer-coordinate edge in database units. The edges coordinates will be divided by the database unit.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s (double dbu = 0)

Description: Returns a string representing the edge

If a DBU is given, the output units will be micrometers.

The DBU argument has been added in version 0.27.6.

Python specific notes:
This method is also available as 'str(object)'

(1) Signature: [const] Edge transformed (const VCplxTrans t)

Description: Transforms the edge with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed edge (in this case an integer coordinate edge)

This method has been introduced in version 0.25.

(2) Signature: [const] DEdge transformed (const DTrans t)

Description: Transform the edge.

t: The transformation to apply.

Returns: The transformed edge.

Transforms the edge with the given transformation. Does not modify the edge but returns the
transformed edge.

transformed

(3) Signature: [const] DEdge transformed (const DCplxTrans t)

Description: Transform the edge.

t: The transformation to apply.

Returns: The transformed edge.

Transforms the edge with the given complex transformation. Does not modify the edge but returns the
transformed edge.

transformed_cplx
Signature: [const] DEdge transformed_cplx (const DCplxTrans t)

Description: Transform the edge.

t: The transformation to apply.

Returns: The transformed edge.

Use of this method is deprecated. Use transformed instead

Transforms the edge with the given complex transformation. Does not modify the edge but returns the
transformed edge.

x1
Signature: [const] double x1

Description: Shortcut for p1.x

For more details visit
https://www.klayout.org

Page 735 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.32. API reference - Class DEdge

Python specific notes:
The object exposes a readable attribute 'x1'. This is the getter.

x1=
Signature: void x1= (double coord)

Description: Sets p1.x

This method has been added in version 0.23.

Python specific notes:
The object exposes a writable attribute 'x1'. This is the setter.

x2
Signature: [const] double x2

Description: Shortcut for p2.x

Python specific notes:
The object exposes a readable attribute 'x2'. This is the getter.

x2=
Signature: void x2= (double coord)

Description: Sets p2.x

This method has been added in version 0.23.

Python specific notes:
The object exposes a writable attribute 'x2'. This is the setter.

y1
Signature: [const] double y1

Description: Shortcut for p1.y

Python specific notes:
The object exposes a readable attribute 'y1'. This is the getter.

y1=
Signature: void y1= (double coord)

Description: Sets p1.y

This method has been added in version 0.23.

Python specific notes:
The object exposes a writable attribute 'y1'. This is the setter.

y2
Signature: [const] double y2

Description: Shortcut for p2.y

Python specific notes:
The object exposes a readable attribute 'y2'. This is the getter.

y2=
Signature: void y2= (double coord)

Description: Sets p2.y

This method has been added in version 0.23.

Python specific notes:
The object exposes a writable attribute 'y2'. This is the setter.

For more details visit
https://www.klayout.org

Page 736 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.33. API reference - Class EdgePair

4.33. API reference - Class EdgePair
Notation used in Ruby API documentation

Module: db

Description: An edge pair (a pair of two edges)

Edge pairs are objects representing two edges or parts of edges. They play a role mainly in the context of DRC functions, where they
specify a DRC violation by connecting two edges which violate the condition checked. Within the framework of polygon and edge
collections which provide DRC functionality, edges pairs are used in the form of edge pair collections (EdgePairs).

Edge pairs basically consist of two edges, called first and second. If created by a two-layer DRC function, the first edge will correspond to
edges from the first layer and the second to edges from the second layer.

This class has been introduced in version 0.23.

Public constructors

new EdgePair ptr new (const DEdgePair dedge_pair) Creates an integer coordinate edge pair
from a floating-point coordinate edge pair

new EdgePair ptr new Default constructor

new EdgePair ptr new (const Edge first,
const Edge second,
bool symmetric = false)

Constructor from two edges

Public methods

[const] bool != (const EdgePair
box)

Inequality

[const] bool < (const EdgePair
box)

Less operator

[const] bool == (const EdgePair
box)

Equality

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the
script side.

void _unmanage Marks the object as no longer owned by
the script side.

void assign (const EdgePair
other)

Assigns another object to self

[const] Box bbox Gets the bounding box of the edge pair

For more details visit
https://www.klayout.org

Page 737 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.33. API reference - Class EdgePair

[const] new EdgePair ptr dup Creates a copy of self

[const] Edge first Gets the first edge

void first= (const Edge edge) Sets the first edge

[const] Edge greater Gets the 'greater' edge for symmetric
edge pairs

[const] unsigned long hash Computes a hash value

[const] Edge lesser Gets the 'lesser' edge for symmetric edge
pairs

[const] EdgePair normalized Normalizes the edge pair

[const] Polygon polygon (int e The
enlargement (set
to zero for exact
representation))

Convert an edge pair to a polygon

[const] Edge second Gets the second edge

void second= (const Edge edge) Sets the second edge

[const] SimplePolygon simple_polygon (int e The
enlargement (set
to zero for exact
representation))

Convert an edge pair to a simple polygon

void symmetric= (bool arg1) Sets a value indicating whether the edge
pair is symmetric

[const] bool symmetric? Returns a value indicating whether the
edge pair is symmetric

[const] DEdgePair to_dtype (double dbu = 1) Converts the edge pair to a floating-point
coordinate edge pair

[const] string to_s (double dbu = 0) Returns a string representing the edge
pair

[const] EdgePair transformed (const ICplxTrans
t)

Returns the transformed edge pair

[const] EdgePair transformed (const Trans t) Returns the transformed pair

[const] DEdgePair transformed (const CplxTrans t) Returns the transformed edge pair

Public static methods and constants

new EdgePair ptr from_s (string s) Creates an object from a string

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

For more details visit
https://www.klayout.org

Page 738 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.33. API reference - Class EdgePair

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

!=
Signature: [const] bool != (const EdgePair box)

Description: Inequality

Returns true, if this edge pair and the given one are not equal

This method has been introduced in version 0.25.

<
Signature: [const] bool < (const EdgePair box)

Description: Less operator

Returns true, if this edge pair is 'less' with respect to first and second edge

This method has been introduced in version 0.25.

==
Signature: [const] bool == (const EdgePair box)

Description: Equality

Returns true, if this edge pair and the given one are equal

This method has been introduced in version 0.25.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

For more details visit
https://www.klayout.org

Page 739 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.33. API reference - Class EdgePair

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const EdgePair other)

Description: Assigns another object to self

bbox
Signature: [const] Box bbox

Description: Gets the bounding box of the edge pair

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new EdgePair ptr dup

Description: Creates a copy of self

For more details visit
https://www.klayout.org

Page 740 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.33. API reference - Class EdgePair

first
Signature: [const] Edge first

Description: Gets the first edge

Python specific notes:
The object exposes a readable attribute 'first'. This is the getter.

first=
Signature: void first= (const Edge edge)

Description: Sets the first edge

Python specific notes:
The object exposes a writable attribute 'first'. This is the setter.

from_s
Signature: [static] new EdgePair ptr from_s (string s)

Description: Creates an object from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

greater
Signature: [const] Edge greater

Description: Gets the 'greater' edge for symmetric edge pairs

As first and second edges are commutable for symmetric edge pairs (see symmetric?), this accessor
allows retrieving a 'second' edge in a way independent on the actual assignment.

This read-only attribute has been introduced in version 0.27.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given edge pair. This method enables edge pairs as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

lesser
Signature: [const] Edge lesser

Description: Gets the 'lesser' edge for symmetric edge pairs

As first and second edges are commutable for symmetric edge pairs (see symmetric?), this accessor
allows retrieving a 'first' edge in a way independent on the actual assignment.

This read-only attribute has been introduced in version 0.27.

new
(1) Signature: [static] new EdgePair ptr new (const DEdgePair dedge_pair)

Description: Creates an integer coordinate edge pair from a floating-point coordinate edge pair

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dedge_pair'.

Python specific notes:

For more details visit
https://www.klayout.org

Page 741 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.33. API reference - Class EdgePair

This method is the default initializer of the object

(2) Signature: [static] new EdgePair ptr new

Description: Default constructor

This constructor creates an default edge pair.

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new EdgePair ptr new (const Edge first, const Edge second, bool symmetric =
false)

Description: Constructor from two edges

This constructor creates an edge pair from the two edges given. See symmetric? for a description of
this attribute.

Python specific notes:
This method is the default initializer of the object

normalized
Signature: [const] EdgePair normalized

Description: Normalizes the edge pair

This method normalized the edge pair such that when connecting the edges at their start and end
points a closed loop is formed which is oriented clockwise. To achieve this, the points of the first and/
or first and second edge are swapped. Normalization is a first step recommended before converting an
edge pair to a polygon, because that way the polygons won't be self-overlapping and the enlargement
parameter is applied properly.

polygon
Signature: [const] Polygon polygon (int e The enlargement (set to zero for exact representation))

Description: Convert an edge pair to a polygon

The polygon is formed by connecting the end and start points of the edges. It is recommended to use
normalized before converting the edge pair to a polygon.

The enlargement parameter applies the specified enlargement parallel and perpendicular to the
edges. Basically this introduces a bias which blows up edge pairs by the specified amount. That
parameter is useful to convert degenerated edge pairs to valid polygons, i.e. edge pairs with
coincident edges and edge pairs consisting of two point-like edges.

Another version for converting edge pairs to simple polygons is simple_polygon which renders a
SimplePolygon object.

second
Signature: [const] Edge second

Description: Gets the second edge

Python specific notes:
The object exposes a readable attribute 'second'. This is the getter.

second=
Signature: void second= (const Edge edge)

Description: Sets the second edge

Python specific notes:
The object exposes a writable attribute 'second'. This is the setter.

simple_polygon
Signature: [const] SimplePolygon simple_polygon (int e The enlargement (set to zero for exact
representation))

Description: Convert an edge pair to a simple polygon

For more details visit
https://www.klayout.org

Page 742 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.33. API reference - Class EdgePair

The polygon is formed by connecting the end and start points of the edges. It is recommended to use
normalized before converting the edge pair to a polygon.

The enlargement parameter applies the specified enlargement parallel and perpendicular to the
edges. Basically this introduces a bias which blows up edge pairs by the specified amount. That
parameter is useful to convert degenerated edge pairs to valid polygons, i.e. edge pairs with
coincident edges and edge pairs consisting of two point-like edges.

Another version for converting edge pairs to polygons is polygon which renders a Polygon object.

symmetric=
Signature: void symmetric= (bool arg1)

Description: Sets a value indicating whether the edge pair is symmetric

See symmetric? for a description of this attribute.

Symmetric edge pairs have been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'symmetric'. This is the setter.

symmetric?
Signature: [const] bool symmetric?

Description: Returns a value indicating whether the edge pair is symmetric

For symmetric edge pairs, the edges are commutable. Specifically, a symmetric edge pair with (e1,e2)
is identical to (e2,e1). Symmetric edge pairs are generated by some checks for which there is no
directed error marker (width, space, notch, isolated).

Symmetric edge pairs have been introduced in version 0.27.

Python specific notes:
The object exposes a readable attribute 'symmetric'. This is the getter.

to_dtype
Signature: [const] DEdgePair to_dtype (double dbu = 1)

Description: Converts the edge pair to a floating-point coordinate edge pair

The database unit can be specified to translate the integer-coordinate edge pair into a floating-point
coordinate edge pair in micron units. The database unit is basically a scaling factor.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s (double dbu = 0)

Description: Returns a string representing the edge pair

If a DBU is given, the output units will be micrometers.

The DBU argument has been added in version 0.27.6.

Python specific notes:
This method is also available as 'str(object)'

(1) Signature: [const] EdgePair transformed (const ICplxTrans t)

Description: Returns the transformed edge pair

t: The transformation to apply.

Returns: The transformed edge pair (in this case an integer coordinate edge
pair).

Transforms the edge pair with the given complex transformation. Does not modify the edge pair but
returns the transformed edge.

transformed

(2) Signature: [const] EdgePair transformed (const Trans t)

For more details visit
https://www.klayout.org

Page 743 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.33. API reference - Class EdgePair

Description: Returns the transformed pair

t: The transformation to apply.

Returns: The transformed edge pair

Transforms the edge pair with the given transformation. Does not modify the edge pair but returns the
transformed edge.

(3) Signature: [const] DEdgePair transformed (const CplxTrans t)

Description: Returns the transformed edge pair

t: The transformation to apply.

Returns: The transformed edge pair

Transforms the edge pair with the given complex transformation. Does not modify the edge pair but
returns the transformed edge.

For more details visit
https://www.klayout.org

Page 744 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.34. API reference - Class DEdgePair

4.34. API reference - Class DEdgePair
Notation used in Ruby API documentation

Module: db

Description: An edge pair (a pair of two edges)

Edge pairs are objects representing two edges or parts of edges. They play a role mainly in the context of DRC functions, where they
specify a DRC violation by connecting two edges which violate the condition checked. Within the framework of polygon and edge
collections which provide DRC functionality, edges pairs with integer coordinates (EdgePair type) are used in the form of edge pair
collections (EdgePairs).

Edge pairs basically consist of two edges, called first and second. If created by a two-layer DRC function, the first edge will correspond to
edges from the first layer and the second to edges from the second layer.

This class has been introduced in version 0.23.

Public constructors

new DEdgePair ptr new (const EdgePair edge_pair) Creates a floating-point coordinate edge
pair from an integer coordinate edge

new DEdgePair ptr new Default constructor

new DEdgePair ptr new (const DEdge first,
const DEdge second,
bool symmetric = false)

Constructor from two edges

Public methods

[const] bool != (const DEdgePair
box)

Inequality

[const] bool < (const DEdgePair
box)

Less operator

[const] bool == (const DEdgePair
box)

Equality

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the
script side.

void _unmanage Marks the object as no longer owned by
the script side.

void assign (const DEdgePair
other)

Assigns another object to self

[const] DBox bbox Gets the bounding box of the edge pair

For more details visit
https://www.klayout.org

Page 745 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.34. API reference - Class DEdgePair

[const] new DEdgePair ptr dup Creates a copy of self

[const] DEdge first Gets the first edge

void first= (const DEdge
edge)

Sets the first edge

[const] DEdge greater Gets the 'greater' edge for symmetric
edge pairs

[const] unsigned long hash Computes a hash value

[const] DEdge lesser Gets the 'lesser' edge for symmetric edge
pairs

[const] DEdgePair normalized Normalizes the edge pair

[const] DPolygon polygon (double e The
enlargement (set
to zero for exact
representation))

Convert an edge pair to a polygon

[const] DEdge second Gets the second edge

void second= (const DEdge
edge)

Sets the second edge

[const] DSimplePolygon simple_polygon (double e The
enlargement (set
to zero for exact
representation))

Convert an edge pair to a simple polygon

void symmetric= (bool arg1) Sets a value indicating whether the edge
pair is symmetric

[const] bool symmetric? Returns a value indicating whether the
edge pair is symmetric

[const] EdgePair to_itype (double dbu = 1) Converts the edge pair to an integer
coordinate edge pair

[const] string to_s (double dbu = 0) Returns a string representing the edge
pair

[const] EdgePair transformed (const VCplxTrans
t)

Transforms the edge pair with the given
complex transformation

[const] DEdgePair transformed (const DTrans t) Returns the transformed pair

[const] DEdgePair transformed (const DCplxTrans
t)

Returns the transformed edge pair

Public static methods and constants

new DEdgePair ptr from_s (string s) Creates an object from a string

For more details visit
https://www.klayout.org

Page 746 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.34. API reference - Class DEdgePair

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

!=
Signature: [const] bool != (const DEdgePair box)

Description: Inequality

Returns true, if this edge pair and the given one are not equal

This method has been introduced in version 0.25.

<
Signature: [const] bool < (const DEdgePair box)

Description: Less operator

Returns true, if this edge pair is 'less' with respect to first and second edge

This method has been introduced in version 0.25.

==
Signature: [const] bool == (const DEdgePair box)

Description: Equality

Returns true, if this edge pair and the given one are equal

This method has been introduced in version 0.25.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

For more details visit
https://www.klayout.org

Page 747 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.34. API reference - Class DEdgePair

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const DEdgePair other)

Description: Assigns another object to self

bbox
Signature: [const] DBox bbox

Description: Gets the bounding box of the edge pair

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

For more details visit
https://www.klayout.org

Page 748 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.34. API reference - Class DEdgePair

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new DEdgePair ptr dup

Description: Creates a copy of self

first
Signature: [const] DEdge first

Description: Gets the first edge

Python specific notes:
The object exposes a readable attribute 'first'. This is the getter.

first=
Signature: void first= (const DEdge edge)

Description: Sets the first edge

Python specific notes:
The object exposes a writable attribute 'first'. This is the setter.

from_s
Signature: [static] new DEdgePair ptr from_s (string s)

Description: Creates an object from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

greater
Signature: [const] DEdge greater

Description: Gets the 'greater' edge for symmetric edge pairs

As first and second edges are commutable for symmetric edge pairs (see symmetric?), this accessor
allows retrieving a 'second' edge in a way independent on the actual assignment.

This read-only attribute has been introduced in version 0.27.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given edge pair. This method enables edge pairs as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

lesser
Signature: [const] DEdge lesser

Description: Gets the 'lesser' edge for symmetric edge pairs

As first and second edges are commutable for symmetric edge pairs (see symmetric?), this accessor
allows retrieving a 'first' edge in a way independent on the actual assignment.

This read-only attribute has been introduced in version 0.27.

For more details visit
https://www.klayout.org

Page 749 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.34. API reference - Class DEdgePair

(1) Signature: [static] new DEdgePair ptr new (const EdgePair edge_pair)

Description: Creates a floating-point coordinate edge pair from an integer coordinate edge

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_iedge_pair'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new DEdgePair ptr new

Description: Default constructor

This constructor creates an default edge pair.

Python specific notes:
This method is the default initializer of the object

new

(3) Signature: [static] new DEdgePair ptr new (const DEdge first, const DEdge second, bool
symmetric = false)

Description: Constructor from two edges

This constructor creates an edge pair from the two edges given. See symmetric? for a description of
this attribute.

Python specific notes:
This method is the default initializer of the object

normalized
Signature: [const] DEdgePair normalized

Description: Normalizes the edge pair

This method normalized the edge pair such that when connecting the edges at their start and end
points a closed loop is formed which is oriented clockwise. To achieve this, the points of the first and/
or first and second edge are swapped. Normalization is a first step recommended before converting an
edge pair to a polygon, because that way the polygons won't be self-overlapping and the enlargement
parameter is applied properly.

polygon
Signature: [const] DPolygon polygon (double e The enlargement (set to zero for exact
representation))

Description: Convert an edge pair to a polygon

The polygon is formed by connecting the end and start points of the edges. It is recommended to use
normalized before converting the edge pair to a polygon.

The enlargement parameter applies the specified enlargement parallel and perpendicular to the
edges. Basically this introduces a bias which blows up edge pairs by the specified amount. That
parameter is useful to convert degenerated edge pairs to valid polygons, i.e. edge pairs with
coincident edges and edge pairs consisting of two point-like edges.

Another version for converting edge pairs to simple polygons is simple_polygon which renders a
SimplePolygon object.

second
Signature: [const] DEdge second

Description: Gets the second edge

Python specific notes:
The object exposes a readable attribute 'second'. This is the getter.

For more details visit
https://www.klayout.org

Page 750 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.34. API reference - Class DEdgePair

second=
Signature: void second= (const DEdge edge)

Description: Sets the second edge

Python specific notes:
The object exposes a writable attribute 'second'. This is the setter.

simple_polygon
Signature: [const] DSimplePolygon simple_polygon (double e The enlargement (set to zero for
exact representation))

Description: Convert an edge pair to a simple polygon

The polygon is formed by connecting the end and start points of the edges. It is recommended to use
normalized before converting the edge pair to a polygon.

The enlargement parameter applies the specified enlargement parallel and perpendicular to the
edges. Basically this introduces a bias which blows up edge pairs by the specified amount. That
parameter is useful to convert degenerated edge pairs to valid polygons, i.e. edge pairs with
coincident edges and edge pairs consisting of two point-like edges.

Another version for converting edge pairs to polygons is polygon which renders a Polygon object.

symmetric=
Signature: void symmetric= (bool arg1)

Description: Sets a value indicating whether the edge pair is symmetric

See symmetric? for a description of this attribute.

Symmetric edge pairs have been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'symmetric'. This is the setter.

symmetric?
Signature: [const] bool symmetric?

Description: Returns a value indicating whether the edge pair is symmetric

For symmetric edge pairs, the edges are commutable. Specifically, a symmetric edge pair with (e1,e2)
is identical to (e2,e1). Symmetric edge pairs are generated by some checks for which there is no
directed error marker (width, space, notch, isolated).

Symmetric edge pairs have been introduced in version 0.27.

Python specific notes:
The object exposes a readable attribute 'symmetric'. This is the getter.

to_itype
Signature: [const] EdgePair to_itype (double dbu = 1)

Description: Converts the edge pair to an integer coordinate edge pair

The database unit can be specified to translate the floating-point coordinate edge pair in micron units
to an integer-coordinate edge pair in database units. The edge pair's' coordinates will be divided by
the database unit.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s (double dbu = 0)

Description: Returns a string representing the edge pair

If a DBU is given, the output units will be micrometers.

The DBU argument has been added in version 0.27.6.

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 751 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.34. API reference - Class DEdgePair

(1) Signature: [const] EdgePair transformed (const VCplxTrans t)

Description: Transforms the edge pair with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed edge pair (in this case an integer coordinate edge
pair)

This method has been introduced in version 0.25.

(2) Signature: [const] DEdgePair transformed (const DTrans t)

Description: Returns the transformed pair

t: The transformation to apply.

Returns: The transformed edge pair

Transforms the edge pair with the given transformation. Does not modify the edge pair but returns the
transformed edge.

transformed

(3) Signature: [const] DEdgePair transformed (const DCplxTrans t)

Description: Returns the transformed edge pair

t: The transformation to apply.

Returns: The transformed edge pair

Transforms the edge pair with the given complex transformation. Does not modify the edge pair but
returns the transformed edge.

For more details visit
https://www.klayout.org

Page 752 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.35. API reference - Class EdgePairs

4.35. API reference - Class EdgePairs
Notation used in Ruby API documentation

Module: db

Description: EdgePairs (a collection of edge pairs)

Class hierarchy: EdgePairs » ShapeCollection

Edge pairs are used mainly in the context of the DRC functions (width_check, space_check etc.) of Region and Edges. A single edge pair
represents two edges participating in a DRC violation. In the two-layer checks (inside, overlap) The first edge represents an edge from the
first layer and the second edge an edge from the second layer. For single-layer checks (width, space) the order of the edges is arbitrary.

This class has been introduced in version 0.23.

Public constructors

new EdgePairs ptr new Default constructor

new EdgePairs ptr new (EdgePair[] array) Constructor from an edge pair array

new EdgePairs ptr new (const EdgePair edge_pair) Constructor from a single edge pair
object

new EdgePairs ptr new (const Shapes shapes) Shapes constructor

new EdgePairs ptr new (const RecursiveShapeIterator
shape_iterator)

Constructor from a hierarchical shape set

new EdgePairs ptr new (const RecursiveShapeIterator
shape_iterator,
const ICplxTrans trans)

Constructor from a hierarchical shape set
with a transformation

new EdgePairs ptr new (const RecursiveShapeIterator
shape_iterator,
DeepShapeStore dss)

Creates a hierarchical edge pair
collection from an original layer

new EdgePairs ptr new (const RecursiveShapeIterator
shape_iterator,
DeepShapeStore dss,
const ICplxTrans trans)

Creates a hierarchical edge pair
collection from an original layer with a
transformation

Public methods

[const] EdgePairs + (const EdgePairs
other)

Returns the combined edge pair collection
of self and the other one

EdgePairs += (const EdgePairs
other)

Adds the edge pairs of the other edge pair
collection to self

[const] const EdgePair ptr [] (unsigned long n) Returns the nth edge pair

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

For more details visit
https://www.klayout.org

Page 753 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.35. API reference - Class EdgePairs

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by
the script side.

void assign (const EdgePairs
other)

Assigns another object to self

[const] Box bbox Return the bounding box of the edge pair
collection

void clear Clears the edge pair collection

[const] unsigned long count Returns the (flat) number of edge pairs in
the edge pair collection

[const] unsigned long data_id Returns the data ID (a unique identifier for
the underlying data storage)

void disable_progress Disable progress reporting

[const] new EdgePairs ptr dup Creates a copy of self

[const,iter] EdgePair each Returns each edge pair of the edge pair
collection

[const] Edges edges Decomposes the edge pairs into single
edges

void enable_progress (string label) Enable progress reporting

[const] Region extents Returns a region with the bounding boxes
of the edge pairs

[const] Region extents (int d) Returns a region with the enlarged
bounding boxes of the edge pairs

[const] Region extents (int dx,
int dy)

Returns a region with the enlarged
bounding boxes of the edge pairs

[const] Edges first_edges Returns the first one of all edges

void flatten Explicitly flattens an edge pair collection

[const] bool has_valid_edge_pairs? Returns true if the edge pair collection
is flat and individual edge pairs can be
accessed randomly

[const] unsigned long hier_count Returns the (hierarchical) number of edge
pairs in the edge pair collection

void insert (const Edge first,
const Edge second)

Inserts an edge pair into the collection

For more details visit
https://www.klayout.org

Page 754 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.35. API reference - Class EdgePairs

void insert (const EdgePair
edge_pair)

Inserts an edge pair into the collection

void insert (const EdgePairs
edge_pairs)

Inserts all edge pairs from the other edge
pair collection into this edge pair collection

[const] void insert_into (Layout ptr layout,
unsigned int
cell_index,
unsigned int layer)

Inserts this edge pairs into the given layout,
below the given cell and into the given
layer.

[const] void insert_into_as_polygons(Layout ptr layout,
unsigned int
cell_index,
unsigned int layer,
int e)

Inserts this edge pairs into the given layout,
below the given cell and into the given
layer.

[const] bool is_deep? Returns true if the edge pair collection is a
deep (hierarchical) one

[const] bool is_empty? Returns true if the collection is empty

EdgePairs move (const Vector p) Moves the edge pair collection

EdgePairs move (int x,
int y)

Moves the edge pair collection

[const] EdgePairs moved (const Vector p) Returns the moved edge pair collection
(does not modify self)

[const] EdgePairs moved (int x,
int y)

Returns the moved edge pair collection
(does not modify self)

[const] Region polygons Converts the edge pairs to polygons

[const] Region polygons (int e) Converts the edge pairs to polygons

[const] Edges second_edges Returns the second one of all edges

void swap (EdgePairs other) Swap the contents of this collection with
the contents of another collection

[const] string to_s Converts the edge pair collection to a string

[const] string to_s (unsigned long
max_count)

Converts the edge pair collection to a string

EdgePairs transform (const Trans t) Transform the edge pair collection
(modifies self)

EdgePairs transform (const ICplxTrans t) Transform the edge pair collection with a
complex transformation (modifies self)

EdgePairs transform (const IMatrix2d t) Transform the edge pair collection
(modifies self)

EdgePairs transform (const IMatrix3d t) Transform the edge pair collection
(modifies self)

For more details visit
https://www.klayout.org

Page 755 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.35. API reference - Class EdgePairs

[const] EdgePairs transformed (const Trans t) Transform the edge pair collection

[const] EdgePairs transformed (const ICplxTrans t) Transform the edge pair collection with a
complex transformation

[const] EdgePairs transformed (const IMatrix2d t) Transform the edge pair collection

[const] EdgePairs transformed (const IMatrix3d t) Transform the edge pair collection

[const] EdgePairs with_angle (double angle,
bool inverse)

Filter the edge pairs by orientation of their
edges

[const] EdgePairs with_angle (double min_angle,
double max_angle,
bool inverse,
bool
include_min_angle =
true,
bool
include_max_angle =
false)

Filter the edge pairs by orientation of their
edges

[const] EdgePairs with_angle_both (double angle,
bool inverse)

Filter the edge pairs by orientation of both
of their edges

[const] EdgePairs with_angle_both (double min_angle,
double max_angle,
bool inverse,
bool
include_min_angle =
true,
bool
include_max_angle =
false)

Filter the edge pairs by orientation of both
of their edges

[const] EdgePairs with_area (long area,
bool inverse)

Filters the edge pairs by the enclosed area

[const] EdgePairs with_area (long min_area,
long max_area,
bool inverse)

Filters the edge pairs by the enclosed area

[const] EdgePairs with_distance (unsigned int
distance,
bool inverse)

Filters the edge pairs by the distance of the
edges

[const] EdgePairs with_distance (variant min_distance,
variant max_distance,
bool inverse)

Filters the edge pairs by the distance of the
edges

[const] EdgePairs with_internal_angle (double angle,
bool inverse)

Filters the edge pairs by the angle between
their edges

[const] EdgePairs with_internal_angle (double min_angle,
double max_angle,
bool inverse,
bool
include_min_angle =
true,

Filters the edge pairs by the angle between
their edges

For more details visit
https://www.klayout.org

Page 756 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.35. API reference - Class EdgePairs

bool
include_max_angle =
false)

[const] EdgePairs with_length (unsigned int length,
bool inverse)

Filters the edge pairs by length of one of
their edges

[const] EdgePairs with_length (variant min_length,
variant max_length,
bool inverse)

Filters the edge pairs by length of one of
their edges

[const] EdgePairs with_length_both (unsigned int length,
bool inverse)

Filters the edge pairs by length of both of
their edges

[const] EdgePairs with_length_both (variant min_length,
variant max_length,
bool inverse)

Filters the edge pairs by length of both of
their edges

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[const] unsigned long size Use of this method is deprecated. Use count
instead

EdgePairs transform_icplx (const
ICplxTrans
t)

Use of this method is deprecated. Use transform
instead

[const] EdgePairs transformed_icplx (const
ICplxTrans
t)

Use of this method is deprecated. Use
transformed instead

Detailed description

+
Signature: [const] EdgePairs + (const EdgePairs other)

Description: Returns the combined edge pair collection of self and the other one

Returns: The resulting edge pair collection

This operator adds the edge pairs of the other collection to self and returns a new combined set.

This method has been introduced in version 0.24.

+=
Signature: EdgePairs += (const EdgePairs other)

Description: Adds the edge pairs of the other edge pair collection to self

Returns: The edge pair collection after modification (self)

For more details visit
https://www.klayout.org

Page 757 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.35. API reference - Class EdgePairs

This operator adds the edge pairs of the other collection to self.

This method has been introduced in version 0.24.

[]
Signature: [const] const EdgePair ptr [] (unsigned long n)

Description: Returns the nth edge pair

This method returns nil if the index is out of range. It is available for flat edge pairs only - i.e. those for
which has_valid_edge_pairs? is true. Use flatten to explicitly flatten an edge pair collection.

The each iterator is the more general approach to access the edge pairs.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

For more details visit
https://www.klayout.org

Page 758 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.35. API reference - Class EdgePairs

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const EdgePairs other)

Description: Assigns another object to self

bbox
Signature: [const] Box bbox

Description: Return the bounding box of the edge pair collection

The bounding box is the box enclosing all points of all edge pairs.

clear
Signature: void clear

Description: Clears the edge pair collection

count
Signature: [const] unsigned long count

Description: Returns the (flat) number of edge pairs in the edge pair collection

The count is computed 'as if flat', i.e. edge pairs inside a cell are multiplied by the number of times a
cell is instantiated.

Starting with version 0.27, the method is called 'count' for consistency with Region. 'size' is still
provided as an alias.

Python specific notes:
This method is also available as 'len(object)'

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

data_id
Signature: [const] unsigned long data_id

Description: Returns the data ID (a unique identifier for the underlying data storage)

This method has been added in version 0.26.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

For more details visit
https://www.klayout.org

Page 759 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.35. API reference - Class EdgePairs

disable_progress
Signature: void disable_progress

Description: Disable progress reporting

Calling this method will disable progress reporting. See enable_progress.

dup
Signature: [const] new EdgePairs ptr dup

Description: Creates a copy of self

each
Signature: [const,iter] EdgePair each

Description: Returns each edge pair of the edge pair collection

Python specific notes:
This method enables iteration of the object

edges
Signature: [const] Edges edges

Description: Decomposes the edge pairs into single edges

Returns: An edge collection containing the individual edges

enable_progress
Signature: void enable_progress (string label)

Description: Enable progress reporting

After calling this method, the edge pair collection will report the progress through a progress bar
while expensive operations are running. The label is a text which is put in front of the progress bar.
Using a progress bar will imply a performance penalty of a few percent typically.

(1) Signature: [const] Region extents

Description: Returns a region with the bounding boxes of the edge pairs

This method will return a region consisting of the bounding boxes of the edge pairs. The boxes will
not be merged, so it is possible to determine overlaps of these boxes for example.

(2) Signature: [const] Region extents (int d)

Description: Returns a region with the enlarged bounding boxes of the edge pairs

This method will return a region consisting of the bounding boxes of the edge pairs enlarged by the
given distance d. The enlargement is specified per edge, i.e the width and height will be increased
by 2*d. The boxes will not be merged, so it is possible to determine overlaps of these boxes for
example.

extents

(3) Signature: [const] Region extents (int dx, int dy)

Description: Returns a region with the enlarged bounding boxes of the edge pairs

This method will return a region consisting of the bounding boxes of the edge pairs enlarged by the
given distance dx in x direction and dy in y direction. The enlargement is specified per edge, i.e the
width will be increased by 2*dx. The boxes will not be merged, so it is possible to determine overlaps
of these boxes for example.

first_edges
Signature: [const] Edges first_edges

Description: Returns the first one of all edges

Returns: An edge collection containing the first edges

For more details visit
https://www.klayout.org

Page 760 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.35. API reference - Class EdgePairs

flatten
Signature: void flatten

Description: Explicitly flattens an edge pair collection

If the collection is already flat (i.e. has_valid_edge_pairs? returns true), this method will not change
the collection.

This method has been introduced in version 0.26.

has_valid_edge_pairs?
Signature: [const] bool has_valid_edge_pairs?

Description: Returns true if the edge pair collection is flat and individual edge pairs can be accessed
randomly

This method has been introduced in version 0.26.

hier_count
Signature: [const] unsigned long hier_count

Description: Returns the (hierarchical) number of edge pairs in the edge pair collection

The count is computed 'hierarchical', i.e. edge pairs inside a cell are counted once even if the cell is
instantiated multiple times.

This method has been introduced in version 0.27.

(1) Signature: void insert (const Edge first, const Edge second)

Description: Inserts an edge pair into the collection

(2) Signature: void insert (const EdgePair edge_pair)

Description: Inserts an edge pair into the collection

insert

(3) Signature: void insert (const EdgePairs edge_pairs)

Description: Inserts all edge pairs from the other edge pair collection into this edge pair collection

This method has been introduced in version 0.25.

insert_into
Signature: [const] void insert_into (Layout ptr layout, unsigned int cell_index, unsigned int layer)

Description: Inserts this edge pairs into the given layout, below the given cell and into the given
layer.

If the edge pair collection is a hierarchical one, a suitable hierarchy will be built below the top cell or
and existing hierarchy will be reused.

This method has been introduced in version 0.26.

insert_into_as_polygons
Signature: [const] void insert_into_as_polygons (Layout ptr layout, unsigned int cell_index,
unsigned int layer, int e)

Description: Inserts this edge pairs into the given layout, below the given cell and into the given
layer.

If the edge pair collection is a hierarchical one, a suitable hierarchy will be built below the top cell or
and existing hierarchy will be reused.

The edge pairs will be converted to polygons with the enlargement value given be 'e'.

This method has been introduced in version 0.26.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

For more details visit
https://www.klayout.org

Page 761 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.35. API reference - Class EdgePairs

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_deep?
Signature: [const] bool is_deep?

Description: Returns true if the edge pair collection is a deep (hierarchical) one

This method has been added in version 0.26.

is_empty?
Signature: [const] bool is_empty?

Description: Returns true if the collection is empty

(1) Signature: EdgePairs move (const Vector p)

Description: Moves the edge pair collection

p: The distance to move the edge pairs.

Returns: The moved edge pairs (self).

Moves the edge pairs by the given offset and returns the moved edge pair collection. The edge pair
collection is overwritten.

Starting with version 0.25 the displacement is of vector type.

move

(2) Signature: EdgePairs move (int x, int y)

Description: Moves the edge pair collection

x: The x distance to move the edge pairs.

y: The y distance to move the edge pairs.

Returns: The moved edge pairs (self).

Moves the edge pairs by the given offset and returns the moved edge pairs. The edge pair collection
is overwritten.

(1) Signature: [const] EdgePairs moved (const Vector p)

Description: Returns the moved edge pair collection (does not modify self)

p: The distance to move the edge pairs.

Returns: The moved edge pairs.

Moves the edge pairs by the given offset and returns the moved edge pairs. The edge pair collection
is not modified.

Starting with version 0.25 the displacement is of vector type.

moved

(2) Signature: [const] EdgePairs moved (int x, int y)

Description: Returns the moved edge pair collection (does not modify self)

x: The x distance to move the edge pairs.

y: The y distance to move the edge pairs.

Returns: The moved edge pairs.

Moves the edge pairs by the given offset and returns the moved edge pairs. The edge pair collection
is not modified.

For more details visit
https://www.klayout.org

Page 762 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.35. API reference - Class EdgePairs

(1) Signature: [static] new EdgePairs ptr new

Description: Default constructor

This constructor creates an empty edge pair collection.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new EdgePairs ptr new (EdgePair[] array)

Description: Constructor from an edge pair array

This constructor creates an edge pair collection from an array of EdgePair objects.

This constructor has been introduced in version 0.26.

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new EdgePairs ptr new (const EdgePair edge_pair)

Description: Constructor from a single edge pair object

This constructor creates an edge pair collection with a single edge pair.

This constructor has been introduced in version 0.26.

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new EdgePairs ptr new (const Shapes shapes)

Description: Shapes constructor

This constructor creates an edge pair collection from a Shapes collection.

This constructor has been introduced in version 0.26.

Python specific notes:
This method is the default initializer of the object

(5) Signature: [static] new EdgePairs ptr new (const RecursiveShapeIterator shape_iterator)

Description: Constructor from a hierarchical shape set

This constructor creates an edge pair collection from the shapes delivered by the given recursive
shape iterator. Only edge pairs are taken from the shape set and other shapes are ignored. This
method allows feeding the edge pair collection from a hierarchy of cells. Edge pairs in layout objects
are somewhat special as most formats don't support reading or writing of edge pairs. Still they are
useful objects and can be created and manipulated inside layouts.

layout = ... # a layout
cell = ... # the index of the initial cell
layer = ... # the index of the layer from where to take the shapes from
r = RBA::EdgePairs::new(layout.begin_shapes(cell, layer))

This constructor has been introduced in version 0.26.

Python specific notes:
This method is the default initializer of the object

new

For more details visit
https://www.klayout.org

Page 763 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.35. API reference - Class EdgePairs

(6) Signature: [static] new EdgePairs ptr new (const RecursiveShapeIterator shape_iterator, const
ICplxTrans trans)

Description: Constructor from a hierarchical shape set with a transformation

This constructor creates an edge pair collection from the shapes delivered by the given recursive
shape iterator. Only edge pairs are taken from the shape set and other shapes are ignored. The
given transformation is applied to each edge pair taken. This method allows feeding the edge pair
collection from a hierarchy of cells. The transformation is useful to scale to a specific database
unit for example. Edge pairs in layout objects are somewhat special as most formats don't support
reading or writing of edge pairs. Still they are useful objects and can be created and manipulated
inside layouts.

layout = ... # a layout
cell = ... # the index of the initial cell
layer = ... # the index of the layer from where to take the shapes from
dbu = 0.1 # the target database unit
r = RBA::EdgePairs::new(layout.begin_shapes(cell, layer),
 RBA::ICplxTrans::new(layout.dbu / dbu))

This constructor has been introduced in version 0.26.

Python specific notes:
This method is the default initializer of the object

(7) Signature: [static] new EdgePairs ptr new (const RecursiveShapeIterator shape_iterator,
DeepShapeStore dss)

Description: Creates a hierarchical edge pair collection from an original layer

This constructor creates an edge pair collection from the shapes delivered by the given recursive
shape iterator. This version will create a hierarchical edge pair collection which supports hierarchical
operations. Edge pairs in layout objects are somewhat special as most formats don't support reading
or writing of edge pairs. Still they are useful objects and can be created and manipulated inside
layouts.

dss = RBA::DeepShapeStore::new
layout = ... # a layout
cell = ... # the index of the initial cell
layer = ... # the index of the layer from where to take the shapes from
r = RBA::EdgePairs::new(layout.begin_shapes(cell, layer))

This constructor has been introduced in version 0.26.

Python specific notes:
This method is the default initializer of the object

(8) Signature: [static] new EdgePairs ptr new (const RecursiveShapeIterator shape_iterator,
DeepShapeStore dss, const ICplxTrans trans)

Description: Creates a hierarchical edge pair collection from an original layer with a transformation

This constructor creates an edge pair collection from the shapes delivered by the given recursive
shape iterator. This version will create a hierarchical edge pair collection which supports hierarchical
operations. The transformation is useful to scale to a specific database unit for example. Edge pairs
in layout objects are somewhat special as most formats don't support reading or writing of edge
pairs. Still they are useful objects and can be created and manipulated inside layouts.

dss = RBA::DeepShapeStore::new

For more details visit
https://www.klayout.org

Page 764 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.35. API reference - Class EdgePairs

layout = ... # a layout
cell = ... # the index of the initial cell
layer = ... # the index of the layer from where to take the shapes from
dbu = 0.1 # the target database unit
r = RBA::EdgePairs::new(layout.begin_shapes(cell, layer),
 RBA::ICplxTrans::new(layout.dbu / dbu))

This constructor has been introduced in version 0.26.

Python specific notes:
This method is the default initializer of the object

(1) Signature: [const] Region polygons

Description: Converts the edge pairs to polygons

This method creates polygons from the edge pairs. Each polygon will be a triangle or quadrangle
which connects the start and end points of the edges forming the edge pair.

polygons

(2) Signature: [const] Region polygons (int e)

Description: Converts the edge pairs to polygons

This method creates polygons from the edge pairs. Each polygon will be a triangle or quadrangle
which connects the start and end points of the edges forming the edge pair. This version allows
one to specify an enlargement which is applied to the edges. The length of the edges is modified
by applying the enlargement and the edges are shifted by the enlargement. By specifying an
enlargement it is possible to give edge pairs an area which otherwise would not have one (coincident
edges, two point-like edges).

second_edges
Signature: [const] Edges second_edges

Description: Returns the second one of all edges

Returns: An edge collection containing the second edges

size
Signature: [const] unsigned long size

Description: Returns the (flat) number of edge pairs in the edge pair collection

Use of this method is deprecated. Use count instead

The count is computed 'as if flat', i.e. edge pairs inside a cell are multiplied by the number of times a
cell is instantiated.

Starting with version 0.27, the method is called 'count' for consistency with Region. 'size' is still
provided as an alias.

Python specific notes:
This method is also available as 'len(object)'

swap
Signature: void swap (EdgePairs other)

Description: Swap the contents of this collection with the contents of another collection

This method is useful to avoid excessive memory allocation in some cases. For managed memory
languages such as Ruby, those cases will be rare.

to_s
(1) Signature: [const] string to_s

Description: Converts the edge pair collection to a string

The length of the output is limited to 20 edge pairs to avoid giant strings on large regions. For full
output use "to_s" with a maximum count parameter.

For more details visit
https://www.klayout.org

Page 765 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.35. API reference - Class EdgePairs

Python specific notes:
This method is also available as 'str(object)'

(2) Signature: [const] string to_s (unsigned long max_count)

Description: Converts the edge pair collection to a string

This version allows specification of the maximum number of edge pairs contained in the string.

Python specific notes:
This method is also available as 'str(object)'

(1) Signature: EdgePairs transform (const Trans t)

Description: Transform the edge pair collection (modifies self)

t: The transformation to apply.

Returns: The transformed edge pair collection.

Transforms the edge pair collection with the given transformation. This version modifies the edge pair
collection and returns a reference to self.

(2) Signature: EdgePairs transform (const ICplxTrans t)

Description: Transform the edge pair collection with a complex transformation (modifies self)

t: The transformation to apply.

Returns: The transformed edge pair collection.

Transforms the edge pair collection with the given transformation. This version modifies the edge pair
collection and returns a reference to self.

(3) Signature: EdgePairs transform (const IMatrix2d t)

Description: Transform the edge pair collection (modifies self)

t: The transformation to apply.

Returns: The transformed edge pair collection.

Transforms the edge pair collection with the given 2d matrix transformation. This version modifies the
edge pair collection and returns a reference to self.

This variant has been introduced in version 0.27.

transform

(4) Signature: EdgePairs transform (const IMatrix3d t)

Description: Transform the edge pair collection (modifies self)

t: The transformation to apply.

Returns: The transformed edge pair collection.

Transforms the edge pair collection with the given 3d matrix transformation. This version modifies the
edge pair collection and returns a reference to self.

This variant has been introduced in version 0.27.

transform_icplx
Signature: EdgePairs transform_icplx (const ICplxTrans t)

Description: Transform the edge pair collection with a complex transformation (modifies self)

t: The transformation to apply.

Returns: The transformed edge pair collection.

Use of this method is deprecated. Use transform instead

For more details visit
https://www.klayout.org

Page 766 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.35. API reference - Class EdgePairs

Transforms the edge pair collection with the given transformation. This version modifies the edge pair
collection and returns a reference to self.

(1) Signature: [const] EdgePairs transformed (const Trans t)

Description: Transform the edge pair collection

t: The transformation to apply.

Returns: The transformed edge pairs.

Transforms the edge pairs with the given transformation. Does not modify the edge pair collection but
returns the transformed edge pairs.

(2) Signature: [const] EdgePairs transformed (const ICplxTrans t)

Description: Transform the edge pair collection with a complex transformation

t: The transformation to apply.

Returns: The transformed edge pairs.

Transforms the edge pairs with the given complex transformation. Does not modify the edge pair
collection but returns the transformed edge pairs.

(3) Signature: [const] EdgePairs transformed (const IMatrix2d t)

Description: Transform the edge pair collection

t: The transformation to apply.

Returns: The transformed edge pairs.

Transforms the edge pairs with the given 2d matrix transformation. Does not modify the edge pair
collection but returns the transformed edge pairs.

This variant has been introduced in version 0.27.

transformed

(4) Signature: [const] EdgePairs transformed (const IMatrix3d t)

Description: Transform the edge pair collection

t: The transformation to apply.

Returns: The transformed edge pairs.

Transforms the edge pairs with the given 3d matrix transformation. Does not modify the edge pair
collection but returns the transformed edge pairs.

This variant has been introduced in version 0.27.

transformed_icplx
Signature: [const] EdgePairs transformed_icplx (const ICplxTrans t)

Description: Transform the edge pair collection with a complex transformation

t: The transformation to apply.

Returns: The transformed edge pairs.

Use of this method is deprecated. Use transformed instead

Transforms the edge pairs with the given complex transformation. Does not modify the edge pair
collection but returns the transformed edge pairs.

with_angle
(1) Signature: [const] EdgePairs with_angle (double angle, bool inverse)

Description: Filter the edge pairs by orientation of their edges

For more details visit
https://www.klayout.org

Page 767 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.35. API reference - Class EdgePairs

Filters the edge pairs in the edge pair collection by orientation. If "inverse" is false, only edge pairs
with at least one edge having the given angle to the x-axis are returned. If "inverse" is true, edge
pairs not fulfilling this criterion are returned.

This will filter edge pairs with at least one horizontal edge:

horizontal = edge_pairs.with_orientation(0, false)

This method has been added in version 0.27.1.

(2) Signature: [const] EdgePairs with_angle (double min_angle, double max_angle, bool inverse,
bool include_min_angle = true, bool include_max_angle = false)

Description: Filter the edge pairs by orientation of their edges

Filters the edge pairs in the edge pair collection by orientation. If "inverse" is false, only edge pairs
with at least one edge having an angle between min_angle and max_angle are returned. If "inverse"
is true, edge pairs not fulfilling this criterion are returned.

With "include_min_angle" set to true (the default), the minimum angle is included in the criterion
while with false, the minimum angle itself is not included. Same for "include_max_angle" where the
default is false, meaning the maximum angle is not included in the range.

This method has been added in version 0.27.1.

(1) Signature: [const] EdgePairs with_angle_both (double angle, bool inverse)

Description: Filter the edge pairs by orientation of both of their edges

Filters the edge pairs in the edge pair collection by orientation. If "inverse" is false, only edge pairs
with both edges having the given angle to the x-axis are returned. If "inverse" is true, edge pairs not
fulfilling this criterion are returned.

This will filter edge pairs with at least one horizontal edge:

horizontal = edge_pairs.with_orientation(0, false)

This method has been added in version 0.27.1.

with_angle_both

(2) Signature: [const] EdgePairs with_angle_both (double min_angle, double max_angle, bool
inverse, bool include_min_angle = true, bool include_max_angle = false)

Description: Filter the edge pairs by orientation of both of their edges

Filters the edge pairs in the edge pair collection by orientation. If "inverse" is false, only edge pairs
with both edges having an angle between min_angle and max_angle are returned. If "inverse" is true,
edge pairs not fulfilling this criterion are returned.

With "include_min_angle" set to true (the default), the minimum angle is included in the criterion
while with false, the minimum angle itself is not included. Same for "include_max_angle" where the
default is false, meaning the maximum angle is not included in the range.

This method has been added in version 0.27.1.

with_area
(1) Signature: [const] EdgePairs with_area (long area, bool inverse)

Description: Filters the edge pairs by the enclosed area

Filters the edge pairs in the edge pair collection by enclosed area. If "inverse" is false, only edge
pairs with the given area are returned. If "inverse" is true, edge pairs not with the given area are
returned.

For more details visit
https://www.klayout.org

Page 768 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.35. API reference - Class EdgePairs

This method has been added in version 0.27.2.

(2) Signature: [const] EdgePairs with_area (long min_area, long max_area, bool inverse)

Description: Filters the edge pairs by the enclosed area

Filters the edge pairs in the edge pair collection by enclosed area. If "inverse" is false, only edge
pairs with an area between min_area and max_area (max_area itself is excluded) are returned. If
"inverse" is true, edge pairs not fulfilling this criterion are returned.

This method has been added in version 0.27.2.

(1) Signature: [const] EdgePairs with_distance (unsigned int distance, bool inverse)

Description: Filters the edge pairs by the distance of the edges

Filters the edge pairs in the edge pair collection by distance of the edges. If "inverse" is false, only
edge pairs where both edges have the given distance are returned. If "inverse" is true, edge pairs not
fulfilling this criterion are returned.

Distance is measured as the shortest distance between any of the points on the edges.

This method has been added in version 0.27.1.

with_distance

(2) Signature: [const] EdgePairs with_distance (variant min_distance, variant max_distance, bool
inverse)

Description: Filters the edge pairs by the distance of the edges

Filters the edge pairs in the edge pair collection by distance of the edges. If "inverse" is false,
only edge pairs where both edges have a distance between min_distance and max_distance
(max_distance itself is excluded) are returned. If "inverse" is true, edge pairs not fulfilling this criterion
are returned.

Distance is measured as the shortest distance between any of the points on the edges.

This method has been added in version 0.27.1.

(1) Signature: [const] EdgePairs with_internal_angle (double angle, bool inverse)

Description: Filters the edge pairs by the angle between their edges

Filters the edge pairs in the edge pair collection by the angle between their edges. If "inverse" is
false, only edge pairs with the given angle are returned. If "inverse" is true, edge pairs not with the
given angle are returned.

The angle is measured between the two edges. It is between 0 (parallel or anti-parallel edges) and
90 degree (perpendicular edges).

This method has been added in version 0.27.2.

with_internal_angle

(2) Signature: [const] EdgePairs with_internal_angle (double min_angle, double max_angle, bool
inverse, bool include_min_angle = true, bool include_max_angle = false)

Description: Filters the edge pairs by the angle between their edges

Filters the edge pairs in the edge pair collection by the angle between their edges. If "inverse"
is false, only edge pairs with an angle between min_angle and max_angle (max_angle itself is
excluded) are returned. If "inverse" is true, edge pairs not fulfilling this criterion are returned.

The angle is measured between the two edges. It is between 0 (parallel or anti-parallel edges) and
90 degree (perpendicular edges).

With "include_min_angle" set to true (the default), the minimum angle is included in the criterion
while with false, the minimum angle itself is not included. Same for "include_max_angle" where the
default is false, meaning the maximum angle is not included in the range.

This method has been added in version 0.27.2.

For more details visit
https://www.klayout.org

Page 769 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.35. API reference - Class EdgePairs

(1) Signature: [const] EdgePairs with_length (unsigned int length, bool inverse)

Description: Filters the edge pairs by length of one of their edges

Filters the edge pairs in the edge pair collection by length of at least one of their edges. If "inverse" is
false, only edge pairs with at least one edge having the given length are returned. If "inverse" is true,
edge pairs not fulfilling this criterion are returned.

This method has been added in version 0.27.1.

with_length

(2) Signature: [const] EdgePairs with_length (variant min_length, variant max_length, bool
inverse)

Description: Filters the edge pairs by length of one of their edges

Filters the edge pairs in the edge pair collection by length of at least one of their edges. If "inverse"
is false, only edge pairs with at least one edge having a length between min_length and max_length
(excluding max_length itself) are returned. If "inverse" is true, edge pairs not fulfilling this criterion are
returned.

If you don't want to specify a lower or upper limit, pass nil to that parameter.

This method has been added in version 0.27.1.

(1) Signature: [const] EdgePairs with_length_both (unsigned int length, bool inverse)

Description: Filters the edge pairs by length of both of their edges

Filters the edge pairs in the edge pair collection by length of both of their edges. If "inverse" is false,
only edge pairs where both edges have the given length are returned. If "inverse" is true, edge pairs
not fulfilling this criterion are returned.

This method has been added in version 0.27.1.

with_length_both

(2) Signature: [const] EdgePairs with_length_both (variant min_length, variant max_length, bool
inverse)

Description: Filters the edge pairs by length of both of their edges

Filters the edge pairs in the edge pair collection by length of both of their edges. If "inverse" is false,
only edge pairs with both edges having a length between min_length and max_length (excluding
max_length itself) are returned. If "inverse" is true, edge pairs not fulfilling this criterion are returned.

If you don't want to specify a lower or upper limit, pass nil to that parameter.

This method has been added in version 0.27.1.

For more details visit
https://www.klayout.org

Page 770 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

4.36. API reference - Class EdgeProcessor
Notation used in Ruby API documentation

Module: db

Description: The edge processor (boolean, sizing, merge)

The edge processor implements the boolean and edge set operations (size, merge). Because the edge processor might allocate resources
which can be reused in later operations, it is implemented as an object that can be used several times.

Here is a simple example of how to use the edge processor:

ep = RBA::EdgeProcessor::new
Prepare two boxes
a = [RBA::Polygon::new(RBA::Box::new(0, 0, 300, 300))]
b = [RBA::Polygon::new(RBA::Box::new(100, 100, 200, 200))]
Run an XOR -> creates a polygon with a hole, since the 'resolve_holes' parameter
is false:
out = ep.boolean_p2p(a, b, RBA::EdgeProcessor::ModeXor, false, false)
out.to_s # -> [(0,0;0,300;300,300;300,0/100,100;200,100;200,200;100,200)]

Public constructors

new EdgeProcessor ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the
script side.

void _unmanage Marks the object as no longer owned by
the script side.

void assign (const EdgeProcessor other) Assigns another object to self

Edge[] boolean_e2e (Edge[] a,
Edge[] b,
int mode)

Boolean operation for a set of given
edges, creating edges

Polygon[] boolean_e2p (Edge[] a,
Edge[] b,
int mode,
bool resolve_holes,
bool min_coherence)

Boolean operation for a set of given
edges, creating polygons

For more details visit
https://www.klayout.org

Page 771 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

Edge[] boolean_p2e (Polygon[] a,
Polygon[] b,
int mode)

Boolean operation for a set of given
polygons, creating edges

Polygon[] boolean_p2p (Polygon[] a,
Polygon[] b,
int mode,
bool resolve_holes,
bool min_coherence)

Boolean operation for a set of given
polygons, creating polygons

void disable_progress Disable progress reporting

[const] new
EdgeProcessor
ptr

dup Creates a copy of self

void enable_progress (string label) Enable progress reporting

Edge[] merge_p2e (Polygon[] in,
unsigned int min_wc)

Merge the given polygons

Polygon[] merge_p2p (Polygon[] in,
unsigned int min_wc,
bool resolve_holes,
bool min_coherence)

Merge the given polygons

Edge[] simple_merge_e2e (Edge[] in) Merge the given edges in a simple "non-
zero wrapcount" fashion

Edge[] simple_merge_e2e (Edge[] in,
int mode)

Merge the given polygons and specify the
merge mode

Polygon[] simple_merge_e2p (Edge[] in,
bool resolve_holes,
bool min_coherence)

Merge the given edges in a simple "non-
zero wrapcount" fashion into polygons

Polygon[] simple_merge_e2p (Edge[] in,
bool resolve_holes,
bool min_coherence,
int mode)

Merge the given polygons and specify the
merge mode

Edge[] simple_merge_p2e (Polygon[] in) Merge the given polygons in a simple
"non-zero wrapcount" fashion

Edge[] simple_merge_p2e (Polygon[] in,
int mode)

Merge the given polygons and specify the
merge mode

Polygon[] simple_merge_p2p (Polygon[] in,
bool resolve_holes,
bool min_coherence)

Merge the given polygons in a simple
"non-zero wrapcount" fashion into
polygons

Polygon[] simple_merge_p2p (Polygon[] in,
bool resolve_holes,
bool min_coherence,
int mode)

Merge the given polygons and specify the
merge mode

Edge[] size_p2e (Polygon[] in,
int dx,
int dy,

Size the given polygons

For more details visit
https://www.klayout.org

Page 772 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

unsigned int mode)

Edge[] size_p2e (Polygon[] in,
int d,
unsigned int mode)

Size the given polygons (isotropic)

Polygon[] size_p2p (Polygon[] in,
int dx,
int dy,
unsigned int mode,
bool resolve_holes,
bool min_coherence)

Size the given polygons into polygons

Polygon[] size_p2p (Polygon[] in,
int d,
unsigned int mode,
bool resolve_holes,
bool min_coherence)

Size the given polygons into polygons
(isotropic)

Public static methods and constants

int ModeANotB boolean method's mode value for A NOT B operation

int ModeAnd boolean method's mode value for AND operation

int ModeBNotA boolean method's mode value for B NOT A operation

int ModeOr boolean method's mode value for OR operation

int ModeXor boolean method's mode value for XOR operation

Deprecated methods (protected, public, static, non-static and constructors)

Edge[] boolean (Polygon[] a,
Polygon[] b,
int mode)

Use of this method is deprecated. Use
boolean_p2e instead

Edge[] boolean (Edge[] a,
Edge[] b,
int mode)

Use of this method is deprecated. Use
boolean_e2e instead

Polygon[] boolean_to_polygon (Polygon[] a,
Polygon[] b,
int mode,
bool resolve_holes,
bool min_coherence)

Use of this method is deprecated. Use
boolean_p2p instead

Polygon[] boolean_to_polygon (Edge[] a,
Edge[] b,
int mode,
bool resolve_holes,
bool min_coherence)

Use of this method is deprecated. Use
boolean_e2p instead

void create Use of this method is deprecated. Use
_create instead

For more details visit
https://www.klayout.org

Page 773 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

void destroy Use of this method is deprecated. Use
_destroy instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

Edge[] merge (Polygon[] in,
unsigned int min_wc)

Use of this method is deprecated. Use
merge_p2e instead

Polygon[] merge_to_polygon (Polygon[] in,
unsigned int min_wc,
bool resolve_holes,
bool min_coherence)

Use of this method is deprecated. Use
merge_p2p instead

[static] int mode_and Use of this method is deprecated. Use
ModeAnd instead

[static] int mode_anotb Use of this method is deprecated. Use
ModeANotB instead

[static] int mode_bnota Use of this method is deprecated. Use
ModeBNotA instead

[static] int mode_or Use of this method is deprecated. Use
ModeOr instead

[static] int mode_xor Use of this method is deprecated. Use
ModeXor instead

Edge[] simple_merge (Polygon[] in) Use of this method is deprecated. Use
simple_merge_p2e instead

Edge[] simple_merge (Polygon[] in,
int mode)

Use of this method is deprecated. Use
simple_merge_p2e instead

Edge[] simple_merge (Edge[] in) Use of this method is deprecated. Use
simple_merge_e2e instead

Edge[] simple_merge (Edge[] in,
int mode)

Use of this method is deprecated. Use
simple_merge_e2e instead

Polygon[] simple_merge_to_polygon(Polygon[] in,
bool resolve_holes,
bool min_coherence)

Use of this method is deprecated. Use
simple_merge_p2p instead

Polygon[] simple_merge_to_polygon(Polygon[] in,
bool resolve_holes,
bool min_coherence,
int mode)

Use of this method is deprecated. Use
simple_merge_p2p instead

Polygon[] simple_merge_to_polygon(Edge[] in,
bool resolve_holes,
bool min_coherence)

Use of this method is deprecated. Use
simple_merge_e2p instead

Polygon[] simple_merge_to_polygon(Edge[] in,
bool resolve_holes,
bool min_coherence,

Use of this method is deprecated. Use
simple_merge_e2p instead

For more details visit
https://www.klayout.org

Page 774 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

int mode)

Edge[] size (Polygon[] in,
int dx,
int dy,
unsigned int mode)

Use of this method is deprecated. Use
size_p2e instead

Edge[] size (Polygon[] in,
int d,
unsigned int mode)

Use of this method is deprecated. Use
size_p2e instead

Polygon[] size_to_polygon (Polygon[] in,
int dx,
int dy,
unsigned int mode,
bool resolve_holes,
bool min_coherence)

Use of this method is deprecated. Use
size_p2p instead

Polygon[] size_to_polygon (Polygon[] in,
int d,
unsigned int mode,
bool resolve_holes,
bool min_coherence)

Use of this method is deprecated. Use
size_p2p instead

Detailed description

ModeANotB
Signature: [static] int ModeANotB

Description: boolean method's mode value for A NOT B operation

ModeAnd
Signature: [static] int ModeAnd

Description: boolean method's mode value for AND operation

ModeBNotA
Signature: [static] int ModeBNotA

Description: boolean method's mode value for B NOT A operation

ModeOr
Signature: [static] int ModeOr

Description: boolean method's mode value for OR operation

ModeXor
Signature: [static] int ModeXor

Description: boolean method's mode value for XOR operation

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 775 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called on
self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it is
known that some C++ object holds and manages this object. Technically speaking, this method will turn
the script's reference into a weak reference. After the script engine decides to delete the reference, the
object itself will still exist. If the object is not managed otherwise, memory leaks will occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const EdgeProcessor other)

Description: Assigns another object to self

boolean
(1) Signature: Edge[] boolean (Polygon[] a, Polygon[] b, int mode)

Description: Boolean operation for a set of given polygons, creating edges

a: The input polygons (first operand)

b: The input polygons (second operand)

mode: The boolean mode

Returns: The output edges

Use of this method is deprecated. Use boolean_p2e instead

This method computes the result for the given boolean operation on two sets of polygons. The result
is presented as a set of edges forming closed contours. Hulls are oriented clockwise while holes are
oriented counter-clockwise.

This is a convenience method that bundles filling of the edges, processing with a Boolean operator and
puts the result into an output vector.

For more details visit
https://www.klayout.org

Page 776 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

Prior to version 0.21 this method was called 'boolean'. Is was renamed to avoid ambiguities for empty
input arrays. The old version is still available but deprecated.

(2) Signature: Edge[] boolean (Edge[] a, Edge[] b, int mode)

Description: Boolean operation for a set of given edges, creating edges

a: The input edges (first operand)

b: The input edges (second operand)

mode: The boolean mode (one of the Mode.. values)

Returns: The output edges

Use of this method is deprecated. Use boolean_e2e instead

This method computes the result for the given boolean operation on two sets of edges. The input
edges must form closed contours where holes and hulls must be oriented differently. The input edges
are processed with a simple non-zero wrap count rule as a whole.

The result is presented as a set of edges forming closed contours. Hulls are oriented clockwise while
holes are oriented counter-clockwise.

Prior to version 0.21 this method was called 'boolean'. Is was renamed to avoid ambiguities for empty
input arrays. The old version is still available but deprecated.

boolean_e2e
Signature: Edge[] boolean_e2e (Edge[] a, Edge[] b, int mode)

Description: Boolean operation for a set of given edges, creating edges

a: The input edges (first operand)

b: The input edges (second operand)

mode: The boolean mode (one of the Mode.. values)

Returns: The output edges

This method computes the result for the given boolean operation on two sets of edges. The input
edges must form closed contours where holes and hulls must be oriented differently. The input edges
are processed with a simple non-zero wrap count rule as a whole.

The result is presented as a set of edges forming closed contours. Hulls are oriented clockwise while
holes are oriented counter-clockwise.

Prior to version 0.21 this method was called 'boolean'. Is was renamed to avoid ambiguities for empty
input arrays. The old version is still available but deprecated.

boolean_e2p
Signature: Polygon[] boolean_e2p (Edge[] a, Edge[] b, int mode, bool resolve_holes, bool
min_coherence)

Description: Boolean operation for a set of given edges, creating polygons

a: The input polygons (first operand)

b: The input polygons (second operand)

mode: The boolean mode (one of the Mode.. values)

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if touching corners should be resolved into less connected
contours

Returns: The output polygons

This method computes the result for the given boolean operation on two sets of edges. The input
edges must form closed contours where holes and hulls must be oriented differently. The input edges
are processed with a simple non-zero wrap count rule as a whole.

This method produces polygons on output and allows fine-tuning of the parameters for that purpose.

For more details visit
https://www.klayout.org

Page 777 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

Prior to version 0.21 this method was called 'boolean_to_polygon'. Is was renamed to avoid
ambiguities for empty input arrays. The old version is still available but deprecated.

boolean_p2e
Signature: Edge[] boolean_p2e (Polygon[] a, Polygon[] b, int mode)

Description: Boolean operation for a set of given polygons, creating edges

a: The input polygons (first operand)

b: The input polygons (second operand)

mode: The boolean mode

Returns: The output edges

This method computes the result for the given boolean operation on two sets of polygons. The result
is presented as a set of edges forming closed contours. Hulls are oriented clockwise while holes are
oriented counter-clockwise.

This is a convenience method that bundles filling of the edges, processing with a Boolean operator and
puts the result into an output vector.

Prior to version 0.21 this method was called 'boolean'. Is was renamed to avoid ambiguities for empty
input arrays. The old version is still available but deprecated.

boolean_p2p
Signature: Polygon[] boolean_p2p (Polygon[] a, Polygon[] b, int mode, bool resolve_holes, bool
min_coherence)

Description: Boolean operation for a set of given polygons, creating polygons

a: The input polygons (first operand)

b: The input polygons (second operand)

mode: The boolean mode (one of the Mode.. values)

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if touching corners should be resolved into less connected
contours

Returns: The output polygons

This method computes the result for the given boolean operation on two sets of polygons. This method
produces polygons on output and allows fine-tuning of the parameters for that purpose.

This is a convenience method that bundles filling of the edges, processing with a Boolean operator and
puts the result into an output vector.

Prior to version 0.21 this method was called 'boolean_to_polygon'. Is was renamed to avoid
ambiguities for empty input arrays. The old version is still available but deprecated.

boolean_to_polygon
(1) Signature: Polygon[] boolean_to_polygon (Polygon[] a, Polygon[] b, int mode, bool
resolve_holes, bool min_coherence)

Description: Boolean operation for a set of given polygons, creating polygons

a: The input polygons (first operand)

b: The input polygons (second operand)

mode: The boolean mode (one of the Mode.. values)

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if touching corners should be resolved into less connected
contours

Returns: The output polygons

Use of this method is deprecated. Use boolean_p2p instead

For more details visit
https://www.klayout.org

Page 778 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

This method computes the result for the given boolean operation on two sets of polygons. This method
produces polygons on output and allows fine-tuning of the parameters for that purpose.

This is a convenience method that bundles filling of the edges, processing with a Boolean operator and
puts the result into an output vector.

Prior to version 0.21 this method was called 'boolean_to_polygon'. Is was renamed to avoid
ambiguities for empty input arrays. The old version is still available but deprecated.

(2) Signature: Polygon[] boolean_to_polygon (Edge[] a, Edge[] b, int mode, bool resolve_holes,
bool min_coherence)

Description: Boolean operation for a set of given edges, creating polygons

a: The input polygons (first operand)

b: The input polygons (second operand)

mode: The boolean mode (one of the Mode.. values)

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if touching corners should be resolved into less connected
contours

Returns: The output polygons

Use of this method is deprecated. Use boolean_e2p instead

This method computes the result for the given boolean operation on two sets of edges. The input
edges must form closed contours where holes and hulls must be oriented differently. The input edges
are processed with a simple non-zero wrap count rule as a whole.

This method produces polygons on output and allows fine-tuning of the parameters for that purpose.

Prior to version 0.21 this method was called 'boolean_to_polygon'. Is was renamed to avoid
ambiguities for empty input arrays. The old version is still available but deprecated.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

disable_progress
Signature: void disable_progress

Description: Disable progress reporting

For more details visit
https://www.klayout.org

Page 779 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

Calling this method will stop the edge processor from showing a progress bar. See enable_progress.

This method has been introduced in version 0.23.

dup
Signature: [const] new EdgeProcessor ptr dup

Description: Creates a copy of self

enable_progress
Signature: void enable_progress (string label)

Description: Enable progress reporting

After calling this method, the edge processor will report the progress through a progress bar. The label
is a text which is put in front of the progress bar. Using a progress bar will imply a performance penalty
of a few percent typically.

This method has been introduced in version 0.23.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called on
self.

merge
Signature: Edge[] merge (Polygon[] in, unsigned int min_wc)

Description: Merge the given polygons

in: The input polygons

min_wc: The minimum wrap count for output (0: all polygons, 1: at least
two overlapping)

Returns: The output edges

Use of this method is deprecated. Use merge_p2e instead

In contrast to "simple_merge", this merge implementation considers each polygon individually before
merging them. Thus self-overlaps are effectively removed before the output is computed and holes are
correctly merged with the hull. In addition, this method allows selecting areas with a higher wrap count
which in turn allows computing overlaps of polygons on the same layer. Because this method merges
the polygons before the overlap is computed, self-overlapping polygons do not contribute to higher
wrap count areas.

The result is presented as a set of edges forming closed contours. Hulls are oriented clockwise while
holes are oriented counter-clockwise.

Prior to version 0.21 this method was called 'merge'. Is was renamed to avoid ambiguities for empty
input arrays. The old version is still available but deprecated.

merge_p2e
Signature: Edge[] merge_p2e (Polygon[] in, unsigned int min_wc)

Description: Merge the given polygons

in: The input polygons

min_wc: The minimum wrap count for output (0: all polygons, 1: at least
two overlapping)

Returns: The output edges

In contrast to "simple_merge", this merge implementation considers each polygon individually before
merging them. Thus self-overlaps are effectively removed before the output is computed and holes are
correctly merged with the hull. In addition, this method allows selecting areas with a higher wrap count
which in turn allows computing overlaps of polygons on the same layer. Because this method merges

For more details visit
https://www.klayout.org

Page 780 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

the polygons before the overlap is computed, self-overlapping polygons do not contribute to higher
wrap count areas.

The result is presented as a set of edges forming closed contours. Hulls are oriented clockwise while
holes are oriented counter-clockwise.

Prior to version 0.21 this method was called 'merge'. Is was renamed to avoid ambiguities for empty
input arrays. The old version is still available but deprecated.

merge_p2p
Signature: Polygon[] merge_p2p (Polygon[] in, unsigned int min_wc, bool resolve_holes, bool
min_coherence)

Description: Merge the given polygons

in: The input polygons

min_wc: The minimum wrap count for output (0: all polygons, 1: at least
two overlapping)

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if touching corners should be resolved into less connected
contours

Returns: The output polygons

In contrast to "simple_merge", this merge implementation considers each polygon individually before
merging them. Thus self-overlaps are effectively removed before the output is computed and holes are
correctly merged with the hull. In addition, this method allows selecting areas with a higher wrap count
which in turn allows computing overlaps of polygons on the same layer. Because this method merges
the polygons before the overlap is computed, self-overlapping polygons do not contribute to higher
wrap count areas.

This method produces polygons and allows fine-tuning of the parameters for that purpose.

Prior to version 0.21 this method was called 'merge_to_polygon'. Is was renamed to avoid ambiguities
for empty input arrays. The old version is still available but deprecated.

merge_to_polygon
Signature: Polygon[] merge_to_polygon (Polygon[] in, unsigned int min_wc, bool resolve_holes,
bool min_coherence)

Description: Merge the given polygons

in: The input polygons

min_wc: The minimum wrap count for output (0: all polygons, 1: at least
two overlapping)

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if touching corners should be resolved into less connected
contours

Returns: The output polygons

Use of this method is deprecated. Use merge_p2p instead

In contrast to "simple_merge", this merge implementation considers each polygon individually before
merging them. Thus self-overlaps are effectively removed before the output is computed and holes are
correctly merged with the hull. In addition, this method allows selecting areas with a higher wrap count
which in turn allows computing overlaps of polygons on the same layer. Because this method merges
the polygons before the overlap is computed, self-overlapping polygons do not contribute to higher
wrap count areas.

This method produces polygons and allows fine-tuning of the parameters for that purpose.

Prior to version 0.21 this method was called 'merge_to_polygon'. Is was renamed to avoid ambiguities
for empty input arrays. The old version is still available but deprecated.

For more details visit
https://www.klayout.org

Page 781 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

mode_and
Signature: [static] int mode_and

Description: boolean method's mode value for AND operation

Use of this method is deprecated. Use ModeAnd instead

mode_anotb
Signature: [static] int mode_anotb

Description: boolean method's mode value for A NOT B operation

Use of this method is deprecated. Use ModeANotB instead

mode_bnota
Signature: [static] int mode_bnota

Description: boolean method's mode value for B NOT A operation

Use of this method is deprecated. Use ModeBNotA instead

mode_or
Signature: [static] int mode_or

Description: boolean method's mode value for OR operation

Use of this method is deprecated. Use ModeOr instead

mode_xor
Signature: [static] int mode_xor

Description: boolean method's mode value for XOR operation

Use of this method is deprecated. Use ModeXor instead

new
Signature: [static] new EdgeProcessor ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

(1) Signature: Edge[] simple_merge (Polygon[] in)

Description: Merge the given polygons in a simple "non-zero wrapcount" fashion

in: The input polygons

Returns: The output edges

Use of this method is deprecated. Use simple_merge_p2e instead

The wrapcount is computed over all polygons, i.e. overlapping polygons may "cancel" if they have
different orientation (since a polygon is oriented by construction that is not easy to achieve). The other
merge operation provided for this purpose is "merge" which normalizes each polygon individually
before merging them. "simple_merge" is somewhat faster and consumes less memory.

The result is presented as a set of edges forming closed contours. Hulls are oriented clockwise while
holes are oriented counter-clockwise.

This is a convenience method that bundles filling of the edges, processing with a SimpleMerge
operator and puts the result into an output vector.

Prior to version 0.21 this method was called 'simple_merge'. Is was renamed to avoid ambiguities for
empty input arrays. The old version is still available but deprecated.

simple_merge

(2) Signature: Edge[] simple_merge (Polygon[] in, int mode)

Description: Merge the given polygons and specify the merge mode

mode: See description

in: The input polygons

For more details visit
https://www.klayout.org

Page 782 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

Returns: The output edges

Use of this method is deprecated. Use simple_merge_p2e instead

The wrapcount is computed over all polygons, i.e. overlapping polygons may "cancel" if they have
different orientation (since a polygon is oriented by construction that is not easy to achieve). The other
merge operation provided for this purpose is "merge" which normalizes each polygon individually
before merging them. "simple_merge" is somewhat faster and consumes less memory.

The result is presented as a set of edges forming closed contours. Hulls are oriented clockwise while
holes are oriented counter-clockwise.

This is a convenience method that bundles filling of the edges, processing with a SimpleMerge
operator and puts the result into an output vector.

This method has been added in version 0.22.

The mode specifies the rule to use when producing output. A value of 0 specifies the even-odd rule.
A positive value specifies the wrap count threshold (positive only). A negative value specifies the
threshold of the absolute value of the wrap count (i.e. -1 is non-zero rule).

(3) Signature: Edge[] simple_merge (Edge[] in)

Description: Merge the given edges in a simple "non-zero wrapcount" fashion

in: The input edges

Returns: The output edges

Use of this method is deprecated. Use simple_merge_e2e instead

The edges provided must form valid closed contours. Contours oriented differently "cancel" each other.
Overlapping contours are merged when the orientation is the same.

The result is presented as a set of edges forming closed contours. Hulls are oriented clockwise while
holes are oriented counter-clockwise.

This is a convenience method that bundles filling of the edges, processing with a SimpleMerge
operator and puts the result into an output vector.

Prior to version 0.21 this method was called 'simple_merge'. Is was renamed to avoid ambiguities for
empty input arrays. The old version is still available but deprecated.

(4) Signature: Edge[] simple_merge (Edge[] in, int mode)

Description: Merge the given polygons and specify the merge mode

mode: See description

in: The input edges

Returns: The output edges

Use of this method is deprecated. Use simple_merge_e2e instead

The edges provided must form valid closed contours. Contours oriented differently "cancel" each other.
Overlapping contours are merged when the orientation is the same.

The result is presented as a set of edges forming closed contours. Hulls are oriented clockwise while
holes are oriented counter-clockwise.

This is a convenience method that bundles filling of the edges, processing with a SimpleMerge
operator and puts the result into an output vector.

This method has been added in version 0.22.

The mode specifies the rule to use when producing output. A value of 0 specifies the even-odd rule.
A positive value specifies the wrap count threshold (positive only). A negative value specifies the
threshold of the absolute value of the wrap count (i.e. -1 is non-zero rule).

For more details visit
https://www.klayout.org

Page 783 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

(1) Signature: Edge[] simple_merge_e2e (Edge[] in)

Description: Merge the given edges in a simple "non-zero wrapcount" fashion

in: The input edges

Returns: The output edges

The edges provided must form valid closed contours. Contours oriented differently "cancel" each other.
Overlapping contours are merged when the orientation is the same.

The result is presented as a set of edges forming closed contours. Hulls are oriented clockwise while
holes are oriented counter-clockwise.

This is a convenience method that bundles filling of the edges, processing with a SimpleMerge
operator and puts the result into an output vector.

Prior to version 0.21 this method was called 'simple_merge'. Is was renamed to avoid ambiguities for
empty input arrays. The old version is still available but deprecated.

simple_merge_e2e

(2) Signature: Edge[] simple_merge_e2e (Edge[] in, int mode)

Description: Merge the given polygons and specify the merge mode

mode: See description

in: The input edges

Returns: The output edges

The edges provided must form valid closed contours. Contours oriented differently "cancel" each other.
Overlapping contours are merged when the orientation is the same.

The result is presented as a set of edges forming closed contours. Hulls are oriented clockwise while
holes are oriented counter-clockwise.

This is a convenience method that bundles filling of the edges, processing with a SimpleMerge
operator and puts the result into an output vector.

This method has been added in version 0.22.

The mode specifies the rule to use when producing output. A value of 0 specifies the even-odd rule.
A positive value specifies the wrap count threshold (positive only). A negative value specifies the
threshold of the absolute value of the wrap count (i.e. -1 is non-zero rule).

(1) Signature: Polygon[] simple_merge_e2p (Edge[] in, bool resolve_holes, bool min_coherence)

Description: Merge the given edges in a simple "non-zero wrapcount" fashion into polygons

in: The input edges

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if touching corners should be resolved into less
connected contours

Returns: The output polygons

The edges provided must form valid closed contours. Contours oriented differently "cancel" each other.
Overlapping contours are merged when the orientation is the same.

This method produces polygons and allows fine-tuning of the parameters for that purpose.

This is a convenience method that bundles filling of the edges, processing with a SimpleMerge
operator and puts the result into an output vector.

Prior to version 0.21 this method was called 'simple_merge_to_polygon'. Is was renamed to avoid
ambiguities for empty input arrays. The old version is still available but deprecated.

simple_merge_e2p

(2) Signature: Polygon[] simple_merge_e2p (Edge[] in, bool resolve_holes, bool min_coherence, int
mode)

For more details visit
https://www.klayout.org

Page 784 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

Description: Merge the given polygons and specify the merge mode

mode: See description

in: The input edges

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if touching corners should be resolved into less
connected contours

Returns: The output polygons

The edges provided must form valid closed contours. Contours oriented differently "cancel" each other.
Overlapping contours are merged when the orientation is the same.

This method produces polygons and allows fine-tuning of the parameters for that purpose.

This is a convenience method that bundles filling of the edges, processing with a SimpleMerge
operator and puts the result into an output vector.

This method has been added in version 0.22.

The mode specifies the rule to use when producing output. A value of 0 specifies the even-odd rule.
A positive value specifies the wrap count threshold (positive only). A negative value specifies the
threshold of the absolute value of the wrap count (i.e. -1 is non-zero rule).

(1) Signature: Edge[] simple_merge_p2e (Polygon[] in)

Description: Merge the given polygons in a simple "non-zero wrapcount" fashion

in: The input polygons

Returns: The output edges

The wrapcount is computed over all polygons, i.e. overlapping polygons may "cancel" if they have
different orientation (since a polygon is oriented by construction that is not easy to achieve). The other
merge operation provided for this purpose is "merge" which normalizes each polygon individually
before merging them. "simple_merge" is somewhat faster and consumes less memory.

The result is presented as a set of edges forming closed contours. Hulls are oriented clockwise while
holes are oriented counter-clockwise.

This is a convenience method that bundles filling of the edges, processing with a SimpleMerge
operator and puts the result into an output vector.

Prior to version 0.21 this method was called 'simple_merge'. Is was renamed to avoid ambiguities for
empty input arrays. The old version is still available but deprecated.

simple_merge_p2e

(2) Signature: Edge[] simple_merge_p2e (Polygon[] in, int mode)

Description: Merge the given polygons and specify the merge mode

mode: See description

in: The input polygons

Returns: The output edges

The wrapcount is computed over all polygons, i.e. overlapping polygons may "cancel" if they have
different orientation (since a polygon is oriented by construction that is not easy to achieve). The other
merge operation provided for this purpose is "merge" which normalizes each polygon individually
before merging them. "simple_merge" is somewhat faster and consumes less memory.

The result is presented as a set of edges forming closed contours. Hulls are oriented clockwise while
holes are oriented counter-clockwise.

This is a convenience method that bundles filling of the edges, processing with a SimpleMerge
operator and puts the result into an output vector.

This method has been added in version 0.22.

For more details visit
https://www.klayout.org

Page 785 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

The mode specifies the rule to use when producing output. A value of 0 specifies the even-odd rule.
A positive value specifies the wrap count threshold (positive only). A negative value specifies the
threshold of the absolute value of the wrap count (i.e. -1 is non-zero rule).

(1) Signature: Polygon[] simple_merge_p2p (Polygon[] in, bool resolve_holes, bool min_coherence)

Description: Merge the given polygons in a simple "non-zero wrapcount" fashion into polygons

in: The input polygons

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if touching corners should be resolved into less
connected contours

Returns: The output polygons

The wrapcount is computed over all polygons, i.e. overlapping polygons may "cancel" if they have
different orientation (since a polygon is oriented by construction that is not easy to achieve). The other
merge operation provided for this purpose is "merge" which normalizes each polygon individually
before merging them. "simple_merge" is somewhat faster and consumes less memory.

This method produces polygons and allows fine-tuning of the parameters for that purpose.

This is a convenience method that bundles filling of the edges, processing with a SimpleMerge
operator and puts the result into an output vector.

Prior to version 0.21 this method was called 'simple_merge_to_polygon'. Is was renamed to avoid
ambiguities for empty input arrays. The old version is still available but deprecated.

simple_merge_p2p

(2) Signature: Polygon[] simple_merge_p2p (Polygon[] in, bool resolve_holes, bool min_coherence,
int mode)

Description: Merge the given polygons and specify the merge mode

mode: See description

in: The input polygons

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if touching corners should be resolved into less
connected contours

Returns: The output polygons

The wrapcount is computed over all polygons, i.e. overlapping polygons may "cancel" if they have
different orientation (since a polygon is oriented by construction that is not easy to achieve). The other
merge operation provided for this purpose is "merge" which normalizes each polygon individually
before merging them. "simple_merge" is somewhat faster and consumes less memory.

This method produces polygons and allows fine-tuning of the parameters for that purpose.

This is a convenience method that bundles filling of the edges, processing with a SimpleMerge
operator and puts the result into an output vector.

This method has been added in version 0.22.

The mode specifies the rule to use when producing output. A value of 0 specifies the even-odd rule.
A positive value specifies the wrap count threshold (positive only). A negative value specifies the
threshold of the absolute value of the wrap count (i.e. -1 is non-zero rule).

simple_merge_to_polygon
(1) Signature: Polygon[] simple_merge_to_polygon (Polygon[] in, bool resolve_holes, bool
min_coherence)

Description: Merge the given polygons in a simple "non-zero wrapcount" fashion into polygons

in: The input polygons

resolve_holes: true, if holes should be resolved into the hull

For more details visit
https://www.klayout.org

Page 786 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

min_coherence: true, if touching corners should be resolved into less
connected contours

Returns: The output polygons

Use of this method is deprecated. Use simple_merge_p2p instead

The wrapcount is computed over all polygons, i.e. overlapping polygons may "cancel" if they have
different orientation (since a polygon is oriented by construction that is not easy to achieve). The other
merge operation provided for this purpose is "merge" which normalizes each polygon individually
before merging them. "simple_merge" is somewhat faster and consumes less memory.

This method produces polygons and allows fine-tuning of the parameters for that purpose.

This is a convenience method that bundles filling of the edges, processing with a SimpleMerge
operator and puts the result into an output vector.

Prior to version 0.21 this method was called 'simple_merge_to_polygon'. Is was renamed to avoid
ambiguities for empty input arrays. The old version is still available but deprecated.

(2) Signature: Polygon[] simple_merge_to_polygon (Polygon[] in, bool resolve_holes, bool
min_coherence, int mode)

Description: Merge the given polygons and specify the merge mode

mode: See description

in: The input polygons

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if touching corners should be resolved into less
connected contours

Returns: The output polygons

Use of this method is deprecated. Use simple_merge_p2p instead

The wrapcount is computed over all polygons, i.e. overlapping polygons may "cancel" if they have
different orientation (since a polygon is oriented by construction that is not easy to achieve). The other
merge operation provided for this purpose is "merge" which normalizes each polygon individually
before merging them. "simple_merge" is somewhat faster and consumes less memory.

This method produces polygons and allows fine-tuning of the parameters for that purpose.

This is a convenience method that bundles filling of the edges, processing with a SimpleMerge
operator and puts the result into an output vector.

This method has been added in version 0.22.

The mode specifies the rule to use when producing output. A value of 0 specifies the even-odd rule.
A positive value specifies the wrap count threshold (positive only). A negative value specifies the
threshold of the absolute value of the wrap count (i.e. -1 is non-zero rule).

(3) Signature: Polygon[] simple_merge_to_polygon (Edge[] in, bool resolve_holes, bool
min_coherence)

Description: Merge the given edges in a simple "non-zero wrapcount" fashion into polygons

in: The input edges

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if touching corners should be resolved into less
connected contours

Returns: The output polygons

Use of this method is deprecated. Use simple_merge_e2p instead

The edges provided must form valid closed contours. Contours oriented differently "cancel" each other.
Overlapping contours are merged when the orientation is the same.

For more details visit
https://www.klayout.org

Page 787 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

This method produces polygons and allows fine-tuning of the parameters for that purpose.

This is a convenience method that bundles filling of the edges, processing with a SimpleMerge
operator and puts the result into an output vector.

Prior to version 0.21 this method was called 'simple_merge_to_polygon'. Is was renamed to avoid
ambiguities for empty input arrays. The old version is still available but deprecated.

(4) Signature: Polygon[] simple_merge_to_polygon (Edge[] in, bool resolve_holes, bool
min_coherence, int mode)

Description: Merge the given polygons and specify the merge mode

mode: See description

in: The input edges

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if touching corners should be resolved into less
connected contours

Returns: The output polygons

Use of this method is deprecated. Use simple_merge_e2p instead

The edges provided must form valid closed contours. Contours oriented differently "cancel" each other.
Overlapping contours are merged when the orientation is the same.

This method produces polygons and allows fine-tuning of the parameters for that purpose.

This is a convenience method that bundles filling of the edges, processing with a SimpleMerge
operator and puts the result into an output vector.

This method has been added in version 0.22.

The mode specifies the rule to use when producing output. A value of 0 specifies the even-odd rule.
A positive value specifies the wrap count threshold (positive only). A negative value specifies the
threshold of the absolute value of the wrap count (i.e. -1 is non-zero rule).

size
(1) Signature: Edge[] size (Polygon[] in, int dx, int dy, unsigned int mode)

Description: Size the given polygons

in: The input polygons

dx: The sizing value in x direction

dy: The sizing value in y direction

mode: The sizing mode (standard is 2)

Returns: The output edges

Use of this method is deprecated. Use size_p2e instead

This method sizes a set of polygons. Before the sizing is applied, the polygons are merged. After
that, sizing is applied on the individual result polygons of the merge step. The result may contain
overlapping contours, but no self-overlaps.

dx and dy describe the sizing. A positive value indicates oversize (outwards) while a negative one
describes undersize (inwards). The sizing applied can be chosen differently in x and y direction. In this
case, the sign must be identical for both dx and dy.

The 'mode' parameter describes the corner fill strategy. Mode 0 connects all corner segments directly.
Mode 1 is the 'octagon' strategy in which square corners are interpolated with a partial octagon. Mode
2 is the standard mode in which corners are filled by expanding edges unless these edges form a
sharp bend with an angle of more than 90 degree. In that case, the corners are cut off. In Mode 3, no
cutoff occurs up to a bending angle of 135 degree. Mode 4 and 5 are even more aggressive and allow
very sharp bends without cutoff. This strategy may produce long spikes on sharply bending corners.
The result is presented as a set of edges forming closed contours. Hulls are oriented clockwise while
holes are oriented counter-clockwise.

For more details visit
https://www.klayout.org

Page 788 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

Prior to version 0.21 this method was called 'size'. Is was renamed to avoid ambiguities for empty input
arrays. The old version is still available but deprecated.

(2) Signature: Edge[] size (Polygon[] in, int d, unsigned int mode)

Description: Size the given polygons (isotropic)

in: The input polygons

d: The sizing value in x direction

mode: The sizing mode

Returns: The output edges

Use of this method is deprecated. Use size_p2e instead

This method is equivalent to calling the anisotropic version with identical dx and dy.

Prior to version 0.21 this method was called 'size'. Is was renamed to avoid ambiguities for empty input
arrays. The old version is still available but deprecated.

(1) Signature: Edge[] size_p2e (Polygon[] in, int dx, int dy, unsigned int mode)

Description: Size the given polygons

in: The input polygons

dx: The sizing value in x direction

dy: The sizing value in y direction

mode: The sizing mode (standard is 2)

Returns: The output edges

This method sizes a set of polygons. Before the sizing is applied, the polygons are merged. After
that, sizing is applied on the individual result polygons of the merge step. The result may contain
overlapping contours, but no self-overlaps.

dx and dy describe the sizing. A positive value indicates oversize (outwards) while a negative one
describes undersize (inwards). The sizing applied can be chosen differently in x and y direction. In this
case, the sign must be identical for both dx and dy.

The 'mode' parameter describes the corner fill strategy. Mode 0 connects all corner segments directly.
Mode 1 is the 'octagon' strategy in which square corners are interpolated with a partial octagon. Mode
2 is the standard mode in which corners are filled by expanding edges unless these edges form a
sharp bend with an angle of more than 90 degree. In that case, the corners are cut off. In Mode 3, no
cutoff occurs up to a bending angle of 135 degree. Mode 4 and 5 are even more aggressive and allow
very sharp bends without cutoff. This strategy may produce long spikes on sharply bending corners.
The result is presented as a set of edges forming closed contours. Hulls are oriented clockwise while
holes are oriented counter-clockwise.

Prior to version 0.21 this method was called 'size'. Is was renamed to avoid ambiguities for empty input
arrays. The old version is still available but deprecated.

size_p2e

(2) Signature: Edge[] size_p2e (Polygon[] in, int d, unsigned int mode)

Description: Size the given polygons (isotropic)

in: The input polygons

d: The sizing value in x direction

mode: The sizing mode

Returns: The output edges

This method is equivalent to calling the anisotropic version with identical dx and dy.

For more details visit
https://www.klayout.org

Page 789 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

Prior to version 0.21 this method was called 'size'. Is was renamed to avoid ambiguities for empty input
arrays. The old version is still available but deprecated.

(1) Signature: Polygon[] size_p2p (Polygon[] in, int dx, int dy, unsigned int mode, bool resolve_holes,
bool min_coherence)

Description: Size the given polygons into polygons

in: The input polygons

dx: The sizing value in x direction

dy: The sizing value in y direction

mode: The sizing mode (standard is 2)

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if touching corners should be resolved into less connected
contours

Returns: The output polygons

This method sizes a set of polygons. Before the sizing is applied, the polygons are merged. After
that, sizing is applied on the individual result polygons of the merge step. The result may contain
overlapping polygons, but no self-overlapping ones. Polygon overlap occurs if the polygons are close
enough, so a positive sizing makes polygons overlap.

dx and dy describe the sizing. A positive value indicates oversize (outwards) while a negative one
describes undersize (inwards). The sizing applied can be chosen differently in x and y direction. In this
case, the sign must be identical for both dx and dy.

The 'mode' parameter describes the corner fill strategy. Mode 0 connects all corner segments directly.
Mode 1 is the 'octagon' strategy in which square corners are interpolated with a partial octagon. Mode
2 is the standard mode in which corners are filled by expanding edges unless these edges form a
sharp bend with an angle of more than 90 degree. In that case, the corners are cut off. In Mode 3, no
cutoff occurs up to a bending angle of 135 degree. Mode 4 and 5 are even more aggressive and allow
very sharp bends without cutoff. This strategy may produce long spikes on sharply bending corners.
This method produces polygons and allows fine-tuning of the parameters for that purpose.

Prior to version 0.21 this method was called 'size_to_polygon'. Is was renamed to avoid ambiguities for
empty input arrays. The old version is still available but deprecated.

size_p2p

(2) Signature: Polygon[] size_p2p (Polygon[] in, int d, unsigned int mode, bool resolve_holes, bool
min_coherence)

Description: Size the given polygons into polygons (isotropic)

in: The input polygons

d: The sizing value in x direction

mode: The sizing mode

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if touching corners should be resolved into less
connected contours

Returns: The output polygons

This method is equivalent to calling the anisotropic version with identical dx and dy.

Prior to version 0.21 this method was called 'size_to_polygon'. Is was renamed to avoid ambiguities for
empty input arrays. The old version is still available but deprecated.

size_to_polygon
(1) Signature: Polygon[] size_to_polygon (Polygon[] in, int dx, int dy, unsigned int mode, bool
resolve_holes, bool min_coherence)

Description: Size the given polygons into polygons

For more details visit
https://www.klayout.org

Page 790 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.36. API reference - Class EdgeProcessor

in: The input polygons

dx: The sizing value in x direction

dy: The sizing value in y direction

mode: The sizing mode (standard is 2)

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if touching corners should be resolved into less connected
contours

Returns: The output polygons

Use of this method is deprecated. Use size_p2p instead

This method sizes a set of polygons. Before the sizing is applied, the polygons are merged. After
that, sizing is applied on the individual result polygons of the merge step. The result may contain
overlapping polygons, but no self-overlapping ones. Polygon overlap occurs if the polygons are close
enough, so a positive sizing makes polygons overlap.

dx and dy describe the sizing. A positive value indicates oversize (outwards) while a negative one
describes undersize (inwards). The sizing applied can be chosen differently in x and y direction. In this
case, the sign must be identical for both dx and dy.

The 'mode' parameter describes the corner fill strategy. Mode 0 connects all corner segments directly.
Mode 1 is the 'octagon' strategy in which square corners are interpolated with a partial octagon. Mode
2 is the standard mode in which corners are filled by expanding edges unless these edges form a
sharp bend with an angle of more than 90 degree. In that case, the corners are cut off. In Mode 3, no
cutoff occurs up to a bending angle of 135 degree. Mode 4 and 5 are even more aggressive and allow
very sharp bends without cutoff. This strategy may produce long spikes on sharply bending corners.
This method produces polygons and allows fine-tuning of the parameters for that purpose.

Prior to version 0.21 this method was called 'size_to_polygon'. Is was renamed to avoid ambiguities for
empty input arrays. The old version is still available but deprecated.

(2) Signature: Polygon[] size_to_polygon (Polygon[] in, int d, unsigned int mode, bool resolve_holes,
bool min_coherence)

Description: Size the given polygons into polygons (isotropic)

in: The input polygons

d: The sizing value in x direction

mode: The sizing mode

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if touching corners should be resolved into less
connected contours

Returns: The output polygons

Use of this method is deprecated. Use size_p2p instead

This method is equivalent to calling the anisotropic version with identical dx and dy.

Prior to version 0.21 this method was called 'size_to_polygon'. Is was renamed to avoid ambiguities for
empty input arrays. The old version is still available but deprecated.

For more details visit
https://www.klayout.org

Page 791 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

4.37. API reference - Class Edges
Notation used in Ruby API documentation

Module: db

Description: A collection of edges (Not necessarily describing closed contours)

Class hierarchy: Edges » ShapeCollection

This class was introduced to simplify operations on edges sets. See Edge for a description of the individual edge object. The edge
collection contains an arbitrary number of edges and supports operations to select edges by various criteria, produce polygons from the
edges by applying an extension, filtering edges against other edges collections and checking geometrical relations to other edges (DRC
functionality).

The edge collection is supposed to work closely with the Region polygon set. Both are related, although the edge collection has a lower
rank since it potentially represents a disconnected collection of edges. Edge collections may form closed contours, for example immediately
after they have been derived from a polygon set using Region#edges. But this state is volatile and can easily be destroyed by filtering
edges. Hence the connected state does not play an important role in the edge collection's API.

Edge collections may also contain points (degenerated edges with identical start and end points). Such point-like objects participate
in some although not all methods of the edge collection class. Edge collections can be used in two different flavors: in raw mode or
merged semantics. With merged semantics (the default), connected edges are considered to belong together and are effectively merged.
Overlapping parts are counted once in that mode. Dot-like edges are not considered in merged semantics. In raw mode (without merged
semantics), each edge is considered as it is. Overlaps between edges may exists and merging has to be done explicitly using the merge
method. The semantics can be selected using merged_semantics=.

This class has been introduced in version 0.23.

Public constructors

new Edges ptr new Default constructor

new Edges ptr new (const Edge edge) Constructor from a single edge

new Edges ptr new (Polygon[] array) Constructor from a polygon array

new Edges ptr new (Edge[] array) Constructor from an edge array

new Edges ptr new (const Box box) Box constructor

new Edges ptr new (const Polygon polygon) Polygon constructor

new Edges ptr new (const SimplePolygon polygon) Simple polygon constructor

new Edges ptr new (const Path path) Path constructor

new Edges ptr new (const Shapes shapes,
bool as_edges = true)

Constructor of a flat edge collection from
a Shapes container

new Edges ptr new (const RecursiveShapeIterator
shape_iterator,
bool as_edges = true)

Constructor of a flat edge collection from
a hierarchical shape set

new Edges ptr new (const RecursiveShapeIterator
shape_iterator,
const ICplxTrans trans,
bool as_edges = true)

Constructor of a flat edge collection
from a hierarchical shape set with a
transformation

new Edges ptr new (const RecursiveShapeIterator
shape_iterator,
DeepShapeStore dss,

Constructor of a hierarchical edge
collection

For more details visit
https://www.klayout.org

Page 792 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

bool as_edges = true)

new Edges ptr new (const RecursiveShapeIterator
shape_iterator,
DeepShapeStore dss,
const ICplxTrans trans,
bool as_edges = true)

Constructor of a hierarchical edge
collection with a transformation

new Edges ptr new (const RecursiveShapeIterator
shape_iterator,
string expr,
bool as_pattern = true)

Constructor from a text set

new Edges ptr new (const RecursiveShapeIterator
shape_iterator,
DeepShapeStore dss,
string expr,
bool as_pattern = true)

Constructor from a text set

Public methods

[const] Edges & (const Edges other) Returns the boolean AND between self and
the other edge collection

[const] Edges & (const Region other) Returns the parts of the edges inside the
given region

Edges &= (const Edges other) Performs the boolean AND between self
and the other edge collection

Edges &= (const Region other) Selects the parts of the edges inside the
given region

[const] Edges + (const Edges other) Returns the combined edge set of self and
the other one

Edges += (const Edges other) Adds the edges of the other edge collection
to self

[const] Edges - (const Edges other) Returns the boolean NOT between self and
the other edge collection

[const] Edges - (const Region other) Returns the parts of the edges outside the
given region

Edges -= (const Edges other) Performs the boolean NOT between self
and the other edge collection

Edges -= (const Region other) Selects the parts of the edges outside the
given region

[const] const Edge ptr [] (unsigned long n) Returns the nth edge of the collection

[const] Edges ^ (const Edges other) Returns the boolean XOR between self and
the other edge collection

Edges ^= (const Edges other) Performs the boolean XOR between self
and the other edge collection

For more details visit
https://www.klayout.org

Page 793 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const Edges other) Assigns another object to self

[const] Box bbox Returns the bounding box of the edge
collection

[const] Edges centers (unsigned int length,
double fraction)

Returns edges representing the center part
of the edges

void clear Clears the edge collection

[const] unsigned long count Returns the (flat) number of edges in the
edge collection

[const] unsigned long data_id Returns the data ID (a unique identifier for
the underlying data storage)

void disable_progress Disable progress reporting

[const] new Edges ptr dup Creates a copy of self

[const,iter] Edge each Returns each edge of the region

[const,iter] Edge each_merged Returns each edge of the region

void enable_progress (string label) Enable progress reporting

[const] EdgePairs enclosed_check (const Edges other,
int d,
bool whole_edges =
false,
Region::Metrics metrics =
Euclidian,
variant ignore_angle =
default,
variant min_projection =
0,
variant max_projection =
max)

Performs an inside check with options

[const] EdgePairs enclosing_check (const Edges other,
int d,
bool whole_edges =
false,

Performs an enclosing check with options

For more details visit
https://www.klayout.org

Page 794 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

Region::Metrics metrics =
Euclidian,
variant ignore_angle =
default,
variant min_projection =
0,
variant max_projection =
max)

[const] Edges end_segments (unsigned int length,
double fraction)

Returns edges representing a part of the
edge before the end point

[const] Region extended (int b,
int e,
int o,
int i,
bool join)

Returns a region with shapes representing
the edges with the specified extensions

[const] Region extended_in (int e) Returns a region with shapes representing
the edges with the given width

[const] Region extended_out (int e) Returns a region with shapes representing
the edges with the given width

[const] Region extents Returns a region with the bounding boxes of
the edges

[const] Region extents (int d) Returns a region with the enlarged bounding
boxes of the edges

[const] Region extents (int dx,
int dy)

Returns a region with the enlarged bounding
boxes of the edges

void flatten Explicitly flattens an edge collection

[const] bool has_valid_edges? Returns true if the edge collection is flat and
individual edges can be accessed randomly

[const] unsigned long hier_count Returns the (hierarchical) number of edges
in the edge collection

void insert (const Edge edge) Inserts an edge

void insert (const Box box) Inserts a box

void insert (const Polygon polygon) Inserts a polygon

void insert (const SimplePolygon
polygon)

Inserts a simple polygon

void insert (const Path path) Inserts a path

void insert (const Edges edges) Inserts all edges from the other edge
collection into this one

void insert (const Region region) Inserts a region

void insert (const Shapes shapes) Inserts all edges from the shape collection
into this edge collection

For more details visit
https://www.klayout.org

Page 795 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

void insert (const Shapes shapes,
const Trans trans)

Inserts all edges from the shape
collection into this edge collection (with
transformation)

void insert (const Shapes shapes,
const ICplxTrans trans)

Inserts all edges from the shape collection
into this edge collection with complex
transformation

void insert (RecursiveShapeIterator
shape_iterator)

Inserts all shapes delivered by the recursive
shape iterator into this edge collection

void insert (RecursiveShapeIterator
shape_iterator,
ICplxTrans trans)

Inserts all shapes delivered by the recursive
shape iterator into this edge collection with a
transformation

void insert (Polygon[] polygons) Inserts all polygons from the array into this
edge collection

void insert (Edge[] edges) Inserts all edges from the array into this
edge collection

[const] void insert_into (Layout ptr layout,
unsigned int cell_index,
unsigned int layer)

Inserts this edge collection into the given
layout, below the given cell and into the
given layer.

[const] EdgePairs inside_check (const Edges other,
int d,
bool whole_edges =
false,
Region::Metrics metrics =
Euclidian,
variant ignore_angle =
default,
variant min_projection =
0,
variant max_projection =
max)

Performs an inside check with options

[const] Edges inside_part (const Region other) Returns the parts of the edges of this edge
collection which are inside the polygons of
the region

[const] Edges interacting (const Edges other) Returns the edges of this edge collection
which overlap or touch edges from the other
edge collection

[const] Edges interacting (const Region other) Returns the edges from this edge collection
which overlap or touch polygons from the
region

[const] Edges intersections (const Edges other) Computes the intersections between this
edges and other edges

[const] bool is_deep? Returns true if the edge collection is a deep
(hierarchical) one

[const] bool is_empty? Returns true if the edge collection is empty

[const] bool is_merged? Returns true if the edge collection is merged

For more details visit
https://www.klayout.org

Page 796 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

[const] unsigned int length Returns the total length of all edges in the
edge collection

[const] unsigned int length (const Box rect) Returns the total length of all edges in the
edge collection (restricted to a rectangle)

[const] Edges members_of (const Edges other) Returns all edges which are members of the
other edge collection

Edges merge Merge the edges

[const] Edges merged Returns the merged edge collection

void merged_semantics= (bool f) Enable or disable merged semantics

[const] bool merged_semantics? Gets a flag indicating whether merged
semantics is enabled

Edges move (const Vector v) Moves the edge collection

Edges move (int x,
int y)

Moves the edge collection

[const] Edges moved (const Vector v) Returns the moved edge collection (does
not modify self)

[const] Edges moved (int x,
int v)

Returns the moved edge collection (does
not modify self)

[const] Edges not_interacting (const Edges other) Returns the edges of this edge collection
which do not overlap or touch edges from
the other edge collection

[const] Edges not_interacting (const Region other) Returns the edges from this edge collection
which do not overlap or touch polygons from
the region

[const] Edges not_members_of (const Edges other) Returns all edges which are not members of
the other edge collection

[const] Edges outside_part (const Region other) Returns the parts of the edges of this edge
collection which are outside the polygons of
the region

[const] EdgePairs overlap_check (const Edges other,
int d,
bool whole_edges =
false,
Region::Metrics metrics =
Euclidian,
variant ignore_angle =
default,
variant min_projection =
0,
variant max_projection =
max)

Performs an overlap check with options

For more details visit
https://www.klayout.org

Page 797 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

[const] Region pull_interacting (const Region other) Returns all polygons of "other" which are
interacting with (overlapping, touching)
edges of this edge set

[const] Edges pull_interacting (const Edges other) Returns all edges of "other" which are
interacting with polygons of this edge set

Edges select_inside_part (const Region other) Selects the parts of the edges from this
edge collection which are inside the
polygons of the given region

Edges select_interacting (const Edges other) Selects the edges from this edge collection
which overlap or touch edges from the other
edge collection

Edges select_interacting (const Region other) Selects the edges from this edge collection
which overlap or touch polygons from the
region

Edges select_not_interacting(const Edges other) Selects the edges from this edge collection
which do not overlap or touch edges from
the other edge collection

Edges select_not_interacting(const Region other) Selects the edges from this edge collection
which do not overlap or touch polygons from
the region

Edges select_outside_part (const Region other) Selects the parts of the edges from this
edge collection which are outside the
polygons of the given region

[const] EdgePairs separation_check (const Edges other,
int d,
bool whole_edges =
false,
Region::Metrics metrics =
Euclidian,
variant ignore_angle =
default,
variant min_projection =
0,
variant max_projection =
max)

Performs an overlap check with options

[const] EdgePairs space_check (int d,
bool whole_edges =
false,
Region::Metrics metrics =
Euclidian,
variant ignore_angle =
default,
variant min_projection =
0,
variant max_projection =
max)

Performs a space check with options

[const] Edges start_segments (unsigned int length,
double fraction)

Returns edges representing a part of the
edge after the start point

For more details visit
https://www.klayout.org

Page 798 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

void swap (Edges other) Swap the contents of this edge collection
with the contents of another one

[const] string to_s Converts the edge collection to a string

[const] string to_s (unsigned long
max_count)

Converts the edge collection to a string

Edges transform (const Trans t) Transform the edge collection (modifies self)

Edges transform (const ICplxTrans t) Transform the edge collection with a
complex transformation (modifies self)

Edges transform (const IMatrix2d t) Transform the edge collection (modifies self)

Edges transform (const IMatrix3d t) Transform the edge collection (modifies self)

[const] Edges transformed (const Trans t) Transform the edge collection

[const] Edges transformed (const ICplxTrans t) Transform the edge collection with a
complex transformation

[const] Edges transformed (const IMatrix2d t) Transform the edge collection

[const] Edges transformed (const IMatrix3d t) Transform the edge collection

[const] EdgePairs width_check (int d,
bool whole_edges =
false,
Region::Metrics metrics =
Euclidian,
variant ignore_angle =
default,
variant min_projection =
0,
variant max_projection =
max)

Performs a width check with options

[const] Edges with_angle (double angle,
bool inverse)

Filter the edges by orientation

[const] Edges with_angle (double min_angle,
double max_angle,
bool inverse,
bool include_min_angle =
true,
bool include_max_angle
= false)

Filter the edges by orientation

[const] Edges with_length (unsigned int length,
bool inverse)

Filter the edges by length

[const] Edges with_length (variant min_length,
variant max_length,
bool inverse)

Filter the edges by length

[const] Edges | (const Edges other) Returns the boolean OR between self and
the other edge set

For more details visit
https://www.klayout.org

Page 799 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

Edges |= (const Edges other) Performs the boolean OR between self and
the other edge set

Public static methods and constants

[static,const] Region::Metrics Euclidian Specifies Euclidian metrics for the check
functions

[static,const] Region::Metrics Projection Specifies projected distance metrics for the
check functions

[static,const] Region::Metrics Square Specifies square metrics for the check
functions

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

[const] Edges in (const Edges
other)

Use of this method is deprecated. Use
members_of instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[const] Edges not_in (const Edges
other)

Use of this method is deprecated. Use
not_members_of instead

[const] unsigned long size Use of this method is deprecated. Use count
instead

Edges transform_icplx (const
ICplxTrans t)

Use of this method is deprecated. Use transform
instead

[const] Edges transformed_icplx (const
ICplxTrans t)

Use of this method is deprecated. Use
transformed instead

Detailed description

(1) Signature: [const] Edges & (const Edges other)

Description: Returns the boolean AND between self and the other edge collection

Returns: The result of the boolean AND operation

The boolean AND operation will return all parts of the edges in this collection which are coincident with
parts of the edges in the other collection.The result will be a merged edge collection.

&

(2) Signature: [const] Edges & (const Region other)

Description: Returns the parts of the edges inside the given region

For more details visit
https://www.klayout.org

Page 800 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

Returns: The edges inside the given region

This operation returns the parts of the edges which are inside the given region. Edges on the borders
of the polygons are included in the edge set. As a side effect, the edges are made non-intersecting by
introducing cut points where edges intersect.

This method has been introduced in version 0.24.

(1) Signature: Edges &= (const Edges other)

Description: Performs the boolean AND between self and the other edge collection

Returns: The edge collection after modification (self)

The boolean AND operation will return all parts of the edges in this collection which are coincident with
parts of the edges in the other collection.The result will be a merged edge collection.

&=

(2) Signature: Edges &= (const Region other)

Description: Selects the parts of the edges inside the given region

Returns: The edge collection after modification (self)

This operation selects the parts of the edges which are inside the given region. Edges on the borders
of the polygons are included in the edge set. As a side effect, the edges are made non-intersecting by
introducing cut points where edges intersect.

This method has been introduced in version 0.24.

+
Signature: [const] Edges + (const Edges other)

Description: Returns the combined edge set of self and the other one

Returns: The resulting edge set

This operator adds the edges of the other edge set to self and returns a new combined edge set. This
usually creates unmerged edge sets and edges may overlap. Use merge if you want to ensure the
result edge set is merged.

+=
Signature: Edges += (const Edges other)

Description: Adds the edges of the other edge collection to self

Returns: The edge set after modification (self)

This operator adds the edges of the other edge set to self. This usually creates unmerged edge sets
and edges may overlap. Use merge if you want to ensure the result edge set is merged.

(1) Signature: [const] Edges - (const Edges other)

Description: Returns the boolean NOT between self and the other edge collection

Returns: The result of the boolean NOT operation

The boolean NOT operation will return all parts of the edges in this collection which are not coincident
with parts of the edges in the other collection.The result will be a merged edge collection.

-

(2) Signature: [const] Edges - (const Region other)

Description: Returns the parts of the edges outside the given region

Returns: The edges outside the given region

This operation returns the parts of the edges which are outside the given region. Edges on the borders
of the polygons are not included in the edge set. As a side effect, the edges are made non-intersecting
by introducing cut points where edges intersect.

For more details visit
https://www.klayout.org

Page 801 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

This method has been introduced in version 0.24.

(1) Signature: Edges -= (const Edges other)

Description: Performs the boolean NOT between self and the other edge collection

Returns: The edge collection after modification (self)

The boolean NOT operation will return all parts of the edges in this collection which are not coincident
with parts of the edges in the other collection.The result will be a merged edge collection.

-=

(2) Signature: Edges -= (const Region other)

Description: Selects the parts of the edges outside the given region

Returns: The edge collection after modification (self)

This operation selects the parts of the edges which are outside the given region. Edges on the borders
of the polygons are not included in the edge set. As a side effect, the edges are made non-intersecting
by introducing cut points where edges intersect.

This method has been introduced in version 0.24.

Euclidian
Signature: [static,const] Region::Metrics Euclidian

Description: Specifies Euclidian metrics for the check functions

This value can be used for the metrics parameter in the check functions, i.e. width_check. This value
specifies Euclidian metrics, i.e. the distance between two points is measured by:

d = sqrt(dx^2 + dy^2)

All points within a circle with radius d around one point are considered to have a smaller distance than
d.

Projection
Signature: [static,const] Region::Metrics Projection

Description: Specifies projected distance metrics for the check functions

This value can be used for the metrics parameter in the check functions, i.e. width_check. This
value specifies projected metrics, i.e. the distance is defined as the minimum distance measured
perpendicular to one edge. That implies that the distance is defined only where two edges have a non-
vanishing projection onto each other.

Square
Signature: [static,const] Region::Metrics Square

Description: Specifies square metrics for the check functions

This value can be used for the metrics parameter in the check functions, i.e. width_check. This value
specifies square metrics, i.e. the distance between two points is measured by:

d = max(abs(dx), abs(dy))

All points within a square with length 2*d around one point are considered to have a smaller distance
than d in this metrics.

[]
Signature: [const] const Edge ptr [] (unsigned long n)

Description: Returns the nth edge of the collection

For more details visit
https://www.klayout.org

Page 802 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

This method returns nil if the index is out of range. It is available for flat edge collections only - i.e.
those for which has_valid_edges? is true. Use flatten to explicitly flatten an edge collection. This
method returns the raw edge (not merged edges, even if merged semantics is enabled).

The each iterator is the more general approach to access the edges.

^
Signature: [const] Edges ^ (const Edges other)

Description: Returns the boolean XOR between self and the other edge collection

Returns: The result of the boolean XOR operation

The boolean XOR operation will return all parts of the edges in this and the other collection except the
parts where both are coincident. The result will be a merged edge collection.

^=
Signature: Edges ^= (const Edges other)

Description: Performs the boolean XOR between self and the other edge collection

Returns: The edge collection after modification (self)

The boolean XOR operation will return all parts of the edges in this and the other collection except the
parts where both are coincident. The result will be a merged edge collection.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called on
self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 803 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const Edges other)

Description: Assigns another object to self

bbox
Signature: [const] Box bbox

Description: Returns the bounding box of the edge collection

The bounding box is the box enclosing all points of all edges.

centers
Signature: [const] Edges centers (unsigned int length, double fraction)

Description: Returns edges representing the center part of the edges

Returns: A new collection of edges representing the part around the center

This method allows one to specify the length of these segments in a twofold way: either as a fixed
length or by specifying a fraction of the original length:

edges = ... # An edge collection
edges.centers(100, 0.0) # All segments have a length of 100 DBU
edges.centers(0, 50.0) # All segments have a length of half the original
 length
edges.centers(100, 50.0) # All segments have a length of half the original
 length
 # or 100 DBU, whichever is larger

It is possible to specify 0 for both values. In this case, degenerated edges (points) are delivered which
specify the centers of the edges but can't participate in some functions.

clear
Signature: void clear

Description: Clears the edge collection

count
Signature: [const] unsigned long count

Description: Returns the (flat) number of edges in the edge collection

This returns the number of raw edges (not merged edges if merged semantics is enabled). The
count is computed 'as if flat', i.e. edges inside a cell are multiplied by the number of times a cell is
instantiated.

Starting with version 0.27, the method is called 'count' for consistency with Region. 'size' is still
provided as an alias.

Python specific notes:
This method is also available as 'len(object)'

For more details visit
https://www.klayout.org

Page 804 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

data_id
Signature: [const] unsigned long data_id

Description: Returns the data ID (a unique identifier for the underlying data storage)

This method has been added in version 0.26.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

disable_progress
Signature: void disable_progress

Description: Disable progress reporting

Calling this method will disable progress reporting. See enable_progress.

dup
Signature: [const] new Edges ptr dup

Description: Creates a copy of self

each
Signature: [const,iter] Edge each

Description: Returns each edge of the region

Python specific notes:
This method enables iteration of the object

each_merged
Signature: [const,iter] Edge each_merged

Description: Returns each edge of the region

In contrast to each, this method delivers merged edges if merge semantics applies while each delivers
the original edges only.

This method has been introduced in version 0.25.

enable_progress
Signature: void enable_progress (string label)

Description: Enable progress reporting

For more details visit
https://www.klayout.org

Page 805 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

After calling this method, the edge collection will report the progress through a progress bar while
expensive operations are running. The label is a text which is put in front of the progress bar. Using a
progress bar will imply a performance penalty of a few percent typically.

enclosed_check
Signature: [const] EdgePairs enclosed_check (const Edges other, int d, bool whole_edges = false,
Region::Metrics metrics = Euclidian, variant ignore_angle = default, variant min_projection = 0, variant
max_projection = max)

Description: Performs an inside check with options

d: The minimum distance for which the edges are checked

other: The other edge collection against which to check

whole_edges: If true, deliver the whole edges

metrics: Specify the metrics type

ignore_angle: The threshold angle above which no check is performed

min_projection: The lower threshold of the projected length of one edge onto
another

max_projection: The upper threshold of the projected length of one edge onto
another

If "whole_edges" is true, the resulting EdgePairs collection will receive the whole edges which
contribute in the width check.

"metrics" can be one of the constants Euclidian, Square or Projection. See there for a description of
these constants. Use nil for this value to select the default (Euclidian metrics).

"ignore_angle" specifies the angle threshold of two edges. If two edges form an angle equal or above
the given value, they will not contribute in the check. Setting this value to 90 (the default) will exclude
edges with an angle of 90 degree or more from the check. Use nil for this value to select the default.

"min_projection" and "max_projection" allow selecting edges by their projected value upon each other.
It is sufficient if the projection of one edge on the other matches the specified condition. The projected
length must be larger or equal to "min_projection" and less than "max_projection". If you don't want to
specify one threshold, pass nil to the respective value.

The 'enclosed_check' alias was introduced in version 0.27.5.

enclosing_check
Signature: [const] EdgePairs enclosing_check (const Edges other, int d, bool whole_edges = false,
Region::Metrics metrics = Euclidian, variant ignore_angle = default, variant min_projection = 0, variant
max_projection = max)

Description: Performs an enclosing check with options

d: The minimum distance for which the edges are checked

other: The other edge collection against which to check

whole_edges: If true, deliver the whole edges

metrics: Specify the metrics type

ignore_angle: The threshold angle above which no check is performed

min_projection: The lower threshold of the projected length of one edge onto
another

max_projection: The upper threshold of the projected length of one edge onto
another

If "whole_edges" is true, the resulting EdgePairs collection will receive the whole edges which
contribute in the width check.

"metrics" can be one of the constants Euclidian, Square or Projection. See there for a description of
these constants. Use nil for this value to select the default (Euclidian metrics).

For more details visit
https://www.klayout.org

Page 806 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

"ignore_angle" specifies the angle threshold of two edges. If two edges form an angle equal or above
the given value, they will not contribute in the check. Setting this value to 90 (the default) will exclude
edges with an angle of 90 degree or more from the check. Use nil for this value to select the default.

"min_projection" and "max_projection" allow selecting edges by their projected value upon each other.
It is sufficient if the projection of one edge on the other matches the specified condition. The projected
length must be larger or equal to "min_projection" and less than "max_projection". If you don't want to
specify one threshold, pass nil to the respective value.

end_segments
Signature: [const] Edges end_segments (unsigned int length, double fraction)

Description: Returns edges representing a part of the edge before the end point

Returns: A new collection of edges representing the end part

This method allows one to specify the length of these segments in a twofold way: either as a fixed
length or by specifying a fraction of the original length:

edges = ... # An edge collection
edges.end_segments(100, 0.0) # All segments have a length of 100 DBU
edges.end_segments(0, 50.0) # All segments have a length of half the
 original length
edges.end_segments(100, 50.0) # All segments have a length of half the
 original length
 # or 100 DBU, whichever is larger

It is possible to specify 0 for both values. In this case, degenerated edges (points) are delivered which
specify the end positions of the edges but can't participate in some functions.

extended
Signature: [const] Region extended (int b, int e, int o, int i, bool join)

Description: Returns a region with shapes representing the edges with the specified extensions

b: the parallel extension at the start point of the edge

e: the parallel extension at the end point of the edge

o: the perpendicular extension to the "outside" (left side as seen in the
direction of the edge)

i: the perpendicular extension to the "inside" (right side as seen in the
direction of the edge)

join: If true, connected edges are joined before the extension is applied

Returns: A region containing the polygons representing these extended edges

This is a generic version of extended_in and extended_out. It allows one to specify extensions for all
four directions of an edge and to join the edges before the extension is applied.

For degenerated edges forming a point, a rectangle with the b, e, o and i used as left, right, top and
bottom distance to the center point of this edge is created.

If join is true and edges form a closed loop, the b and e parameters are ignored and a rim polygon is
created that forms the loop with the outside and inside extension given by o and i.

extended_in
Signature: [const] Region extended_in (int e)

Description: Returns a region with shapes representing the edges with the given width

e: The extension width

Returns: A region containing the polygons representing these extended
edges

For more details visit
https://www.klayout.org

Page 807 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

The edges are extended to the "inside" by the given distance "e". The distance will be applied to the
right side as seen in the direction of the edge. By definition, this is the side pointing to the inside of the
polygon if the edge was derived from a polygon.

Other versions of this feature are extended_out and extended.

extended_out
Signature: [const] Region extended_out (int e)

Description: Returns a region with shapes representing the edges with the given width

e: The extension width

Returns: A region containing the polygons representing these extended
edges

The edges are extended to the "outside" by the given distance "e". The distance will be applied to the
left side as seen in the direction of the edge. By definition, this is the side pointing to the outside of the
polygon if the edge was derived from a polygon.

Other versions of this feature are extended_in and extended.

(1) Signature: [const] Region extents

Description: Returns a region with the bounding boxes of the edges

This method will return a region consisting of the bounding boxes of the edges. The boxes will not be
merged, so it is possible to determine overlaps of these boxes for example.

(2) Signature: [const] Region extents (int d)

Description: Returns a region with the enlarged bounding boxes of the edges

This method will return a region consisting of the bounding boxes of the edges enlarged by the given
distance d. The enlargement is specified per edge, i.e the width and height will be increased by 2*d.
The boxes will not be merged, so it is possible to determine overlaps of these boxes for example.

extents

(3) Signature: [const] Region extents (int dx, int dy)

Description: Returns a region with the enlarged bounding boxes of the edges

This method will return a region consisting of the bounding boxes of the edges enlarged by the given
distance dx in x direction and dy in y direction. The enlargement is specified per edge, i.e the width will
be increased by 2*dx. The boxes will not be merged, so it is possible to determine overlaps of these
boxes for example.

flatten
Signature: void flatten

Description: Explicitly flattens an edge collection

If the collection is already flat (i.e. has_valid_edges? returns true), this method will not change it.

This method has been introduced in version 0.26.

has_valid_edges?
Signature: [const] bool has_valid_edges?

Description: Returns true if the edge collection is flat and individual edges can be accessed randomly

This method has been introduced in version 0.26.

hier_count
Signature: [const] unsigned long hier_count

Description: Returns the (hierarchical) number of edges in the edge collection

For more details visit
https://www.klayout.org

Page 808 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

This returns the number of raw edges (not merged edges if merged semantics is enabled). The count
is computed 'hierarchical', i.e. edges inside a cell are counted once even if the cell is instantiated
multiple times.

This method has been introduced in version 0.27.

in
Signature: [const] Edges in (const Edges other)

Description: Returns all edges which are members of the other edge collection

Use of this method is deprecated. Use members_of instead

This method returns all edges in self which can be found in the other edge collection as well with
exactly the same geometry.

Python specific notes:
This attribute is available as 'in_' in Python

(1) Signature: void insert (const Edge edge)

Description: Inserts an edge

Inserts the edge into the edge collection.

(2) Signature: void insert (const Box box)

Description: Inserts a box

Inserts the edges that form the contour of the box into the edge collection.

(3) Signature: void insert (const Polygon polygon)

Description: Inserts a polygon

Inserts the edges that form the contour of the polygon into the edge collection.

(4) Signature: void insert (const SimplePolygon polygon)

Description: Inserts a simple polygon

Inserts the edges that form the contour of the simple polygon into the edge collection.

(5) Signature: void insert (const Path path)

Description: Inserts a path

Inserts the edges that form the contour of the path into the edge collection.

(6) Signature: void insert (const Edges edges)

Description: Inserts all edges from the other edge collection into this one

This method has been introduced in version 0.25.

(7) Signature: void insert (const Region region)

Description: Inserts a region

Inserts the edges that form the contours of the polygons from the region into the edge collection.

This method has been introduced in version 0.25.

insert

(8) Signature: void insert (const Shapes shapes)

For more details visit
https://www.klayout.org

Page 809 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

Description: Inserts all edges from the shape collection into this edge collection

This method takes each edge from the shape collection and inserts it into the region. "Polygon-like"
objects are inserted as edges forming the contours of the polygons. Text objects are ignored.

This method has been introduced in version 0.25.

(9) Signature: void insert (const Shapes shapes, const Trans trans)

Description: Inserts all edges from the shape collection into this edge collection (with transformation)

This method acts as the version without transformation, but will apply the given transformation before
inserting the edges.

This method has been introduced in version 0.25.

(10) Signature: void insert (const Shapes shapes, const ICplxTrans trans)

Description: Inserts all edges from the shape collection into this edge collection with complex
transformation

This method acts as the version without transformation, but will apply the given complex transformation
before inserting the edges.

This method has been introduced in version 0.25.

(11) Signature: void insert (RecursiveShapeIterator shape_iterator)

Description: Inserts all shapes delivered by the recursive shape iterator into this edge collection

For "solid" shapes (boxes, polygons, paths), this method inserts the edges that form the contour of
the shape into the edge collection. Edge shapes are inserted as such. Text objects are not inserted,
because they cannot be converted to polygons.

(12) Signature: void insert (RecursiveShapeIterator shape_iterator, ICplxTrans trans)

Description: Inserts all shapes delivered by the recursive shape iterator into this edge collection with a
transformation

For "solid" shapes (boxes, polygons, paths), this method inserts the edges that form the contour of
the shape into the edge collection. Edge shapes are inserted as such. Text objects are not inserted,
because they cannot be converted to polygons. This variant will apply the given transformation to the
shapes. This is useful to scale the shapes to a specific database unit for example.

(13) Signature: void insert (Polygon[] polygons)

Description: Inserts all polygons from the array into this edge collection

(14) Signature: void insert (Edge[] edges)

Description: Inserts all edges from the array into this edge collection

insert_into
Signature: [const] void insert_into (Layout ptr layout, unsigned int cell_index, unsigned int layer)

Description: Inserts this edge collection into the given layout, below the given cell and into the given
layer.

If the edge collection is a hierarchical one, a suitable hierarchy will be built below the top cell or and
existing hierarchy will be reused.

This method has been introduced in version 0.26.

inside_check

For more details visit
https://www.klayout.org

Page 810 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

Signature: [const] EdgePairs inside_check (const Edges other, int d, bool whole_edges = false,
Region::Metrics metrics = Euclidian, variant ignore_angle = default, variant min_projection = 0, variant
max_projection = max)

Description: Performs an inside check with options

d: The minimum distance for which the edges are checked

other: The other edge collection against which to check

whole_edges: If true, deliver the whole edges

metrics: Specify the metrics type

ignore_angle: The threshold angle above which no check is performed

min_projection: The lower threshold of the projected length of one edge onto
another

max_projection: The upper threshold of the projected length of one edge onto
another

If "whole_edges" is true, the resulting EdgePairs collection will receive the whole edges which
contribute in the width check.

"metrics" can be one of the constants Euclidian, Square or Projection. See there for a description of
these constants. Use nil for this value to select the default (Euclidian metrics).

"ignore_angle" specifies the angle threshold of two edges. If two edges form an angle equal or above
the given value, they will not contribute in the check. Setting this value to 90 (the default) will exclude
edges with an angle of 90 degree or more from the check. Use nil for this value to select the default.

"min_projection" and "max_projection" allow selecting edges by their projected value upon each other.
It is sufficient if the projection of one edge on the other matches the specified condition. The projected
length must be larger or equal to "min_projection" and less than "max_projection". If you don't want to
specify one threshold, pass nil to the respective value.

The 'enclosed_check' alias was introduced in version 0.27.5.

inside_part
Signature: [const] Edges inside_part (const Region other)

Description: Returns the parts of the edges of this edge collection which are inside the polygons of the
region

Returns: A new edge collection containing the edge parts inside the region

This operation returns the parts of the edges which are inside the given region. This functionality is
similar to the '&' operator, but edges on the borders of the polygons are not included in the edge set.
As a side effect, the edges are made non-intersecting by introducing cut points where edges intersect.

This method has been introduced in version 0.24.

(1) Signature: [const] Edges interacting (const Edges other)

Description: Returns the edges of this edge collection which overlap or touch edges from the other
edge collection

Returns: A new edge collection containing the edges overlapping or touching
edges from the other edge collection

This method does not merge the edges before they are selected. If you want to select coherent edges,
make sure the edge collection is merged before this method is used.

interacting

(2) Signature: [const] Edges interacting (const Region other)

Description: Returns the edges from this edge collection which overlap or touch polygons from the
region

Returns: A new edge collection containing the edges overlapping or touching
polygons from the region

For more details visit
https://www.klayout.org

Page 811 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

This method does not merge the edges before they are selected. If you want to select coherent edges,
make sure the edge collection is merged before this method is used.

intersections
Signature: [const] Edges intersections (const Edges other)

Description: Computes the intersections between this edges and other edges

This computation is like an AND operation, but also including crossing points between non-coincident
edges as degenerated (point-like) edges.

This method has been introduced in version 0.26.2

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called on
self.

is_deep?
Signature: [const] bool is_deep?

Description: Returns true if the edge collection is a deep (hierarchical) one

This method has been added in version 0.26.

is_empty?
Signature: [const] bool is_empty?

Description: Returns true if the edge collection is empty

is_merged?
Signature: [const] bool is_merged?

Description: Returns true if the edge collection is merged

If the region is merged, coincident edges have been merged into single edges. You can ensure
merged state by calling merge.

(1) Signature: [const] unsigned int length

Description: Returns the total length of all edges in the edge collection

Merged semantics applies for this method (see merged_semantics= of merged semantics)

length

(2) Signature: [const] unsigned int length (const Box rect)

Description: Returns the total length of all edges in the edge collection (restricted to a rectangle)

This version will compute the total length of all edges in the collection, restricting the computation to
the given rectangle. Edges along the border are handled in a special way: they are counted when they
are oriented with their inside side toward the rectangle (in other words: outside edges must coincide
with the rectangle's border in order to be counted).

Merged semantics applies for this method (see merged_semantics= of merged semantics)

members_of
Signature: [const] Edges members_of (const Edges other)

Description: Returns all edges which are members of the other edge collection

This method returns all edges in self which can be found in the other edge collection as well with
exactly the same geometry.

Python specific notes:
This attribute is available as 'in_' in Python

For more details visit
https://www.klayout.org

Page 812 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

merge
Signature: Edges merge

Description: Merge the edges

Returns: The edge collection after the edges have been merged (self).

Merging joins parallel edges which overlap or touch. Crossing edges are not merged. If the edge
collection is already merged, this method does nothing

merged
Signature: [const] Edges merged

Description: Returns the merged edge collection

Returns: The edge collection after the edges have been merged.

Merging joins parallel edges which overlap or touch. Crossing edges are not merged. In contrast to
merge, this method does not modify the edge collection but returns a merged copy.

merged_semantics=
Signature: void merged_semantics= (bool f)

Description: Enable or disable merged semantics

If merged semantics is enabled (the default), colinear, connected or overlapping edges will be
considered as single edges.

Python specific notes:
The object exposes a writable attribute 'merged_semantics'. This is the setter.

merged_semantics?
Signature: [const] bool merged_semantics?

Description: Gets a flag indicating whether merged semantics is enabled

See merged_semantics= for a description of this attribute.

Python specific notes:
The object exposes a readable attribute 'merged_semantics'. This is the getter.

(1) Signature: Edges move (const Vector v)

Description: Moves the edge collection

v: The distance to move the edge collection.

Returns: The moved edge collection (self).

Moves the polygon by the given offset and returns the moved edge collection. The edge collection is
overwritten.

Starting with version 0.25 the displacement type is a vector.

move

(2) Signature: Edges move (int x, int y)

Description: Moves the edge collection

x: The x distance to move the edge collection.

y: The y distance to move the edge collection.

Returns: The moved edge collection (self).

Moves the edge collection by the given offset and returns the moved edge collection. The edge
collection is overwritten.

moved
(1) Signature: [const] Edges moved (const Vector v)

Description: Returns the moved edge collection (does not modify self)

v: The distance to move the edge collection.

For more details visit
https://www.klayout.org

Page 813 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

Returns: The moved edge collection.

Moves the edge collection by the given offset and returns the moved edge collection. The edge
collection is not modified.

Starting with version 0.25 the displacement type is a vector.

(2) Signature: [const] Edges moved (int x, int v)

Description: Returns the moved edge collection (does not modify self)

x: The x distance to move the edge collection.

y: The y distance to move the edge collection.

Returns: The moved edge collection.

Moves the edge collection by the given offset and returns the moved edge collection. The edge
collection is not modified.

(1) Signature: [static] new Edges ptr new

Description: Default constructor

This constructor creates an empty edge collection.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new Edges ptr new (const Edge edge)

Description: Constructor from a single edge

This constructor creates an edge collection with a single edge.

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new Edges ptr new (Polygon[] array)

Description: Constructor from a polygon array

This constructor creates an edge collection from an array of polygons. The edges form the contours of
the polygons.

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new Edges ptr new (Edge[] array)

Description: Constructor from an edge array

This constructor creates an edge collection from an array of edges.

Python specific notes:
This method is the default initializer of the object

(5) Signature: [static] new Edges ptr new (const Box box)

Description: Box constructor

This constructor creates an edge collection from a box. The edges form the contour of the box.

Python specific notes:
This method is the default initializer of the object

new

For more details visit
https://www.klayout.org

Page 814 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

(6) Signature: [static] new Edges ptr new (const Polygon polygon)

Description: Polygon constructor

This constructor creates an edge collection from a polygon. The edges form the contour of the polygon.

Python specific notes:
This method is the default initializer of the object

(7) Signature: [static] new Edges ptr new (const SimplePolygon polygon)

Description: Simple polygon constructor

This constructor creates an edge collection from a simple polygon. The edges form the contour of the
polygon.

Python specific notes:
This method is the default initializer of the object

(8) Signature: [static] new Edges ptr new (const Path path)

Description: Path constructor

This constructor creates an edge collection from a path. The edges form the contour of the path.

Python specific notes:
This method is the default initializer of the object

(9) Signature: [static] new Edges ptr new (const Shapes shapes, bool as_edges = true)

Description: Constructor of a flat edge collection from a Shapes container

If 'as_edges' is true, the shapes from the container will be converted to edges (i.e. polygon contours to
edges). Otherwise, only edges will be taken from the container.

This method has been introduced in version 0.26.

Python specific notes:
This method is the default initializer of the object

(10) Signature: [static] new Edges ptr new (const RecursiveShapeIterator shape_iterator, bool
as_edges = true)

Description: Constructor of a flat edge collection from a hierarchical shape set

This constructor creates an edge collection from the shapes delivered by the given recursive shape
iterator. It feeds the shapes from a hierarchy of cells into a flat edge set.

Text objects are not inserted, because they cannot be converted to edges. Edge objects are inserted
as such. If "as_edges" is true, "solid" objects (boxes, polygons, paths) are converted to edges which
form the hull of these objects. If "as_edges" is false, solid objects are ignored.

layout = ... # a layout
cell = ... # the index of the initial cell
layer = ... # the index of the layer from where to take the shapes from
r = RBA::Edges::new(layout.begin_shapes(cell, layer), false)

Python specific notes:
This method is the default initializer of the object

(11) Signature: [static] new Edges ptr new (const RecursiveShapeIterator shape_iterator, const
ICplxTrans trans, bool as_edges = true)

For more details visit
https://www.klayout.org

Page 815 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

Description: Constructor of a flat edge collection from a hierarchical shape set with a transformation

This constructor creates an edge collection from the shapes delivered by the given recursive shape
iterator. It feeds the shapes from a hierarchy of cells into a flat edge set. The transformation is useful to
scale to a specific database unit for example.

Text objects are not inserted, because they cannot be converted to edges. Edge objects are inserted
as such. If "as_edges" is true, "solid" objects (boxes, polygons, paths) are converted to edges which
form the hull of these objects. If "as_edges" is false, solid objects are ignored.

layout = ... # a layout
cell = ... # the index of the initial cell
layer = ... # the index of the layer from where to take the shapes from
dbu = 0.1 # the target database unit
r = RBA::Edges::new(layout.begin_shapes(cell, layer),
 RBA::ICplxTrans::new(layout.dbu / dbu))

Python specific notes:
This method is the default initializer of the object

(12) Signature: [static] new Edges ptr new (const RecursiveShapeIterator shape_iterator,
DeepShapeStore dss, bool as_edges = true)

Description: Constructor of a hierarchical edge collection

This constructor creates an edge collection from the shapes delivered by the given recursive shape
iterator. It feeds the shapes from a hierarchy of cells into the hierarchical edge set. The edges remain
within their original hierarchy unless other operations require the edges to be moved in the hierarchy.

Text objects are not inserted, because they cannot be converted to edges. Edge objects are inserted
as such. If "as_edges" is true, "solid" objects (boxes, polygons, paths) are converted to edges which
form the hull of these objects. If "as_edges" is false, solid objects are ignored.

dss = RBA::DeepShapeStore::new
layout = ... # a layout
cell = ... # the index of the initial cell
layer = ... # the index of the layer from where to take the shapes from
r = RBA::Edges::new(layout.begin_shapes(cell, layer), dss, false)

Python specific notes:
This method is the default initializer of the object

(13) Signature: [static] new Edges ptr new (const RecursiveShapeIterator shape_iterator,
DeepShapeStore dss, const ICplxTrans trans, bool as_edges = true)

Description: Constructor of a hierarchical edge collection with a transformation

This constructor creates an edge collection from the shapes delivered by the given recursive shape
iterator. It feeds the shapes from a hierarchy of cells into the hierarchical edge set. The edges remain
within their original hierarchy unless other operations require the edges to be moved in the hierarchy.
The transformation is useful to scale to a specific database unit for example.

Text objects are not inserted, because they cannot be converted to edges. Edge objects are inserted
as such. If "as_edges" is true, "solid" objects (boxes, polygons, paths) are converted to edges which
form the hull of these objects. If "as_edges" is false, solid objects are ignored.

dss = RBA::DeepShapeStore::new
layout = ... # a layout
cell = ... # the index of the initial cell

For more details visit
https://www.klayout.org

Page 816 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

layer = ... # the index of the layer from where to take the shapes from
dbu = 0.1 # the target database unit
r = RBA::Edges::new(layout.begin_shapes(cell, layer), dss,
 RBA::ICplxTrans::new(layout.dbu / dbu), false)

Python specific notes:
This method is the default initializer of the object

(14) Signature: [static] new Edges ptr new (const RecursiveShapeIterator shape_iterator, string expr,
bool as_pattern = true)

Description: Constructor from a text set

shape_iterator: The iterator from which to derive the texts

expr: The selection string

as_pattern: If true, the selection string is treated as a glob pattern.
Otherwise the match is exact.

This special constructor will create dot-like edges from the text objects delivered by the shape iterator.
Each text object will give a degenerated edge (a dot) that represents the text origin. Texts can be
selected by their strings - either through a glob pattern or by exact comparison with the given string.
The following options are available:

dots = RBA::Edges::new(iter, "*") # all texts
dots = RBA::Edges::new(iter, "A*") # all texts starting with an 'A'
dots = RBA::Edges::new(iter, "A*", false) # all texts exactly matching 'A*'

This method has been introduced in version 0.26.

Python specific notes:
This method is the default initializer of the object

(15) Signature: [static] new Edges ptr new (const RecursiveShapeIterator shape_iterator,
DeepShapeStore dss, string expr, bool as_pattern = true)

Description: Constructor from a text set

shape_iterator: The iterator from which to derive the texts

dss: The DeepShapeStore object that acts as a heap for
hierarchical operations.

expr: The selection string

as_pattern: If true, the selection string is treated as a glob pattern.
Otherwise the match is exact.

This special constructor will create a deep edge set from the text objects delivered by the shape
iterator. Each text object will give a degenerated edge (a dot) that represents the text origin. Texts can
be selected by their strings - either through a glob pattern or by exact comparison with the given string.
The following options are available:

region = RBA::Region::new(iter, dss, "*") # all texts
region = RBA::Region::new(iter, dss, "A*") # all texts starting with
 an 'A'
region = RBA::Region::new(iter, dss, "A*", false) # all texts exactly
 matching 'A*'

This method has been introduced in version 0.26.

For more details visit
https://www.klayout.org

Page 817 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

Python specific notes:
This method is the default initializer of the object

not_in
Signature: [const] Edges not_in (const Edges other)

Description: Returns all edges which are not members of the other edge collection

Use of this method is deprecated. Use not_members_of instead

This method returns all edges in self which can not be found in the other edge collection with exactly
the same geometry.

(1) Signature: [const] Edges not_interacting (const Edges other)

Description: Returns the edges of this edge collection which do not overlap or touch edges from the
other edge collection

Returns: A new edge collection containing the edges not overlapping or
touching edges from the other edge collection

This method does not merge the edges before they are selected. If you want to select coherent edges,
make sure the edge collection is merged before this method is used.

not_interacting

(2) Signature: [const] Edges not_interacting (const Region other)

Description: Returns the edges from this edge collection which do not overlap or touch polygons from
the region

Returns: A new edge collection containing the edges not overlapping or
touching polygons from the region

This method does not merge the edges before they are selected. If you want to select coherent edges,
make sure the edge collection is merged before this method is used.

not_members_of
Signature: [const] Edges not_members_of (const Edges other)

Description: Returns all edges which are not members of the other edge collection

This method returns all edges in self which can not be found in the other edge collection with exactly
the same geometry.

outside_part
Signature: [const] Edges outside_part (const Region other)

Description: Returns the parts of the edges of this edge collection which are outside the polygons of
the region

Returns: A new edge collection containing the edge parts outside the region

This operation returns the parts of the edges which are not inside the given region. This functionality is
similar to the '-' operator, but edges on the borders of the polygons are included in the edge set. As a
side effect, the edges are made non-intersecting by introducing cut points where edges intersect.

This method has been introduced in version 0.24.

overlap_check
Signature: [const] EdgePairs overlap_check (const Edges other, int d, bool whole_edges = false,
Region::Metrics metrics = Euclidian, variant ignore_angle = default, variant min_projection = 0, variant
max_projection = max)

Description: Performs an overlap check with options

d: The minimum distance for which the edges are checked

other: The other edge collection against which to check

whole_edges: If true, deliver the whole edges

metrics: Specify the metrics type

For more details visit
https://www.klayout.org

Page 818 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

ignore_angle: The threshold angle above which no check is performed

min_projection: The lower threshold of the projected length of one edge onto
another

max_projection: The upper threshold of the projected length of one edge onto
another

If "whole_edges" is true, the resulting EdgePairs collection will receive the whole edges which
contribute in the width check.

"metrics" can be one of the constants Euclidian, Square or Projection. See there for a description of
these constants. Use nil for this value to select the default (Euclidian metrics).

"ignore_angle" specifies the angle threshold of two edges. If two edges form an angle equal or above
the given value, they will not contribute in the check. Setting this value to 90 (the default) will exclude
edges with an angle of 90 degree or more from the check. Use nil for this value to select the default.

"min_projection" and "max_projection" allow selecting edges by their projected value upon each other.
It is sufficient if the projection of one edge on the other matches the specified condition. The projected
length must be larger or equal to "min_projection" and less than "max_projection". If you don't want to
specify one threshold, pass nil to the respective value.

(1) Signature: [const] Region pull_interacting (const Region other)

Description: Returns all polygons of "other" which are interacting with (overlapping, touching) edges of
this edge set

Returns: The region after the polygons have been selected (from other)

The "pull_..." methods are similar to "select_..." but work the opposite way: they select shapes from the
argument region rather than self. In a deep (hierarchical) context the output region will be hierarchically
aligned with self, so the "pull_..." methods provide a way for re-hierarchization.

Merged semantics applies for this method (see merged_semantics= of merged semantics)

This method has been introduced in version 0.26.1

pull_interacting

(2) Signature: [const] Edges pull_interacting (const Edges other)

Description: Returns all edges of "other" which are interacting with polygons of this edge set

Returns: The edge collection after the edges have been selected (from other)

See the other pull_interacting version for more details.

Merged semantics applies for this method (see merged_semantics= of merged semantics)

This method has been introduced in version 0.26.1

select_inside_part
Signature: Edges select_inside_part (const Region other)

Description: Selects the parts of the edges from this edge collection which are inside the polygons of
the given region

Returns: The edge collection after the edges have been selected (self)

This operation selects the parts of the edges which are inside the given region. This functionality is
similar to the '&=' operator, but edges on the borders of the polygons are not included in the edge set.
As a side effect, the edges are made non-intersecting by introducing cut points where edges intersect.

This method has been introduced in version 0.24.

select_interacting
(1) Signature: Edges select_interacting (const Edges other)

Description: Selects the edges from this edge collection which overlap or touch edges from the other
edge collection

Returns: The edge collection after the edges have been selected (self)

For more details visit
https://www.klayout.org

Page 819 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

This method does not merge the edges before they are selected. If you want to select coherent edges,
make sure the edge collection is merged before this method is used.

(2) Signature: Edges select_interacting (const Region other)

Description: Selects the edges from this edge collection which overlap or touch polygons from the
region

Returns: The edge collection after the edges have been selected (self)

This method does not merge the edges before they are selected. If you want to select coherent edges,
make sure the edge collection is merged before this method is used.

(1) Signature: Edges select_not_interacting (const Edges other)

Description: Selects the edges from this edge collection which do not overlap or touch edges from the
other edge collection

Returns: The edge collection after the edges have been selected (self)

This method does not merge the edges before they are selected. If you want to select coherent edges,
make sure the edge collection is merged before this method is used.

select_not_interacting

(2) Signature: Edges select_not_interacting (const Region other)

Description: Selects the edges from this edge collection which do not overlap or touch polygons from
the region

Returns: The edge collection after the edges have been selected (self)

This method does not merge the edges before they are selected. If you want to select coherent edges,
make sure the edge collection is merged before this method is used.

select_outside_part
Signature: Edges select_outside_part (const Region other)

Description: Selects the parts of the edges from this edge collection which are outside the polygons of
the given region

Returns: The edge collection after the edges have been selected (self)

This operation selects the parts of the edges which are not inside the given region. This functionality is
similar to the '-=' operator, but edges on the borders of the polygons are included in the edge set. As a
side effect, the edges are made non-intersecting by introducing cut points where edges intersect.

This method has been introduced in version 0.24.

separation_check
Signature: [const] EdgePairs separation_check (const Edges other, int d, bool whole_edges =
false, Region::Metrics metrics = Euclidian, variant ignore_angle = default, variant min_projection = 0,
variant max_projection = max)

Description: Performs an overlap check with options

d: The minimum distance for which the edges are checked

other: The other edge collection against which to check

whole_edges: If true, deliver the whole edges

metrics: Specify the metrics type

ignore_angle: The threshold angle above which no check is performed

min_projection: The lower threshold of the projected length of one edge onto
another

max_projection: The upper threshold of the projected length of one edge onto
another

For more details visit
https://www.klayout.org

Page 820 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

If "whole_edges" is true, the resulting EdgePairs collection will receive the whole edges which
contribute in the width check.

"metrics" can be one of the constants Euclidian, Square or Projection. See there for a description of
these constants. Use nil for this value to select the default (Euclidian metrics).

"ignore_angle" specifies the angle threshold of two edges. If two edges form an angle equal or above
the given value, they will not contribute in the check. Setting this value to 90 (the default) will exclude
edges with an angle of 90 degree or more from the check. Use nil for this value to select the default.

"min_projection" and "max_projection" allow selecting edges by their projected value upon each other.
It is sufficient if the projection of one edge on the other matches the specified condition. The projected
length must be larger or equal to "min_projection" and less than "max_projection". If you don't want to
specify one threshold, pass nil to the respective value.

size
Signature: [const] unsigned long size

Description: Returns the (flat) number of edges in the edge collection

Use of this method is deprecated. Use count instead

This returns the number of raw edges (not merged edges if merged semantics is enabled). The
count is computed 'as if flat', i.e. edges inside a cell are multiplied by the number of times a cell is
instantiated.

Starting with version 0.27, the method is called 'count' for consistency with Region. 'size' is still
provided as an alias.

Python specific notes:
This method is also available as 'len(object)'

space_check
Signature: [const] EdgePairs space_check (int d, bool whole_edges = false, Region::Metrics
metrics = Euclidian, variant ignore_angle = default, variant min_projection = 0, variant max_projection
= max)

Description: Performs a space check with options

d: The minimum distance for which the edges are checked

whole_edges: If true, deliver the whole edges

metrics: Specify the metrics type

ignore_angle: The threshold angle above which no check is performed

min_projection: The lower threshold of the projected length of one edge onto
another

max_projection: The upper threshold of the projected length of one edge onto
another

If "whole_edges" is true, the resulting EdgePairs collection will receive the whole edges which
contribute in the space check.

"metrics" can be one of the constants Euclidian, Square or Projection. See there for a description of
these constants. Use nil for this value to select the default (Euclidian metrics).

"ignore_angle" specifies the angle threshold of two edges. If two edges form an angle equal or above
the given value, they will not contribute in the check. Setting this value to 90 (the default) will exclude
edges with an angle of 90 degree or more from the check. Use nil for this value to select the default.

"min_projection" and "max_projection" allow selecting edges by their projected value upon each other.
It is sufficient if the projection of one edge on the other matches the specified condition. The projected
length must be larger or equal to "min_projection" and less than "max_projection". If you don't want to
specify one threshold, pass nil to the respective value.

start_segments
Signature: [const] Edges start_segments (unsigned int length, double fraction)

Description: Returns edges representing a part of the edge after the start point

For more details visit
https://www.klayout.org

Page 821 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

Returns: A new collection of edges representing the start part

This method allows one to specify the length of these segments in a twofold way: either as a fixed
length or by specifying a fraction of the original length:

edges = ... # An edge collection
edges.start_segments(100, 0.0) # All segments have a length of 100 DBU
edges.start_segments(0, 50.0) # All segments have a length of half the
 original length
edges.start_segments(100, 50.0) # All segments have a length of half the
 original length
 # or 100 DBU, whichever is larger

It is possible to specify 0 for both values. In this case, degenerated edges (points) are delivered which
specify the start positions of the edges but can't participate in some functions.

swap
Signature: void swap (Edges other)

Description: Swap the contents of this edge collection with the contents of another one

This method is useful to avoid excessive memory allocation in some cases. For managed memory
languages such as Ruby, those cases will be rare.

(1) Signature: [const] string to_s

Description: Converts the edge collection to a string

The length of the output is limited to 20 edges to avoid giant strings on large regions. For full output
use "to_s" with a maximum count parameter.

Python specific notes:
This method is also available as 'str(object)'

to_s

(2) Signature: [const] string to_s (unsigned long max_count)

Description: Converts the edge collection to a string

This version allows specification of the maximum number of edges contained in the string.

Python specific notes:
This method is also available as 'str(object)'

(1) Signature: Edges transform (const Trans t)

Description: Transform the edge collection (modifies self)

t: The transformation to apply.

Returns: The transformed edge collection.

Transforms the edge collection with the given transformation. This version modifies the edge collection
and returns a reference to self.

(2) Signature: Edges transform (const ICplxTrans t)

Description: Transform the edge collection with a complex transformation (modifies self)

t: The transformation to apply.

Returns: The transformed edge collection.

Transforms the edge collection with the given transformation. This version modifies the edge collection
and returns a reference to self.

transform

For more details visit
https://www.klayout.org

Page 822 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

(3) Signature: Edges transform (const IMatrix2d t)

Description: Transform the edge collection (modifies self)

t: The transformation to apply.

Returns: The transformed edge collection.

Transforms the edge collection with the given 2d matrix transformation. This version modifies the edge
collection and returns a reference to self.

This variant has been introduced in version 0.27.

(4) Signature: Edges transform (const IMatrix3d t)

Description: Transform the edge collection (modifies self)

t: The transformation to apply.

Returns: The transformed edge collection.

Transforms the edge collection with the given 3d matrix transformation. This version modifies the edge
collection and returns a reference to self.

This variant has been introduced in version 0.27.

transform_icplx
Signature: Edges transform_icplx (const ICplxTrans t)

Description: Transform the edge collection with a complex transformation (modifies self)

t: The transformation to apply.

Returns: The transformed edge collection.

Use of this method is deprecated. Use transform instead

Transforms the edge collection with the given transformation. This version modifies the edge collection
and returns a reference to self.

(1) Signature: [const] Edges transformed (const Trans t)

Description: Transform the edge collection

t: The transformation to apply.

Returns: The transformed edge collection.

Transforms the edge collection with the given transformation. Does not modify the edge collection but
returns the transformed edge collection.

(2) Signature: [const] Edges transformed (const ICplxTrans t)

Description: Transform the edge collection with a complex transformation

t: The transformation to apply.

Returns: The transformed edge collection.

Transforms the edge collection with the given complex transformation. Does not modify the edge
collection but returns the transformed edge collection.

transformed

(3) Signature: [const] Edges transformed (const IMatrix2d t)

Description: Transform the edge collection

t: The transformation to apply.

Returns: The transformed edge collection.

For more details visit
https://www.klayout.org

Page 823 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

Transforms the edge collection with the given 2d matrix transformation. Does not modify the edge
collection but returns the transformed edge collection.

This variant has been introduced in version 0.27.

(4) Signature: [const] Edges transformed (const IMatrix3d t)

Description: Transform the edge collection

t: The transformation to apply.

Returns: The transformed edge collection.

Transforms the edge collection with the given 3d matrix transformation. Does not modify the edge
collection but returns the transformed edge collection.

This variant has been introduced in version 0.27.

transformed_icplx
Signature: [const] Edges transformed_icplx (const ICplxTrans t)

Description: Transform the edge collection with a complex transformation

t: The transformation to apply.

Returns: The transformed edge collection.

Use of this method is deprecated. Use transformed instead

Transforms the edge collection with the given complex transformation. Does not modify the edge
collection but returns the transformed edge collection.

width_check
Signature: [const] EdgePairs width_check (int d, bool whole_edges = false, Region::Metrics metrics
= Euclidian, variant ignore_angle = default, variant min_projection = 0, variant max_projection = max)

Description: Performs a width check with options

d: The minimum width for which the edges are checked

whole_edges: If true, deliver the whole edges

metrics: Specify the metrics type

ignore_angle: The threshold angle above which no check is performed

min_projection: The lower threshold of the projected length of one edge onto
another

max_projection: The upper threshold of the projected length of one edge onto
another

If "whole_edges" is true, the resulting EdgePairs collection will receive the whole edges which
contribute in the width check.

"metrics" can be one of the constants Euclidian, Square or Projection. See there for a description of
these constants. Use nil for this value to select the default (Euclidian metrics).

"ignore_angle" specifies the angle threshold of two edges. If two edges form an angle equal or above
the given value, they will not contribute in the check. Setting this value to 90 (the default) will exclude
edges with an angle of 90 degree or more from the check. Use nil for this value to select the default.

"min_projection" and "max_projection" allow selecting edges by their projected value upon each other.
It is sufficient if the projection of one edge on the other matches the specified condition. The projected
length must be larger or equal to "min_projection" and less than "max_projection". If you don't want to
specify one threshold, pass nil to the respective value.

with_angle
(1) Signature: [const] Edges with_angle (double angle, bool inverse)

Description: Filter the edges by orientation

For more details visit
https://www.klayout.org

Page 824 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.37. API reference - Class Edges

Filters the edges in the edge collection by orientation. If "inverse" is false, only edges which have
the given angle to the x-axis are returned. If "inverse" is true, edges not having the given angle are
returned.

This will select horizontal edges:

horizontal = edges.with_orientation(0, false)

(2) Signature: [const] Edges with_angle (double min_angle, double max_angle, bool inverse, bool
include_min_angle = true, bool include_max_angle = false)

Description: Filter the edges by orientation

Filters the edges in the edge collection by orientation. If "inverse" is false, only edges which have an
angle to the x-axis larger or equal to "min_angle" (depending on "include_min_angle") and equal or
less than "max_angle" (depending on "include_max_angle") are returned. If "inverse" is true, edges
which do not conform to this criterion are returned.

With "include_min_angle" set to true (the default), the minimum angle is included in the criterion while
with false, the minimum angle itself is not included. Same for "include_max_angle" where the default is
false, meaning the maximum angle is not included in the range.

The two "include.." arguments have been added in version 0.27.

(1) Signature: [const] Edges with_length (unsigned int length, bool inverse)

Description: Filter the edges by length

Filters the edges in the edge collection by length. If "inverse" is false, only edges which have the given
length are returned. If "inverse" is true, edges not having the given length are returned.

with_length

(2) Signature: [const] Edges with_length (variant min_length, variant max_length, bool inverse)

Description: Filter the edges by length

Filters the edges in the edge collection by length. If "inverse" is false, only edges which have a length
larger or equal to "min_length" and less than "max_length" are returned. If "inverse" is true, edges not
having a length less than "min_length" or larger or equal than "max_length" are returned.

If you don't want to specify a lower or upper limit, pass nil to that parameter.

|
Signature: [const] Edges | (const Edges other)

Description: Returns the boolean OR between self and the other edge set

Returns: The resulting edge collection

The boolean OR is implemented by merging the edges of both edge sets. To simply join the edge
collections without merging, the + operator is more efficient.

|=
Signature: Edges |= (const Edges other)

Description: Performs the boolean OR between self and the other edge set

Returns: The edge collection after modification (self)

The boolean OR is implemented by merging the edges of both edge sets. To simply join the edge
collections without merging, the + operator is more efficient.

For more details visit
https://www.klayout.org

Page 825 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.38. API reference - Class InstElement

4.38. API reference - Class InstElement
Notation used in Ruby API documentation

Module: db

Description: An element in an instantiation path

This objects are used to reference a single instance in a instantiation path. The object is composed of a CellInstArray object (accessible
through the cell_inst accessor) that describes the basic instance, which may be an array. The particular instance within the array can be
further retrieved using the array_member_trans, specific_trans or specific_cplx_trans methods.

Public constructors

new InstElement ptr new Default constructor

new InstElement ptr new (const Instance inst) Create an instance element from a single
instance alone

new InstElement ptr new (const Instance inst,
unsigned long a_index,
unsigned long b_index)

Create an instance element from an array
instance pointing into a certain array member

Public methods

[const] bool != (const
InstElement
b)

Inequality of two InstElement objects

[const] bool < (const
InstElement
b)

Provides an order criterion for two InstElement
objects

[const] bool == (const
InstElement
b)

Equality of two InstElement objects

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

[const] Trans array_member_trans Returns the transformation for this array member

void assign (const
InstElement
other)

Assigns another object to self

For more details visit
https://www.klayout.org

Page 826 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.38. API reference - Class InstElement

[const] const CellInstArray
ptr

cell_inst Accessor to the cell instance (array).

[const] new InstElement ptr dup Creates a copy of self

[const] long ia Returns the 'a' axis index for array instances

[const] long ib Returns the 'b' axis index for array instances

[const] Instance inst Gets the Instance object held in this instance path
element.

[const] unsigned long prop_id Accessor to the property attached to this
instance.

[const] ICplxTrans specific_cplx_trans Returns the specific complex transformation for
this instance

[const] Trans specific_trans Returns the specific transformation for this
instance

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[static] new InstElement ptr new_i (const Instance
inst)

Use of this method is deprecated. Use new
instead

[static] new InstElement ptr new_iab (const Instance
inst,
unsigned long
a_index,
unsigned long
b_index)

Use of this method is deprecated. Use new
instead

Detailed description

!=
Signature: [const] bool != (const InstElement b)

Description: Inequality of two InstElement objects

See the comments on the == operator.

<
Signature: [const] bool < (const InstElement b)

Description: Provides an order criterion for two InstElement objects

Note: this operator is just provided to establish any order, not a particular one.

For more details visit
https://www.klayout.org

Page 827 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.38. API reference - Class InstElement

==
Signature: [const] bool == (const InstElement b)

Description: Equality of two InstElement objects

Note: this operator returns true if both instance elements refer to the same instance, not just identical
ones.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

array_member_trans
Signature: [const] Trans array_member_trans

Description: Returns the transformation for this array member

For more details visit
https://www.klayout.org

Page 828 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.38. API reference - Class InstElement

The array member transformation is the one applicable in addition to the global transformation for the
member selected from an array. If this instance is not an array instance, the specific transformation is
a unit transformation without displacement.

assign
Signature: void assign (const InstElement other)

Description: Assigns another object to self

cell_inst
Signature: [const] const CellInstArray ptr cell_inst

Description: Accessor to the cell instance (array).

This method is equivalent to "self.inst.cell_inst" and provided for convenience.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new InstElement ptr dup

Description: Creates a copy of self

ia
Signature: [const] long ia

Description: Returns the 'a' axis index for array instances

For instance elements describing one member of an array, this attribute will deliver the a axis index
addressed by this element. See ib and array_member_trans for further attributes applicable to array
members. If the element is a plain instance and not an array member, this attribute is a negative
value.

This method has been introduced in version 0.25.

ib
Signature: [const] long ib

Description: Returns the 'b' axis index for array instances

For instance elements describing one member of an array, this attribute will deliver the a axis index
addressed by this element. See ia and array_member_trans for further attributes applicable to array

For more details visit
https://www.klayout.org

Page 829 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.38. API reference - Class InstElement

members. If the element is a plain instance and not an array member, this attribute is a negative
value.

This method has been introduced in version 0.25.

inst
Signature: [const] Instance inst

Description: Gets the Instance object held in this instance path element.

This method has been added in version 0.24.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

(1) Signature: [static] new InstElement ptr new

Description: Default constructor

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new InstElement ptr new (const Instance inst)

Description: Create an instance element from a single instance alone

Starting with version 0.15, this method takes an Instance object (an instance reference) as the
argument.

Python specific notes:
This method is the default initializer of the object

new

(3) Signature: [static] new InstElement ptr new (const Instance inst, unsigned long a_index,
unsigned long b_index)

Description: Create an instance element from an array instance pointing into a certain array member

Starting with version 0.15, this method takes an Instance object (an instance reference) as the first
argument.

Python specific notes:
This method is the default initializer of the object

new_i
Signature: [static] new InstElement ptr new_i (const Instance inst)

Description: Create an instance element from a single instance alone

Use of this method is deprecated. Use new instead

Starting with version 0.15, this method takes an Instance object (an instance reference) as the
argument.

Python specific notes:
This method is the default initializer of the object

new_iab
Signature: [static] new InstElement ptr new_iab (const Instance inst, unsigned long a_index,
unsigned long b_index)

Description: Create an instance element from an array instance pointing into a certain array member

Use of this method is deprecated. Use new instead

For more details visit
https://www.klayout.org

Page 830 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.38. API reference - Class InstElement

Starting with version 0.15, this method takes an Instance object (an instance reference) as the first
argument.

Python specific notes:
This method is the default initializer of the object

prop_id
Signature: [const] unsigned long prop_id

Description: Accessor to the property attached to this instance.

This method is equivalent to "self.inst.prop_id" and provided for convenience.

specific_cplx_trans
Signature: [const] ICplxTrans specific_cplx_trans

Description: Returns the specific complex transformation for this instance

The specific transformation is the one applicable for the member selected from an array. This is the
effective transformation applied for this array member. array_member_trans gives the transformation
applied additionally to the instances' global transformation (in other words, specific_cplx_trans =
array_member_trans * cell_inst.cplx_trans).

specific_trans
Signature: [const] Trans specific_trans

Description: Returns the specific transformation for this instance

The specific transformation is the one applicable for the member selected from an array. This is the
effective transformation applied for this array member. array_member_trans gives the transformation
applied additionally to the instances' global transformation (in other words, specific_trans =
array_member_trans * cell_inst.trans). This method delivers a simple transformation that does not
include magnification components. To get these as well, use specific_cplx_trans.

For more details visit
https://www.klayout.org

Page 831 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.39. API reference - Class LayerMapping

4.39. API reference - Class LayerMapping
Notation used in Ruby API documentation

Module: db

Description: A layer mapping (source to target layout)

A layer mapping is an association of layers in two layouts forming pairs of layers, i.e. one layer corresponds to another layer in the other
layout. The LayerMapping object describes the mapping of layers of a source layout A to a target layout B.

A layer mapping can be set up manually or using the methods create or create_full.

lm = RBA::LayerMapping::new
explicit:
lm.map(2, 1) # map layer index 2 of source to 1 of target
lm.map(7, 3) # map layer index 7 of source to 3 of target
...
or employing the specification identity:
lm.create(target_layout, source_layout)
plus creating layers which don't exist in the target layout yet:
new_layers = lm.create_full(target_layout, source_layout)

A layer might not be mapped to another layer which basically means that there is no corresponding layer. Such layers will be ignored in
operations using the layer mapping. Use create_full to ensure all layers of the source layout are mapped.

LayerMapping objects play a role mainly in the hierarchical copy or move operations of Layout. However, use is not restricted to these
applications.

This class has been introduced in version 0.23.

Public constructors

new LayerMapping ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
LayerMapping
other)

Assigns another object to self

void clear Clears the mapping.

For more details visit
https://www.klayout.org

Page 832 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.39. API reference - Class LayerMapping

void create (const Layout
layout_a,
const Layout
layout_b)

Initialize the layer mapping from two layouts

unsigned int[] create_full (Layout layout_a,
const Layout
layout_b)

Initialize the layer mapping from two layouts

[const] new LayerMapping
ptr

dup Creates a copy of self

[const] bool has_mapping? (unsigned int
layer_index_b)

Determine if a layer in layout_b has a
mapping to a layout_a layer.

[const] unsigned int layer_mapping (unsigned int
layer_index_b)

Determine layer mapping of a layout_b layer
to the corresponding layout_a layer.

void map (unsigned int
layer_index_b,
unsigned int
layer_index_a)

Explicitly specify a mapping.

[const] map<unsigned
int,unsigned int>

table Returns the mapping table.

Deprecated methods (protected, public, static, non-static and constructors)

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

For more details visit
https://www.klayout.org

Page 833 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.39. API reference - Class LayerMapping

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const LayerMapping other)

Description: Assigns another object to self

clear
Signature: void clear

Description: Clears the mapping.

create
Signature: void create (const Layout layout_a, const Layout layout_b)

Description: Initialize the layer mapping from two layouts

layout_a: The target layout

layout_b: The source layout

The layer mapping is created by looking up each layer of layout_b in layout_a. All layers with
matching specifications (LayerInfo) are mapped. Layouts without a layer/datatype/name specification
will not be mapped. create_full is a version of this method which creates new layers in layout_a if no
corresponding layer is found.

create_full
Signature: unsigned int[] create_full (Layout layout_a, const Layout layout_b)

Description: Initialize the layer mapping from two layouts

layout_a: The target layout

layout_b: The source layout

Returns: A list of layers created

For more details visit
https://www.klayout.org

Page 834 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.39. API reference - Class LayerMapping

The layer mapping is created by looking up each layer of layout_b in layout_a. All layers with
matching specifications (LayerInfo) are mapped. Layouts without a layer/datatype/name specification
will not be mapped. Layers with a valid specification which are not found in layout_a are created
there.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new LayerMapping ptr dup

Description: Creates a copy of self

has_mapping?
Signature: [const] bool has_mapping? (unsigned int layer_index_b)

Description: Determine if a layer in layout_b has a mapping to a layout_a layer.

layer_index_b: The index of the layer in layout_b whose mapping is
requested.

Returns: true, if the layer has a mapping

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

layer_mapping
Signature: [const] unsigned int layer_mapping (unsigned int layer_index_b)

Description: Determine layer mapping of a layout_b layer to the corresponding layout_a layer.

layer_index_b: The index of the layer in layout_b whose mapping is
requested.

Returns: The corresponding layer in layout_a.

map
Signature: void map (unsigned int layer_index_b, unsigned int layer_index_a)

Description: Explicitly specify a mapping.

layer_index_b: The index of the layer in layout B (the "source")

layer_index_a: The index of the layer in layout A (the "target")

Beside using the mapping generator algorithms provided through create and create_full, it is possible
to explicitly specify layer mappings using this method.

For more details visit
https://www.klayout.org

Page 835 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.39. API reference - Class LayerMapping

new
Signature: [static] new LayerMapping ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

table
Signature: [const] map<unsigned int,unsigned int> table

Description: Returns the mapping table.

The mapping table is a dictionary where the keys are source layout layer indexes and the values are
the target layout layer indexes.

This method has been introduced in version 0.25.

For more details visit
https://www.klayout.org

Page 836 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.40. API reference - Class LayerInfo

4.40. API reference - Class LayerInfo
Notation used in Ruby API documentation

Module: db

Description: A structure encapsulating the layer properties

The layer properties describe how a layer is stored in a GDS2 or OASIS file for example. The LayerInfo object represents the storage
properties that are attached to a layer in the database.

In general, a layer has either a layer and a datatype number (in GDS2), a name (for example in DXF or CIF) or both (in OASIS). In
the latter case, the primary identification is through layer and datatype number and the name is some annotation attached to it. A
LayerInfo object which specifies just a name returns true on is_named?. The LayerInfo object can also specify an anonymous layer (use
LayerInfo#new without arguments). Such a layer will not be stored when saving the layout. They can be employed for temporary layers for
example. Use LayerInfo#anonymous? to test whether a layer does not have a specification.

The LayerInfo is used for example in Layout#insert_layer to specify the properties of the new layer that will be created. The is_equivalent?
method compares two LayerInfo objects using the layer and datatype numbers with a higher priority over the name.

Public constructors

new LayerInfo ptr new The default constructor.

new LayerInfo ptr new (int layer,
int datatype)

The constructor for a layer/datatype pair.

new LayerInfo ptr new (string name) The constructor for a named layer.

new LayerInfo ptr new (int layer,
int datatype,
string name)

The constructor for a named layer with layer
and datatype.

Public methods

[const] bool != (const
LayerInfo b)

Compares two layer info objects

[const] bool == (const
LayerInfo b)

Compares two layer info objects

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] bool anonymous? Returns true, if the layer has no specification
(i.e. is created by the default constructor).

For more details visit
https://www.klayout.org

Page 837 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.40. API reference - Class LayerInfo

void assign (const
LayerInfo
other)

Assigns another object to self

[const] int datatype Gets the datatype

void datatype= (int datatype) Set the datatype

[const] new LayerInfo ptr dup Creates a copy of self

[const] unsigned long hash Computes a hash value

[const] bool is_equivalent? (const
LayerInfo b)

Equivalence of two layer info objects

[const] bool is_named? Returns true, if the layer is purely specified by
name.

[const] int layer Gets the layer number

void layer= (int layer) Sets the layer number

[const] string name Gets the layer name

void name= (string name) Set the layer name

[const] string to_s (bool
as_target =
false)

Convert the layer info object to a string

Public static methods and constants

LayerInfo from_string (string s,
bool as_target = false)

Create a layer info object from a
string

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

!=
Signature: [const] bool != (const LayerInfo b)

Description: Compares two layer info objects

Returns: True, if both are not equal

This method was added in version 0.18.

For more details visit
https://www.klayout.org

Page 838 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.40. API reference - Class LayerInfo

==
Signature: [const] bool == (const LayerInfo b)

Description: Compares two layer info objects

Returns: True, if both are equal

This method was added in version 0.18.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

anonymous?
Signature: [const] bool anonymous?

Description: Returns true, if the layer has no specification (i.e. is created by the default constructor).

For more details visit
https://www.klayout.org

Page 839 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.40. API reference - Class LayerInfo

Returns: True, if the layer does not have any specification.

This method was added in version 0.23.

assign
Signature: void assign (const LayerInfo other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

datatype
Signature: [const] int datatype

Description: Gets the datatype

Python specific notes:
The object exposes a readable attribute 'datatype'. This is the getter.

datatype=
Signature: void datatype= (int datatype)

Description: Set the datatype

Python specific notes:
The object exposes a writable attribute 'datatype'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new LayerInfo ptr dup

Description: Creates a copy of self

from_string
Signature: [static] LayerInfo from_string (string s, bool as_target = false)

Description: Create a layer info object from a string

The: string

Returns: The LayerInfo object

If 'as_target' is true, relative specifications such as '*+1' for layer or datatype are permitted.

For more details visit
https://www.klayout.org

Page 840 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.40. API reference - Class LayerInfo

This method will take strings as produced by to_s and create a LayerInfo object from them. The
format is either "layer", "layer/datatype", "name" or "name (layer/datatype)".

This method was added in version 0.23. The 'as_target' argument has been added in version 0.26.5.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given layer info object. This method enables layer info objects as hash
keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_equivalent?
Signature: [const] bool is_equivalent? (const LayerInfo b)

Description: Equivalence of two layer info objects

Returns: True, if both are equivalent

First, layer and datatype are compared. The name is of second order and used only if no layer or
datatype is given. This is basically a weak comparison that reflects the search preferences.

This method was added in version 0.18.

is_named?
Signature: [const] bool is_named?

Description: Returns true, if the layer is purely specified by name.

Returns: True, if no layer or datatype is given.

This method was added in version 0.18.

layer
Signature: [const] int layer

Description: Gets the layer number

Python specific notes:
The object exposes a readable attribute 'layer'. This is the getter.

layer=
Signature: void layer= (int layer)

Description: Sets the layer number

Python specific notes:
The object exposes a writable attribute 'layer'. This is the setter.

name
Signature: [const] string name

Description: Gets the layer name

Python specific notes:
The object exposes a readable attribute 'name'. This is the getter.

For more details visit
https://www.klayout.org

Page 841 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.40. API reference - Class LayerInfo

name=
Signature: void name= (string name)

Description: Set the layer name

The name is set on OASIS input for example, if the layer has a name.

Python specific notes:
The object exposes a writable attribute 'name'. This is the setter.

(1) Signature: [static] new LayerInfo ptr new

Description: The default constructor.

Creates a default LayerInfo object.

This method was added in version 0.18.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new LayerInfo ptr new (int layer, int datatype)

Description: The constructor for a layer/datatype pair.

layer: The layer number

datatype: The datatype number

Creates a LayerInfo object representing a layer and datatype.

This method was added in version 0.18.

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new LayerInfo ptr new (string name)

Description: The constructor for a named layer.

name: The name

Creates a LayerInfo object representing a named layer.

This method was added in version 0.18.

Python specific notes:
This method is the default initializer of the object

new

(4) Signature: [static] new LayerInfo ptr new (int layer, int datatype, string name)

Description: The constructor for a named layer with layer and datatype.

layer: The layer number

datatype: The datatype number

name: The name

Creates a LayerInfo object representing a named layer with layer and datatype.

This method was added in version 0.18.

Python specific notes:
This method is the default initializer of the object

to_s
Signature: [const] string to_s (bool as_target = false)

Description: Convert the layer info object to a string

Returns: The string

If 'as_target' is true, wildcard and relative specifications are formatted such such.

For more details visit
https://www.klayout.org

Page 842 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.40. API reference - Class LayerInfo

This method was added in version 0.18. The 'as_target' argument has been added in version 0.26.5.

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 843 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.41. API reference - Class LayoutMetaInfo

4.41. API reference - Class LayoutMetaInfo
Notation used in Ruby API documentation

Module: db

Description: A piece of layout meta information

Layout meta information is basically additional data that can be attached to a layout. Layout readers may generate meta information and
some writers will add layout information to the layout object. Some writers will also read meta information to determine certain attributes.

Multiple layout meta information objects can be attached to one layout using Layout#add_meta_info. Meta information is identified by a
unique name and carries a string value plus an optional description string. The description string is for information only and is not evaluated
by code.

See also Layout#each_meta_info and Layout#meta_info_value and Layout#remove_meta_info This class has been introduced in version
0.25.

Public constructors

new LayoutMetaInfo ptr new (string name,
string value,
string description =)

Creates a layout meta info object

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
LayoutMetaInfo
other)

Assigns another object to self

[const] string description Gets the description of the layout meta info object

void description= (string
arg1)

Sets the description of the layout meta info object

[const] new LayoutMetaInfo
ptr

dup Creates a copy of self

[const] string name Gets the name of the layout meta info object

void name= (string
arg1)

Sets the name of the layout meta info object

[const] string value Gets the value of the layout meta info object

For more details visit
https://www.klayout.org

Page 844 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.41. API reference - Class LayoutMetaInfo

void value= (string
arg1)

Sets the value of the layout meta info object

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

For more details visit
https://www.klayout.org

Page 845 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.41. API reference - Class LayoutMetaInfo

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const LayoutMetaInfo other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

description
Signature: [const] string description

Description: Gets the description of the layout meta info object

Python specific notes:
The object exposes a readable attribute 'description'. This is the getter.

description=
Signature: void description= (string arg1)

Description: Sets the description of the layout meta info object

Python specific notes:
The object exposes a writable attribute 'description'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new LayoutMetaInfo ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

For more details visit
https://www.klayout.org

Page 846 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.41. API reference - Class LayoutMetaInfo

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

name
Signature: [const] string name

Description: Gets the name of the layout meta info object

Python specific notes:
The object exposes a readable attribute 'name'. This is the getter.

name=
Signature: void name= (string arg1)

Description: Sets the name of the layout meta info object

Python specific notes:
The object exposes a writable attribute 'name'. This is the setter.

new
Signature: [static] new LayoutMetaInfo ptr new (string name, string value, string description =)

Description: Creates a layout meta info object

name: The name

value: The value

description: An optional description text

Python specific notes:
This method is the default initializer of the object

value
Signature: [const] string value

Description: Gets the value of the layout meta info object

Python specific notes:
The object exposes a readable attribute 'value'. This is the getter.

value=
Signature: void value= (string arg1)

Description: Sets the value of the layout meta info object

Python specific notes:
The object exposes a writable attribute 'value'. This is the setter.

For more details visit
https://www.klayout.org

Page 847 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

4.42. API reference - Class Layout
Notation used in Ruby API documentation

Module: db

Description: The layout object

This object represents a layout. The layout object contains the cell hierarchy and adds functionality for managing cell names and layer
names. The cell hierarchy can be changed by adding cells and cell instances. Cell instances will virtually put the content of a cell into
another cell. Many cell instances can be put into a cell thus forming repetitions of the cell content. This process can be repeated over
multiple levels. In effect a cell graphs is created with parent cells and child cells. The graph must not be recursive, so there is at least one
top cell, which does not have a parent cell. Multiple top cells can be present.

Layout is the very basic class of the layout database. It has a rich set of methods to manipulate and query the layout hierarchy, the
geometrical objects, the meta information and other features of the layout database. For a discussion of the basic API and the related
classes see The Database API.

Usually layout objects have already been created by KLayout's application core. You can address such a layout via the CellView object
inside the LayoutView class. For example:

active_layout = RBA::CellView::active.layout
puts "Top cell of current layout is #{active_layout.top_cell.name}"

However, a layout can also be used standalone:

layout = RBA::Layout::new
cell = layout.create_cell("TOP")
layer = layout.layer(RBA::LayerInfo::new(1, 0))
cell.shapes(layer).insert(RBA::Box::new(0, 0, 1000, 1000))
layout.write("single_rect.gds")

Public constructors

new Layout ptr new (Manager manager) Creates a layout object attached to a manager

new Layout ptr new Creates a layout object

new Layout ptr new (bool editable,
Manager manager)

Creates a layout object attached to a manager

new Layout ptr new (bool editable) Creates a layout object

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

For more details visit
https://www.klayout.org

Page 848 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by
the script side.

unsigned int add_lib_cell (Library ptr library,
unsigned int
lib_cell_index)

Imports a cell from the library

void add_meta_info (const LayoutMetaInfo
info)

Adds meta information to the layout

unsigned int add_pcell_variant (unsigned int pcell_id,
map<string,variant>
parameters)

Creates a PCell variant for the given PCell
ID with the parameters given as a name/
value dictionary

unsigned int add_pcell_variant (unsigned int pcell_id,
variant[] parameters)

Creates a PCell variant for the given PCell
ID with the given parameters

unsigned int add_pcell_variant (Library ptr library,
unsigned int pcell_id,
map<string,variant>
parameters)

Creates a PCell variant for a PCell located
in an external library with the parameters
given as a name/value dictionary

unsigned int add_pcell_variant (Library ptr library,
unsigned int pcell_id,
variant[] parameters)

Creates a PCell variant for a PCell located
in an external library

void assign (const Layout other) Assigns another object to self

[const] RecursiveShapeIteratorbegin_shapes (const Cell ptr cell,
unsigned int layer)

Delivers a recursive shape iterator for the
shapes below the given cell on the given
layer

Cell ptr cell (string name) Gets a cell object from the cell name

Cell ptr cell (unsigned int i) Gets a cell object from the cell index

[const] string cell_name (unsigned int index) Gets the name for a cell with the given
index

[const] unsigned int cells Returns the number of cells

Cell ptr[] cells (string name_filter) Gets the cell objects for a given name filter

void cleanup (unsigned int[]
cell_indexes_to_keep = [])

Cleans up the layout

void clear Clears the layout

void clear_layer (unsigned int layer_index) Clears a layer

unsigned int clip (unsigned int cell,
const Box box)

Clips the given cell by the given rectangle
and produce a new cell with the clip

unsigned int clip (unsigned int cell,
const DBox box)

Clips the given cell by the given rectangle
and produce a new cell with the clip

For more details visit
https://www.klayout.org

Page 849 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

Cell ptr clip (const Cell cell,
const Box box)

Clips the given cell by the given rectangle
and produce a new cell with the clip

Cell ptr clip (const Cell cell,
const DBox box)

Clips the given cell by the given rectangle
and produce a new cell with the clip

[const] unsigned int clip_into (unsigned int cell,
Layout ptr target,
const Box box)

Clips the given cell by the given rectangle
and produce a new cell with the clip

[const] unsigned int clip_into (unsigned int cell,
Layout ptr target,
const DBox box)

Clips the given cell by the given rectangle
and produce a new cell with the clip

[const] Cell ptr clip_into (const Cell cell,
Layout ptr target,
const Box box)

Clips the given cell by the given rectangle
and produce a new cell with the clip

[const] Cell ptr clip_into (const Cell cell,
Layout ptr target,
const DBox box)

Clips the given cell by the given rectangle
and produce a new cell with the clip

unsigned int convert_cell_to_static (unsigned int cell_index) Converts a PCell or library cell to a usual
(static) cell

void copy_layer (unsigned int src,
unsigned int dest)

Copies a layer

void copy_tree_shapes (const Layout
source_layout,
const CellMapping
cell_mapping)

Copies the shapes for all given mappings
in the CellMapping object

void copy_tree_shapes (const Layout
source_layout,
const CellMapping
cell_mapping,
const LayerMapping
layer_mapping)

Copies the shapes for all given mappings
in the CellMapping object using the given
layer mapping

Cell ptr create_cell (string name) Creates a cell with the given name

Cell ptr create_cell (string pcell_name,
map<string,variant>
params)

Creates a cell as a PCell variant for the
PCell with the given name

Cell ptr create_cell (string name,
string lib_name)

Creates a cell with the given name

Cell ptr create_cell (string pcell_name,
string lib_name,
map<string,variant>
params)

Creates a cell for a PCell with the given
PCell name from the given library

[const] double dbu Gets the database unit

void dbu= (double dbu) Sets the database unit

void delete_cell (unsigned int cell_index) Deletes a cell

For more details visit
https://www.klayout.org

Page 850 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

void delete_cell_rec (unsigned int cell_index) Deletes a cell plus all subcells

void delete_cells (unsigned int[]
cell_index_list)

Deletes multiple cells

void delete_layer (unsigned int layer_index) Deletes a layer

void delete_property (variant key) Deletes the user property with the given
key

[const] new Layout ptr dup Creates a copy of self

[iter] Cell each_cell Iterates the unsorted cell list

[iter] unsigned int each_cell_bottom_up Iterates the bottom-up sorted cell list

[iter] unsigned int each_cell_top_down begin iterator of the top-down sorted cell
list

[const,iter] LayoutMetaInfo each_meta_info Iterates over the meta information of the
layout

[iter] unsigned int each_top_cell Iterates the top cells

void end_changes Cancels the "in changes" state (see
"start_changes")

variant find_layer (const LayerInfo info) Finds a layer with the given properties

variant find_layer (string name) Finds a layer with the given name

variant find_layer (int layer,
int datatype)

Finds a layer with the given layer and
datatype number

variant find_layer (int layer,
int datatype,
string name)

Finds a layer with the given layer and
datatype number and name

void flatten (unsigned int cell_index,
int levels,
bool prune)

Flattens the given cell

void flatten_into (unsigned int
source_cell_index,
unsigned int
target_cell_index,
const ICplxTrans trans,
int levels)

Flattens the given cell into another cell

[const] LayerInfo get_info (unsigned int index) Gets the info structure for a specified layer

[const] unsigned int guiding_shape_layer Returns the index of the guiding shape
layer

bool has_cell? (string name) Returns true if a cell with a given name
exists

[const] bool has_prop_id? Returns true, if the layout has user
properties

For more details visit
https://www.klayout.org

Page 851 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

void insert (unsigned int cell_index,
int layer,
const Region region)

Inserts a region into the given cell and
layer

void insert (unsigned int cell_index,
int layer,
const Edges edges)

Inserts an edge collection into the given
cell and layer

void insert (unsigned int cell_index,
int layer,
const EdgePairs
edge_pairs)

Inserts an edge pair collection into the
given cell and layer

void insert (unsigned int cell_index,
int layer,
const Texts texts)

Inserts an text collection into the given cell
and layer

unsigned int insert_layer (const LayerInfo props) Inserts a new layer with the given
properties

void insert_layer_at (unsigned int index,
const LayerInfo props)

Inserts a new layer with the given
properties at the given index

unsigned int insert_special_layer (const LayerInfo props) Inserts a new special layer with the given
properties

void insert_special_layer_at (unsigned int index,
const LayerInfo props)

Inserts a new special layer with the given
properties at the given index

[const] bool is_editable? Returns a value indicating whether the
layout is editable.

[const] bool is_free_layer? (unsigned int layer_index) Returns true, if a layer index is a free
(unused) layer index

[const] bool is_special_layer? (unsigned int layer_index) Returns true, if a layer index is a special
layer index

[const] bool is_valid_cell_index? (unsigned int cell_index) Returns true, if a cell index is a valid index

[const] bool is_valid_layer? (unsigned int layer_index) Returns true, if a layer index is a valid
normal layout layer index

unsigned int layer Creates a new internal layer

unsigned int layer (const LayerInfo info) Finds or creates a layer with the given
properties

unsigned int layer (string name) Finds or creates a layer with the given
name

unsigned int layer (int layer,
int datatype)

Finds or creates a layer with the given
layer and datatype number

unsigned int layer (int layer,
int datatype,
string name)

Finds or creates a layer with the given
layer and datatype number and name

[const] unsigned int[] layer_indexes Gets a list of valid layer's indices

For more details visit
https://www.klayout.org

Page 852 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

[const] LayerInfo[] layer_infos Gets a list of valid layer's properties

[const] unsigned int layers Returns the number of layers

[const] Library ptr library Gets the library this layout lives in or nil if
the layout is not part of a library

[const] string meta_info_value (string name) Gets the meta information value for a given
name

void move_layer (unsigned int src,
unsigned int dest)

Moves a layer

void move_tree_shapes (Layout source_layout,
const CellMapping
cell_mapping)

Moves the shapes for all given mappings in
the CellMapping object

void move_tree_shapes (Layout source_layout,
const CellMapping
cell_mapping,
const LayerMapping
layer_mapping)

Moves the shapes for all given mappings
in the CellMapping object using the given
layer mapping

unsigned int[] multi_clip (unsigned int cell,
Box[] boxes)

Clips the given cell by the given rectangles
and produces new cells with the clips, one
for each rectangle.

unsigned int[] multi_clip (unsigned int cell,
DBox[] boxes)

Clips the given cell by the given rectangles
and produces new cells with the clips, one
for each rectangle.

Cell ptr[] multi_clip (const Cell cell,
Box[] boxes)

Clips the given cell by the given rectangles
and produces new cells with the clips, one
for each rectangle.

Cell ptr[] multi_clip (const Cell cell,
DBox[] boxes)

Clips the given cell by the given rectangles
and produces new cells with the clips, one
for each rectangle.

unsigned int[] multi_clip_into (unsigned int cell,
Layout ptr target,
Box[] boxes)

Clips the given cell by the given rectangles
and produces new cells with the clips, one
for each rectangle.

unsigned int[] multi_clip_into (unsigned int cell,
Layout ptr target,
DBox[] boxes)

Clips the given cell by the given rectangles
and produces new cells with the clips, one
for each rectangle.

Cell ptr[] multi_clip_into (const Cell cell,
Layout ptr target,
Box[] boxes)

Clips the given cell by the given rectangles
and produces new cells with the clips, one
for each rectangle.

Cell ptr[] multi_clip_into (const Cell cell,
Layout ptr target,
DBox[] boxes)

Clips the given cell by the given rectangles
and produces new cells with the clips, one
for each rectangle.

[const] const
PCellDeclaration
ptr

pcell_declaration (string name) Gets a reference to the PCell declaration
for the PCell with the given name

For more details visit
https://www.klayout.org

Page 853 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

[const] const
PCellDeclaration
ptr

pcell_declaration (unsigned int pcell_id) Gets a reference to the PCell declaration
for the PCell with the given PCell ID.

[const] unsigned int pcell_id (string name) Gets the ID of the PCell with the given
name

[const] unsigned int[] pcell_ids Gets the IDs of the PCells registered in the
layout

[const] string[] pcell_names Gets the names of the PCells registered in
the layout

[const] unsigned long prop_id Gets the properties ID associated with the
layout

void prop_id= (unsigned long id) Sets the properties ID associated with the
layout

[const] variant[] properties (unsigned long
properties_id)

Gets the properties set for a given
properties ID

unsigned long properties_id (variant[] properties) Gets the properties ID for a given
properties set

variant property (variant key) Gets the user property with the given key

void prune_cell (unsigned int cell_index,
int levels)

Deletes a cell plus subcells not used
otherwise

void prune_subcells (unsigned int cell_index,
int levels)

Deletes all sub cells of the cell which are
not used otherwise down to the specified
level of hierarchy

LayerMap read (string filename) Load the layout from the given file

LayerMap read (string filename,
const LoadLayoutOptions
options)

Load the layout from the given file with
options

unsigned int register_pcell (string name,
PCellDeclaration ptr
declaration)

Registers a PCell declaration under the
given name

void remove_meta_info (string name) Removes meta information from the layout

void rename_cell (unsigned int index,
string name)

Renames the cell with given index

void scale_and_snap (Cell cell,
int grid,
int mult,
int div)

Scales and snaps the layout below a given
cell by the given rational factor and snaps
to the given grid

void scale_and_snap (unsigned int cell_index,
int grid,
int mult,
int div)

Scales and snaps the layout below a given
cell by the given rational factor and snaps
to the given grid

For more details visit
https://www.klayout.org

Page 854 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

void set_info (unsigned int index,
const LayerInfo props)

Sets the info structure for a specified layer

void set_property (variant key,
variant value)

Sets the user property with the given key to
the given value

void start_changes Signals the start of an operation bringing
the layout into invalid state

void swap_layers (unsigned int a,
unsigned int b)

Swap two layers

[const] const Technology
ptr

technology Gets the Technology object of the
technology this layout is associated with
or nil if the layout is not associated with a
technology

[const] string technology_name Gets the name of the technology this layout
is associated with

void technology_name= (string name) Sets the name of the technology this layout
is associated with

Cell ptr top_cell Returns the top cell object

Cell ptr[] top_cells Returns the top cell objects

void transform (const Trans trans) Transforms the layout with the given
transformation

void transform (const ICplxTrans trans) Transforms the layout with the given
complex integer transformation

void transform (const DTrans trans) Transforms the layout with the given
transformation, which is in micrometer units

void transform (const DCplxTrans trans) Transforms the layout with the given
complex integer transformation, which is in
micrometer units

[const] bool under_construction? Returns true if the layout object is under
construction

[const] string unique_cell_name (string name) Creates a new unique cell name from the
given name

void update Updates the internals of the layout

void write (string filename,
const SaveLayoutOptions
options)

Writes the layout to a stream file

void write (string filename) Writes the layout to a stream file

Deprecated methods (protected, public, static, non-static and constructors)

unsigned int add_cell (string name) Use of this method is deprecated

For more details visit
https://www.klayout.org

Page 855 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

[const] RecursiveShapeIterator begin_shapes (unsigned int cell_index,
unsigned int layer)

Use of this method is deprecated

[const] RecursiveShapeIterator begin_shapes_overlapping(unsigned int cell_index,
unsigned int layer,
Box region)

Use of this method is deprecated

[const] RecursiveShapeIterator begin_shapes_overlapping(const Cell ptr cell_index,
unsigned int layer,
Box region)

Use of this method is deprecated

[const] RecursiveShapeIterator begin_shapes_overlapping(unsigned int cell_index,
unsigned int layer,
DBox region)

Use of this method is deprecated

[const] RecursiveShapeIterator begin_shapes_overlapping(const Cell ptr cell,
unsigned int layer,
DBox region)

Use of this method is deprecated

[const] RecursiveShapeIterator begin_shapes_touching (unsigned int cell_index,
unsigned int layer,
Box region)

Use of this method is deprecated

[const] RecursiveShapeIterator begin_shapes_touching (const Cell ptr cell,
unsigned int layer,
Box region)

Use of this method is deprecated

[const] RecursiveShapeIterator begin_shapes_touching (unsigned int cell_index,
unsigned int layer,
DBox region)

Use of this method is deprecated

[const] RecursiveShapeIterator begin_shapes_touching (const Cell ptr cell,
unsigned int layer,
DBox region)

Use of this method is deprecated

unsigned int cell_by_name (string name) Use of this method is deprecated

void create Use of this method is deprecated.
Use _create instead

void destroy Use of this method is deprecated.
Use _destroy instead

[const] bool destroyed? Use of this method is deprecated.
Use _destroyed? instead

[const] bool is_const_object? Use of this method is deprecated.
Use _is_const_object? instead

[const] unsigned int[] layer_indices Use of this method is deprecated.
Use layer_indexes instead

void write (string filename,
bool gzip,
const SaveLayoutOptions
options)

Use of this method is deprecated

For more details visit
https://www.klayout.org

Page 856 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

add_cell
Signature: unsigned int add_cell (string name)

Description: Adds a cell with the given name

Returns: The index of the newly created cell.

Use of this method is deprecated

For more details visit
https://www.klayout.org

Page 857 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

From version 0.23 on this method is deprecated because another method exists which is more
convenient because is returns a Cell object (create_cell).

add_lib_cell
Signature: unsigned int add_lib_cell (Library ptr library, unsigned int lib_cell_index)

Description: Imports a cell from the library

library: The reference to the library from which to import the cell

lib_cell_index: The index of the imported cell in the library

Returns: The cell index of the new proxy cell in this layout

This method imports the given cell from the library and creates a new proxy cell. The proxy cell acts
as a pointer to the actual cell which still resides in the library (precisely: in library.layout). The name
of the new cell will be the name of library cell.

This method has been introduced in version 0.22.

add_meta_info
Signature: void add_meta_info (const LayoutMetaInfo info)

Description: Adds meta information to the layout

See LayoutMetaInfo for details about layouts and meta information. This method has been
introduced in version 0.25.

(1) Signature: unsigned int add_pcell_variant (unsigned int pcell_id, map<string,variant>
parameters)

Description: Creates a PCell variant for the given PCell ID with the parameters given as a name/
value dictionary

Returns: The cell index of the pcell variant proxy cell

This method will create a PCell variant proxy for a local PCell definition. It will create the PCell
variant for the given parameters. Note that this method does not allow one to create PCell instances
for PCells located in a library. Use add_pcell_variant with the library parameter for that purpose.
Unlike the variant using a list of parameters, this version allows specification of the parameters with
a key/value dictionary. The keys are the parameter names as given by the PCell declaration.

The parameters are a sequence of variants which correspond to the parameters declared by the
PCellDeclaration object.

The name of the new cell will be the name of the PCell. If a cell with that name already exists, a new
unique name is generated.

This method has been introduced in version 0.22.

(2) Signature: unsigned int add_pcell_variant (unsigned int pcell_id, variant[] parameters)

Description: Creates a PCell variant for the given PCell ID with the given parameters

Returns: The cell index of the pcell variant proxy cell

This method will create a PCell variant proxy for a local PCell definition. It will create the PCell
variant for the given parameters. Note that this method does not allow one to create PCell instances
for PCells located in a library. Use add_pcell_variant with the library parameter for that purpose.

The parameters are a sequence of variants which correspond to the parameters declared by the
PCellDeclaration object.

The name of the new cell will be the name of the PCell. If a cell with that name already exists, a new
unique name is generated.

This method has been introduced in version 0.22.

add_pcell_variant

(3) Signature: unsigned int add_pcell_variant (Library ptr library, unsigned int pcell_id,
map<string,variant> parameters)

For more details visit
https://www.klayout.org

Page 858 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

Description: Creates a PCell variant for a PCell located in an external library with the parameters
given as a name/value dictionary

Returns: The cell index of the new proxy cell in this layout

This method will import a PCell from a library and create a variant for the given parameter set.
Technically, this method creates a proxy to the library and creates the variant inside that library.
Unlike the variant using a list of parameters, this version allows specification of the parameters with
a key/value dictionary. The keys are the parameter names as given by the PCell declaration.

The parameters are a sequence of variants which correspond to the parameters declared by the
PCellDeclaration object.

The name of the new cell will be the name of the PCell. If a cell with that name already exists, a new
unique name is generated.

This method has been introduced in version 0.22.

(4) Signature: unsigned int add_pcell_variant (Library ptr library, unsigned int pcell_id, variant[]
parameters)

Description: Creates a PCell variant for a PCell located in an external library

Returns: The cell index of the new proxy cell in this layout

This method will import a PCell from a library and create a variant for the given parameter set.
Technically, this method creates a proxy to the library and creates the variant inside that library.

The parameters are a sequence of variants which correspond to the parameters declared by the
PCellDeclaration object.

The name of the new cell will be the name of the PCell. If a cell with that name already exists, a new
unique name is generated.

This method has been introduced in version 0.22.

assign
Signature: void assign (const Layout other)

Description: Assigns another object to self

(1) Signature: [const] RecursiveShapeIterator begin_shapes (const Cell ptr cell, unsigned int
layer)

Description: Delivers a recursive shape iterator for the shapes below the given cell on the given
layer

cell: The cell object of the initial (top) cell

layer: The layer from which to get the shapes

Returns: A suitable iterator

For details see the description of the RecursiveShapeIterator class. This version is convenience
overload which takes a cell object instead of a cell index.

This method is deprecated. Use Cell#begin_shapes_rec instead.

This method has been added in version 0.24.

begin_shapes

(2) Signature: [const] RecursiveShapeIterator begin_shapes (unsigned int cell_index, unsigned
int layer)

Description: Delivers a recursive shape iterator for the shapes below the given cell on the given
layer

cell_index: The index of the initial (top) cell

layer: The layer from which to get the shapes

Returns: A suitable iterator

For more details visit
https://www.klayout.org

Page 859 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

Use of this method is deprecated

For details see the description of the RecursiveShapeIterator class.

This method is deprecated. Use Cell#begin_shapes_rec instead.

This method has been added in version 0.18.

(1) Signature: [const] RecursiveShapeIterator begin_shapes_overlapping (unsigned int
cell_index, unsigned int layer, Box region)

Description: Delivers a recursive shape iterator for the shapes below the given cell on the given
layer using a region search

cell_index: The index of the starting cell

layer: The layer from which to get the shapes

region: The search region

Returns: A suitable iterator

Use of this method is deprecated

For details see the description of the RecursiveShapeIterator class. This version gives an iterator
delivering shapes whose bounding box overlaps the given region.

This method is deprecated. Use Cell#begin_shapes_rec_overlapping instead.

This method has been added in version 0.18.

(2) Signature: [const] RecursiveShapeIterator begin_shapes_overlapping (const Cell ptr
cell_index, unsigned int layer, Box region)

Description: Delivers a recursive shape iterator for the shapes below the given cell on the given
layer using a region search

cell: The cell object for the starting cell

layer: The layer from which to get the shapes

region: The search region

Returns: A suitable iterator

Use of this method is deprecated

For details see the description of the RecursiveShapeIterator class. This version gives an iterator
delivering shapes whose bounding box overlaps the given region. It is convenience overload which
takes a cell object instead of a cell index.

This method is deprecated. Use Cell#begin_shapes_rec_overlapping instead.

This method has been added in version 0.24.

begin_shapes_overlapping

(3) Signature: [const] RecursiveShapeIterator begin_shapes_overlapping (unsigned int
cell_index, unsigned int layer, DBox region)

Description: Delivers a recursive shape iterator for the shapes below the given cell on the given
layer using a region search, the region given in micrometer units

cell_index: The index of the starting cell

layer: The layer from which to get the shapes

region: The search region as a DBox object in micrometer units

Returns: A suitable iterator

Use of this method is deprecated

For details see the description of the RecursiveShapeIterator class. This version gives an iterator
delivering shapes whose bounding box overlaps the given region.

For more details visit
https://www.klayout.org

Page 860 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

This method is deprecated. Use Cell#begin_shapes_rec_overlapping instead.

This variant has been added in version 0.25.

(4) Signature: [const] RecursiveShapeIterator begin_shapes_overlapping (const Cell ptr cell,
unsigned int layer, DBox region)

Description: Delivers a recursive shape iterator for the shapes below the given cell on the given
layer using a region search, the region given in micrometer units

cell: The cell object for the starting cell

layer: The layer from which to get the shapes

region: The search region as a DBox object in micrometer units

Returns: A suitable iterator

Use of this method is deprecated

For details see the description of the RecursiveShapeIterator class. This version gives an iterator
delivering shapes whose bounding box overlaps the given region. It is convenience overload which
takes a cell object instead of a cell index.

This method is deprecated. Use Cell#begin_shapes_rec_overlapping instead.

This variant has been added in version 0.25.

(1) Signature: [const] RecursiveShapeIterator begin_shapes_touching (unsigned int cell_index,
unsigned int layer, Box region)

Description: Delivers a recursive shape iterator for the shapes below the given cell on the given
layer using a region search

cell_index: The index of the starting cell

layer: The layer from which to get the shapes

region: The search region

Returns: A suitable iterator

Use of this method is deprecated

For details see the description of the RecursiveShapeIterator class. This version gives an iterator
delivering shapes whose bounding box touches the given region.

This method is deprecated. Use Cell#begin_shapes_rec_touching instead.

This method has been added in version 0.18.

begin_shapes_touching

(2) Signature: [const] RecursiveShapeIterator begin_shapes_touching (const Cell ptr cell,
unsigned int layer, Box region)

Description: Delivers a recursive shape iterator for the shapes below the given cell on the given
layer using a region search

cell: The cell object for the starting cell

layer: The layer from which to get the shapes

region: The search region

Returns: A suitable iterator

Use of this method is deprecated

For details see the description of the RecursiveShapeIterator class. This version gives an iterator
delivering shapes whose bounding box touches the given region. It is convenience overload which
takes a cell object instead of a cell index.

This method is deprecated. Use Cell#begin_shapes_rec_touching instead.

For more details visit
https://www.klayout.org

Page 861 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

This method has been added in version 0.24.

(3) Signature: [const] RecursiveShapeIterator begin_shapes_touching (unsigned int cell_index,
unsigned int layer, DBox region)

Description: Delivers a recursive shape iterator for the shapes below the given cell on the given
layer using a region search, the region given in micrometer units

cell_index: The index of the starting cell

layer: The layer from which to get the shapes

region: The search region as a DBox object in micrometer units

Returns: A suitable iterator

Use of this method is deprecated

For details see the description of the RecursiveShapeIterator class. This version gives an iterator
delivering shapes whose bounding box touches the given region.

This method is deprecated. Use Cell#begin_shapes_rec_touching instead.

This variant has been added in version 0.25.

(4) Signature: [const] RecursiveShapeIterator begin_shapes_touching (const Cell ptr cell,
unsigned int layer, DBox region)

Description: Delivers a recursive shape iterator for the shapes below the given cell on the given
layer using a region search, the region given in micrometer units

cell: The cell object for the starting cell

layer: The layer from which to get the shapes

region: The search region as a DBox object in micrometer units

Returns: A suitable iterator

Use of this method is deprecated

For details see the description of the RecursiveShapeIterator class. This version gives an iterator
delivering shapes whose bounding box touches the given region. It is convenience overload which
takes a cell object instead of a cell index.

This method is deprecated. Use Cell#begin_shapes_rec_touching instead.

This variant has been added in version 0.25.

(1) Signature: Cell ptr cell (string name)

Description: Gets a cell object from the cell name

name: The cell name

Returns: A reference to the cell (a Cell object)

If name is not a valid cell name, this method will return "nil". This method has been introduced in
version 0.23 and replaces cell_by_name.

cell

(2) Signature: Cell ptr cell (unsigned int i)

Description: Gets a cell object from the cell index

i: The cell index

Returns: A reference to the cell (a Cell object)

If the cell index is not a valid cell index, this method will raise an error. Use is_valid_cell_index? to
test whether a given cell index is valid.

For more details visit
https://www.klayout.org

Page 862 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

cell_by_name
Signature: unsigned int cell_by_name (string name)

Description: Gets the cell index for a given name

Use of this method is deprecated

Returns the cell index for the cell with the given name. If no cell with this name exists, an exception
is thrown. From version 0.23 on, a version of the cell method is provided which returns a Cell object
for the cell with the given name or "nil" if the name is not valid. This method replaces cell_by_name
and has_cell?

cell_name
Signature: [const] string cell_name (unsigned int index)

Description: Gets the name for a cell with the given index

(1) Signature: [const] unsigned int cells

Description: Returns the number of cells

Returns: The number of cells (the maximum cell index)

cells

(2) Signature: Cell ptr[] cells (string name_filter)

Description: Gets the cell objects for a given name filter

name_filter: The cell name filter (glob pattern)

Returns: A list of Cell object of the cells matching the pattern

This method has been introduced in version 0.27.3.

cleanup
Signature: void cleanup (unsigned int[] cell_indexes_to_keep = [])

Description: Cleans up the layout

This method will remove proxy objects that are no longer in use. After changing PCell parameters
such proxy objects may still be present in the layout and are cached for later reuse. Usually they are
cleaned up automatically, but in a scripting context it may be useful to clean up these cells explicitly.

Use 'cell_indexes_to_keep' for specifying a list of cell indexes of PCell variants or library proxies you
don't want to be cleaned up.

This method has been introduced in version 0.25.

clear
Signature: void clear

Description: Clears the layout

Clears the layout completely.

clear_layer
Signature: void clear_layer (unsigned int layer_index)

Description: Clears a layer

layer_index: The index of the layer to delete.

Clears the layer: removes all shapes.

This method was introduced in version 0.19.

clip
(1) Signature: unsigned int clip (unsigned int cell, const Box box)

Description: Clips the given cell by the given rectangle and produce a new cell with the clip

cell: The cell index of the cell to clip

box: The clip box in database units

For more details visit
https://www.klayout.org

Page 863 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

Returns: The index of the new cell

This method will cut a rectangular region given by the box from the given cell. The clip will be stored
in a new cell whose index is returned. The clip will be performed hierarchically. The resulting cell will
hold a hierarchy of child cells, which are potentially clipped versions of child cells of the original cell.
This method has been added in version 0.21.

(2) Signature: unsigned int clip (unsigned int cell, const DBox box)

Description: Clips the given cell by the given rectangle and produce a new cell with the clip

cell: The cell index of the cell to clip

box: The clip box in micrometer units

Returns: The index of the new cell

This variant which takes a micrometer-unit box has been added in version 0.28.

(3) Signature: Cell ptr clip (const Cell cell, const Box box)

Description: Clips the given cell by the given rectangle and produce a new cell with the clip

cell: The cell reference of the cell to clip

box: The clip box in database units

Returns: The reference to the new cell

This variant which takes cell references instead of cell indexes has been added in version 0.28.

(4) Signature: Cell ptr clip (const Cell cell, const DBox box)

Description: Clips the given cell by the given rectangle and produce a new cell with the clip

cell: The cell reference of the cell to clip

box: The clip box in micrometer units

Returns: The reference to the new cell

This variant which takes a micrometer-unit box and cell references has been added in version 0.28.

(1) Signature: [const] unsigned int clip_into (unsigned int cell, Layout ptr target, const Box box)

Description: Clips the given cell by the given rectangle and produce a new cell with the clip

cell: The cell index of the cell to clip

box: The clip box in database units

target: The target layout

Returns: The index of the new cell in the target layout

This method will cut a rectangular region given by the box from the given cell. The clip will be stored
in a new cell in the target layout. The clip will be performed hierarchically. The resulting cell will hold
a hierarchy of child cells, which are potentially clipped versions of child cells of the original cell.

Please note that it is important that the database unit of the target layout is identical to the database
unit of the source layout to achieve the desired results.This method also assumes that the target
layout holds the same layers than the source layout. It will copy shapes to the same layers than they
have been on the original layout. This method has been added in version 0.21.

clip_into

(2) Signature: [const] unsigned int clip_into (unsigned int cell, Layout ptr target, const DBox box)

Description: Clips the given cell by the given rectangle and produce a new cell with the clip

cell: The cell index of the cell to clip

For more details visit
https://www.klayout.org

Page 864 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

box: The clip box in micrometer units

target: The target layout

Returns: The index of the new cell in the target layout

This variant which takes a micrometer-unit box has been added in version 0.28.

(3) Signature: [const] Cell ptr clip_into (const Cell cell, Layout ptr target, const Box box)

Description: Clips the given cell by the given rectangle and produce a new cell with the clip

cell: The reference to the cell to clip

box: The clip box in database units

target: The target layout

Returns: The reference to the new cell in the target layout

This variant which takes cell references instead of cell indexes has been added in version 0.28.

(4) Signature: [const] Cell ptr clip_into (const Cell cell, Layout ptr target, const DBox box)

Description: Clips the given cell by the given rectangle and produce a new cell with the clip

cell: The reference to the cell to clip

box: The clip box in micrometer units

target: The target layout

Returns: The reference to the new cell in the target layout

This variant which takes a micrometer-unit box and cell references has been added in version 0.28.

convert_cell_to_static
Signature: unsigned int convert_cell_to_static (unsigned int cell_index)

Description: Converts a PCell or library cell to a usual (static) cell

Returns: The index of the new cell

This method will create a new cell which contains the static representation of the PCell or library
proxy given by "cell_index". If that cell is not a PCell or library proxy, it won't be touched and the
input cell index is returned.

This method has been added in version 0.23.

copy_layer
Signature: void copy_layer (unsigned int src, unsigned int dest)

Description: Copies a layer

src: The layer index of the source layer.

dest: The layer index of the destination layer.

This method was introduced in version 0.19.

Copy a layer from the source to the target. The target is not cleared before, so that this method
merges shapes from the source with the target layer.

copy_tree_shapes
(1) Signature: void copy_tree_shapes (const Layout source_layout, const CellMapping
cell_mapping)

Description: Copies the shapes for all given mappings in the CellMapping object

source_layout: The layout where to take the shapes from

cell_mapping: The cell mapping object that determines how cells are
identified between source and target layout

For more details visit
https://www.klayout.org

Page 865 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

Provide a CellMapping object to specify pairs of cells which are mapped from the source
layout to this layout. When constructing such a cell mapping object for example with
CellMapping#for_multi_cells_full, use self as the target layout. During the cell mapping construction,
the cell mapper will usually create a suitable target hierarchy already. After having completed the cell
mapping, use copy_tree_shapes to copy over the shapes from the source to the target layout.

This method has been added in version 0.26.8.

(2) Signature: void copy_tree_shapes (const Layout source_layout, const CellMapping
cell_mapping, const LayerMapping layer_mapping)

Description: Copies the shapes for all given mappings in the CellMapping object using the given
layer mapping

source_layout: The layout where to take the shapes from

cell_mapping: The cell mapping object that determines how cells are
identified between source and target layout

layer_mapping: Specifies which layers are copied from the source layout to
the target layout

Provide a CellMapping object to specify pairs of cells which are mapped from the source
layout to this layout. When constructing such a cell mapping object for example with
CellMapping#for_multi_cells_full, use self as the target layout. During the cell mapping construction,
the cell mapper will usually create a suitable target hierarchy already. After having completed the cell
mapping, use copy_tree_shapes to copy over the shapes from the source to the target layout.

This method has been added in version 0.26.8.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

(1) Signature: Cell ptr create_cell (string name)

Description: Creates a cell with the given name

name: The name of the cell to create

Returns: The Cell object of the newly created cell.

If a cell with that name already exists, the unique name will be chosen for the new cell consisting of
the given name plus a suitable suffix.

This method has been introduce in version 0.23 and replaces add_cell.

create_cell

(2) Signature: Cell ptr create_cell (string pcell_name, map<string,variant> params)

Description: Creates a cell as a PCell variant for the PCell with the given name

pcell_name: The name of the PCell and also the name of the cell to create

params: The PCell parameters (key/value dictionary)

Returns: The Cell object of the newly created cell or an existing cell if the
PCell has already been used with these parameters.

PCells are instantiated by creating a PCell variant. A PCell variant is linked to the PCell and
represents this PCell with a particular parameter set.

This method will look up the PCell by the PCell name and create a new PCell variant for the given
parameters. If the PCell has already been instantiated with the same parameters, the original variant

For more details visit
https://www.klayout.org

Page 866 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

will be returned. Hence this method is not strictly creating a cell - only if the required variant has not
been created yet.

The parameters are specified as a key/value dictionary with the names being the ones from the
PCell declaration.

If no PCell with the given name exists, nil is returned.

This method has been introduce in version 0.24.

(3) Signature: Cell ptr create_cell (string name, string lib_name)

Description: Creates a cell with the given name

name: The name of the library cell and the name of the cell to create

lib_name: The name of the library where to take the cell from

Returns: The Cell object of the newly created cell or an existing cell if the
library cell has already been used in this layout.

Library cells are imported by creating a 'library proxy'. This is a cell which represents the library cell
in the framework of the current layout. The library proxy is linked to the library and will be updated if
the library cell is changed.

This method will look up the cell by the given name in the specified library and create a new
library proxy for this cell. If the same library cell has already been used, the original library proxy is
returned. Hence, strictly speaking this method does not always create a new cell but may return a
reference to an existing cell.

If the library name is not valid, nil is returned.

This method has been introduce in version 0.24.

(4) Signature: Cell ptr create_cell (string pcell_name, string lib_name, map<string,variant>
params)

Description: Creates a cell for a PCell with the given PCell name from the given library

pcell_name: The name of the PCell and also the name of the cell to create

lib_name: The name of the library where to take the PCell from

params: The PCell parameters (key/value dictionary)

Returns: The Cell object of the newly created cell or an existing cell if this
PCell has already been used with the given parameters

This method will look up the PCell by the PCell name in the specified library and create a new PCell
variant for the given parameters plus the library proxy. The parameters must be specified as a key/
value dictionary with the names being the ones from the PCell declaration.

If no PCell with the given name exists or the library name is not valid, nil is returned. Note that this
function - despite the name - may not always create a new cell, but return an existing cell if the PCell
from the library has already been used with the given parameters.

This method has been introduce in version 0.24.

dbu
Signature: [const] double dbu

Description: Gets the database unit

The database unit is the value of one units distance in micrometers. For numerical reasons and to
be compliant with the GDS2 format, the database objects use integer coordinates. The basic unit of
these coordinates is the database unit. You can convert coordinates to micrometers by multiplying
the integer value with the database unit. Typical values for the database unit are 0.001 micrometer
(one nanometer).

Python specific notes:
The object exposes a readable attribute 'dbu'. This is the getter.

For more details visit
https://www.klayout.org

Page 867 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

dbu=
Signature: void dbu= (double dbu)

Description: Sets the database unit

See dbu for a description of the database unit.

Python specific notes:
The object exposes a writable attribute 'dbu'. This is the setter.

delete_cell
Signature: void delete_cell (unsigned int cell_index)

Description: Deletes a cell

cell_index: The index of the cell to delete

This deletes a cell but not the sub cells of the cell. These subcells will likely become new top cells
unless they are used otherwise. All instances of this cell are deleted as well. Hint: to delete multiple
cells, use "delete_cells" which is far more efficient in this case.

This method has been introduced in version 0.20.

delete_cell_rec
Signature: void delete_cell_rec (unsigned int cell_index)

Description: Deletes a cell plus all subcells

cell_index: The index of the cell to delete

This deletes a cell and also all sub cells of the cell. In contrast to prune_cell, all cells are deleted
together with their instances even if they are used otherwise.

This method has been introduced in version 0.20.

delete_cells
Signature: void delete_cells (unsigned int[] cell_index_list)

Description: Deletes multiple cells

cell_index_list: An array of cell indices of the cells to delete

This deletes the cells but not the sub cells of these cells. These subcells will likely become new top
cells unless they are used otherwise. All instances of these cells are deleted as well.

This method has been introduced in version 0.20.

delete_layer
Signature: void delete_layer (unsigned int layer_index)

Description: Deletes a layer

layer_index: The index of the layer to delete.

This method frees the memory allocated for the shapes of this layer and remembers the layer's index
for reuse when the next layer is allocated.

delete_property
Signature: void delete_property (variant key)

Description: Deletes the user property with the given key

This method is a convenience method that deletes the property with the given key. It does nothing if
no property with that key exists. Using that method is more convenient than creating a new property
set with a new ID and assigning that properties ID. This method may change the properties ID.

This method has been introduced in version 0.24.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

For more details visit
https://www.klayout.org

Page 868 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new Layout ptr dup

Description: Creates a copy of self

each_cell
Signature: [iter] Cell each_cell

Description: Iterates the unsorted cell list

each_cell_bottom_up
Signature: [iter] unsigned int each_cell_bottom_up

Description: Iterates the bottom-up sorted cell list

In bottom-up traversal a cell is not delivered before the last child cell of this cell has been delivered.
The bottom-up iterator does not deliver cells but cell indices actually.

each_cell_top_down
Signature: [iter] unsigned int each_cell_top_down

Description: begin iterator of the top-down sorted cell list

The top-down cell list has the property of delivering all cells before they are instantiated. In addition
the first cells are all top cells. There is at least one top cell. The top-down iterator does not deliver
cells but cell indices actually.

each_meta_info
Signature: [const,iter] LayoutMetaInfo each_meta_info

Description: Iterates over the meta information of the layout

See LayoutMetaInfo for details about layouts and meta information.

This method has been introduced in version 0.25.

each_top_cell
Signature: [iter] unsigned int each_top_cell

Description: Iterates the top cells

A layout may have an arbitrary number of top cells. The usual case however is that there is one top
cell.

end_changes
Signature: void end_changes

Description: Cancels the "in changes" state (see "start_changes")

find_layer
(1) Signature: variant find_layer (const LayerInfo info)

Description: Finds a layer with the given properties

If a layer with the given properties already exists, this method will return the index of that layer.If no
such layer exists, it will return nil.

This method has been introduced in version 0.23.

For more details visit
https://www.klayout.org

Page 869 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

(2) Signature: variant find_layer (string name)

Description: Finds a layer with the given name

If a layer with the given name already exists, this method will return the index of that layer.If no such
layer exists, it will return nil.

This method has been introduced in version 0.23.

(3) Signature: variant find_layer (int layer, int datatype)

Description: Finds a layer with the given layer and datatype number

If a layer with the given layer/datatype already exists, this method will return the index of that layer.If
no such layer exists, it will return nil.

This method has been introduced in version 0.23.

(4) Signature: variant find_layer (int layer, int datatype, string name)

Description: Finds a layer with the given layer and datatype number and name

If a layer with the given layer/datatype/name already exists, this method will return the index of that
layer.If no such layer exists, it will return nil.

This method has been introduced in version 0.23.

flatten
Signature: void flatten (unsigned int cell_index, int levels, bool prune)

Description: Flattens the given cell

cell_index: The cell which should be flattened

levels: The number of hierarchy levels to flatten (-1: all, 0: none, 1:
one level etc.)

prune: Set to true to remove orphan cells.

This method propagates all shapes and instances from the specified number of hierarchy levels
below into the given cell. It also removes the instances of the cells from which the shapes came
from, but does not remove the cells themselves if prune is set to false. If prune is set to true, these
cells are removed if not used otherwise.

This method has been introduced in version 0.20.

flatten_into
Signature: void flatten_into (unsigned int source_cell_index, unsigned int target_cell_index, const
ICplxTrans trans, int levels)

Description: Flattens the given cell into another cell

source_cell_index: The source cell which should be flattened

target_cell_index: The target cell into which the resulting objects are written

trans: The transformation to apply on the output shapes and
instances

levels: The number of hierarchy levels to flatten (-1: all, 0: none, 1:
one level etc.)

This method works like 'flatten', but allows specification of a target cell which can be different from
the source cell plus a transformation which is applied for all shapes and instances in the target cell.

In contrast to the 'flatten' method, the source cell is not modified.

This method has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 870 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

get_info
Signature: [const] LayerInfo get_info (unsigned int index)

Description: Gets the info structure for a specified layer

guiding_shape_layer
Signature: [const] unsigned int guiding_shape_layer

Description: Returns the index of the guiding shape layer

The guiding shape layer is used to store guiding shapes for PCells.

This method has been added in version 0.22.

has_cell?
Signature: bool has_cell? (string name)

Description: Returns true if a cell with a given name exists

Returns true, if the layout has a cell with the given name

has_prop_id?
Signature: [const] bool has_prop_id?

Description: Returns true, if the layout has user properties

This method has been introduced in version 0.24.

(1) Signature: void insert (unsigned int cell_index, int layer, const Region region)

Description: Inserts a region into the given cell and layer

If the region is (conceptionally) a flat region, it will be inserted into the cell's shapes list as a flat
sequence of polygons. If the region is a deep (hierarchical) region, it will create a subhierarchy below
the given cell and it's shapes will be put into the respective cells. Suitable subcells will be picked for
inserting the shapes. If a hierarchy already exists below the given cell, the algorithm will try to reuse
this hierarchy.

This method has been introduced in version 0.26.

(2) Signature: void insert (unsigned int cell_index, int layer, const Edges edges)

Description: Inserts an edge collection into the given cell and layer

If the edge collection is (conceptionally) flat, it will be inserted into the cell's shapes list as a flat
sequence of edges. If the edge collection is deep (hierarchical), it will create a subhierarchy below
the given cell and it's edges will be put into the respective cells. Suitable subcells will be picked for
inserting the edges. If a hierarchy already exists below the given cell, the algorithm will try to reuse
this hierarchy.

This method has been introduced in version 0.26.

(3) Signature: void insert (unsigned int cell_index, int layer, const EdgePairs edge_pairs)

Description: Inserts an edge pair collection into the given cell and layer

If the edge pair collection is (conceptionally) flat, it will be inserted into the cell's shapes list as a flat
sequence of edge pairs. If the edge pair collection is deep (hierarchical), it will create a subhierarchy
below the given cell and it's edge pairs will be put into the respective cells. Suitable subcells will be
picked for inserting the edge pairs. If a hierarchy already exists below the given cell, the algorithm
will try to reuse this hierarchy.

This method has been introduced in version 0.27.

insert

(4) Signature: void insert (unsigned int cell_index, int layer, const Texts texts)

Description: Inserts an text collection into the given cell and layer

If the text collection is (conceptionally) flat, it will be inserted into the cell's shapes list as a flat
sequence of texts. If the text collection is deep (hierarchical), it will create a subhierarchy below

For more details visit
https://www.klayout.org

Page 871 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

the given cell and it's texts will be put into the respective cells. Suitable subcells will be picked for
inserting the texts. If a hierarchy already exists below the given cell, the algorithm will try to reuse
this hierarchy.

This method has been introduced in version 0.27.

insert_layer
Signature: unsigned int insert_layer (const LayerInfo props)

Description: Inserts a new layer with the given properties

Returns: The index of the newly created layer

insert_layer_at
Signature: void insert_layer_at (unsigned int index, const LayerInfo props)

Description: Inserts a new layer with the given properties at the given index

This method will associate the given layer info with the given layer index. If a layer with that index
already exists, this method will change the properties of the layer with that index. Otherwise a new
layer is created.

insert_special_layer
Signature: unsigned int insert_special_layer (const LayerInfo props)

Description: Inserts a new special layer with the given properties

Returns: The index of the newly created layer

Special layers can be used to represent objects that should not participate in normal viewing or other
related operations. Special layers are not reported as valid layers.

insert_special_layer_at
Signature: void insert_special_layer_at (unsigned int index, const LayerInfo props)

Description: Inserts a new special layer with the given properties at the given index

See insert_special_layer for a description of special layers.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_editable?
Signature: [const] bool is_editable?

Description: Returns a value indicating whether the layout is editable.

Returns: True, if the layout is editable.

If a layout is editable, in general manipulation methods are enabled and some optimizations are
disabled (i.e. shape arrays are expanded).

This method has been introduced in version 0.22.

is_free_layer?
Signature: [const] bool is_free_layer? (unsigned int layer_index)

Description: Returns true, if a layer index is a free (unused) layer index

Returns: true, if this is the case

This method has been introduced in version 0.26.

For more details visit
https://www.klayout.org

Page 872 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

is_special_layer?
Signature: [const] bool is_special_layer? (unsigned int layer_index)

Description: Returns true, if a layer index is a special layer index

Returns: true, if this is the case

is_valid_cell_index?
Signature: [const] bool is_valid_cell_index? (unsigned int cell_index)

Description: Returns true, if a cell index is a valid index

Returns: true, if this is the case

This method has been added in version 0.20.

is_valid_layer?
Signature: [const] bool is_valid_layer? (unsigned int layer_index)

Description: Returns true, if a layer index is a valid normal layout layer index

Returns: true, if this is the case

(1) Signature: unsigned int layer

Description: Creates a new internal layer

This method will create a new internal layer and return the layer index for this layer. The layer does
not have any properties attached to it. That means, it is not going to be saved to a layout file unless it
is given database properties with set_info.

This method is equivalent to "layer(RBA::LayerInfo::new())".

This method has been introduced in version 0.25.

(2) Signature: unsigned int layer (const LayerInfo info)

Description: Finds or creates a layer with the given properties

If a layer with the given properties already exists, this method will return the index of that layer.If no
such layer exists, a new one with these properties will be created and its index will be returned. If
"info" is anonymous (info.anonymous? is true), a new layer will always be created.

This method has been introduced in version 0.23.

(3) Signature: unsigned int layer (string name)

Description: Finds or creates a layer with the given name

If a layer with the given name already exists, this method will return the index of that layer.If no such
layer exists, a new one with this name will be created and its index will be returned.

This method has been introduced in version 0.23.

(4) Signature: unsigned int layer (int layer, int datatype)

Description: Finds or creates a layer with the given layer and datatype number

If a layer with the given layer/datatype already exists, this method will return the index of that layer.If
no such layer exists, a new one with these properties will be created and its index will be returned.

This method has been introduced in version 0.23.

layer

(5) Signature: unsigned int layer (int layer, int datatype, string name)

Description: Finds or creates a layer with the given layer and datatype number and name

For more details visit
https://www.klayout.org

Page 873 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

If a layer with the given layer/datatype/name already exists, this method will return the index of that
layer.If no such layer exists, a new one with these properties will be created and its index will be
returned.

This method has been introduced in version 0.23.

layer_indexes
Signature: [const] unsigned int[] layer_indexes

Description: Gets a list of valid layer's indices

This method returns an array with layer indices representing valid layers.

This method has been introduced in version 0.19.

layer_indices
Signature: [const] unsigned int[] layer_indices

Description: Gets a list of valid layer's indices

Use of this method is deprecated. Use layer_indexes instead

This method returns an array with layer indices representing valid layers.

This method has been introduced in version 0.19.

layer_infos
Signature: [const] LayerInfo[] layer_infos

Description: Gets a list of valid layer's properties

The method returns an array with layer properties representing valid layers. The sequence and
length of this list corresponds to that of layer_indexes.

This method has been introduced in version 0.25.

layers
Signature: [const] unsigned int layers

Description: Returns the number of layers

The number of layers reports the maximum (plus 1) layer index used so far. Not all of the layers with
an index in the range of 0 to layers-1 needs to be a valid layer. These layers can be either valid,
special or unused. Use is_valid_layer? and is_special_layer? to test for the first two states.

library
Signature: [const] Library ptr library

Description: Gets the library this layout lives in or nil if the layout is not part of a library

This attribute has been introduced in version 0.27.5.

meta_info_value
Signature: [const] string meta_info_value (string name)

Description: Gets the meta information value for a given name

See LayoutMetaInfo for details about layouts and meta information.

If no meta information with the given name exists, an empty string will be returned.

This method has been introduced in version 0.25.

move_layer
Signature: void move_layer (unsigned int src, unsigned int dest)

Description: Moves a layer

src: The layer index of the source layer.

dest: The layer index of the destination layer.

This method was introduced in version 0.19.

Move a layer from the source to the target. The target is not cleared before, so that this method
merges shapes from the source with the target layer. The source layer is empty after that operation.

For more details visit
https://www.klayout.org

Page 874 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

(1) Signature: void move_tree_shapes (Layout source_layout, const CellMapping cell_mapping)

Description: Moves the shapes for all given mappings in the CellMapping object

This method acts like the corresponding copy_tree_shapes method, but removes the shapes from
the source layout after they have been copied.

This method has been added in version 0.26.8.

move_tree_shapes

(2) Signature: void move_tree_shapes (Layout source_layout, const CellMapping cell_mapping,
const LayerMapping layer_mapping)

Description: Moves the shapes for all given mappings in the CellMapping object using the given
layer mapping

This method acts like the corresponding copy_tree_shapes method, but removes the shapes from
the source layout after they have been copied.

This method has been added in version 0.26.8.

(1) Signature: unsigned int[] multi_clip (unsigned int cell, Box[] boxes)

Description: Clips the given cell by the given rectangles and produces new cells with the clips, one
for each rectangle.

cell: The cell index of the cell to clip

boxes: The clip boxes in database units

Returns: The indexes of the new cells

This method will cut rectangular regions given by the boxes from the given cell. The clips will be
stored in a new cells whose indexed are returned. The clips will be performed hierarchically. The
resulting cells will hold a hierarchy of child cells, which are potentially clipped versions of child cells
of the original cell. This version is somewhat more efficient than doing individual clips because the
clip cells may share clipped versions of child cells.

This method has been added in version 0.21.

(2) Signature: unsigned int[] multi_clip (unsigned int cell, DBox[] boxes)

Description: Clips the given cell by the given rectangles and produces new cells with the clips, one
for each rectangle.

cell: The cell index of the cell to clip

boxes: The clip boxes in micrometer units

Returns: The indexes of the new cells

This variant which takes micrometer-unit boxes has been added in version 0.28.

(3) Signature: Cell ptr[] multi_clip (const Cell cell, Box[] boxes)

Description: Clips the given cell by the given rectangles and produces new cells with the clips, one
for each rectangle.

cell: The reference to the cell to clip

boxes: The clip boxes in database units

Returns: The references to the new cells

This variant which takes cell references has been added in version 0.28.

multi_clip

(4) Signature: Cell ptr[] multi_clip (const Cell cell, DBox[] boxes)

For more details visit
https://www.klayout.org

Page 875 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

Description: Clips the given cell by the given rectangles and produces new cells with the clips, one
for each rectangle.

cell: The reference to the cell to clip

boxes: The clip boxes in micrometer units

Returns: The references to the new cells

This variant which takes cell references and micrometer-unit boxes has been added in version 0.28.

(1) Signature: unsigned int[] multi_clip_into (unsigned int cell, Layout ptr target, Box[] boxes)

Description: Clips the given cell by the given rectangles and produces new cells with the clips, one
for each rectangle.

cell: The cell index of the cell to clip

boxes: The clip boxes in database units

target: The target layout

Returns: The indexes of the new cells

This method will cut rectangular regions given by the boxes from the given cell. The clips will be
stored in a new cells in the given target layout. The clips will be performed hierarchically. The
resulting cells will hold a hierarchy of child cells, which are potentially clipped versions of child cells
of the original cell. This version is somewhat more efficient than doing individual clips because the
clip cells may share clipped versions of child cells.

Please note that it is important that the database unit of the target layout is identical to the database
unit of the source layout to achieve the desired results. This method also assumes that the target
layout holds the same layers than the source layout. It will copy shapes to the same layers than they
have been on the original layout.

This method has been added in version 0.21.

(2) Signature: unsigned int[] multi_clip_into (unsigned int cell, Layout ptr target, DBox[] boxes)

Description: Clips the given cell by the given rectangles and produces new cells with the clips, one
for each rectangle.

cell: The cell index of the cell to clip

boxes: The clip boxes in database units

target: The target layout

Returns: The indexes of the new cells

This variant which takes micrometer-unit boxes has been added in version 0.28.

(3) Signature: Cell ptr[] multi_clip_into (const Cell cell, Layout ptr target, Box[] boxes)

Description: Clips the given cell by the given rectangles and produces new cells with the clips, one
for each rectangle.

cell: The reference the cell to clip

boxes: The clip boxes in database units

target: The target layout

Returns: The references to the new cells

This variant which takes cell references boxes has been added in version 0.28.

multi_clip_into

(4) Signature: Cell ptr[] multi_clip_into (const Cell cell, Layout ptr target, DBox[] boxes)

Description: Clips the given cell by the given rectangles and produces new cells with the clips, one
for each rectangle.

For more details visit
https://www.klayout.org

Page 876 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

cell: The reference the cell to clip

boxes: The clip boxes in micrometer units

target: The target layout

Returns: The references to the new cells

This variant which takes cell references and micrometer-unit boxes has been added in version 0.28.

(1) Signature: [static] new Layout ptr new (Manager manager)

Description: Creates a layout object attached to a manager

This constructor specifies a manager object which is used to store undo information for example.

Starting with version 0.25, layouts created with the default constructor are always editable. Before
that version, they inherited the editable flag from the application.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new Layout ptr new

Description: Creates a layout object

Starting with version 0.25, layouts created with the default constructor are always editable. Before
that version, they inherited the editable flag from the application.

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new Layout ptr new (bool editable, Manager manager)

Description: Creates a layout object attached to a manager

This constructor specifies a manager object which is used to store undo information for example. It
also allows one to specify whether the layout is editable. In editable mode, some optimizations are
disabled and the layout can be manipulated through a variety of methods.

This method was introduced in version 0.22.

Python specific notes:
This method is the default initializer of the object

new

(4) Signature: [static] new Layout ptr new (bool editable)

Description: Creates a layout object

This constructor specifies whether the layout is editable. In editable mode, some optimizations are
disabled and the layout can be manipulated through a variety of methods.

This method was introduced in version 0.22.

Python specific notes:
This method is the default initializer of the object

pcell_declaration
(1) Signature: [const] const PCellDeclaration ptr pcell_declaration (string name)

Description: Gets a reference to the PCell declaration for the PCell with the given name

Returns a reference to the local PCell declaration with the given name. If the name is not a valid
PCell name, this method returns nil.

Usually this method is used on library layouts that define PCells. Note that this method cannot be
used on the layouts using the PCell from a library.

This method has been introduced in version 0.22.

For more details visit
https://www.klayout.org

Page 877 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

(2) Signature: [const] const PCellDeclaration ptr pcell_declaration (unsigned int pcell_id)

Description: Gets a reference to the PCell declaration for the PCell with the given PCell ID.

Returns a reference to the local PCell declaration with the given PCell id. If the parameter is not
a valid PCell ID, this method returns nil. The PCell ID is the number returned by register_pcell for
example.

Usually this method is used on library layouts that define PCells. Note that this method cannot be
used on the layouts using the PCell from a library.

This method has been introduced in version 0.22.

pcell_id
Signature: [const] unsigned int pcell_id (string name)

Description: Gets the ID of the PCell with the given name

This method is equivalent to 'pcell_declaration(name).id'.

This method has been introduced in version 0.22.

pcell_ids
Signature: [const] unsigned int[] pcell_ids

Description: Gets the IDs of the PCells registered in the layout

Returns an array of PCell IDs.

This method has been introduced in version 0.24.

pcell_names
Signature: [const] string[] pcell_names

Description: Gets the names of the PCells registered in the layout

Returns an array of PCell names.

This method has been introduced in version 0.24.

prop_id
Signature: [const] unsigned long prop_id

Description: Gets the properties ID associated with the layout

This method has been introduced in version 0.24.

Python specific notes:
The object exposes a readable attribute 'prop_id'. This is the getter.

prop_id=
Signature: void prop_id= (unsigned long id)

Description: Sets the properties ID associated with the layout

This method is provided, if a properties ID has been derived already. Usually it's more convenient to
use delete_property, set_property or property.

This method has been introduced in version 0.24.

Python specific notes:
The object exposes a writable attribute 'prop_id'. This is the setter.

properties
Signature: [const] variant[] properties (unsigned long properties_id)

Description: Gets the properties set for a given properties ID

properties_id: The properties ID to get the properties for

Returns: The array of variants (see properties_id)

Basically performs the backward conversion of the 'properties_id' method. Given a properties ID,
returns the properties set as an array of pairs of variants. In this array, each key and the value

For more details visit
https://www.klayout.org

Page 878 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

are stored as pairs (arrays with two elements). If the properties ID is not valid, an empty array is
returned.

properties_id
Signature: unsigned long properties_id (variant[] properties)

Description: Gets the properties ID for a given properties set

properties: The array of pairs of variants (both elements can be integer,
double or string)

Returns: The unique properties ID for that set

Before a set of properties can be attached to a shape, it must be converted into an ID that is unique
for that set. The properties set must be given as a list of pairs of variants, each pair describing a
name and a value. The name acts as the key for the property and does not need to be a string (it
can be an integer or double value as well). The backward conversion can be performed with the
'properties' method.

property
Signature: variant property (variant key)

Description: Gets the user property with the given key

This method is a convenience method that gets the property with the given key. If no property with
that key exists, it will return nil. Using that method is more convenient than using the properties ID to
retrieve the property value. This method has been introduced in version 0.24.

prune_cell
Signature: void prune_cell (unsigned int cell_index, int levels)

Description: Deletes a cell plus subcells not used otherwise

cell_index: The index of the cell to delete

levels: The number of hierarchy levels to consider (-1: all, 0: none, 1:
one level etc.)

This deletes a cell and also all sub cells of the cell which are not used otherwise. The number of
hierarchy levels to consider can be specified as well. One level of hierarchy means that only the
direct children of the cell are deleted with the cell itself. All instances of this cell are deleted as well.

This method has been introduced in version 0.20.

prune_subcells
Signature: void prune_subcells (unsigned int cell_index, int levels)

Description: Deletes all sub cells of the cell which are not used otherwise down to the specified
level of hierarchy

cell_index: The root cell from which to delete a sub cells

levels: The number of hierarchy levels to consider (-1: all, 0: none, 1:
one level etc.)

This deletes all sub cells of the cell which are not used otherwise. All instances of the deleted cells
are deleted as well. It is possible to specify how many levels of hierarchy below the given root cell
are considered.

This method has been introduced in version 0.20.

read
(1) Signature: LayerMap read (string filename)

Description: Load the layout from the given file

filename: The name of the file to load.

Returns: A layer map that contains the mapping used by the reader
including the layers that have been created.

The format of the file is determined automatically and automatic unzipping is provided. No particular
options can be specified.

For more details visit
https://www.klayout.org

Page 879 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

This method has been added in version 0.18.

(2) Signature: LayerMap read (string filename, const LoadLayoutOptions options)

Description: Load the layout from the given file with options

filename: The name of the file to load.

options: The options object specifying further options for the reader.

Returns: A layer map that contains the mapping used by the reader
including the layers that have been created.

The format of the file is determined automatically and automatic unzipping is provided. In this
version, some reader options can be specified.

This method has been added in version 0.18.

register_pcell
Signature: unsigned int register_pcell (string name, PCellDeclaration ptr declaration)

Description: Registers a PCell declaration under the given name

Registers a local PCell in the current layout. If a declaration with that name already exists, it is
replaced with the new declaration.

This method has been introduced in version 0.22.

remove_meta_info
Signature: void remove_meta_info (string name)

Description: Removes meta information from the layout

See LayoutMetaInfo for details about layouts and meta information. This method has been
introduced in version 0.25.

rename_cell
Signature: void rename_cell (unsigned int index, string name)

Description: Renames the cell with given index

The cell with the given index is renamed to the given name. NOTE: it is not ensured that the name is
unique. This method allows assigning identical names to different cells which usually breaks things.
Consider using unique_cell_name to generate truely unique names.

(1) Signature: void scale_and_snap (Cell cell, int grid, int mult, int div)

Description: Scales and snaps the layout below a given cell by the given rational factor and snaps
to the given grid

This method is useful to scale a layout by a non-integer factor. The scale factor is given by the
rational number mult / div. After scaling, the layout will be snapped to the given grid.

Snapping happens 'as-if-flat' - that is, touching edges will stay touching, regardless of their hierarchy
path. To achieve this, this method usually needs to produce cell variants.

This method has been introduced in version 0.26.1.

scale_and_snap

(2) Signature: void scale_and_snap (unsigned int cell_index, int grid, int mult, int div)

Description: Scales and snaps the layout below a given cell by the given rational factor and snaps
to the given grid

Like the other version of scale_and_snap, but taking a cell index for the argument.

This method has been introduced in version 0.26.1.

set_info
Signature: void set_info (unsigned int index, const LayerInfo props)

For more details visit
https://www.klayout.org

Page 880 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

Description: Sets the info structure for a specified layer

set_property
Signature: void set_property (variant key, variant value)

Description: Sets the user property with the given key to the given value

This method is a convenience method that sets the property with the given key to the given value.
If no property with that key exists, it will create one. Using that method is more convenient than
creating a new property set with a new ID and assigning that properties ID. This method may change
the properties ID. Note: GDS only supports integer keys. OASIS supports numeric and string keys.
This method has been introduced in version 0.24.

start_changes
Signature: void start_changes

Description: Signals the start of an operation bringing the layout into invalid state

This method should be called whenever the layout is about to be brought into an invalid state. After
calling this method, under_construction? returns true which tells foreign code (i.e. the asynchronous
painter or the cell tree view) not to use this layout object.

This state is cancelled by the end_changes method. The start_changes method can be called
multiple times and must be cancelled the same number of times.

This method can be used to speed up certain operations. For example iterating over the layout
with a RecursiveShapeIterator while modifying other layers of the layout can be very inefficient,
because inside the loop the layout's state is invalidate and updated frequently. Putting a update and
start_changes sequence before the loop (use both methods in that order!) and a end_changes call
after the loop can improve the performance dramatically.

In addition, it can be necessary to prevent redraw operations in certain cases by using
start_changes .. end_changes, in particular when it is possible to put a layout object into an invalid
state temporarily.

While the layout is under construction update can be called to update the internal state explicitly
if required. This for example might be necessary to update the cell bounding boxes or to redo the
sorting for region queries.

swap_layers
Signature: void swap_layers (unsigned int a, unsigned int b)

Description: Swap two layers

a: The first of the layers to swap.

b: The second of the layers to swap.

Swaps the shapes of both layers.

This method was introduced in version 0.19.

technology
Signature: [const] const Technology ptr technology

Description: Gets the Technology object of the technology this layout is associated with or nil if the
layout is not associated with a technology

This method has been introduced in version 0.27. Before that, the technology has been kept in the
'technology' meta data element.

technology_name
Signature: [const] string technology_name

Description: Gets the name of the technology this layout is associated with

This method has been introduced in version 0.27. Before that, the technology has been kept in the
'technology' meta data element.

Python specific notes:
The object exposes a readable attribute 'technology_name'. This is the getter.

For more details visit
https://www.klayout.org

Page 881 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

technology_name=
Signature: void technology_name= (string name)

Description: Sets the name of the technology this layout is associated with

Changing the technology name will re-assess all library references because libraries can be
technology specified. Cell layouts may be substituted during this re-assessment.

This method has been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'technology_name'. This is the setter.

top_cell
Signature: Cell ptr top_cell

Description: Returns the top cell object

Returns: The Cell object of the top cell

If the layout has a single top cell, this method returns the top cell's Cell object. If the layout does not
have a top cell, this method returns "nil". If the layout has multiple top cells, this method raises an
error.

This method has been introduced in version 0.23.

top_cells
Signature: Cell ptr[] top_cells

Description: Returns the top cell objects

Returns: The Cell objects of the top cells

This method returns and array of Cell objects representing the top cells of the layout. This array can
be empty, if the layout does not have a top cell (i.e. no cell at all).

This method has been introduced in version 0.23.

(1) Signature: void transform (const Trans trans)

Description: Transforms the layout with the given transformation

This method has been introduced in version 0.23.

(2) Signature: void transform (const ICplxTrans trans)

Description: Transforms the layout with the given complex integer transformation

This method has been introduced in version 0.23.

(3) Signature: void transform (const DTrans trans)

Description: Transforms the layout with the given transformation, which is in micrometer units

This variant will internally translate the transformation's displacement into database units. Apart from
that, it behaves identical to the version with a Trans argument.

This variant has been introduced in version 0.25.

transform

(4) Signature: void transform (const DCplxTrans trans)

Description: Transforms the layout with the given complex integer transformation, which is in
micrometer units

This variant will internally translate the transformation's displacement into database units. Apart from
that, it behaves identical to the version with a ICplxTrans argument.

This method has been introduced in version 0.23.

For more details visit
https://www.klayout.org

Page 882 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.42. API reference - Class Layout

under_construction?
Signature: [const] bool under_construction?

Description: Returns true if the layout object is under construction

A layout object is either under construction if a transaction is ongoing or the layout is brought into
invalid state by "start_changes".

unique_cell_name
Signature: [const] string unique_cell_name (string name)

Description: Creates a new unique cell name from the given name

Returns: A unique name derived from the argument

If a cell with the given name exists, a suffix will be added to make the name unique. Otherwise, the
argument will be returned unchanged.

The returned name can be used to rename cells without risk of creating name clashes.

This method has been introduced in version 0.28.

update
Signature: void update

Description: Updates the internals of the layout

This method updates the internal state of the layout. Usually this is done automatically This method
is provided to ensure this explicitly. This can be useful while using start_changes and end_changes
to wrap a performance-critical operation. See start_changes for more details.

(1) Signature: void write (string filename, bool gzip, const SaveLayoutOptions options)

Description: Writes the layout to a stream file

filename: The file to which to write the layout

gzip: Ignored

options: The option set to use for writing. See SaveLayoutOptions
for details

Use of this method is deprecated

Starting with version 0.23, this variant is deprecated since the more convenient variant with two
parameters automatically determines the compression mode from the file name. The gzip parameter
is ignored staring with version 0.23.

(2) Signature: void write (string filename, const SaveLayoutOptions options)

Description: Writes the layout to a stream file

filename: The file to which to write the layout

options: The option set to use for writing. See SaveLayoutOptions for
details

This version automatically determines the compression mode from the file name. The file is written
with zlib compression if the suffix is ".gz" or ".gzip".

This variant has been introduced in version 0.23.

write

(3) Signature: void write (string filename)

Description: Writes the layout to a stream file

filename: The file to which to write the layout

For more details visit
https://www.klayout.org

Page 883 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

4.43. API reference - Class SaveLayoutOptions
Notation used in Ruby API documentation

Module: db

Description: Options for saving layouts

This class describes the various options for saving a layout to a stream file (GDS2, OASIS and others). There are: layers to be saved, cell
or cells to be saved, scale factor, format, database unit and format specific options.

Usually the default constructor provides a suitable object. Please note, that the format written is "GDS2" by default. Either explicitly set a
format using format= or derive the format from the file name using set_format_from_filename.

The layers are specified by either selecting all layers or by defining layer by layer using the add_layer method. select_all_layers will
explicitly select all layers for saving, deselect_all_layers will explicitly clear the list of layers.

Cells are selected in a similar fashion: by default, all cells are selected. Using add_cell, specific cells can be selected for saving. All these
cells plus their hierarchy will then be written to the stream file.

Public constructors

new SaveLayoutOptions ptr new Default constructor

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void add_cell (unsigned int
cell_index)

Add a cell (plus hierarchy) to be saved

void add_layer (unsigned int
layer_index,
const
LayerInfo
properties)

Add a layer to be saved

void add_this_cell (unsigned int
cell_index)

Adds a cell to be saved

void assign (const
SaveLayoutOptions
other)

Assigns another object to self

void cif_blank_separator= (bool arg1) Sets a flag indicating whether blanks shall be
used as x/y separator characters

For more details visit
https://www.klayout.org

Page 884 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

[const] bool cif_blank_separator? Gets a flag indicating whether blanks shall be
used as x/y separator characters

void cif_dummy_calls= (bool arg1) Sets a flag indicating whether dummy calls
shall be written

[const] bool cif_dummy_calls? Gets a flag indicating whether dummy calls
shall be written

void clear_cells Clears all cells to be saved

[const] double dbu Get the explicit database unit if one is set

void dbu= (double dbu) Set the database unit to be used in the
stream file

void deselect_all_layers Unselect all layers: no layer will be saved

[const] new
SaveLayoutOptions
ptr

dup Creates a copy of self

[const] int dxf_polygon_mode Specifies how to write polygons.

void dxf_polygon_mode= (int mode) Specifies how to write polygons.

[const] string format Gets the format name

void format= (string format) Select a format

[const] string gds2_libname Get the library name

void gds2_libname= (string
libname)

Set the library name

[const] unsigned int gds2_max_cellname_length Get the maximum length of cell names

void gds2_max_cellname_length= (unsigned int
length)

Maximum length of cell names

[const] unsigned int gds2_max_vertex_count Gets the maximum number of vertices for
polygons to write

void gds2_max_vertex_count= (unsigned int
count)

Sets the maximum number of vertices for
polygons to write

void gds2_multi_xy_records= (bool flag) Uses multiple XY records in BOUNDARY
elements for unlimited large polygons

[const] bool gds2_multi_xy_records? Gets the property enabling multiple XY
records for BOUNDARY elements

void gds2_no_zero_length_paths= (bool flag) Eliminates zero-length paths if true

[const] bool gds2_no_zero_length_paths? Gets a value indicating whether zero-length
paths are eliminated

void gds2_resolve_skew_arrays= (bool flag) Resolves skew arrays into single instances

For more details visit
https://www.klayout.org

Page 885 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

[const] bool gds2_resolve_skew_arrays? Gets a value indicating whether to resolve
skew arrays into single instances

[const] double gds2_user_units Get the user units

void gds2_user_units= (double uu) Set the users units to write into the GDS file

void gds2_write_cell_properties= (bool flag) Enables writing of cell properties if set to true

[const] bool gds2_write_cell_properties? Gets a value indicating whether cell
properties are written

void gds2_write_file_properties= (bool flag) Enables writing of file properties if set to true

[const] bool gds2_write_file_properties? Gets a value indicating whether layout
properties are written

void gds2_write_timestamps= (bool flag) Writes the current time into the GDS2
timestamps if set to true

[const] bool gds2_write_timestamps? Gets a value indicating whether the current
time is written into the GDS2 timestamp fields

void keep_instances= (bool flag) Enables or disables instances for dropped
cells

[const] bool keep_instances? Gets a flag indicating whether instances will
be kept even if the target cell is dropped

[const] double mag_lambda Gets the lambda value

void mag_lambda= (double
lambda)

Specifies the lambda value to used for writing

[const] string mag_tech Gets the technology string used for writing

void mag_tech= (string tech) Specifies the technology string used for
writing

void mag_write_timestamp= (bool f) Specifies whether to write a timestamp

[const] bool mag_write_timestamp? Gets a value indicating whether to write a
timestamp

void no_empty_cells= (bool flag) Don't write empty cells if this flag is set

[const] bool no_empty_cells? Returns a flag indicating whether empty cells
are not written.

[const] int oasis_compression_level Get the OASIS compression level

void oasis_compression_level= (int level) Set the OASIS compression level

void oasis_permissive= (bool flag) Sets OASIS permissive mode

[const] bool oasis_permissive? Gets the OASIS permissive mode

void oasis_recompress= (bool flag) Sets OASIS recompression mode

For more details visit
https://www.klayout.org

Page 886 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

[const] bool oasis_recompress? Gets the OASIS recompression mode

void oasis_strict_mode= (bool flag) Sets a value indicating whether to write strict-
mode OASIS files

[const] bool oasis_strict_mode? Gets a value indicating whether to write strict-
mode OASIS files

[const] string oasis_substitution_char Gets the substitution character

void oasis_substitution_char= (string char) Sets the substitution character for a-strings
and n-strings

void oasis_write_cblocks= (bool flag) Sets a value indicating whether to write
compressed CBLOCKS per cell

[const] bool oasis_write_cblocks? Gets a value indicating whether to write
compressed CBLOCKS per cell

void oasis_write_cell_bounding_boxes=(bool flag) Sets a value indicating whether cell bounding
boxes are written

[const] bool oasis_write_cell_bounding_boxes? Gets a value indicating whether cell bounding
boxes are written

void oasis_write_std_properties= (bool flag) Sets a value indicating whether standard
properties will be written

[const] bool oasis_write_std_properties? Gets a value indicating whether standard
properties will be written

[const] double scale_factor Gets the scaling factor currently set

void scale_factor= (double
scale_factor)

Set the scaling factor for the saving

void select_all_cells Select all cells to save

void select_all_layers Select all layers to be saved

void select_cell (unsigned int
cell_index)

Selects a cell to be saved (plus hierarchy
below)

void select_this_cell (unsigned int
cell_index)

Selects a cell to be saved

bool set_format_from_filename (string
filename)

Select a format from the given file name

void write_context_info= (bool flag) Enables or disables context information

[const] bool write_context_info? Gets a flag indicating whether context
information will be stored

For more details visit
https://www.klayout.org

Page 887 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

Deprecated methods (protected, public, static, non-static and constructors)

[const] bool cif_blank_separator Use of this method is deprecated. Use
cif_blank_separator? instead

[const] bool cif_dummy_calls Use of this method is deprecated. Use
cif_dummy_calls? instead

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool gds2_no_zero_length_paths Use of this method is deprecated. Use
gds2_no_zero_length_paths? instead

[const] bool gds2_write_cell_properties Use of this method is deprecated. Use
gds2_write_cell_properties? instead

[const] bool gds2_write_file_properties Use of this method is deprecated. Use
gds2_write_file_properties? instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

For more details visit
https://www.klayout.org

Page 888 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of
the object. This method may be called if an object is returned from a C++ function and the object
is known not to be owned by any C++ instance. If necessary, the script side may delete the object
if the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

add_cell
Signature: void add_cell (unsigned int cell_index)

Description: Add a cell (plus hierarchy) to be saved

The index of the cell must be a valid index in the context of the layout that will be saved. This
method clears the 'select all cells' flag.

This method also implicitly adds the children of that cell. A method that does not add the children
in add_this_cell.

add_layer
Signature: void add_layer (unsigned int layer_index, const LayerInfo properties)

Description: Add a layer to be saved

Adds the layer with the given index to the layer list that will be written. If all layers have been
selected previously, all layers will be unselected first and only the new layer remains.

The 'properties' argument can be used to assign different layer properties than the ones present in
the layout. Pass a default LayerInfo object to this argument to use the properties from the layout
object. Construct a valid LayerInfo object with explicit layer, datatype and possibly a name to
override the properties stored in the layout.

add_this_cell
Signature: void add_this_cell (unsigned int cell_index)

Description: Adds a cell to be saved

The index of the cell must be a valid index in the context of the layout that will be saved. This
method clears the 'select all cells' flag. Unlike add_cell, this method does not implicitly add all
children of that cell.

This method has been added in version 0.23.

assign
Signature: void assign (const SaveLayoutOptions other)

Description: Assigns another object to self

For more details visit
https://www.klayout.org

Page 889 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

cif_blank_separator
Signature: [const] bool cif_blank_separator

Description: Gets a flag indicating whether blanks shall be used as x/y separator characters

Use of this method is deprecated. Use cif_blank_separator? instead

See cif_blank_separator= method for a description of that property. This property has been added
in version 0.23.10.

The predicate version (cif_blank_separator?) has been added in version 0.25.1.

Python specific notes:
The object exposes a readable attribute 'cif_blank_separator'. This is the getter. The object
exposes a readable attribute 'cif_blank_separator'. This is the getter.

cif_blank_separator=
Signature: void cif_blank_separator= (bool arg1)

Description: Sets a flag indicating whether blanks shall be used as x/y separator characters

If this property is set to true, the x and y coordinates are separated with blank characters rather
than comma characters. This property has been added in version 0.23.10.

Python specific notes:
The object exposes a writable attribute 'cif_blank_separator'. This is the setter.

cif_blank_separator?
Signature: [const] bool cif_blank_separator?

Description: Gets a flag indicating whether blanks shall be used as x/y separator characters

See cif_blank_separator= method for a description of that property. This property has been added
in version 0.23.10.

The predicate version (cif_blank_separator?) has been added in version 0.25.1.

Python specific notes:
The object exposes a readable attribute 'cif_blank_separator'. This is the getter. The object
exposes a readable attribute 'cif_blank_separator'. This is the getter.

cif_dummy_calls
Signature: [const] bool cif_dummy_calls

Description: Gets a flag indicating whether dummy calls shall be written

Use of this method is deprecated. Use cif_dummy_calls? instead

See cif_dummy_calls= method for a description of that property. This property has been added in
version 0.23.10.

The predicate version (cif_blank_separator?) has been added in version 0.25.1.

Python specific notes:
The object exposes a readable attribute 'cif_dummy_calls'. This is the getter. The object exposes
a readable attribute 'cif_dummy_calls'. This is the getter.

cif_dummy_calls=
Signature: void cif_dummy_calls= (bool arg1)

Description: Sets a flag indicating whether dummy calls shall be written

If this property is set to true, dummy calls will be written in the top level entity of the CIF file calling
every top cell. This option is useful for enhanced compatibility with other tools.

This property has been added in version 0.23.10.

Python specific notes:
The object exposes a writable attribute 'cif_dummy_calls'. This is the setter.

cif_dummy_calls?
Signature: [const] bool cif_dummy_calls?

Description: Gets a flag indicating whether dummy calls shall be written

For more details visit
https://www.klayout.org

Page 890 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

See cif_dummy_calls= method for a description of that property. This property has been added in
version 0.23.10.

The predicate version (cif_blank_separator?) has been added in version 0.25.1.

Python specific notes:
The object exposes a readable attribute 'cif_dummy_calls'. This is the getter. The object exposes
a readable attribute 'cif_dummy_calls'. This is the getter.

clear_cells
Signature: void clear_cells

Description: Clears all cells to be saved

This method can be used to ensure that no cell is selected before add_cell is called to specify a
cell. This method clears the 'select all cells' flag.

This method has been added in version 0.22.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

dbu
Signature: [const] double dbu

Description: Get the explicit database unit if one is set

See dbu= for a description of that attribute.

Python specific notes:
The object exposes a readable attribute 'dbu'. This is the getter.

dbu=
Signature: void dbu= (double dbu)

Description: Set the database unit to be used in the stream file

By default, the database unit of the layout is used. This method allows one to explicitly use a
different database unit. A scale factor is introduced automatically which scales all layout objects
accordingly so their physical dimensions remain the same. When scaling to a larger database unit
or one that is not an integer fraction of the original one, rounding errors may occur and the layout
may become slightly distorted.

Python specific notes:
The object exposes a writable attribute 'dbu'. This is the setter.

deselect_all_layers
Signature: void deselect_all_layers

Description: Unselect all layers: no layer will be saved

This method will clear all layers selected with add_layer so far and clear the 'select all layers' flag.
Using this method is the only way to save a layout without any layers.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

For more details visit
https://www.klayout.org

Page 891 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new SaveLayoutOptions ptr dup

Description: Creates a copy of self

dxf_polygon_mode
Signature: [const] int dxf_polygon_mode

Description: Specifies how to write polygons.

See dxf_polygon_mode= for a description of this property.

This property has been added in version 0.21.3.

Python specific notes:
The object exposes a readable attribute 'dxf_polygon_mode'. This is the getter.

dxf_polygon_mode=
Signature: void dxf_polygon_mode= (int mode)

Description: Specifies how to write polygons.

The mode is 0 (write POLYLINE entities), 1 (write LWPOLYLINE entities), 2 (decompose into
SOLID entities), 3 (write HATCH entities), or 4 (write LINE entities).

This property has been added in version 0.21.3. '4', in version 0.25.6.

Python specific notes:
The object exposes a writable attribute 'dxf_polygon_mode'. This is the setter.

format
Signature: [const] string format

Description: Gets the format name

See format= for a description of that method.

Python specific notes:
The object exposes a readable attribute 'format'. This is the getter.

format=
Signature: void format= (string format)

Description: Select a format

The format string can be either "GDS2", "OASIS", "CIF" or "DXF". Other formats may be available
if a suitable plugin is installed.

Python specific notes:
The object exposes a writable attribute 'format'. This is the setter.

gds2_libname
Signature: [const] string gds2_libname

Description: Get the library name

See gds2_libname= method for a description of the library name. This property has been added in
version 0.18.

Python specific notes:

For more details visit
https://www.klayout.org

Page 892 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

The object exposes a readable attribute 'gds2_libname'. This is the getter.

gds2_libname=
Signature: void gds2_libname= (string libname)

Description: Set the library name

The library name is the string written into the LIBNAME records of the GDS file. The library name
should not be an empty string and is subject to certain limitations in the character choice.

This property has been added in version 0.18.

Python specific notes:
The object exposes a writable attribute 'gds2_libname'. This is the setter.

gds2_max_cellname_length
Signature: [const] unsigned int gds2_max_cellname_length

Description: Get the maximum length of cell names

See gds2_max_cellname_length= method for a description of the maximum cell name length. This
property has been added in version 0.18.

Python specific notes:
The object exposes a readable attribute 'gds2_max_cellname_length'. This is the getter.

gds2_max_cellname_length=
Signature: void gds2_max_cellname_length= (unsigned int length)

Description: Maximum length of cell names

This property describes the maximum number of characters for cell names. Longer cell names will
be shortened.

This property has been added in version 0.18.

Python specific notes:
The object exposes a writable attribute 'gds2_max_cellname_length'. This is the setter.

gds2_max_vertex_count
Signature: [const] unsigned int gds2_max_vertex_count

Description: Gets the maximum number of vertices for polygons to write

See gds2_max_vertex_count= method for a description of the maximum vertex count. This
property has been added in version 0.18.

Python specific notes:
The object exposes a readable attribute 'gds2_max_vertex_count'. This is the getter.

gds2_max_vertex_count=
Signature: void gds2_max_vertex_count= (unsigned int count)

Description: Sets the maximum number of vertices for polygons to write

This property describes the maximum number of point for polygons in GDS2 files. Polygons with
more points will be split. The minimum value for this property is 4. The maximum allowed value is
about 4000 or 8000, depending on the GDS2 interpretation. If gds2_multi_xy_records is true, this
property is not used. Instead, the number of points is unlimited.

This property has been added in version 0.18.

Python specific notes:
The object exposes a writable attribute 'gds2_max_vertex_count'. This is the setter.

gds2_multi_xy_records=
Signature: void gds2_multi_xy_records= (bool flag)

Description: Uses multiple XY records in BOUNDARY elements for unlimited large polygons

Setting this property to true allows producing polygons with an unlimited number of points at the
cost of incompatible formats. Setting it to true disables the gds2_max_vertex_count setting.

For more details visit
https://www.klayout.org

Page 893 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

This property has been added in version 0.18.

Python specific notes:
The object exposes a writable attribute 'gds2_multi_xy_records'. This is the setter.

gds2_multi_xy_records?
Signature: [const] bool gds2_multi_xy_records?

Description: Gets the property enabling multiple XY records for BOUNDARY elements

See gds2_multi_xy_records= method for a description of this property. This property has been
added in version 0.18.

Python specific notes:
The object exposes a readable attribute 'gds2_multi_xy_records'. This is the getter.

gds2_no_zero_length_paths
Signature: [const] bool gds2_no_zero_length_paths

Description: Gets a value indicating whether zero-length paths are eliminated

Use of this method is deprecated. Use gds2_no_zero_length_paths? instead

This property has been added in version 0.23.

Python specific notes:
The object exposes a readable attribute 'gds2_no_zero_length_paths'. This is the getter. The
object exposes a readable attribute 'gds2_no_zero_length_paths'. This is the getter.

gds2_no_zero_length_paths=
Signature: void gds2_no_zero_length_paths= (bool flag)

Description: Eliminates zero-length paths if true

If this property is set to true, paths with zero length will be converted to BOUNDARY objects.

This property has been added in version 0.23.

Python specific notes:
The object exposes a writable attribute 'gds2_no_zero_length_paths'. This is the setter.

gds2_no_zero_length_paths?
Signature: [const] bool gds2_no_zero_length_paths?

Description: Gets a value indicating whether zero-length paths are eliminated

This property has been added in version 0.23.

Python specific notes:
The object exposes a readable attribute 'gds2_no_zero_length_paths'. This is the getter. The
object exposes a readable attribute 'gds2_no_zero_length_paths'. This is the getter.

gds2_resolve_skew_arrays=
Signature: void gds2_resolve_skew_arrays= (bool flag)

Description: Resolves skew arrays into single instances

Setting this property to true will make skew (non-orthogonal) arrays being resolved into single
instances. Skew arrays happen if either the row or column vector isn't parallel to x or y axis. Such
arrays can cause problems with some legacy software and can be disabled with this option.

This property has been added in version 0.27.1.

Python specific notes:
The object exposes a writable attribute 'gds2_resolve_skew_arrays'. This is the setter.

gds2_resolve_skew_arrays?
Signature: [const] bool gds2_resolve_skew_arrays?

Description: Gets a value indicating whether to resolve skew arrays into single instances

See gds2_resolve_skew_arrays= method for a description of this property. This property has been
added in version 0.27.1.

For more details visit
https://www.klayout.org

Page 894 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

Python specific notes:
The object exposes a readable attribute 'gds2_resolve_skew_arrays'. This is the getter.

gds2_user_units
Signature: [const] double gds2_user_units

Description: Get the user units

See gds2_user_units= method for a description of the user units. This property has been added in
version 0.18.

Python specific notes:
The object exposes a readable attribute 'gds2_user_units'. This is the getter.

gds2_user_units=
Signature: void gds2_user_units= (double uu)

Description: Set the users units to write into the GDS file

The user units of a GDS file are rarely used and usually are set to 1 (micron). The intention of the
user units is to specify the display units. KLayout ignores the user unit and uses microns as the
display unit. The user unit must be larger than zero.

This property has been added in version 0.18.

Python specific notes:
The object exposes a writable attribute 'gds2_user_units'. This is the setter.

gds2_write_cell_properties
Signature: [const] bool gds2_write_cell_properties

Description: Gets a value indicating whether cell properties are written

Use of this method is deprecated. Use gds2_write_cell_properties? instead

This property has been added in version 0.23.

Python specific notes:
The object exposes a readable attribute 'gds2_write_cell_properties'. This is the getter. The object
exposes a readable attribute 'gds2_write_cell_properties'. This is the getter.

gds2_write_cell_properties=
Signature: void gds2_write_cell_properties= (bool flag)

Description: Enables writing of cell properties if set to true

If this property is set to true, cell properties will be written as PROPATTR/PROPVALUE records
immediately following the BGNSTR records. This is a non-standard extension and is therefore
disabled by default.

This property has been added in version 0.23.

Python specific notes:
The object exposes a writable attribute 'gds2_write_cell_properties'. This is the setter.

gds2_write_cell_properties?
Signature: [const] bool gds2_write_cell_properties?

Description: Gets a value indicating whether cell properties are written

This property has been added in version 0.23.

Python specific notes:
The object exposes a readable attribute 'gds2_write_cell_properties'. This is the getter. The object
exposes a readable attribute 'gds2_write_cell_properties'. This is the getter.

gds2_write_file_properties
Signature: [const] bool gds2_write_file_properties

Description: Gets a value indicating whether layout properties are written

Use of this method is deprecated. Use gds2_write_file_properties? instead

For more details visit
https://www.klayout.org

Page 895 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

This property has been added in version 0.24.

Python specific notes:
The object exposes a readable attribute 'gds2_write_file_properties'. This is the getter. The object
exposes a readable attribute 'gds2_write_file_properties'. This is the getter.

gds2_write_file_properties=
Signature: void gds2_write_file_properties= (bool flag)

Description: Enables writing of file properties if set to true

If this property is set to true, layout properties will be written as PROPATTR/PROPVALUE records
immediately following the BGNLIB records. This is a non-standard extension and is therefore
disabled by default.

This property has been added in version 0.24.

Python specific notes:
The object exposes a writable attribute 'gds2_write_file_properties'. This is the setter.

gds2_write_file_properties?
Signature: [const] bool gds2_write_file_properties?

Description: Gets a value indicating whether layout properties are written

This property has been added in version 0.24.

Python specific notes:
The object exposes a readable attribute 'gds2_write_file_properties'. This is the getter. The object
exposes a readable attribute 'gds2_write_file_properties'. This is the getter.

gds2_write_timestamps=
Signature: void gds2_write_timestamps= (bool flag)

Description: Writes the current time into the GDS2 timestamps if set to true

If this property is set to false, the time fields will all be zero. This somewhat simplifies compare
and diff applications.

This property has been added in version 0.21.16.

Python specific notes:
The object exposes a writable attribute 'gds2_write_timestamps'. This is the setter.

gds2_write_timestamps?
Signature: [const] bool gds2_write_timestamps?

Description: Gets a value indicating whether the current time is written into the GDS2 timestamp
fields

This property has been added in version 0.21.16.

Python specific notes:
The object exposes a readable attribute 'gds2_write_timestamps'. This is the getter.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

keep_instances=
Signature: void keep_instances= (bool flag)

Description: Enables or disables instances for dropped cells

If this flag is set to true, instances for cells will be written, even if the cell is dropped. That
may happen, if cells are selected with select_this_cell or add_this_cell or no_empty_cells is

For more details visit
https://www.klayout.org

Page 896 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

used. Even if cells called by such cells are not selected, instances will be written for that cell if
"keep_instances" is true. That feature is supported by the GDS format currently and results in
"ghost cells" which have instances but no cell definition.

The default value is false (instances of dropped cells are not written).

This method was introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'keep_instances'. This is the setter.

keep_instances?
Signature: [const] bool keep_instances?

Description: Gets a flag indicating whether instances will be kept even if the target cell is dropped

See keep_instances= for details about this flag.

This method was introduced in version 0.23.

Python specific notes:
The object exposes a readable attribute 'keep_instances'. This is the getter.

mag_lambda
Signature: [const] double mag_lambda

Description: Gets the lambda value

See mag_lambda= method for a description of this attribute. This property has been added in
version 0.26.2.

Python specific notes:
The object exposes a readable attribute 'mag_lambda'. This is the getter.

mag_lambda=
Signature: void mag_lambda= (double lambda)

Description: Specifies the lambda value to used for writing

The lambda value is the basic unit of the layout. The layout is brought to units of this value. If
the layout is not on-grid on this unit, snapping will happen. If the value is less or equal to zero,
KLayout will use the lambda value stored inside the layout set by a previous read operation of a
MAGIC file. The lambda value is stored in the Layout object as the "lambda" metadata attribute.

This property has been added in version 0.26.2.

Python specific notes:
The object exposes a writable attribute 'mag_lambda'. This is the setter.

mag_tech
Signature: [const] string mag_tech

Description: Gets the technology string used for writing

See mag_tech= method for a description of this attribute. This property has been added in version
0.26.2.

Python specific notes:
The object exposes a readable attribute 'mag_tech'. This is the getter.

mag_tech=
Signature: void mag_tech= (string tech)

Description: Specifies the technology string used for writing

If this string is empty, the writer will try to obtain the technology from the "technology" metadata
attribute of the layout.

This property has been added in version 0.26.2.

Python specific notes:
The object exposes a writable attribute 'mag_tech'. This is the setter.

For more details visit
https://www.klayout.org

Page 897 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

mag_write_timestamp=
Signature: void mag_write_timestamp= (bool f)

Description: Specifies whether to write a timestamp

If this attribute is set to false, the timestamp written is 0. This is not permitted in the strict sense,
but simplifies comparison of Magic files.

This property has been added in version 0.26.2.

Python specific notes:
The object exposes a writable attribute 'mag_write_timestamp'. This is the setter.

mag_write_timestamp?
Signature: [const] bool mag_write_timestamp?

Description: Gets a value indicating whether to write a timestamp

See write_timestamp= method for a description of this attribute.

This property has been added in version 0.26.2.

Python specific notes:
The object exposes a readable attribute 'mag_write_timestamp'. This is the getter.

new
Signature: [static] new SaveLayoutOptions ptr new

Description: Default constructor

This will initialize the scale factor to 1.0, the database unit is set to "same as original" and all
layers are selected as well as all cells. The default format is GDS2.

Python specific notes:
This method is the default initializer of the object

no_empty_cells=
Signature: void no_empty_cells= (bool flag)

Description: Don't write empty cells if this flag is set

By default, all cells are written (no_empty_cells is false). This applies to empty cells which do not
contain shapes for the specified layers as well as cells which are empty because they reference
empty cells only.

Python specific notes:
The object exposes a writable attribute 'no_empty_cells'. This is the setter.

no_empty_cells?
Signature: [const] bool no_empty_cells?

Description: Returns a flag indicating whether empty cells are not written.

Python specific notes:
The object exposes a readable attribute 'no_empty_cells'. This is the getter.

oasis_compression_level
Signature: [const] int oasis_compression_level

Description: Get the OASIS compression level

See oasis_compression_level= method for a description of the OASIS compression level.

Python specific notes:
The object exposes a readable attribute 'oasis_compression_level'. This is the getter.

oasis_compression_level=
Signature: void oasis_compression_level= (int level)

Description: Set the OASIS compression level

The OASIS compression level is an integer number between 0 and 10. 0 basically is no
compression, 1 produces shape arrays in a simple fashion. 2 and higher compression levels

For more details visit
https://www.klayout.org

Page 898 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

will use a more elaborate algorithm to find shape arrays which uses 2nd and further neighbor
distances. The higher the level, the higher the memory requirements and run times.

Python specific notes:
The object exposes a writable attribute 'oasis_compression_level'. This is the setter.

oasis_permissive=
Signature: void oasis_permissive= (bool flag)

Description: Sets OASIS permissive mode

If this flag is true, certain shapes which cannot be written to OASIS are reported as warnings, not
as errors. For example, paths with odd width (are rounded) or polygons with less than three points
(are skipped).

This method has been introduced in version 0.25.1.

Python specific notes:
The object exposes a writable attribute 'oasis_permissive'. This is the setter.

oasis_permissive?
Signature: [const] bool oasis_permissive?

Description: Gets the OASIS permissive mode

See oasis_permissive= method for a description of this predicate. This method has been
introduced in version 0.25.1.

Python specific notes:
The object exposes a readable attribute 'oasis_permissive'. This is the getter.

oasis_recompress=
Signature: void oasis_recompress= (bool flag)

Description: Sets OASIS recompression mode

If this flag is true, shape arrays already existing will be resolved and compression is applied to
the individual shapes again. If this flag is false (the default), shape arrays already existing will be
written as such.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'oasis_recompress'. This is the setter.

oasis_recompress?
Signature: [const] bool oasis_recompress?

Description: Gets the OASIS recompression mode

See oasis_recompress= method for a description of this predicate. This method has been
introduced in version 0.23.

Python specific notes:
The object exposes a readable attribute 'oasis_recompress'. This is the getter.

oasis_strict_mode=
Signature: void oasis_strict_mode= (bool flag)

Description: Sets a value indicating whether to write strict-mode OASIS files

Setting this property clears all format specific options for other formats such as GDS.

Python specific notes:
The object exposes a writable attribute 'oasis_strict_mode'. This is the setter.

oasis_strict_mode?
Signature: [const] bool oasis_strict_mode?

Description: Gets a value indicating whether to write strict-mode OASIS files

Python specific notes:
The object exposes a readable attribute 'oasis_strict_mode'. This is the getter.

For more details visit
https://www.klayout.org

Page 899 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

oasis_substitution_char
Signature: [const] string oasis_substitution_char

Description: Gets the substitution character

See oasis_substitution_char for details. This attribute has been introduced in version 0.23.

Python specific notes:
The object exposes a readable attribute 'oasis_substitution_char'. This is the getter.

oasis_substitution_char=
Signature: void oasis_substitution_char= (string char)

Description: Sets the substitution character for a-strings and n-strings

The substitution character is used in place of invalid characters. The value of this attribute is a
string which is either empty or a single character. If the string is empty, no substitution is made at
the risk of producing invalid OASIS files.

This attribute has been introduce in version 0.23.

Python specific notes:
The object exposes a writable attribute 'oasis_substitution_char'. This is the setter.

oasis_write_cblocks=
Signature: void oasis_write_cblocks= (bool flag)

Description: Sets a value indicating whether to write compressed CBLOCKS per cell

Setting this property clears all format specific options for other formats such as GDS.

Python specific notes:
The object exposes a writable attribute 'oasis_write_cblocks'. This is the setter.

oasis_write_cblocks?
Signature: [const] bool oasis_write_cblocks?

Description: Gets a value indicating whether to write compressed CBLOCKS per cell

Python specific notes:
The object exposes a readable attribute 'oasis_write_cblocks'. This is the getter.

oasis_write_cell_bounding_boxes=
Signature: void oasis_write_cell_bounding_boxes= (bool flag)

Description: Sets a value indicating whether cell bounding boxes are written

If this value is set to true, cell bounding boxes are written (S_BOUNDING_BOX). The
S_BOUNDING_BOX properties will be attached to the CELLNAME records.

Setting this value to true will also enable writing of other standard properties like S_TOP_CELL
(see oasis_write_std_properties=). By default, cell bounding boxes are not written, but standard
properties are.

This method has been introduced in version 0.24.3.

Python specific notes:
The object exposes a writable attribute 'oasis_write_cell_bounding_boxes'. This is the setter.

oasis_write_cell_bounding_boxes?
Signature: [const] bool oasis_write_cell_bounding_boxes?

Description: Gets a value indicating whether cell bounding boxes are written

See oasis_write_cell_bounding_boxes= method for a description of this flag. This method has
been introduced in version 0.24.3.

Python specific notes:
The object exposes a readable attribute 'oasis_write_cell_bounding_boxes'. This is the getter.

oasis_write_std_properties=
Signature: void oasis_write_std_properties= (bool flag)

Description: Sets a value indicating whether standard properties will be written

For more details visit
https://www.klayout.org

Page 900 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

If this value is false, no standard properties are written. If true, S_TOP_CELL and some other
global standard properties are written. In addition, oasis_write_cell_bounding_boxes= can be used
to write cell bounding boxes using S_BOUNDING_BOX.

By default, this flag is true and standard properties are written.

Setting this property to false clears the oasis_write_cell_bounding_boxes flag too.

This method has been introduced in version 0.24.

Python specific notes:
The object exposes a writable attribute 'oasis_write_std_properties'. This is the setter.

oasis_write_std_properties?
Signature: [const] bool oasis_write_std_properties?

Description: Gets a value indicating whether standard properties will be written

See oasis_write_std_properties= method for a description of this flag. This method has been
introduced in version 0.24.

Python specific notes:
The object exposes a readable attribute 'oasis_write_std_properties'. This is the getter.

scale_factor
Signature: [const] double scale_factor

Description: Gets the scaling factor currently set

Python specific notes:
The object exposes a readable attribute 'scale_factor'. This is the getter.

scale_factor=
Signature: void scale_factor= (double scale_factor)

Description: Set the scaling factor for the saving

Using a scaling factor will scale all objects accordingly. This scale factor adds to a potential
scaling implied by using an explicit database unit.

Be aware that rounding effects may occur if fractional scaling factors are used.

By default, no scaling is applied.

Python specific notes:
The object exposes a writable attribute 'scale_factor'. This is the setter.

select_all_cells
Signature: void select_all_cells

Description: Select all cells to save

This method will clear all cells specified with add_cells so far and set the 'select all cells' flag. This
is the default.

select_all_layers
Signature: void select_all_layers

Description: Select all layers to be saved

This method will clear all layers selected with add_layer so far and set the 'select all layers' flag.
This is the default.

select_cell
Signature: void select_cell (unsigned int cell_index)

Description: Selects a cell to be saved (plus hierarchy below)

This method is basically a convenience method that combines clear_cells and add_cell. This
method clears the 'select all cells' flag.

This method has been added in version 0.22.

For more details visit
https://www.klayout.org

Page 901 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.43. API reference - Class SaveLayoutOptions

select_this_cell
Signature: void select_this_cell (unsigned int cell_index)

Description: Selects a cell to be saved

This method is basically a convenience method that combines clear_cells and add_this_cell. This
method clears the 'select all cells' flag.

This method has been added in version 0.23.

set_format_from_filename
Signature: bool set_format_from_filename (string filename)

Description: Select a format from the given file name

This method will set the format according to the file's extension.

This method has been introduced in version 0.22. Beginning with version 0.23, this method
always returns true, since the only consumer for the return value, Layout#write, now ignores that
parameter and automatically determines the compression mode from the file name.

write_context_info=
Signature: void write_context_info= (bool flag)

Description: Enables or disables context information

If this flag is set to false, no context information for PCell or library cell instances is written. Those
cells will be converted to plain cells and KLayout will not be able to restore the identity of those
cells. Use this option to enforce compatibility with other tools that don't understand the context
information of KLayout.

The default value is true (context information is stored). Not all formats support context
information, hence that flag has no effect for formats like CIF or DXF.

This method was introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'write_context_info'. This is the setter.

write_context_info?
Signature: [const] bool write_context_info?

Description: Gets a flag indicating whether context information will be stored

See write_context_info= for details about this flag.

This method was introduced in version 0.23.

Python specific notes:
The object exposes a readable attribute 'write_context_info'. This is the getter.

For more details visit
https://www.klayout.org

Page 902 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.44. API reference - Class LayoutQueryIterator

4.44. API reference - Class LayoutQueryIterator
Notation used in Ruby API documentation

Module: db

Description: Provides the results of the query

This object is used by LayoutQuery#each to deliver the results of a query in an iterative fashion. See LayoutQuery for a detailed description
of the query interface.

The LayoutQueryIterator class has been introduced in version 0.25.

Public constructors

new LayoutQueryIterator ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

variant cell A shortcut for 'get("cell")'

variant cell_index A shortcut for 'get("cell_index")'

variant data A shortcut for 'get("data")'

variant dtrans A shortcut for 'get("dtrans")'

variant get (string
name)

Gets the query property with the given name

variant initial_cell A shortcut for 'get("initial_cell")'

variant initial_cell_index A shortcut for 'get("initial_cell_index")'

variant inst A shortcut for 'get("inst")'

variant layer_index A shortcut for 'get("layer_index")'

[const] const Layout ptr layout Gets the layout the query acts on

variant parent_cell A shortcut for 'get("parent_cell")'

variant parent_cell_index A shortcut for 'get("parent_cell_index")'

For more details visit
https://www.klayout.org

Page 903 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.44. API reference - Class LayoutQueryIterator

variant path_dtrans A shortcut for 'get("path_dtrans")'

variant path_trans A shortcut for 'get("path_trans")'

[const] const LayoutQuery ptr query Gets the query the iterator follows on

variant shape A shortcut for 'get("shape")'

variant trans A shortcut for 'get("trans")'

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management
of the object. This method may be called if an object is returned from a C++ function and the

For more details visit
https://www.klayout.org

Page 904 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.44. API reference - Class LayoutQueryIterator

object is known not to be owned by any C++ instance. If necessary, the script side may delete
the object if the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

cell
Signature: variant cell

Description: A shortcut for 'get("cell")'

cell_index
Signature: variant cell_index

Description: A shortcut for 'get("cell_index")'

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

data
Signature: variant data

Description: A shortcut for 'get("data")'

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

dtrans
Signature: variant dtrans

Description: A shortcut for 'get("dtrans")'

For more details visit
https://www.klayout.org

Page 905 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.44. API reference - Class LayoutQueryIterator

get
Signature: variant get (string name)

Description: Gets the query property with the given name

The query properties available can be obtained from the query object using
LayoutQuery#property_names. Some shortcut methods are available. For example, the data
method provides a shortcut for 'get("data")'.

If a property with the given name is not available, nil will be returned.

initial_cell
Signature: variant initial_cell

Description: A shortcut for 'get("initial_cell")'

initial_cell_index
Signature: variant initial_cell_index

Description: A shortcut for 'get("initial_cell_index")'

inst
Signature: variant inst

Description: A shortcut for 'get("inst")'

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

layer_index
Signature: variant layer_index

Description: A shortcut for 'get("layer_index")'

layout
Signature: [const] const Layout ptr layout

Description: Gets the layout the query acts on

new
Signature: [static] new LayoutQueryIterator ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

parent_cell
Signature: variant parent_cell

Description: A shortcut for 'get("parent_cell")'

parent_cell_index
Signature: variant parent_cell_index

Description: A shortcut for 'get("parent_cell_index")'

path_dtrans
Signature: variant path_dtrans

Description: A shortcut for 'get("path_dtrans")'

path_trans
Signature: variant path_trans

Description: A shortcut for 'get("path_trans")'

For more details visit
https://www.klayout.org

Page 906 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.44. API reference - Class LayoutQueryIterator

query
Signature: [const] const LayoutQuery ptr query

Description: Gets the query the iterator follows on

shape
Signature: variant shape

Description: A shortcut for 'get("shape")'

trans
Signature: variant trans

Description: A shortcut for 'get("trans")'

For more details visit
https://www.klayout.org

Page 907 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.45. API reference - Class LayoutQuery

4.45. API reference - Class LayoutQuery
Notation used in Ruby API documentation

Module: db

Description: A layout query

Layout queries are the backbone of the "Search & replace" feature. Layout queries allow retrieval of data from layouts and manipulation
of layouts. This object provides script binding for this feature. Layout queries are used by first creating a query object. Depending on the
nature of the query, either execute or each can be used to execute the query. execute will run the query and return once the query is
finished. execute is useful for running queries that don't return results such as "delete" or "with ... do" queries. each can be used when the
results of the query need to be retrieved.

The each method will call a block a of code for every result available. It will provide a LayoutQueryIterator object that allows accessing the
results of the query. Depending on the query, different attributes of the iterator object will be available. For example, "select" queries will fill
the "data" attribute with an array of values corresponding to the columns of the selection.

Here is some sample code:

ly = RBA::CellView::active.layout
q = RBA::LayoutQuery::new("select cell.name, cell.bbox from *")
q.each(ly) do |iter|
 puts "cell name: #{iter.data[0]}, bounding box: #{iter.data[1]}"
end

The LayoutQuery class has been introduced in version 0.25.

Public constructors

new LayoutQuery ptr new (string query) Creates a new query object from the given query
string

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

[const,iter] LayoutQueryIterator each (const Layout
ptr layout,
ExpressionContext
ptr context =
nil)

Executes the query and delivered the results
iteratively.

void execute (Layout layout, Executes the query

For more details visit
https://www.klayout.org

Page 908 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.45. API reference - Class LayoutQuery

ExpressionContext
ptr context =
nil)

[const] string[] property_names Gets a list of property names available.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 909 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.45. API reference - Class LayoutQuery

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

each
Signature: [const,iter] LayoutQueryIterator each (const Layout ptr layout, ExpressionContext ptr
context = nil)

Description: Executes the query and delivered the results iteratively.

The argument to the block is a LayoutQueryIterator object which can be asked for specific results.

The context argument allows supplying an expression execution context. This context can be used for
example to supply variables for the execution. It has been added in version 0.26.

execute
Signature: void execute (Layout layout, ExpressionContext ptr context = nil)

Description: Executes the query

This method can be used to execute "active" queries such as "delete" or "with ... do". It is basically
equivalent to iterating over the query until it is done.

The context argument allows supplying an expression execution context. This context can be used for
example to supply variables for the execution. It has been added in version 0.26.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

For more details visit
https://www.klayout.org

Page 910 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.45. API reference - Class LayoutQuery

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new LayoutQuery ptr new (string query)

Description: Creates a new query object from the given query string

Python specific notes:
This method is the default initializer of the object

property_names
Signature: [const] string[] property_names

Description: Gets a list of property names available.

The list of properties available from the query depends on the nature of the query. This method allows
detection of the properties available. Within the query, all of these properties can be obtained from the
query iterator using LayoutQueryIterator#get.

For more details visit
https://www.klayout.org

Page 911 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.46. API reference - Class Library

4.46. API reference - Class Library
Notation used in Ruby API documentation

Module: db

Description: A Library

A library is basically a wrapper around a layout object. The layout object provides cells and potentially PCells that can be imported into
other layouts.

The library provides a name which is used to identify the library and a description which is used for identifying the library in a user interface.

After a library is created and the layout is filled, it must be registered using the register method.

This class has been introduced in version 0.22.

Public constructors

new Library ptr new Creates a new, empty library

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void add_technology (string
tech)

Additionally associates the library with the given
technology.

void assign (const
Library
other)

Assigns another object to self

void clear_technologies Clears the list of technologies the library is
associated with.

void delete Deletes the library

[const] string description Returns the libraries' description text

void description= (string
description)

Sets the libraries' description text

[const] new Library ptr dup Creates a copy of self

[const] bool for_technologies Returns a value indicating whether the library is
associated with any technology.

For more details visit
https://www.klayout.org

Page 912 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.46. API reference - Class Library

[const] unsigned long id Returns the library's ID

[const] bool is_for_technology (string
tech)

Returns a value indicating whether the library is
associated with the given technology.

Layout layout The layout object where the cells reside that this
library defines

[const] Layout layout_const The layout object where the cells reside that this
library defines (const version)

[const] string name Returns the libraries' name

void refresh Updates all layouts using this library.

void register (string
name)

Registers the library with the given name

[const] string[] technologies Gets the list of technologies this library is associated
with.

void technology= (string
technology)

sets the name of the technology the library is
associated with

Public static methods and constants

Library ptr library_by_id (unsigned long id) Gets the library object for the given ID

Library ptr library_by_name (string name,
string for_technology
= unspecific)

Gets a library by name

unsigned long[] library_ids Returns a list of valid library IDs.

string[] library_names Returns a list of the names of all libraries
registered in the system.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

string technology Use of this method is deprecated

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

For more details visit
https://www.klayout.org

Page 913 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.46. API reference - Class Library

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

add_technology
Signature: void add_technology (string tech)

Description: Additionally associates the library with the given technology.

See also clear_technologies.

This method has been introduced in version 0.27

assign
Signature: void assign (const Library other)

Description: Assigns another object to self

clear_technologies
Signature: void clear_technologies

Description: Clears the list of technologies the library is associated with.

For more details visit
https://www.klayout.org

Page 914 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.46. API reference - Class Library

See also add_technology.

This method has been introduced in version 0.27

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

delete
Signature: void delete

Description: Deletes the library

This method will delete the library object. Library proxies pointing to this library will become invalid
and the library object cannot be used any more after calling this method.

This method has been introduced in version 0.25.

description
Signature: [const] string description

Description: Returns the libraries' description text

Python specific notes:
The object exposes a readable attribute 'description'. This is the getter.

description=
Signature: void description= (string description)

Description: Sets the libraries' description text

Python specific notes:
The object exposes a writable attribute 'description'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new Library ptr dup

Description: Creates a copy of self

for_technologies
Signature: [const] bool for_technologies

Description: Returns a value indicating whether the library is associated with any technology.

The method is equivalent to checking whether the technologies list is empty.

For more details visit
https://www.klayout.org

Page 915 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.46. API reference - Class Library

This method has been introduced in version 0.27

id
Signature: [const] unsigned long id

Description: Returns the library's ID

The ID is set when the library is registered and cannot be changed

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_for_technology
Signature: [const] bool is_for_technology (string tech)

Description: Returns a value indicating whether the library is associated with the given technology.

This method has been introduced in version 0.27

layout
Signature: Layout layout

Description: The layout object where the cells reside that this library defines

layout_const
Signature: [const] Layout layout_const

Description: The layout object where the cells reside that this library defines (const version)

library_by_id
Signature: [static] Library ptr library_by_id (unsigned long id)

Description: Gets the library object for the given ID

If the ID is not valid, nil is returned.

This method has been introduced in version 0.27.

library_by_name
Signature: [static] Library ptr library_by_name (string name, string for_technology = unspecific)

Description: Gets a library by name

Returns the library object for the given name. If the name is not a valid library name, nil is returned.

Different libraries can be registered under the same names for different technologies. When a
technology name is given in 'for_technologies', the first library matching this technology is returned.
If no technology is given, the first library is returned.

The technology selector has been introduced in version 0.27.

library_ids
Signature: [static] unsigned long[] library_ids

Description: Returns a list of valid library IDs.

See library_names for the reasoning behind this method. This method has been introduced in
version 0.27.

library_names
Signature: [static] string[] library_names

Description: Returns a list of the names of all libraries registered in the system.

NOTE: starting with version 0.27, the name of a library does not need to be unique if libraries are
associated with specific technologies. This method will only return the names and it's not possible

For more details visit
https://www.klayout.org

Page 916 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.46. API reference - Class Library

not unambiguously derive the library object. It is recommended to use library_ids and library_by_id
to obtain the library unambiguously.

name
Signature: [const] string name

Description: Returns the libraries' name

The name is set when the library is registered and cannot be changed

new
Signature: [static] new Library ptr new

Description: Creates a new, empty library

Python specific notes:
This method is the default initializer of the object

refresh
Signature: void refresh

Description: Updates all layouts using this library.

This method will retire cells or update layouts in the attached clients.

This method has been introduced in version 0.27.8.

register
Signature: void register (string name)

Description: Registers the library with the given name

This method can be called in the constructor to register the library after the layout object has been
filled with content. If a library with that name already exists for the same technologies, it will be
replaced with this library.

This method will set the libraries' name.

The technology specific behaviour has been introduced in version 0.27.

technologies
Signature: [const] string[] technologies

Description: Gets the list of technologies this library is associated with.

This method has been introduced in version 0.27

technology
Signature: string technology

Description: Returns name of the technology the library is associated with

Use of this method is deprecated

If this attribute is a non-empty string, this library is only offered for selection if the current layout
uses this technology.

This attribute has been introduced in version 0.25. In version 0.27 this attribute is deprecated as a
library can now be associated with multiple technologies.

Python specific notes:
The object exposes a readable attribute 'technology'. This is the getter.

technology=
Signature: void technology= (string technology)

Description: sets the name of the technology the library is associated with

See technology for details. This attribute has been introduced in version 0.25. In version 0.27, a
library can be associated with multiple technologies and this method will revert the selection to a
single one. Passing an empty string is equivalent to clear_technologies.

Python specific notes:

For more details visit
https://www.klayout.org

Page 917 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.46. API reference - Class Library

The object exposes a writable attribute 'technology'. This is the setter.

For more details visit
https://www.klayout.org

Page 918 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.47. API reference - Class PCellDeclaration

4.47. API reference - Class PCellDeclaration
Notation used in Ruby API documentation

Module: db

Description: A PCell declaration providing the parameters and code to produce the PCell

Class hierarchy: PCellDeclaration

A PCell declaration is basically the recipe of how to create a PCell layout from a parameter set. The declaration includes

• Parameters: names, types, default values

• Layers: the layers the PCell wants to create

• Code: a production callback that is called whenever a PCell is instantiated with a certain parameter set

• Display name: the name that is shown for a given PCell instance

All these declarations are implemented by deriving from the PCellDeclaration class and reimplementing the specific methods.
Reimplementing the display_name method is optional. The default implementation creates a name from the PCell name plus the
parameters.

By supplying the information about the layers it wants to create, KLayout is able to call the production callback with a defined set of the
layer ID's which are already mapped to valid actual layout layers.

This class has been introduced in version 0.22.

Public constructors

new PCellDeclaration ptr new Creates a new object of this class

Public methods

void _assign (const
PCellDeclaration
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] new
PCellDeclaration
ptr

_dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by
the script side.

For more details visit
https://www.klayout.org

Page 919 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.47. API reference - Class PCellDeclaration

void assign (const
PCellDeclaration
other)

Assigns another object to self

[virtual,const] bool can_create_from_shape(const Layout
layout,
const Shape
shape,
unsigned int layer)

Returns true, if the PCell can be created
from the given shape

[virtual,const] variant[] coerce_parameters (const Layout
layout,
variant[] input)

Modifies the parameters to match the
requirements

[virtual,const] string display_text (variant[]
parameters)

Returns the display text for this PCell
given a certain parameter set

[const] new
PCellDeclaration
ptr

dup Creates a copy of self

[virtual,const] LayerInfo[] get_layers (variant[]
parameters)

Returns a list of layer declarations

[virtual,const] PCellParameterDeclaration[]get_parameters Returns a list of parameter declarations

[const] unsigned int id Gets the integer ID of the PCell
declaration

[const] Layout ptr layout Gets the Layout object the PCell is
registered in or nil if it is not registered yet.

[const] string name Gets the name of the PCell

[virtual,const] variant[] parameters_from_shape(const Layout
layout,
const Shape
shape,
unsigned int layer)

Gets the parameters for the PCell which
can replace the given shape

[virtual,const] void produce (const Layout
layout,
unsigned int[]
layer_ids,
variant[]
parameters,
Cell cell)

The production callback

[virtual,const] Trans transformation_from_shape(const Layout
layout,
const Shape
shape,
unsigned int layer)

Gets the instance transformation for the
PCell which can replace the given shape

[virtual,const] bool wants_lazy_evaluation Gets a value indicating whether the PCell
wants lazy evaluation

For more details visit
https://www.klayout.org

Page 920 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.47. API reference - Class PCellDeclaration

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_assign
Signature: void _assign (const PCellDeclaration other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new PCellDeclaration ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

For more details visit
https://www.klayout.org

Page 921 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.47. API reference - Class PCellDeclaration

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const PCellDeclaration other)

Description: Assigns another object to self

can_create_from_shape
Signature: [virtual,const] bool can_create_from_shape (const Layout layout, const Shape shape,
unsigned int layer)

Description: Returns true, if the PCell can be created from the given shape

layout: The layout the shape lives in

shape: The shape from which a PCell shall be created

layer: The layer index (in layout) of the shape

KLayout offers a way to convert a shape into a PCell. To test whether the PCell can be created from
a shape, it will call this method. If this method returns true, KLayout will use parameters_from_shape
and transformation_from_shape to derive the parameters and instance transformation for the new
PCell instance that will replace the shape.

coerce_parameters
Signature: [virtual,const] variant[] coerce_parameters (const Layout layout, variant[] input)

Description: Modifies the parameters to match the requirements

layout: The layout object in which the PCell will be produced

input: The parameters before the modification

Returns: The modified parameters or an empty array, indicating that no
modification was done

This method can be reimplemented to change the parameter set according to some constraints for
example. The reimplementation may modify the parameters in a way that they are usable for the
produce method.

The method receives a reference to the layout so it is able to verify the parameters against layout
properties.

It can raise an exception to indicate that something is not correct.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 922 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.47. API reference - Class PCellDeclaration

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

display_text
Signature: [virtual,const] string display_text (variant[] parameters)

Description: Returns the display text for this PCell given a certain parameter set

Reimplement this method to create a distinct display text for a PCell variant with the given parameter
set. If this method is not implemented, a default text is created.

dup
Signature: [const] new PCellDeclaration ptr dup

Description: Creates a copy of self

get_layers
Signature: [virtual,const] LayerInfo[] get_layers (variant[] parameters)

Description: Returns a list of layer declarations

Reimplement this method to return a list of layers this PCell wants to create. The layer declarations
are returned as a list of LayerInfo objects which are used as match expressions to look up the layer
in the actual layout.

This method receives the PCell parameters which allows it to deduce layers from the parameters.

get_parameters
Signature: [virtual,const] PCellParameterDeclaration[] get_parameters

Description: Returns a list of parameter declarations

Reimplement this method to return a list of parameters used in that PCell implementation. A
parameter declaration is a PCellParameterDeclaration object and defines the parameter name, type,
description text and possible choices for the parameter value.

id
Signature: [const] unsigned int id

Description: Gets the integer ID of the PCell declaration

This ID is used to identify the PCell in the context of a Layout object for example

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

layout
Signature: [const] Layout ptr layout

Description: Gets the Layout object the PCell is registered in or nil if it is not registered yet.

For more details visit
https://www.klayout.org

Page 923 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.47. API reference - Class PCellDeclaration

This attribute has been added in version 0.27.5.

name
Signature: [const] string name

Description: Gets the name of the PCell

new
Signature: [static] new PCellDeclaration ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

parameters_from_shape
Signature: [virtual,const] variant[] parameters_from_shape (const Layout layout, const Shape
shape, unsigned int layer)

Description: Gets the parameters for the PCell which can replace the given shape

layout: The layout the shape lives in

shape: The shape from which a PCell shall be created

layer: The layer index (in layout) of the shape

KLayout offers a way to convert a shape into a PCell. If can_create_from_shape returns true, it will
use this method to derive the parameters for the PCell instance that will replace the shape. See also
transformation_from_shape and can_create_from_shape.

produce
Signature: [virtual,const] void produce (const Layout layout, unsigned int[] layer_ids, variant[]
parameters, Cell cell)

Description: The production callback

layout: The layout object where the cell resides

layer_ids: A list of layer ID's which correspond to the layers declared with
get_layers

parameters: A list of parameter values which correspond to the parameters
declared with get_parameters

cell: The cell where the layout will be created

Reimplement this method to provide the code that implements the PCell. The code is supposed
to create the layout in the target cell using the provided parameters and the layers passed in the
layer_ids list.

transformation_from_shape
Signature: [virtual,const] Trans transformation_from_shape (const Layout layout, const Shape
shape, unsigned int layer)

Description: Gets the instance transformation for the PCell which can replace the given shape

layout: The layout the shape lives in

shape: The shape from which a PCell shall be created

layer: The layer index (in layout) of the shape

KLayout offers a way to convert a shape into a PCell. If can_create_from_shape returns true, it will
use this method to derive the transformation for the PCell instance that will replace the shape. See
also parameters_from_shape and can_create_from_shape.

wants_lazy_evaluation
Signature: [virtual,const] bool wants_lazy_evaluation

Description: Gets a value indicating whether the PCell wants lazy evaluation

For more details visit
https://www.klayout.org

Page 924 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.47. API reference - Class PCellDeclaration

In lazy evaluation mode, the PCell UI will not immediately update the layout when a parameter is
changed. Instead, the user has to commit the changes in order to have the parameters updated. This
is useful for PCells that take a long time to compute.

The default implementation will return 'false' indicating immediate updates.

This method has been added in version 0.27.6.

For more details visit
https://www.klayout.org

Page 925 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.48. API reference - Class PCellParameterDeclaration

4.48. API reference - Class PCellParameterDeclaration
Notation used in Ruby API documentation

Module: db

Description: A PCell parameter declaration

This class declares a PCell parameter by providing a name, the type and a value and additional information like description, unit string and
default value. It is used in the PCellDeclaration class to deliver the necessary information.

This class has been introduced in version 0.22.

Public constructors

new
PCellParameterDeclaration
ptr

new (string name,
unsigned int type,
string description)

Create a new parameter declaration with
the given name and type

new
PCellParameterDeclaration
ptr

new (string name,
unsigned int type,
string description,
variant default)

Create a new parameter declaration with
the given name, type and default value

new
PCellParameterDeclaration
ptr

new (string name,
unsigned int type,
string description,
variant default,
string unit)

Create a new parameter declaration with
the given name, type, default value and
unit string

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void add_choice (string
description,
variant value)

Add a new value to the list of choices

void assign (const
PCellParameterDeclaration
other)

Assigns another object to self

[const] string[] choice_descriptions Returns a list of choice descriptions

[const] variant[] choice_values Returns a list of choice values

For more details visit
https://www.klayout.org

Page 926 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.48. API reference - Class PCellParameterDeclaration

void clear_choices Clears the list of choices

[const] variant default Gets the default value

void default= (variant
value)

Sets the default value

[const] string description Gets the description text

void description= (string
description)

Sets the description

[const] new
PCellParameterDeclaration
ptr

dup Creates a copy of self

void hidden= (bool flag) Makes the parameter hidden if this attribute is
set to true

[const] bool hidden? Returns true, if the parameter is a hidden
parameter that should not be shown in the
user interface

[const] string name Gets the name

void name= (string value) Sets the name

void readonly= (bool flag) Makes the parameter read-only if this
attribute is set to true

[const] bool readonly? Returns true, if the parameter is a read-only
parameter

[const] unsigned int type Gets the type

void type= (unsigned int
type)

Sets the type

[const] string unit Gets the unit string

void unit= (string unit) Sets the unit string

Public static methods and constants

unsigned int TypeBoolean Type code: boolean data

unsigned int TypeDouble Type code: floating-point data

unsigned int TypeInt Type code: integer data

unsigned int TypeLayer Type code: a layer (a LayerInfo object)

unsigned int TypeList Type code: a list of variants

unsigned int TypeNone Type code: unspecific type

For more details visit
https://www.klayout.org

Page 927 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.48. API reference - Class PCellParameterDeclaration

unsigned int TypeShape Type code: a guiding shape (Box, Edge, Point,
Polygon or Path)

unsigned int TypeString Type code: string data

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

TypeBoolean
Signature: [static] unsigned int TypeBoolean

Description: Type code: boolean data

TypeDouble
Signature: [static] unsigned int TypeDouble

Description: Type code: floating-point data

TypeInt
Signature: [static] unsigned int TypeInt

Description: Type code: integer data

TypeLayer
Signature: [static] unsigned int TypeLayer

Description: Type code: a layer (a LayerInfo object)

TypeList
Signature: [static] unsigned int TypeList

Description: Type code: a list of variants

TypeNone
Signature: [static] unsigned int TypeNone

Description: Type code: unspecific type

TypeShape
Signature: [static] unsigned int TypeShape

Description: Type code: a guiding shape (Box, Edge, Point, Polygon or Path)

TypeString
Signature: [static] unsigned int TypeString

Description: Type code: string data

_create
Signature: void _create

Description: Ensures the C++ object is created

For more details visit
https://www.klayout.org

Page 928 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.48. API reference - Class PCellParameterDeclaration

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

add_choice
Signature: void add_choice (string description, variant value)

Description: Add a new value to the list of choices

This method will add the given value with the given description to the list of choices. If choices
are defined, KLayout will show a drop-down box instead of an entry field in the parameter user
interface.

assign
Signature: void assign (const PCellParameterDeclaration other)

Description: Assigns another object to self

For more details visit
https://www.klayout.org

Page 929 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.48. API reference - Class PCellParameterDeclaration

choice_descriptions
Signature: [const] string[] choice_descriptions

Description: Returns a list of choice descriptions

choice_values
Signature: [const] variant[] choice_values

Description: Returns a list of choice values

clear_choices
Signature: void clear_choices

Description: Clears the list of choices

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

default
Signature: [const] variant default

Description: Gets the default value

Python specific notes:
The object exposes a readable attribute 'default'. This is the getter.

default=
Signature: void default= (variant value)

Description: Sets the default value

If a default value is defined, it will be used to initialize the parameter value when a PCell is created.

Python specific notes:
The object exposes a writable attribute 'default'. This is the setter.

description
Signature: [const] string description

Description: Gets the description text

Python specific notes:
The object exposes a readable attribute 'description'. This is the getter.

description=
Signature: void description= (string description)

Description: Sets the description

Python specific notes:
The object exposes a writable attribute 'description'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

For more details visit
https://www.klayout.org

Page 930 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.48. API reference - Class PCellParameterDeclaration

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new PCellParameterDeclaration ptr dup

Description: Creates a copy of self

hidden=
Signature: void hidden= (bool flag)

Description: Makes the parameter hidden if this attribute is set to true

Python specific notes:
The object exposes a writable attribute 'hidden'. This is the setter.

hidden?
Signature: [const] bool hidden?

Description: Returns true, if the parameter is a hidden parameter that should not be shown in the
user interface

By making a parameter hidden, it is possible to create internal parameters which cannot be edited.

Python specific notes:
The object exposes a readable attribute 'hidden'. This is the getter.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

name
Signature: [const] string name

Description: Gets the name

Python specific notes:
The object exposes a readable attribute 'name'. This is the getter.

name=
Signature: void name= (string value)

Description: Sets the name

Python specific notes:
The object exposes a writable attribute 'name'. This is the setter.

(1) Signature: [static] new PCellParameterDeclaration ptr new (string name, unsigned int type,
string description)

Description: Create a new parameter declaration with the given name and type

name: The parameter name

type: One of the Type... constants describing the type of the
parameter

description: The description text

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new PCellParameterDeclaration ptr new (string name, unsigned int type,
string description, variant default)

For more details visit
https://www.klayout.org

Page 931 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.48. API reference - Class PCellParameterDeclaration

Description: Create a new parameter declaration with the given name, type and default value

name: The parameter name

type: One of the Type... constants describing the type of the
parameter

description: The description text

default: The default (initial) value

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new PCellParameterDeclaration ptr new (string name, unsigned int type,
string description, variant default, string unit)

Description: Create a new parameter declaration with the given name, type, default value and unit
string

name: The parameter name

type: One of the Type... constants describing the type of the
parameter

description: The description text

default: The default (initial) value

unit: The unit string

Python specific notes:
This method is the default initializer of the object

readonly=
Signature: void readonly= (bool flag)

Description: Makes the parameter read-only if this attribute is set to true

Python specific notes:
The object exposes a writable attribute 'readonly'. This is the setter.

readonly?
Signature: [const] bool readonly?

Description: Returns true, if the parameter is a read-only parameter

By making a parameter read-only, it is shown but cannot be edited.

Python specific notes:
The object exposes a readable attribute 'readonly'. This is the getter.

type
Signature: [const] unsigned int type

Description: Gets the type

The type is one of the T... constants.

Python specific notes:
The object exposes a readable attribute 'type'. This is the getter.

type=
Signature: void type= (unsigned int type)

Description: Sets the type

Python specific notes:
The object exposes a writable attribute 'type'. This is the setter.

unit
Signature: [const] string unit

Description: Gets the unit string

Python specific notes:

For more details visit
https://www.klayout.org

Page 932 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.48. API reference - Class PCellParameterDeclaration

The object exposes a readable attribute 'unit'. This is the getter.

unit=
Signature: void unit= (string unit)

Description: Sets the unit string

The unit string is shown right to the edit fields for numeric parameters.

Python specific notes:
The object exposes a writable attribute 'unit'. This is the setter.

For more details visit
https://www.klayout.org

Page 933 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.49. API reference - Class Manager

4.49. API reference - Class Manager
Notation used in Ruby API documentation

Module: db

Description: A transaction manager class

Manager objects control layout and potentially other objects in the layout database and queue operations to form transactions. A
transaction is a sequence of operations that can be undone or redone.

In order to equip a layout object with undo/redo support, instantiate the layout object with a manager attached and embrace the operations
to undo/redo with transaction/commit calls.

The use of transactions is subject to certain constraints, i.e. transacted sequences may not be mixed with non-transacted ones.

This class has been introduced in version 0.19.

Public constructors

new Manager ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
Manager
other)

Assigns another object to self

void commit Close a transaction.

[const] new Manager ptr dup Creates a copy of self

[const] bool has_redo? Determine if a transaction is available for 'redo'

[const] bool has_undo? Determine if a transaction is available for 'undo'

void redo Redo the next available transaction

unsigned long transaction (string
description)

Begin a transaction

unsigned long transaction (string
description,

Begin a joined transaction

For more details visit
https://www.klayout.org

Page 934 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.49. API reference - Class Manager

unsigned
long
join_with)

[const] string transaction_for_redo Return the description of the next transaction for
'redo'

[const] string transaction_for_undo Return the description of the next transaction for
'undo'

void undo Undo the current transaction

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

For more details visit
https://www.klayout.org

Page 935 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.49. API reference - Class Manager

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const Manager other)

Description: Assigns another object to self

commit
Signature: void commit

Description: Close a transaction.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new Manager ptr dup

Description: Creates a copy of self

has_redo?
Signature: [const] bool has_redo?

Description: Determine if a transaction is available for 'redo'

For more details visit
https://www.klayout.org

Page 936 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.49. API reference - Class Manager

Returns: True, if a transaction is available.

has_undo?
Signature: [const] bool has_undo?

Description: Determine if a transaction is available for 'undo'

Returns: True, if a transaction is available.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

new
Signature: [static] new Manager ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

redo
Signature: void redo

Description: Redo the next available transaction

The next transaction is redone with this method. The 'has_redo' method can be used to determine
whether there are transactions to undo.

(1) Signature: unsigned long transaction (string description)

Description: Begin a transaction

description: The description for this transaction.

Returns: The ID of the transaction (can be used to join other
transactions with this one)

This call will open a new transaction. A transaction consists of a set of operations issued with the
'queue' method. A transaction is closed with the 'commit' method.

transaction

(2) Signature: unsigned long transaction (string description, unsigned long join_with)

Description: Begin a joined transaction

description: The description for this transaction (ignored if joined).

description: The ID of the previous transaction.

Returns: The ID of the new transaction (can be used to join more)

This call will open a new transaction and join if with the previous transaction. The ID of the previous
transaction must be equal to the ID given with 'join_with'.

This overload was introduced in version 0.22.

transaction_for_redo
Signature: [const] string transaction_for_redo

Description: Return the description of the next transaction for 'redo'

transaction_for_undo
Signature: [const] string transaction_for_undo

For more details visit
https://www.klayout.org

Page 937 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.49. API reference - Class Manager

Description: Return the description of the next transaction for 'undo'

undo
Signature: void undo

Description: Undo the current transaction

The current transaction is undone with this method. The 'has_undo' method can be used to
determine whether there are transactions to undo.

For more details visit
https://www.klayout.org

Page 938 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.50. API reference - Class Matrix2d

4.50. API reference - Class Matrix2d
Notation used in Ruby API documentation

Module: db

Description: A 2d matrix object used mainly for representing rotation and shear transformations.

This object represents a 2x2 matrix. This matrix is used to implement affine transformations in the 2d space mainly. It can be decomposed
into basic transformations: mirroring, rotation and shear. In that case, the assumed execution order of the basic transformations is mirroring
at the x axis, rotation, magnification and shear.

The matrix is a generalization of the transformations and is of limited use in a layout database context. It is useful however to implement
shear transformations on polygons, edges and polygon or edge collections.

This class was introduced in version 0.22.

Public constructors

new Matrix2d ptr new Create a new Matrix2d representing a unit
transformation

new Matrix2d ptr new (double m) Create a new Matrix2d representing an isotropic
magnification

new Matrix2d ptr new (double mx,
double my)

Create a new Matrix2d representing an anisotropic
magnification

new Matrix2d ptr new (const DCplxTrans t) Create a new Matrix2d from the given complex
transformation@param t The transformation from
which to create the matrix (not taking into account
the displacement)

new Matrix2d ptr new (double m11,
double m12,
double m21,
double m22)

Create a new Matrix2d from the four coefficients

Public methods

[const] DPoint * (const DPoint
p)

Transforms a point with this matrix.

[const] DVector * (const
DVector v)

Transforms a vector with this matrix.

[const] DEdge * (const DEdge
e)

Transforms an edge with this matrix.

[const] DBox * (const DBox
box)

Transforms a box with this matrix.

[const] DSimplePolygon * (const
DSimplePolygon
p)

Transforms a simple polygon with this matrix.

[const] DPolygon * (const
DPolygon p)

Transforms a polygon with this matrix.

For more details visit
https://www.klayout.org

Page 939 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.50. API reference - Class Matrix2d

[const] Matrix2d * (const
Matrix2d m)

Product of two matrices.

[const] Matrix2d + (const
Matrix2d m)

Sum of two matrices.

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] double angle Returns the rotation angle of the rotation
component of this matrix.

void assign (const
Matrix2d
other)

Assigns another object to self

[const] DCplxTrans cplx_trans Converts this matrix to a complex transformation
(if possible).

[const] new Matrix2d ptr dup Creates a copy of self

[const] Matrix2d inverted The inverse of this matrix.

[const] bool is_mirror? Returns the mirror flag of this matrix.

[const] double m (int i,
int j)

Gets the m coefficient with the given index.

[const] double m11 Gets the m11 coefficient.

[const] double m12 Gets the m12 coefficient.

[const] double m21 Gets the m21 coefficient.

[const] double m22 Gets the m22 coefficient.

[const] double mag_x Returns the x magnification of the magnification
component of this matrix.

[const] double mag_y Returns the y magnification of the magnification
component of this matrix.

[const] double shear_angle Returns the magnitude of the shear component
of this matrix.

[const] string to_s Convert the matrix to a string.

For more details visit
https://www.klayout.org

Page 940 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.50. API reference - Class Matrix2d

[const] DPoint trans (const DPoint
p)

Transforms a point with this matrix.

Public static methods and constants

new Matrix2d ptr newc (double mag,
double rotation,
bool mirror)

Create a new Matrix2d representing
an isotropic magnification, rotation and
mirroring

new Matrix2d ptr newc (double shear,
double mx,
double my,
double rotation,
bool mirror)

Create a new Matrix2d representing a
shear, anisotropic magnification, rotation
and mirroring

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

(1) Signature: [const] DPoint * (const DPoint p)

Description: Transforms a point with this matrix.

p: The point to transform.

Returns: The transformed point

Python specific notes:
This method is also available as '__mul__'

(2) Signature: [const] DVector * (const DVector v)

Description: Transforms a vector with this matrix.

v: The vector to transform.

Returns: The transformed vector

Python specific notes:
This method is also available as '__mul__'

(3) Signature: [const] DEdge * (const DEdge e)

Description: Transforms an edge with this matrix.

e: The edge to transform.

Returns: The transformed edge

Python specific notes:
This method is also available as '__mul__'

*

For more details visit
https://www.klayout.org

Page 941 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.50. API reference - Class Matrix2d

(4) Signature: [const] DBox * (const DBox box)

Description: Transforms a box with this matrix.

box: The box to transform.

Returns: The transformed box

Please note that the box remains a box, even though the matrix supports shear and rotation. The
returned box will be the bounding box of the sheared and rotated rectangle.

Python specific notes:
This method is also available as '__mul__'

(5) Signature: [const] DSimplePolygon * (const DSimplePolygon p)

Description: Transforms a simple polygon with this matrix.

p: The simple polygon to transform.

Returns: The transformed simple polygon

Python specific notes:
This method is also available as '__mul__'

(6) Signature: [const] DPolygon * (const DPolygon p)

Description: Transforms a polygon with this matrix.

p: The polygon to transform.

Returns: The transformed polygon

Python specific notes:
This method is also available as '__mul__'

(7) Signature: [const] Matrix2d * (const Matrix2d m)

Description: Product of two matrices.

m: The other matrix.

Returns: The matrix product self*m

Python specific notes:
This method is also available as '__mul__'

+
Signature: [const] Matrix2d + (const Matrix2d m)

Description: Sum of two matrices.

m: The other matrix.

Returns: The (element-wise) sum of self+m

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 942 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.50. API reference - Class Matrix2d

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

angle
Signature: [const] double angle

Description: Returns the rotation angle of the rotation component of this matrix.

Returns: The angle in degree.

The matrix is decomposed into basic transformations assuming an execution order of mirroring at the
x axis, rotation, magnification and shear.

assign
Signature: void assign (const Matrix2d other)

Description: Assigns another object to self

cplx_trans
Signature: [const] DCplxTrans cplx_trans

Description: Converts this matrix to a complex transformation (if possible).

Returns: The complex transformation.

This method is successful only if the matrix does not contain shear components and the magnification
must be isotropic.

For more details visit
https://www.klayout.org

Page 943 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.50. API reference - Class Matrix2d

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new Matrix2d ptr dup

Description: Creates a copy of self

inverted
Signature: [const] Matrix2d inverted

Description: The inverse of this matrix.

Returns: The inverse of this matrix

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_mirror?
Signature: [const] bool is_mirror?

Description: Returns the mirror flag of this matrix.

Returns: True if this matrix has a mirror component.

The matrix is decomposed into basic transformations assuming an execution order of mirroring at the
x axis, rotation, magnification and shear.

m
Signature: [const] double m (int i, int j)

Description: Gets the m coefficient with the given index.

Returns: The coefficient [i,j]

For more details visit
https://www.klayout.org

Page 944 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.50. API reference - Class Matrix2d

m11
Signature: [const] double m11

Description: Gets the m11 coefficient.

Returns: The value of the m11 coefficient

m12
Signature: [const] double m12

Description: Gets the m12 coefficient.

Returns: The value of the m12 coefficient

m21
Signature: [const] double m21

Description: Gets the m21 coefficient.

Returns: The value of the m21 coefficient

m22
Signature: [const] double m22

Description: Gets the m22 coefficient.

Returns: The value of the m22 coefficient

mag_x
Signature: [const] double mag_x

Description: Returns the x magnification of the magnification component of this matrix.

Returns: The magnification factor.

The matrix is decomposed into basic transformations assuming an execution order of mirroring at the
x axis, magnification, shear and rotation.

mag_y
Signature: [const] double mag_y

Description: Returns the y magnification of the magnification component of this matrix.

Returns: The magnification factor.

The matrix is decomposed into basic transformations assuming an execution order of mirroring at the
x axis, magnification, shear and rotation.

(1) Signature: [static] new Matrix2d ptr new

Description: Create a new Matrix2d representing a unit transformation

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new Matrix2d ptr new (double m)

Description: Create a new Matrix2d representing an isotropic magnification

m: The magnification

Python specific notes:
This method is the default initializer of the object

new

(3) Signature: [static] new Matrix2d ptr new (double mx, double my)

Description: Create a new Matrix2d representing an anisotropic magnification

mx: The magnification in x direction

my: The magnification in y direction

For more details visit
https://www.klayout.org

Page 945 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.50. API reference - Class Matrix2d

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new Matrix2d ptr new (const DCplxTrans t)

Description: Create a new Matrix2d from the given complex transformation@param t The
transformation from which to create the matrix (not taking into account the displacement)

Python specific notes:
This method is the default initializer of the object

(5) Signature: [static] new Matrix2d ptr new (double m11, double m12, double m21, double m22)

Description: Create a new Matrix2d from the four coefficients

Python specific notes:
This method is the default initializer of the object

(1) Signature: [static] new Matrix2d ptr newc (double mag, double rotation, bool mirror)

Description: Create a new Matrix2d representing an isotropic magnification, rotation and mirroring

mag: The magnification in x direction

rotation: The rotation angle (in degree)

mirror: The mirror flag (at x axis)

This constructor is provided to construct a matrix similar to the complex transformation. This
constructor is called 'newc' to distinguish it from the constructors taking matrix coefficients ('c' is for
composite). The order of execution of the operations is mirror, magnification, rotation (as for complex
transformations).

newc

(2) Signature: [static] new Matrix2d ptr newc (double shear, double mx, double my, double rotation,
bool mirror)

Description: Create a new Matrix2d representing a shear, anisotropic magnification, rotation and
mirroring

shear: The shear angle

mx: The magnification in x direction

my: The magnification in y direction

rotation: The rotation angle (in degree)

mirror: The mirror flag (at x axis)

The order of execution of the operations is mirror, magnification, shear and rotation. This constructor
is called 'newc' to distinguish it from the constructor taking the four matrix coefficients ('c' is for
composite).

shear_angle
Signature: [const] double shear_angle

Description: Returns the magnitude of the shear component of this matrix.

Returns: The shear angle in degree.

The matrix is decomposed into basic transformations assuming an execution order of mirroring at the
x axis, rotation, magnification and shear. The shear basic transformation will tilt the x axis towards
the y axis and vice versa. The shear angle gives the tilt angle of the axes towards the other one. The
possible range for this angle is -45 to 45 degree.

to_s
Signature: [const] string to_s

Description: Convert the matrix to a string.

For more details visit
https://www.klayout.org

Page 946 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.50. API reference - Class Matrix2d

Returns: The string representing this matrix

Python specific notes:
This method is also available as 'str(object)'

trans
Signature: [const] DPoint trans (const DPoint p)

Description: Transforms a point with this matrix.

p: The point to transform.

Returns: The transformed point

Python specific notes:
This method is also available as '__mul__'

For more details visit
https://www.klayout.org

Page 947 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.51. API reference - Class IMatrix2d

4.51. API reference - Class IMatrix2d
Notation used in Ruby API documentation

Module: db

Description: A 2d matrix object used mainly for representing rotation and shear transformations (integer coordinate version).

This object represents a 2x2 matrix. This matrix is used to implement affine transformations in the 2d space mainly. It can be decomposed
into basic transformations: mirroring, rotation and shear. In that case, the assumed execution order of the basic transformations is mirroring
at the x axis, rotation, magnification and shear.

The integer variant was introduced in version 0.27.

Public constructors

new IMatrix2d ptr new Create a new Matrix2d representing a unit
transformation

new IMatrix2d ptr new (double m) Create a new Matrix2d representing an isotropic
magnification

new IMatrix2d ptr new (double mx,
double my)

Create a new Matrix2d representing an anisotropic
magnification

new IMatrix2d ptr new (const DCplxTrans t) Create a new Matrix2d from the given complex
transformation@param t The transformation from
which to create the matrix (not taking into account
the displacement)

new IMatrix2d ptr new (double m11,
double m12,
double m21,
double m22)

Create a new Matrix2d from the four coefficients

Public methods

[const] Point * (const Point
p)

Transforms a point with this matrix.

[const] Vector * (const Vector
v)

Transforms a vector with this matrix.

[const] Edge * (const Edge
e)

Transforms an edge with this matrix.

[const] Box * (const Box
box)

Transforms a box with this matrix.

[const] SimplePolygon * (const
SimplePolygon
p)

Transforms a simple polygon with this matrix.

[const] Polygon * (const
Polygon p)

Transforms a polygon with this matrix.

[const] IMatrix2d * (const
IMatrix2d m)

Product of two matrices.

For more details visit
https://www.klayout.org

Page 948 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.51. API reference - Class IMatrix2d

[const] IMatrix2d + (const
IMatrix2d m)

Sum of two matrices.

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] double angle Returns the rotation angle of the rotation
component of this matrix.

void assign (const
IMatrix2d
other)

Assigns another object to self

[const] ICplxTrans cplx_trans Converts this matrix to a complex transformation
(if possible).

[const] new IMatrix2d ptr dup Creates a copy of self

[const] IMatrix2d inverted The inverse of this matrix.

[const] bool is_mirror? Returns the mirror flag of this matrix.

[const] double m (int i,
int j)

Gets the m coefficient with the given index.

[const] double m11 Gets the m11 coefficient.

[const] double m12 Gets the m12 coefficient.

[const] double m21 Gets the m21 coefficient.

[const] double m22 Gets the m22 coefficient.

[const] double mag_x Returns the x magnification of the magnification
component of this matrix.

[const] double mag_y Returns the y magnification of the magnification
component of this matrix.

[const] double shear_angle Returns the magnitude of the shear component
of this matrix.

[const] string to_s Convert the matrix to a string.

[const] Point trans (const Point
p)

Transforms a point with this matrix.

For more details visit
https://www.klayout.org

Page 949 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.51. API reference - Class IMatrix2d

Public static methods and constants

new IMatrix2d ptr newc (double mag,
double rotation,
bool mirror)

Create a new Matrix2d representing
an isotropic magnification, rotation and
mirroring

new IMatrix2d ptr newc (double shear,
double mx,
double my,
double rotation,
bool mirror)

Create a new Matrix2d representing a
shear, anisotropic magnification, rotation
and mirroring

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

(1) Signature: [const] Point * (const Point p)

Description: Transforms a point with this matrix.

p: The point to transform.

Returns: The transformed point

Python specific notes:
This method is also available as '__mul__'

(2) Signature: [const] Vector * (const Vector v)

Description: Transforms a vector with this matrix.

v: The vector to transform.

Returns: The transformed vector

Python specific notes:
This method is also available as '__mul__'

(3) Signature: [const] Edge * (const Edge e)

Description: Transforms an edge with this matrix.

e: The edge to transform.

Returns: The transformed edge

Python specific notes:
This method is also available as '__mul__'

*

(4) Signature: [const] Box * (const Box box)

Description: Transforms a box with this matrix.

For more details visit
https://www.klayout.org

Page 950 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.51. API reference - Class IMatrix2d

box: The box to transform.

Returns: The transformed box

Please note that the box remains a box, even though the matrix supports shear and rotation. The
returned box will be the bounding box of the sheared and rotated rectangle.

Python specific notes:
This method is also available as '__mul__'

(5) Signature: [const] SimplePolygon * (const SimplePolygon p)

Description: Transforms a simple polygon with this matrix.

p: The simple polygon to transform.

Returns: The transformed simple polygon

Python specific notes:
This method is also available as '__mul__'

(6) Signature: [const] Polygon * (const Polygon p)

Description: Transforms a polygon with this matrix.

p: The polygon to transform.

Returns: The transformed polygon

Python specific notes:
This method is also available as '__mul__'

(7) Signature: [const] IMatrix2d * (const IMatrix2d m)

Description: Product of two matrices.

m: The other matrix.

Returns: The matrix product self*m

Python specific notes:
This method is also available as '__mul__'

+
Signature: [const] IMatrix2d + (const IMatrix2d m)

Description: Sum of two matrices.

m: The other matrix.

Returns: The (element-wise) sum of self+m

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

For more details visit
https://www.klayout.org

Page 951 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.51. API reference - Class IMatrix2d

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

angle
Signature: [const] double angle

Description: Returns the rotation angle of the rotation component of this matrix.

Returns: The angle in degree.

The matrix is decomposed into basic transformations assuming an execution order of mirroring at the
x axis, rotation, magnification and shear.

assign
Signature: void assign (const IMatrix2d other)

Description: Assigns another object to self

cplx_trans
Signature: [const] ICplxTrans cplx_trans

Description: Converts this matrix to a complex transformation (if possible).

Returns: The complex transformation.

This method is successful only if the matrix does not contain shear components and the magnification
must be isotropic.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

For more details visit
https://www.klayout.org

Page 952 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.51. API reference - Class IMatrix2d

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new IMatrix2d ptr dup

Description: Creates a copy of self

inverted
Signature: [const] IMatrix2d inverted

Description: The inverse of this matrix.

Returns: The inverse of this matrix

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_mirror?
Signature: [const] bool is_mirror?

Description: Returns the mirror flag of this matrix.

Returns: True if this matrix has a mirror component.

The matrix is decomposed into basic transformations assuming an execution order of mirroring at the
x axis, rotation, magnification and shear.

m
Signature: [const] double m (int i, int j)

Description: Gets the m coefficient with the given index.

Returns: The coefficient [i,j]

m11
Signature: [const] double m11

Description: Gets the m11 coefficient.

Returns: The value of the m11 coefficient

For more details visit
https://www.klayout.org

Page 953 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.51. API reference - Class IMatrix2d

m12
Signature: [const] double m12

Description: Gets the m12 coefficient.

Returns: The value of the m12 coefficient

m21
Signature: [const] double m21

Description: Gets the m21 coefficient.

Returns: The value of the m21 coefficient

m22
Signature: [const] double m22

Description: Gets the m22 coefficient.

Returns: The value of the m22 coefficient

mag_x
Signature: [const] double mag_x

Description: Returns the x magnification of the magnification component of this matrix.

Returns: The magnification factor.

The matrix is decomposed into basic transformations assuming an execution order of mirroring at the
x axis, magnification, shear and rotation.

mag_y
Signature: [const] double mag_y

Description: Returns the y magnification of the magnification component of this matrix.

Returns: The magnification factor.

The matrix is decomposed into basic transformations assuming an execution order of mirroring at the
x axis, magnification, shear and rotation.

(1) Signature: [static] new IMatrix2d ptr new

Description: Create a new Matrix2d representing a unit transformation

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new IMatrix2d ptr new (double m)

Description: Create a new Matrix2d representing an isotropic magnification

m: The magnification

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new IMatrix2d ptr new (double mx, double my)

Description: Create a new Matrix2d representing an anisotropic magnification

mx: The magnification in x direction

my: The magnification in y direction

Python specific notes:
This method is the default initializer of the object

new

(4) Signature: [static] new IMatrix2d ptr new (const DCplxTrans t)

For more details visit
https://www.klayout.org

Page 954 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.51. API reference - Class IMatrix2d

Description: Create a new Matrix2d from the given complex transformation@param t The
transformation from which to create the matrix (not taking into account the displacement)

Python specific notes:
This method is the default initializer of the object

(5) Signature: [static] new IMatrix2d ptr new (double m11, double m12, double m21, double m22)

Description: Create a new Matrix2d from the four coefficients

Python specific notes:
This method is the default initializer of the object

(1) Signature: [static] new IMatrix2d ptr newc (double mag, double rotation, bool mirror)

Description: Create a new Matrix2d representing an isotropic magnification, rotation and mirroring

mag: The magnification in x direction

rotation: The rotation angle (in degree)

mirror: The mirror flag (at x axis)

This constructor is provided to construct a matrix similar to the complex transformation. This
constructor is called 'newc' to distinguish it from the constructors taking matrix coefficients ('c' is for
composite). The order of execution of the operations is mirror, magnification, rotation (as for complex
transformations).

newc

(2) Signature: [static] new IMatrix2d ptr newc (double shear, double mx, double my, double rotation,
bool mirror)

Description: Create a new Matrix2d representing a shear, anisotropic magnification, rotation and
mirroring

shear: The shear angle

mx: The magnification in x direction

my: The magnification in y direction

rotation: The rotation angle (in degree)

mirror: The mirror flag (at x axis)

The order of execution of the operations is mirror, magnification, shear and rotation. This constructor
is called 'newc' to distinguish it from the constructor taking the four matrix coefficients ('c' is for
composite).

shear_angle
Signature: [const] double shear_angle

Description: Returns the magnitude of the shear component of this matrix.

Returns: The shear angle in degree.

The matrix is decomposed into basic transformations assuming an execution order of mirroring at the
x axis, rotation, magnification and shear. The shear basic transformation will tilt the x axis towards
the y axis and vice versa. The shear angle gives the tilt angle of the axes towards the other one. The
possible range for this angle is -45 to 45 degree.

to_s
Signature: [const] string to_s

Description: Convert the matrix to a string.

Returns: The string representing this matrix

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 955 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.51. API reference - Class IMatrix2d

trans
Signature: [const] Point trans (const Point p)

Description: Transforms a point with this matrix.

p: The point to transform.

Returns: The transformed point

Python specific notes:
This method is also available as '__mul__'

For more details visit
https://www.klayout.org

Page 956 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.52. API reference - Class Matrix3d

4.52. API reference - Class Matrix3d
Notation used in Ruby API documentation

Module: db

Description: A 3d matrix object used mainly for representing rotation, shear, displacement and perspective transformations.

This object represents a 3x3 matrix. This matrix is used to implement generic geometrical transformations in the 2d space mainly. It can
be decomposed into basic transformations: mirroring, rotation, shear, displacement and perspective distortion. In that case, the assumed
execution order of the basic transformations is mirroring at the x axis, rotation, magnification, shear, displacement and perspective
distortion.

This class was introduced in version 0.22.

Public constructors

new Matrix3d ptr new Create a new Matrix3d representing a unit
transformation

new Matrix3d ptr new (double m) Create a new Matrix3d representing a
magnification

new Matrix3d ptr new (const DCplxTrans t) Create a new Matrix3d from the given complex
transformation@param t The transformation
from which to create the matrix

new Matrix3d ptr new (double m11,
double m12,
double m21,
double m22)

Create a new Matrix3d from the four coefficients
of a Matrix2d

new Matrix3d ptr new (double m11,
double m12,
double m21,
double m22,
double dx,
double dy)

Create a new Matrix3d from the four coefficients
of a Matrix2d plus a displacement

new Matrix3d ptr new (double m11,
double m12,
double m13,
double m21,
double m22,
double m23,
double m31,
double m32,
double m33)

Create a new Matrix3d from the nine matrix
coefficients

Public methods

[const] Matrix3d * (const Matrix3d
m)

Product of two matrices.

[const] DPoint * (const DPoint p) Transforms a point with this matrix.

[const] DVector * (const DVector
v)

Transforms a vector with this matrix.

For more details visit
https://www.klayout.org

Page 957 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.52. API reference - Class Matrix3d

[const] DEdge * (const DEdge e) Transforms an edge with this matrix.

[const] DBox * (const DBox box) Transforms a box with this matrix.

[const] DSimplePolygon * (const
DSimplePolygon
p)

Transforms a simple polygon with this matrix.

[const] DPolygon * (const DPolygon
p)

Transforms a polygon with this matrix.

[const] Matrix3d + (const Matrix3d
m)

Sum of two matrices.

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void adjust (DPoint[]
landmarks_before,
DPoint[]
landmarks_after,
int flags,
int fixed_point)

Adjust a 3d matrix to match the given set of
landmarks

[const] double angle Returns the rotation angle of the rotation
component of this matrix.

void assign (const Matrix3d
other)

Assigns another object to self

[const] DCplxTrans cplx_trans Converts this matrix to a complex
transformation (if possible).

[const] DVector disp Returns the displacement vector of this
transformation.

[const] new Matrix3d ptr dup Creates a copy of self

[const] Matrix3d inverted The inverse of this matrix.

[const] bool is_mirror? Returns the mirror flag of this matrix.

[const] double m (int i,
int j)

Gets the m coefficient with the given index.

[const] double mag_x Returns the x magnification of the magnification
component of this matrix.

For more details visit
https://www.klayout.org

Page 958 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.52. API reference - Class Matrix3d

[const] double mag_y Returns the y magnification of the magnification
component of this matrix.

[const] double shear_angle Returns the magnitude of the shear component
of this matrix.

[const] string to_s Convert the matrix to a string.

[const] DPoint trans (const DPoint p) Transforms a point with this matrix.

[const] double tx (double z) Returns the perspective tilt angle tx.

[const] double ty (double z) Returns the perspective tilt angle ty.

Public static methods and constants

int AdjustAll Mode for adjust: currently equivalent to
adjust_perspective

int AdjustDisplacement Mode for adjust: adjust displacement only

int AdjustMagnification Mode for adjust: adjust rotation, mirror option and
magnification

int AdjustNone Mode for adjust: adjust nothing

int AdjustPerspective Mode for adjust: adjust whole matrix including
perspective transformation

int AdjustRotation Mode for adjust: adjust rotation only

int AdjustRotationMirror Mode for adjust: adjust rotation and mirror option

int AdjustShear Mode for adjust: adjust rotation, mirror option,
magnification and shear

new Matrix3d
ptr

newc (double mag,
double rotation,
bool mirrx)

Create a new Matrix3d representing a isotropic
magnification, rotation and mirroring

new Matrix3d
ptr

newc (double shear,
double mx,
double my,
double rotation,
bool mirrx)

Create a new Matrix3d representing a shear,
anisotropic magnification, rotation and mirroring

new Matrix3d
ptr

newc (const DVector u,
double shear,
double mx,
double my,
double rotation,
bool mirrx)

Create a new Matrix3d representing a displacement,
shear, anisotropic magnification, rotation and
mirroring

new Matrix3d
ptr

newc (double tx,
double ty,
double z,
const DVector u,
double shear,

Create a new Matrix3d representing a perspective
distortion, displacement, shear, anisotropic
magnification, rotation and mirroring

For more details visit
https://www.klayout.org

Page 959 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.52. API reference - Class Matrix3d

double mx,
double my,
double rotation,
bool mirrx)

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

(1) Signature: [const] Matrix3d * (const Matrix3d m)

Description: Product of two matrices.

m: The other matrix.

Returns: The matrix product self*m

Python specific notes:
This method is also available as '__mul__'

(2) Signature: [const] DPoint * (const DPoint p)

Description: Transforms a point with this matrix.

p: The point to transform.

Returns: The transformed point

Python specific notes:
This method is also available as '__mul__'

(3) Signature: [const] DVector * (const DVector v)

Description: Transforms a vector with this matrix.

v: The vector to transform.

Returns: The transformed vector

Python specific notes:
This method is also available as '__mul__'

(4) Signature: [const] DEdge * (const DEdge e)

Description: Transforms an edge with this matrix.

e: The edge to transform.

Returns: The transformed edge

Python specific notes:
This method is also available as '__mul__'

*

(5) Signature: [const] DBox * (const DBox box)

For more details visit
https://www.klayout.org

Page 960 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.52. API reference - Class Matrix3d

Description: Transforms a box with this matrix.

box: The box to transform.

Returns: The transformed box

Please note that the box remains a box, even though the matrix supports shear and rotation. The
returned box will be the bounding box of the sheared and rotated rectangle.

Python specific notes:
This method is also available as '__mul__'

(6) Signature: [const] DSimplePolygon * (const DSimplePolygon p)

Description: Transforms a simple polygon with this matrix.

p: The simple polygon to transform.

Returns: The transformed simple polygon

Python specific notes:
This method is also available as '__mul__'

(7) Signature: [const] DPolygon * (const DPolygon p)

Description: Transforms a polygon with this matrix.

p: The polygon to transform.

Returns: The transformed polygon

Python specific notes:
This method is also available as '__mul__'

+
Signature: [const] Matrix3d + (const Matrix3d m)

Description: Sum of two matrices.

m: The other matrix.

Returns: The (element-wise) sum of self+m

AdjustAll
Signature: [static] int AdjustAll

Description: Mode for adjust: currently equivalent to adjust_perspective

AdjustDisplacement
Signature: [static] int AdjustDisplacement

Description: Mode for adjust: adjust displacement only

AdjustMagnification
Signature: [static] int AdjustMagnification

Description: Mode for adjust: adjust rotation, mirror option and magnification

AdjustNone
Signature: [static] int AdjustNone

Description: Mode for adjust: adjust nothing

AdjustPerspective
Signature: [static] int AdjustPerspective

Description: Mode for adjust: adjust whole matrix including perspective transformation

AdjustRotation
Signature: [static] int AdjustRotation

Description: Mode for adjust: adjust rotation only

For more details visit
https://www.klayout.org

Page 961 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.52. API reference - Class Matrix3d

AdjustRotationMirror
Signature: [static] int AdjustRotationMirror

Description: Mode for adjust: adjust rotation and mirror option

AdjustShear
Signature: [static] int AdjustShear

Description: Mode for adjust: adjust rotation, mirror option, magnification and shear

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 962 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.52. API reference - Class Matrix3d

adjust
Signature: void adjust (DPoint[] landmarks_before, DPoint[] landmarks_after, int flags, int
fixed_point)

Description: Adjust a 3d matrix to match the given set of landmarks

landmarks_before: The points before the transformation.

landmarks_after: The points after the transformation.

mode: Selects the adjustment mode. Must be one of the Adjust...
constants.

fixed_point: The index of the fixed point (one that is definitely mapped
to the target) or -1 if there is none

This function tries to adjust the matrix such, that either the matrix is changed as little as possible (if
few landmarks are given) or that the "after" landmarks will match as close as possible to the "before"
landmarks (if the problem is overdetermined).

angle
Signature: [const] double angle

Description: Returns the rotation angle of the rotation component of this matrix.

Returns: The angle in degree.

See the description of this class for details about the basic transformations.

assign
Signature: void assign (const Matrix3d other)

Description: Assigns another object to self

cplx_trans
Signature: [const] DCplxTrans cplx_trans

Description: Converts this matrix to a complex transformation (if possible).

Returns: The complex transformation.

This method is successful only if the matrix does not contain shear or perspective distortion
components and the magnification must be isotropic.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

For more details visit
https://www.klayout.org

Page 963 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.52. API reference - Class Matrix3d

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

disp
Signature: [const] DVector disp

Description: Returns the displacement vector of this transformation.

Returns: The displacement vector.

Starting with version 0.25 this method returns a vector type instead of a point.

dup
Signature: [const] new Matrix3d ptr dup

Description: Creates a copy of self

inverted
Signature: [const] Matrix3d inverted

Description: The inverse of this matrix.

Returns: The inverse of this matrix

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_mirror?
Signature: [const] bool is_mirror?

Description: Returns the mirror flag of this matrix.

Returns: True if this matrix has a mirror component.

See the description of this class for details about the basic transformations.

m
Signature: [const] double m (int i, int j)

Description: Gets the m coefficient with the given index.

Returns: The coefficient [i,j]

mag_x
Signature: [const] double mag_x

Description: Returns the x magnification of the magnification component of this matrix.

Returns: The magnification factor.

mag_y
Signature: [const] double mag_y

Description: Returns the y magnification of the magnification component of this matrix.

Returns: The magnification factor.

(1) Signature: [static] new Matrix3d ptr new

Description: Create a new Matrix3d representing a unit transformation

Python specific notes:
This method is the default initializer of the object

new

For more details visit
https://www.klayout.org

Page 964 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.52. API reference - Class Matrix3d

(2) Signature: [static] new Matrix3d ptr new (double m)

Description: Create a new Matrix3d representing a magnification

m: The magnification

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new Matrix3d ptr new (const DCplxTrans t)

Description: Create a new Matrix3d from the given complex transformation@param t The
transformation from which to create the matrix

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new Matrix3d ptr new (double m11, double m12, double m21, double m22)

Description: Create a new Matrix3d from the four coefficients of a Matrix2d

Python specific notes:
This method is the default initializer of the object

(5) Signature: [static] new Matrix3d ptr new (double m11, double m12, double m21, double m22,
double dx, double dy)

Description: Create a new Matrix3d from the four coefficients of a Matrix2d plus a displacement

Python specific notes:
This method is the default initializer of the object

(6) Signature: [static] new Matrix3d ptr new (double m11, double m12, double m13, double m21,
double m22, double m23, double m31, double m32, double m33)

Description: Create a new Matrix3d from the nine matrix coefficients

Python specific notes:
This method is the default initializer of the object

(1) Signature: [static] new Matrix3d ptr newc (double mag, double rotation, bool mirrx)

Description: Create a new Matrix3d representing a isotropic magnification, rotation and mirroring

mag: The magnification

rotation: The rotation angle (in degree)

mirrx: The mirror flag (at x axis)

The order of execution of the operations is mirror, magnification and rotation. This constructor is
called 'newc' to distinguish it from the constructors taking coefficients ('c' is for composite).

newc

(2) Signature: [static] new Matrix3d ptr newc (double shear, double mx, double my, double
rotation, bool mirrx)

Description: Create a new Matrix3d representing a shear, anisotropic magnification, rotation and
mirroring

shear: The shear angle

mx: The magnification in x direction

mx: The magnification in y direction

rotation: The rotation angle (in degree)

mirrx: The mirror flag (at x axis)

For more details visit
https://www.klayout.org

Page 965 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.52. API reference - Class Matrix3d

The order of execution of the operations is mirror, magnification, rotation and shear. This constructor
is called 'newc' to distinguish it from the constructor taking the four matrix coefficients ('c' is for
composite).

(3) Signature: [static] new Matrix3d ptr newc (const DVector u, double shear, double mx, double
my, double rotation, bool mirrx)

Description: Create a new Matrix3d representing a displacement, shear, anisotropic magnification,
rotation and mirroring

u: The displacement

shear: The shear angle

mx: The magnification in x direction

mx: The magnification in y direction

rotation: The rotation angle (in degree)

mirrx: The mirror flag (at x axis)

The order of execution of the operations is mirror, magnification, rotation, shear and displacement.
This constructor is called 'newc' to distinguish it from the constructor taking the four matrix
coefficients ('c' is for composite).

Starting with version 0.25 the displacement is of vector type.

(4) Signature: [static] new Matrix3d ptr newc (double tx, double ty, double z, const DVector u,
double shear, double mx, double my, double rotation, bool mirrx)

Description: Create a new Matrix3d representing a perspective distortion, displacement, shear,
anisotropic magnification, rotation and mirroring

tx: The perspective tilt angle x (around the y axis)

ty: The perspective tilt angle y (around the x axis)

z: The observer distance at which the tilt angles are given

u: The displacement

shear: The shear angle

mx: The magnification in x direction

mx: The magnification in y direction

rotation: The rotation angle (in degree)

mirrx: The mirror flag (at x axis)

The order of execution of the operations is mirror, magnification, rotation, shear, perspective
distortion and displacement. This constructor is called 'newc' to distinguish it from the constructor
taking the four matrix coefficients ('c' is for composite).

The tx and ty parameters represent the perspective distortion. They denote a tilt of the xy plane
around the y axis (tx) or the x axis (ty) in degree. The same effect is achieved for different tilt angles
for different observer distances. Hence, the observer distance must be given at which the tilt angles
are given. If the magnitude of the tilt angle is not important, z can be set to 1.

Starting with version 0.25 the displacement is of vector type.

shear_angle
Signature: [const] double shear_angle

Description: Returns the magnitude of the shear component of this matrix.

Returns: The shear angle in degree.

For more details visit
https://www.klayout.org

Page 966 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.52. API reference - Class Matrix3d

The shear basic transformation will tilt the x axis towards the y axis and vice versa. The shear angle
gives the tilt angle of the axes towards the other one. The possible range for this angle is -45 to 45
degree.See the description of this class for details about the basic transformations.

to_s
Signature: [const] string to_s

Description: Convert the matrix to a string.

Returns: The string representing this matrix

Python specific notes:
This method is also available as 'str(object)'

trans
Signature: [const] DPoint trans (const DPoint p)

Description: Transforms a point with this matrix.

p: The point to transform.

Returns: The transformed point

Python specific notes:
This method is also available as '__mul__'

tx
Signature: [const] double tx (double z)

Description: Returns the perspective tilt angle tx.

z: The observer distance at which the tilt angle is computed.

Returns: The tilt angle tx.

The tx and ty parameters represent the perspective distortion. They denote a tilt of the xy plane
around the y axis (tx) or the x axis (ty) in degree. The same effect is achieved for different tilt angles
at different observer distances. Hence, the observer distance must be specified at which the tilt
angle is computed. If the magnitude of the tilt angle is not important, z can be set to 1.

ty
Signature: [const] double ty (double z)

Description: Returns the perspective tilt angle ty.

z: The observer distance at which the tilt angle is computed.

Returns: The tilt angle ty.

The tx and ty parameters represent the perspective distortion. They denote a tilt of the xy plane
around the y axis (tx) or the x axis (ty) in degree. The same effect is achieved for different tilt angles
at different observer distances. Hence, the observer distance must be specified at which the tilt
angle is computed. If the magnitude of the tilt angle is not important, z can be set to 1.

For more details visit
https://www.klayout.org

Page 967 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.53. API reference - Class IMatrix3d

4.53. API reference - Class IMatrix3d
Notation used in Ruby API documentation

Module: db

Description: A 3d matrix object used mainly for representing rotation, shear, displacement and perspective transformations (integer
coordinate version).

This object represents a 3x3 matrix. This matrix is used to implement generic geometrical transformations in the 2d space mainly. It can
be decomposed into basic transformations: mirroring, rotation, shear, displacement and perspective distortion. In that case, the assumed
execution order of the basic transformations is mirroring at the x axis, rotation, magnification, shear, displacement and perspective
distortion.

The integer variant was introduced in version 0.27.

Public constructors

new IMatrix3d ptr new Create a new Matrix3d representing a unit
transformation

new IMatrix3d ptr new (double m) Create a new Matrix3d representing a
magnification

new IMatrix3d ptr new (const ICplxTrans t) Create a new Matrix3d from the given complex
transformation@param t The transformation
from which to create the matrix

new IMatrix3d ptr new (double m11,
double m12,
double m21,
double m22)

Create a new Matrix3d from the four coefficients
of a Matrix2d

new IMatrix3d ptr new (double m11,
double m12,
double m21,
double m22,
double dx,
double dy)

Create a new Matrix3d from the four coefficients
of a Matrix2d plus a displacement

new IMatrix3d ptr new (double m11,
double m12,
double m13,
double m21,
double m22,
double m23,
double m31,
double m32,
double m33)

Create a new Matrix3d from the nine matrix
coefficients

Public methods

[const] IMatrix3d * (const
IMatrix3d m)

Product of two matrices.

[const] Point * (const Point p) Transforms a point with this matrix.

[const] Vector * (const Vector
v)

Transforms a vector with this matrix.

For more details visit
https://www.klayout.org

Page 968 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.53. API reference - Class IMatrix3d

[const] Edge * (const Edge e) Transforms an edge with this matrix.

[const] Box * (const Box
box)

Transforms a box with this matrix.

[const] SimplePolygon * (const
SimplePolygon
p)

Transforms a simple polygon with this matrix.

[const] Polygon * (const Polygon
p)

Transforms a polygon with this matrix.

[const] IMatrix3d + (const
IMatrix3d m)

Sum of two matrices.

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] double angle Returns the rotation angle of the rotation
component of this matrix.

void assign (const
IMatrix3d
other)

Assigns another object to self

[const] DCplxTrans cplx_trans Converts this matrix to a complex
transformation (if possible).

[const] Vector disp Returns the displacement vector of this
transformation.

[const] new IMatrix3d ptr dup Creates a copy of self

[const] IMatrix3d inverted The inverse of this matrix.

[const] bool is_mirror? Returns the mirror flag of this matrix.

[const] double m (int i,
int j)

Gets the m coefficient with the given index.

[const] double mag_x Returns the x magnification of the magnification
component of this matrix.

[const] double mag_y Returns the y magnification of the magnification
component of this matrix.

For more details visit
https://www.klayout.org

Page 969 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.53. API reference - Class IMatrix3d

[const] double shear_angle Returns the magnitude of the shear component
of this matrix.

[const] string to_s Convert the matrix to a string.

[const] Point trans (const Point p) Transforms a point with this matrix.

[const] double tx (double z) Returns the perspective tilt angle tx.

[const] double ty (double z) Returns the perspective tilt angle ty.

Public static methods and constants

new IMatrix3d ptr newc (double mag,
double rotation,
bool mirrx)

Create a new Matrix3d representing
a isotropic magnification, rotation and
mirroring

new IMatrix3d ptr newc (double shear,
double mx,
double my,
double rotation,
bool mirrx)

Create a new Matrix3d representing a
shear, anisotropic magnification, rotation
and mirroring

new IMatrix3d ptr newc (const Vector u,
double shear,
double mx,
double my,
double rotation,
bool mirrx)

Create a new Matrix3d representing
a displacement, shear, anisotropic
magnification, rotation and mirroring

new IMatrix3d ptr newc (double tx,
double ty,
double z,
const Vector u,
double shear,
double mx,
double my,
double rotation,
bool mirrx)

Create a new Matrix3d representing a
perspective distortion, displacement, shear,
anisotropic magnification, rotation and
mirroring

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

*
(1) Signature: [const] IMatrix3d * (const IMatrix3d m)

For more details visit
https://www.klayout.org

Page 970 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.53. API reference - Class IMatrix3d

Description: Product of two matrices.

m: The other matrix.

Returns: The matrix product self*m

Python specific notes:
This method is also available as '__mul__'

(2) Signature: [const] Point * (const Point p)

Description: Transforms a point with this matrix.

p: The point to transform.

Returns: The transformed point

Python specific notes:
This method is also available as '__mul__'

(3) Signature: [const] Vector * (const Vector v)

Description: Transforms a vector with this matrix.

v: The vector to transform.

Returns: The transformed vector

Python specific notes:
This method is also available as '__mul__'

(4) Signature: [const] Edge * (const Edge e)

Description: Transforms an edge with this matrix.

e: The edge to transform.

Returns: The transformed edge

Python specific notes:
This method is also available as '__mul__'

(5) Signature: [const] Box * (const Box box)

Description: Transforms a box with this matrix.

box: The box to transform.

Returns: The transformed box

Please note that the box remains a box, even though the matrix supports shear and rotation. The
returned box will be the bounding box of the sheared and rotated rectangle.

Python specific notes:
This method is also available as '__mul__'

(6) Signature: [const] SimplePolygon * (const SimplePolygon p)

Description: Transforms a simple polygon with this matrix.

p: The simple polygon to transform.

Returns: The transformed simple polygon

Python specific notes:
This method is also available as '__mul__'

(7) Signature: [const] Polygon * (const Polygon p)

Description: Transforms a polygon with this matrix.

For more details visit
https://www.klayout.org

Page 971 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.53. API reference - Class IMatrix3d

p: The polygon to transform.

Returns: The transformed polygon

Python specific notes:
This method is also available as '__mul__'

+
Signature: [const] IMatrix3d + (const IMatrix3d m)

Description: Sum of two matrices.

m: The other matrix.

Returns: The (element-wise) sum of self+m

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

For more details visit
https://www.klayout.org

Page 972 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.53. API reference - Class IMatrix3d

Usually it's not required to call this method. It has been introduced in version 0.24.

angle
Signature: [const] double angle

Description: Returns the rotation angle of the rotation component of this matrix.

Returns: The angle in degree.

See the description of this class for details about the basic transformations.

assign
Signature: void assign (const IMatrix3d other)

Description: Assigns another object to self

cplx_trans
Signature: [const] DCplxTrans cplx_trans

Description: Converts this matrix to a complex transformation (if possible).

Returns: The complex transformation.

This method is successful only if the matrix does not contain shear or perspective distortion
components and the magnification must be isotropic.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

disp
Signature: [const] Vector disp

Description: Returns the displacement vector of this transformation.

Returns: The displacement vector.

Starting with version 0.25 this method returns a vector type instead of a point.

dup
Signature: [const] new IMatrix3d ptr dup

Description: Creates a copy of self

For more details visit
https://www.klayout.org

Page 973 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.53. API reference - Class IMatrix3d

inverted
Signature: [const] IMatrix3d inverted

Description: The inverse of this matrix.

Returns: The inverse of this matrix

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_mirror?
Signature: [const] bool is_mirror?

Description: Returns the mirror flag of this matrix.

Returns: True if this matrix has a mirror component.

See the description of this class for details about the basic transformations.

m
Signature: [const] double m (int i, int j)

Description: Gets the m coefficient with the given index.

Returns: The coefficient [i,j]

mag_x
Signature: [const] double mag_x

Description: Returns the x magnification of the magnification component of this matrix.

Returns: The magnification factor.

mag_y
Signature: [const] double mag_y

Description: Returns the y magnification of the magnification component of this matrix.

Returns: The magnification factor.

(1) Signature: [static] new IMatrix3d ptr new

Description: Create a new Matrix3d representing a unit transformation

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new IMatrix3d ptr new (double m)

Description: Create a new Matrix3d representing a magnification

m: The magnification

Python specific notes:
This method is the default initializer of the object

new

(3) Signature: [static] new IMatrix3d ptr new (const ICplxTrans t)

Description: Create a new Matrix3d from the given complex transformation@param t The
transformation from which to create the matrix

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 974 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.53. API reference - Class IMatrix3d

(4) Signature: [static] new IMatrix3d ptr new (double m11, double m12, double m21, double m22)

Description: Create a new Matrix3d from the four coefficients of a Matrix2d

Python specific notes:
This method is the default initializer of the object

(5) Signature: [static] new IMatrix3d ptr new (double m11, double m12, double m21, double m22,
double dx, double dy)

Description: Create a new Matrix3d from the four coefficients of a Matrix2d plus a displacement

Python specific notes:
This method is the default initializer of the object

(6) Signature: [static] new IMatrix3d ptr new (double m11, double m12, double m13, double m21,
double m22, double m23, double m31, double m32, double m33)

Description: Create a new Matrix3d from the nine matrix coefficients

Python specific notes:
This method is the default initializer of the object

(1) Signature: [static] new IMatrix3d ptr newc (double mag, double rotation, bool mirrx)

Description: Create a new Matrix3d representing a isotropic magnification, rotation and mirroring

mag: The magnification

rotation: The rotation angle (in degree)

mirrx: The mirror flag (at x axis)

The order of execution of the operations is mirror, magnification and rotation. This constructor is called
'newc' to distinguish it from the constructors taking coefficients ('c' is for composite).

(2) Signature: [static] new IMatrix3d ptr newc (double shear, double mx, double my, double rotation,
bool mirrx)

Description: Create a new Matrix3d representing a shear, anisotropic magnification, rotation and
mirroring

shear: The shear angle

mx: The magnification in x direction

mx: The magnification in y direction

rotation: The rotation angle (in degree)

mirrx: The mirror flag (at x axis)

The order of execution of the operations is mirror, magnification, rotation and shear. This constructor
is called 'newc' to distinguish it from the constructor taking the four matrix coefficients ('c' is for
composite).

newc

(3) Signature: [static] new IMatrix3d ptr newc (const Vector u, double shear, double mx, double my,
double rotation, bool mirrx)

Description: Create a new Matrix3d representing a displacement, shear, anisotropic magnification,
rotation and mirroring

u: The displacement

shear: The shear angle

mx: The magnification in x direction

mx: The magnification in y direction

For more details visit
https://www.klayout.org

Page 975 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.53. API reference - Class IMatrix3d

rotation: The rotation angle (in degree)

mirrx: The mirror flag (at x axis)

The order of execution of the operations is mirror, magnification, rotation, shear and displacement.
This constructor is called 'newc' to distinguish it from the constructor taking the four matrix coefficients
('c' is for composite).

Starting with version 0.25 the displacement is of vector type.

(4) Signature: [static] new IMatrix3d ptr newc (double tx, double ty, double z, const Vector u, double
shear, double mx, double my, double rotation, bool mirrx)

Description: Create a new Matrix3d representing a perspective distortion, displacement, shear,
anisotropic magnification, rotation and mirroring

tx: The perspective tilt angle x (around the y axis)

ty: The perspective tilt angle y (around the x axis)

z: The observer distance at which the tilt angles are given

u: The displacement

shear: The shear angle

mx: The magnification in x direction

mx: The magnification in y direction

rotation: The rotation angle (in degree)

mirrx: The mirror flag (at x axis)

The order of execution of the operations is mirror, magnification, rotation, shear, perspective distortion
and displacement. This constructor is called 'newc' to distinguish it from the constructor taking the four
matrix coefficients ('c' is for composite).

The tx and ty parameters represent the perspective distortion. They denote a tilt of the xy plane
around the y axis (tx) or the x axis (ty) in degree. The same effect is achieved for different tilt angles
for different observer distances. Hence, the observer distance must be given at which the tilt angles
are given. If the magnitude of the tilt angle is not important, z can be set to 1.

Starting with version 0.25 the displacement is of vector type.

shear_angle
Signature: [const] double shear_angle

Description: Returns the magnitude of the shear component of this matrix.

Returns: The shear angle in degree.

The shear basic transformation will tilt the x axis towards the y axis and vice versa. The shear angle
gives the tilt angle of the axes towards the other one. The possible range for this angle is -45 to 45
degree.See the description of this class for details about the basic transformations.

to_s
Signature: [const] string to_s

Description: Convert the matrix to a string.

Returns: The string representing this matrix

Python specific notes:
This method is also available as 'str(object)'

trans
Signature: [const] Point trans (const Point p)

Description: Transforms a point with this matrix.

p: The point to transform.

Returns: The transformed point

For more details visit
https://www.klayout.org

Page 976 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.53. API reference - Class IMatrix3d

Python specific notes:
This method is also available as '__mul__'

tx
Signature: [const] double tx (double z)

Description: Returns the perspective tilt angle tx.

z: The observer distance at which the tilt angle is computed.

Returns: The tilt angle tx.

The tx and ty parameters represent the perspective distortion. They denote a tilt of the xy plane
around the y axis (tx) or the x axis (ty) in degree. The same effect is achieved for different tilt angles at
different observer distances. Hence, the observer distance must be specified at which the tilt angle is
computed. If the magnitude of the tilt angle is not important, z can be set to 1.

ty
Signature: [const] double ty (double z)

Description: Returns the perspective tilt angle ty.

z: The observer distance at which the tilt angle is computed.

Returns: The tilt angle ty.

The tx and ty parameters represent the perspective distortion. They denote a tilt of the xy plane
around the y axis (tx) or the x axis (ty) in degree. The same effect is achieved for different tilt angles at
different observer distances. Hence, the observer distance must be specified at which the tilt angle is
computed. If the magnitude of the tilt angle is not important, z can be set to 1.

For more details visit
https://www.klayout.org

Page 977 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.54. API reference - Class Path

4.54. API reference - Class Path
Notation used in Ruby API documentation

Module: db

Description: A path class

A path consists of an sequence of line segments forming the 'spine' of the path and a width. In addition, the starting point can be drawn
back by a certain extent (the 'begin extension') and the end point can be pulled forward somewhat (by the 'end extension').

A path may have round ends for special purposes. In particular, a round-ended path with a single point can represent a circle. Round-
ended paths should have being and end extensions equal to half the width. Non-round-ended paths with a single point are allowed but the
definition of the resulting shape in not well defined and may differ in other tools.

See The Database API for more details about the database objects.

Public constructors

new Path ptr new (const DPath dpath) Creates an integer coordinate path from a floating-
point coordinate path

new Path ptr new Default constructor: creates an empty (invalid) path
with width 0

new Path ptr new (Point[] pts,
int width)

Constructor given the points of the path's spine and
the width

new Path ptr new (Point[] pts,
int width,
int bgn_ext,
int end_ext)

Constructor given the points of the path's spine, the
width and the extensions

new Path ptr new (Point[] pts,
int width,
int bgn_ext,
int end_ext,
bool round)

Constructor given the points of the path's spine, the
width, the extensions and the round end flag

Public methods

[const] bool != (const Path p) Inequality test

[const] Path * (double f) Scaling by some factor

[const] bool < (const Path p) Less operator

[const] bool == (const Path p) Equality test

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

For more details visit
https://www.klayout.org

Page 978 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.54. API reference - Class Path

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by
the script side.

[const] long area Returns the approximate area of the path

void assign (const Path
other)

Assigns another object to self

[const] Box bbox Returns the bounding box of the path

[const] int bgn_ext Get the begin extension

void bgn_ext= (int ext) Set the begin extension

[const] new Path ptr dup Creates a copy of self

[const,iter] Point each_point Get the points that make up the path's
spine

[const] int end_ext Get the end extension

void end_ext= (int ext) Set the end extension

[const] unsigned long hash Computes a hash value

[const] bool is_round? Returns true, if the path has round ends

[const] unsigned int length Returns the length of the path

Path move (const Vector p) Moves the path.

Path move (int dx,
int dy)

Moves the path.

[const] Path moved (const Vector p) Returns the moved path (does not change
self)

[const] Path moved (int dx,
int dy)

Returns the moved path (does not change
self)

[const] unsigned long num_points Get the number of points

[const] unsigned long perimeter Returns the approximate perimeter of the
path

void points= (Point[] p) Set the points of the path

[const] Polygon polygon Convert the path to a polygon

void round= (bool
round_ends_flag)

Set the 'round ends' flag

[const] Path round_corners (double radius,
int npoints)

Creates a new path whose corners are
interpolated with circular bends

For more details visit
https://www.klayout.org

Page 979 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.54. API reference - Class Path

[const] SimplePolygon simple_polygon Convert the path to a simple polygon

[const] DPath to_dtype (double dbu = 1) Converts the path to a floating-point
coordinate path

[const] string to_s Convert to a string

[const] Path transformed (const
ICplxTrans t)

Transform the path.

[const] Path transformed (const Trans t) Transform the path.

[const] DPath transformed (const
CplxTrans t)

Transform the path.

[const] int width Get the width

void width= (int w) Set the width

Public static methods and constants

new Path ptr from_s (string s) Creates an object from a string

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use
_create instead

void destroy Use of this method is deprecated. Use
_destroy instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

[static] new Path ptr from_dpath (const DPath
dpath)

Use of this method is deprecated. Use new
instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[static] new Path ptr new_pw (Point[] pts,
int width)

Use of this method is deprecated. Use new
instead

[static] new Path ptr new_pwx (Point[] pts,
int width,
int bgn_ext,
int end_ext)

Use of this method is deprecated. Use new
instead

[static] new Path ptr new_pwxr (Point[] pts,
int width,
int bgn_ext,
int end_ext,
bool round)

Use of this method is deprecated. Use new
instead

[const] unsigned long points Use of this method is deprecated. Use
num_points instead

For more details visit
https://www.klayout.org

Page 980 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.54. API reference - Class Path

[const] DPath transformed_cplx (const CplxTrans
t)

Use of this method is deprecated. Use
transformed instead

Detailed description

!=
Signature: [const] bool != (const Path p)

Description: Inequality test

p: The object to compare against

*
Signature: [const] Path * (double f)

Description: Scaling by some factor

Returns the scaled object. All coordinates are multiplied with the given factor and if necessary
rounded.

Python specific notes:
This method is also available as '__mul__'

<
Signature: [const] bool < (const Path p)

Description: Less operator

p: The object to compare against

This operator is provided to establish some, not necessarily a certain sorting order

==
Signature: [const] bool == (const Path p)

Description: Equality test

p: The object to compare against

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

For more details visit
https://www.klayout.org

Page 981 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.54. API reference - Class Path

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

area
Signature: [const] long area

Description: Returns the approximate area of the path

This method returns the approximate value of the area. It is computed from the length times the
width. end extensions are taken into account correctly, but not effects of the corner interpolation. This
method was added in version 0.22.

assign
Signature: void assign (const Path other)

Description: Assigns another object to self

bbox
Signature: [const] Box bbox

Description: Returns the bounding box of the path

bgn_ext
Signature: [const] int bgn_ext

Description: Get the begin extension

Python specific notes:
The object exposes a readable attribute 'bgn_ext'. This is the getter.

bgn_ext=
Signature: void bgn_ext= (int ext)

Description: Set the begin extension

Python specific notes:
The object exposes a writable attribute 'bgn_ext'. This is the setter.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

For more details visit
https://www.klayout.org

Page 982 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.54. API reference - Class Path

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new Path ptr dup

Description: Creates a copy of self

each_point
Signature: [const,iter] Point each_point

Description: Get the points that make up the path's spine

end_ext
Signature: [const] int end_ext

Description: Get the end extension

Python specific notes:
The object exposes a readable attribute 'end_ext'. This is the getter.

end_ext=
Signature: void end_ext= (int ext)

Description: Set the end extension

Python specific notes:
The object exposes a writable attribute 'end_ext'. This is the setter.

from_dpath
Signature: [static] new Path ptr from_dpath (const DPath dpath)

Description: Creates an integer coordinate path from a floating-point coordinate path

Use of this method is deprecated. Use new instead

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dpath'.

Python specific notes:
This method is the default initializer of the object

from_s
Signature: [static] new Path ptr from_s (string s)

Description: Creates an object from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

For more details visit
https://www.klayout.org

Page 983 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.54. API reference - Class Path

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given polygon. This method enables polygons as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_round?
Signature: [const] bool is_round?

Description: Returns true, if the path has round ends

length
Signature: [const] unsigned int length

Description: Returns the length of the path

the length of the path is determined by summing the lengths of the segments and adding begin and
end extensions. For round-ended paths the length of the paths between the tips of the ends.

This method was added in version 0.23.

(1) Signature: Path move (const Vector p)

Description: Moves the path.

p: The distance to move the path.

Returns: The moved path.

Moves the path by the given offset and returns the moved path. The path is overwritten.

move

(2) Signature: Path move (int dx, int dy)

Description: Moves the path.

dx: The x distance to move the path.

dy: The y distance to move the path.

Returns: The moved path.

Moves the path by the given offset and returns the moved path. The path is overwritten.

This version has been added in version 0.23.

(1) Signature: [const] Path moved (const Vector p)

Description: Returns the moved path (does not change self)

p: The distance to move the path.

Returns: The moved path.

Moves the path by the given offset and returns the moved path. The path is not modified.

moved

(2) Signature: [const] Path moved (int dx, int dy)

For more details visit
https://www.klayout.org

Page 984 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.54. API reference - Class Path

Description: Returns the moved path (does not change self)

dx: The x distance to move the path.

dy: The y distance to move the path.

Returns: The moved path.

Moves the path by the given offset and returns the moved path. The path is not modified.

This version has been added in version 0.23.

(1) Signature: [static] new Path ptr new (const DPath dpath)

Description: Creates an integer coordinate path from a floating-point coordinate path

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dpath'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new Path ptr new

Description: Default constructor: creates an empty (invalid) path with width 0

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new Path ptr new (Point[] pts, int width)

Description: Constructor given the points of the path's spine and the width

pts: The points forming the spine of the path

width: The width of the path

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new Path ptr new (Point[] pts, int width, int bgn_ext, int end_ext)

Description: Constructor given the points of the path's spine, the width and the extensions

pts: The points forming the spine of the path

width: The width of the path

bgn_ext: The begin extension of the path

end_ext: The end extension of the path

Python specific notes:
This method is the default initializer of the object

new

(5) Signature: [static] new Path ptr new (Point[] pts, int width, int bgn_ext, int end_ext, bool round)

Description: Constructor given the points of the path's spine, the width, the extensions and the round
end flag

pts: The points forming the spine of the path

width: The width of the path

bgn_ext: The begin extension of the path

end_ext: The end extension of the path

round: If this flag is true, the path will get rounded ends

Python specific notes:

For more details visit
https://www.klayout.org

Page 985 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.54. API reference - Class Path

This method is the default initializer of the object

new_pw
Signature: [static] new Path ptr new_pw (Point[] pts, int width)

Description: Constructor given the points of the path's spine and the width

pts: The points forming the spine of the path

width: The width of the path

Use of this method is deprecated. Use new instead

Python specific notes:
This method is the default initializer of the object

new_pwx
Signature: [static] new Path ptr new_pwx (Point[] pts, int width, int bgn_ext, int end_ext)

Description: Constructor given the points of the path's spine, the width and the extensions

pts: The points forming the spine of the path

width: The width of the path

bgn_ext: The begin extension of the path

end_ext: The end extension of the path

Use of this method is deprecated. Use new instead

Python specific notes:
This method is the default initializer of the object

new_pwxr
Signature: [static] new Path ptr new_pwxr (Point[] pts, int width, int bgn_ext, int end_ext, bool
round)

Description: Constructor given the points of the path's spine, the width, the extensions and the round
end flag

pts: The points forming the spine of the path

width: The width of the path

bgn_ext: The begin extension of the path

end_ext: The end extension of the path

round: If this flag is true, the path will get rounded ends

Use of this method is deprecated. Use new instead

Python specific notes:
This method is the default initializer of the object

num_points
Signature: [const] unsigned long num_points

Description: Get the number of points

Python specific notes:
The object exposes a readable attribute 'points'. This is the getter.

perimeter
Signature: [const] unsigned long perimeter

Description: Returns the approximate perimeter of the path

This method returns the approximate value of the perimeter. It is computed from the length and the
width. end extensions are taken into account correctly, but not effects of the corner interpolation. This
method was added in version 0.24.4.

points
Signature: [const] unsigned long points

Description: Get the number of points

For more details visit
https://www.klayout.org

Page 986 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.54. API reference - Class Path

Use of this method is deprecated. Use num_points instead

Python specific notes:
The object exposes a readable attribute 'points'. This is the getter.

points=
Signature: void points= (Point[] p)

Description: Set the points of the path

p: An array of points to assign to the path's spine

Python specific notes:
The object exposes a writable attribute 'points'. This is the setter.

polygon
Signature: [const] Polygon polygon

Description: Convert the path to a polygon

The returned polygon is not guaranteed to be non-self overlapping. This may happen if the path
overlaps itself or contains very short segments.

round=
Signature: void round= (bool round_ends_flag)

Description: Set the 'round ends' flag

A path with round ends show half circles at the ends, instead of square or rectangular ends. Paths
with this flag set should use a begin and end extension of half the width (see bgn_ext and end_ext).
The interpretation of such paths in other tools may differ otherwise.

Python specific notes:
The object exposes a writable attribute 'round'. This is the setter.

round_corners
Signature: [const] Path round_corners (double radius, int npoints)

Description: Creates a new path whose corners are interpolated with circular bends

radius: The radius of the bends

npoints: The number of points (per full circle) used for interpolating the
bends

This method has been introduced in version 0.25.

simple_polygon
Signature: [const] SimplePolygon simple_polygon

Description: Convert the path to a simple polygon

The returned polygon is not guaranteed to be non-selfoverlapping. This may happen if the path
overlaps itself or contains very short segments.

to_dtype
Signature: [const] DPath to_dtype (double dbu = 1)

Description: Converts the path to a floating-point coordinate path

The database unit can be specified to translate the integer-coordinate path into a floating-point
coordinate path in micron units. The database unit is basically a scaling factor.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s

Description: Convert to a string

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 987 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.54. API reference - Class Path

(1) Signature: [const] Path transformed (const ICplxTrans t)

Description: Transform the path.

t: The transformation to apply.

Returns: The transformed path (in this case an integer coordinate path).

Transforms the path with the given complex transformation. Does not modify the path but returns the
transformed path.

This method has been introduced in version 0.18.

(2) Signature: [const] Path transformed (const Trans t)

Description: Transform the path.

t: The transformation to apply.

Returns: The transformed path.

Transforms the path with the given transformation. Does not modify the path but returns the
transformed path.

transformed

(3) Signature: [const] DPath transformed (const CplxTrans t)

Description: Transform the path.

t: The transformation to apply.

Returns: The transformed path.

Transforms the path with the given complex transformation. Does not modify the path but returns the
transformed path.

transformed_cplx
Signature: [const] DPath transformed_cplx (const CplxTrans t)

Description: Transform the path.

t: The transformation to apply.

Returns: The transformed path.

Use of this method is deprecated. Use transformed instead

Transforms the path with the given complex transformation. Does not modify the path but returns the
transformed path.

width
Signature: [const] int width

Description: Get the width

Python specific notes:
The object exposes a readable attribute 'width'. This is the getter.

width=
Signature: void width= (int w)

Description: Set the width

Python specific notes:
The object exposes a writable attribute 'width'. This is the setter.

For more details visit
https://www.klayout.org

Page 988 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.55. API reference - Class DPath

4.55. API reference - Class DPath
Notation used in Ruby API documentation

Module: db

Description: A path class

A path consists of an sequence of line segments forming the 'spine' of the path and a width. In addition, the starting point can be drawn
back by a certain extent (the 'begin extension') and the end point can be pulled forward somewhat (by the 'end extension').

A path may have round ends for special purposes. In particular, a round-ended path with a single point can represent a circle. Round-
ended paths should have being and end extensions equal to half the width. Non-round-ended paths with a single point are allowed but the
definition of the resulting shape in not well defined and may differ in other tools.

See The Database API for more details about the database objects.

Public constructors

new DPath ptr new (const Path path) Creates a floating-point coordinate path from an
integer coordinate path

new DPath ptr new Default constructor: creates an empty (invalid) path
with width 0

new DPath ptr new (DPoint[] pts,
double width)

Constructor given the points of the path's spine and
the width

new DPath ptr new (DPoint[] pts,
double width,
double bgn_ext,
double end_ext)

Constructor given the points of the path's spine, the
width and the extensions

new DPath ptr new (DPoint[] pts,
double width,
double bgn_ext,
double end_ext,
bool round)

Constructor given the points of the path's spine, the
width, the extensions and the round end flag

Public methods

[const] bool != (const DPath p) Inequality test

[const] DPath * (double f) Scaling by some factor

[const] bool < (const DPath p) Less operator

[const] bool == (const DPath p) Equality test

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

For more details visit
https://www.klayout.org

Page 989 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.55. API reference - Class DPath

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by
the script side.

[const] double area Returns the approximate area of the path

void assign (const DPath
other)

Assigns another object to self

[const] DBox bbox Returns the bounding box of the path

[const] double bgn_ext Get the begin extension

void bgn_ext= (double ext) Set the begin extension

[const] new DPath ptr dup Creates a copy of self

[const,iter] DPoint each_point Get the points that make up the path's
spine

[const] double end_ext Get the end extension

void end_ext= (double ext) Set the end extension

[const] unsigned long hash Computes a hash value

[const] bool is_round? Returns true, if the path has round ends

[const] double length Returns the length of the path

DPath move (const DVector p) Moves the path.

DPath move (double dx,
double dy)

Moves the path.

[const] DPath moved (const DVector p) Returns the moved path (does not change
self)

[const] DPath moved (double dx,
double dy)

Returns the moved path (does not change
self)

[const] unsigned long num_points Get the number of points

[const] double perimeter Returns the approximate perimeter of the
path

void points= (DPoint[] p) Set the points of the path

[const] DPolygon polygon Convert the path to a polygon

void round= (bool
round_ends_flag)

Set the 'round ends' flag

[const] DPath round_corners (double radius,
int npoints,
double accuracy)

Creates a new path whose corners are
interpolated with circular bends

For more details visit
https://www.klayout.org

Page 990 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.55. API reference - Class DPath

[const] DSimplePolygon simple_polygon Convert the path to a simple polygon

[const] Path to_itype (double dbu = 1) Converts the path to an integer coordinate
path

[const] string to_s Convert to a string

[const] Path transformed (const
VCplxTrans t)

Transforms the polygon with the given
complex transformation

[const] DPath transformed (const DTrans t) Transform the path.

[const] DPath transformed (const
DCplxTrans t)

Transform the path.

[const] double width Get the width

void width= (double w) Set the width

Public static methods and constants

new DPath ptr from_s (string s) Creates an object from a string

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use
_create instead

void destroy Use of this method is deprecated. Use
_destroy instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

[static] new DPath ptr from_ipath (const Path path) Use of this method is deprecated. Use new
instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[static] new DPath ptr new_pw (DPoint[] pts,
double width)

Use of this method is deprecated. Use new
instead

[static] new DPath ptr new_pwx (DPoint[] pts,
double width,
double bgn_ext,
double end_ext)

Use of this method is deprecated. Use new
instead

[static] new DPath ptr new_pwxr (DPoint[] pts,
double width,
double bgn_ext,
double end_ext,
bool round)

Use of this method is deprecated. Use new
instead

[const] unsigned long points Use of this method is deprecated. Use
num_points instead

For more details visit
https://www.klayout.org

Page 991 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.55. API reference - Class DPath

[const] DPath transformed_cplx (const DCplxTrans
t)

Use of this method is deprecated. Use
transformed instead

Detailed description

!=
Signature: [const] bool != (const DPath p)

Description: Inequality test

p: The object to compare against

*
Signature: [const] DPath * (double f)

Description: Scaling by some factor

Returns the scaled object. All coordinates are multiplied with the given factor and if necessary
rounded.

Python specific notes:
This method is also available as '__mul__'

<
Signature: [const] bool < (const DPath p)

Description: Less operator

p: The object to compare against

This operator is provided to establish some, not necessarily a certain sorting order

==
Signature: [const] bool == (const DPath p)

Description: Equality test

p: The object to compare against

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

For more details visit
https://www.klayout.org

Page 992 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.55. API reference - Class DPath

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

area
Signature: [const] double area

Description: Returns the approximate area of the path

This method returns the approximate value of the area. It is computed from the length times the
width. end extensions are taken into account correctly, but not effects of the corner interpolation. This
method was added in version 0.22.

assign
Signature: void assign (const DPath other)

Description: Assigns another object to self

bbox
Signature: [const] DBox bbox

Description: Returns the bounding box of the path

bgn_ext
Signature: [const] double bgn_ext

Description: Get the begin extension

Python specific notes:
The object exposes a readable attribute 'bgn_ext'. This is the getter.

bgn_ext=
Signature: void bgn_ext= (double ext)

Description: Set the begin extension

Python specific notes:
The object exposes a writable attribute 'bgn_ext'. This is the setter.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

For more details visit
https://www.klayout.org

Page 993 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.55. API reference - Class DPath

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new DPath ptr dup

Description: Creates a copy of self

each_point
Signature: [const,iter] DPoint each_point

Description: Get the points that make up the path's spine

end_ext
Signature: [const] double end_ext

Description: Get the end extension

Python specific notes:
The object exposes a readable attribute 'end_ext'. This is the getter.

end_ext=
Signature: void end_ext= (double ext)

Description: Set the end extension

Python specific notes:
The object exposes a writable attribute 'end_ext'. This is the setter.

from_ipath
Signature: [static] new DPath ptr from_ipath (const Path path)

Description: Creates a floating-point coordinate path from an integer coordinate path

Use of this method is deprecated. Use new instead

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_ipath'.

Python specific notes:
This method is the default initializer of the object

from_s
Signature: [static] new DPath ptr from_s (string s)

Description: Creates an object from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

For more details visit
https://www.klayout.org

Page 994 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.55. API reference - Class DPath

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given polygon. This method enables polygons as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_round?
Signature: [const] bool is_round?

Description: Returns true, if the path has round ends

length
Signature: [const] double length

Description: Returns the length of the path

the length of the path is determined by summing the lengths of the segments and adding begin and
end extensions. For round-ended paths the length of the paths between the tips of the ends.

This method was added in version 0.23.

(1) Signature: DPath move (const DVector p)

Description: Moves the path.

p: The distance to move the path.

Returns: The moved path.

Moves the path by the given offset and returns the moved path. The path is overwritten.

move

(2) Signature: DPath move (double dx, double dy)

Description: Moves the path.

dx: The x distance to move the path.

dy: The y distance to move the path.

Returns: The moved path.

Moves the path by the given offset and returns the moved path. The path is overwritten.

This version has been added in version 0.23.

(1) Signature: [const] DPath moved (const DVector p)

Description: Returns the moved path (does not change self)

p: The distance to move the path.

Returns: The moved path.

Moves the path by the given offset and returns the moved path. The path is not modified.

moved

(2) Signature: [const] DPath moved (double dx, double dy)

For more details visit
https://www.klayout.org

Page 995 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.55. API reference - Class DPath

Description: Returns the moved path (does not change self)

dx: The x distance to move the path.

dy: The y distance to move the path.

Returns: The moved path.

Moves the path by the given offset and returns the moved path. The path is not modified.

This version has been added in version 0.23.

(1) Signature: [static] new DPath ptr new (const Path path)

Description: Creates a floating-point coordinate path from an integer coordinate path

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_ipath'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new DPath ptr new

Description: Default constructor: creates an empty (invalid) path with width 0

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new DPath ptr new (DPoint[] pts, double width)

Description: Constructor given the points of the path's spine and the width

pts: The points forming the spine of the path

width: The width of the path

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new DPath ptr new (DPoint[] pts, double width, double bgn_ext, double
end_ext)

Description: Constructor given the points of the path's spine, the width and the extensions

pts: The points forming the spine of the path

width: The width of the path

bgn_ext: The begin extension of the path

end_ext: The end extension of the path

Python specific notes:
This method is the default initializer of the object

new

(5) Signature: [static] new DPath ptr new (DPoint[] pts, double width, double bgn_ext, double
end_ext, bool round)

Description: Constructor given the points of the path's spine, the width, the extensions and the round
end flag

pts: The points forming the spine of the path

width: The width of the path

bgn_ext: The begin extension of the path

end_ext: The end extension of the path

round: If this flag is true, the path will get rounded ends

For more details visit
https://www.klayout.org

Page 996 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.55. API reference - Class DPath

Python specific notes:
This method is the default initializer of the object

new_pw
Signature: [static] new DPath ptr new_pw (DPoint[] pts, double width)

Description: Constructor given the points of the path's spine and the width

pts: The points forming the spine of the path

width: The width of the path

Use of this method is deprecated. Use new instead

Python specific notes:
This method is the default initializer of the object

new_pwx
Signature: [static] new DPath ptr new_pwx (DPoint[] pts, double width, double bgn_ext, double
end_ext)

Description: Constructor given the points of the path's spine, the width and the extensions

pts: The points forming the spine of the path

width: The width of the path

bgn_ext: The begin extension of the path

end_ext: The end extension of the path

Use of this method is deprecated. Use new instead

Python specific notes:
This method is the default initializer of the object

new_pwxr
Signature: [static] new DPath ptr new_pwxr (DPoint[] pts, double width, double bgn_ext, double
end_ext, bool round)

Description: Constructor given the points of the path's spine, the width, the extensions and the round
end flag

pts: The points forming the spine of the path

width: The width of the path

bgn_ext: The begin extension of the path

end_ext: The end extension of the path

round: If this flag is true, the path will get rounded ends

Use of this method is deprecated. Use new instead

Python specific notes:
This method is the default initializer of the object

num_points
Signature: [const] unsigned long num_points

Description: Get the number of points

Python specific notes:
The object exposes a readable attribute 'points'. This is the getter.

perimeter
Signature: [const] double perimeter

Description: Returns the approximate perimeter of the path

This method returns the approximate value of the perimeter. It is computed from the length and the
width. end extensions are taken into account correctly, but not effects of the corner interpolation. This
method was added in version 0.24.4.

For more details visit
https://www.klayout.org

Page 997 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.55. API reference - Class DPath

points
Signature: [const] unsigned long points

Description: Get the number of points

Use of this method is deprecated. Use num_points instead

Python specific notes:
The object exposes a readable attribute 'points'. This is the getter.

points=
Signature: void points= (DPoint[] p)

Description: Set the points of the path

p: An array of points to assign to the path's spine

Python specific notes:
The object exposes a writable attribute 'points'. This is the setter.

polygon
Signature: [const] DPolygon polygon

Description: Convert the path to a polygon

The returned polygon is not guaranteed to be non-self overlapping. This may happen if the path
overlaps itself or contains very short segments.

round=
Signature: void round= (bool round_ends_flag)

Description: Set the 'round ends' flag

A path with round ends show half circles at the ends, instead of square or rectangular ends. Paths
with this flag set should use a begin and end extension of half the width (see bgn_ext and end_ext).
The interpretation of such paths in other tools may differ otherwise.

Python specific notes:
The object exposes a writable attribute 'round'. This is the setter.

round_corners
Signature: [const] DPath round_corners (double radius, int npoints, double accuracy)

Description: Creates a new path whose corners are interpolated with circular bends

radius: The radius of the bends

npoints: The number of points (per full circle) used for interpolating the
bends

accuracy: The numerical accuracy of the computation

The accuracy parameter controls the numerical resolution of the approximation process and should
be in the order of half the database unit. This accuracy is used for suppressing redundant points and
simplification of the resulting path.

This method has been introduced in version 0.25.

simple_polygon
Signature: [const] DSimplePolygon simple_polygon

Description: Convert the path to a simple polygon

The returned polygon is not guaranteed to be non-selfoverlapping. This may happen if the path
overlaps itself or contains very short segments.

to_itype
Signature: [const] Path to_itype (double dbu = 1)

Description: Converts the path to an integer coordinate path

The database unit can be specified to translate the floating-point coordinate path in micron units to
an integer-coordinate path in database units. The path's' coordinates will be divided by the database
unit.

For more details visit
https://www.klayout.org

Page 998 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.55. API reference - Class DPath

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s

Description: Convert to a string

Python specific notes:
This method is also available as 'str(object)'

(1) Signature: [const] Path transformed (const VCplxTrans t)

Description: Transforms the polygon with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed path (in this case an integer coordinate path)

This method has been introduced in version 0.25.

(2) Signature: [const] DPath transformed (const DTrans t)

Description: Transform the path.

t: The transformation to apply.

Returns: The transformed path.

Transforms the path with the given transformation. Does not modify the path but returns the
transformed path.

transformed

(3) Signature: [const] DPath transformed (const DCplxTrans t)

Description: Transform the path.

t: The transformation to apply.

Returns: The transformed path.

Transforms the path with the given complex transformation. Does not modify the path but returns the
transformed path.

transformed_cplx
Signature: [const] DPath transformed_cplx (const DCplxTrans t)

Description: Transform the path.

t: The transformation to apply.

Returns: The transformed path.

Use of this method is deprecated. Use transformed instead

Transforms the path with the given complex transformation. Does not modify the path but returns the
transformed path.

width
Signature: [const] double width

Description: Get the width

Python specific notes:
The object exposes a readable attribute 'width'. This is the getter.

width=
Signature: void width= (double w)

Description: Set the width

Python specific notes:
The object exposes a writable attribute 'width'. This is the setter.

For more details visit
https://www.klayout.org

Page 999 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.56. API reference - Class DPoint

4.56. API reference - Class DPoint
Notation used in Ruby API documentation

Module: db

Description: A point class with double (floating-point) coordinates

Points represent a coordinate in the two-dimensional coordinate space of layout. They are not geometrical objects by itself. But they are
frequently used in the database API for various purposes. Other than the integer variant (Point), points with floating-point coordinates can
represent fractions of a database unit.

See The Database API for more details about the database objects.

Public constructors

new DPoint ptr new (const Point point) Creates a floating-point coordinate point from an
integer coordinate point

new DPoint ptr new Default constructor: creates a point at 0,0

new DPoint ptr new (const DVector v) Default constructor: creates a point at from an vector

new DPoint ptr new (double x,
double y)

Constructor for a point from two coordinate values

Public methods

[const] bool != (const DPoint p) Inequality test operator

[const] DPoint * (double f) Scaling by some factor

[const] DPoint + (const DVector v) Adds a vector to a point

[const] DVector - (const DPoint p) Subtract one point from another

[const] DPoint -@ Compute the negative of a point

[const] DPoint / (double d) Division by some divisor

DPoint /= (double d) Division by some divisor

[const] bool < (const DPoint p) "less" comparison operator

[const] bool == (const DPoint p) Equality test operator

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

For more details visit
https://www.klayout.org

Page 1000 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.56. API reference - Class DPoint

void _unmanage Marks the object as no longer owned by the
script side.

[const] double abs The absolute value of the point (Euclidian
distance to 0,0)

void assign (const DPoint
other)

Assigns another object to self

[const] double distance (const DPoint d) The Euclidian distance to another point

[const] new DPoint ptr dup Creates a copy of self

[const] unsigned long hash Computes a hash value

[const] double sq_abs The square of the absolute value of the point
(Euclidian distance to 0,0)

[const] double sq_distance (const DPoint d) The square Euclidian distance to another
point

[const] Point to_itype (double dbu = 1) Converts the point to an integer coordinate
point

[const] string to_s (double dbu = 0) String conversion.

[const] DVector to_v Turns the point into a vector

[const] double x Accessor to the x coordinate

void x= (double coord) Write accessor to the x coordinate

[const] double y Accessor to the y coordinate

void y= (double coord) Write accessor to the y coordinate

Public static methods and constants

new DPoint ptr from_s (string s) Creates an object from a string

Protected methods (static, non-static and constructors)

DPoint = (double f)

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

For more details visit
https://www.klayout.org

Page 1001 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.56. API reference - Class DPoint

[static] new DPoint ptr from_ipoint (const
Point
point)

Use of this method is deprecated. Use new instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

Detailed description

!=
Signature: [const] bool != (const DPoint p)

Description: Inequality test operator

*
Signature: [const] DPoint * (double f)

Description: Scaling by some factor

Returns the scaled object. All coordinates are multiplied with the given factor and if necessary rounded.

Python specific notes:
This method is also available as '__mul__'

+
Signature: [const] DPoint + (const DVector v)

Description: Adds a vector to a point

Adds vector v to self by adding the coordinates.

Starting with version 0.25, this method expects a vector argument.

-
Signature: [const] DVector - (const DPoint p)

Description: Subtract one point from another

Subtract point p from self by subtracting the coordinates. This renders a vector.

Starting with version 0.25, this method renders a vector.

-@
Signature: [const] DPoint -@

Description: Compute the negative of a point

Returns a new point with -x, -y.

This method has been added in version 0.23.

/
Signature: [const] DPoint / (double d)

Description: Division by some divisor

Returns the scaled object. All coordinates are divided with the given divisor and if necessary rounded.

/=
Signature: DPoint /= (double d)

Description: Division by some divisor

Divides the object in place. All coordinates are divided with the given divisor and if necessary rounded.

<
Signature: [const] bool < (const DPoint p)

Description: "less" comparison operator

For more details visit
https://www.klayout.org

Page 1002 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.56. API reference - Class DPoint

This operator is provided to establish a sorting order

=
Signature: DPoint = (double f)

Description: Scaling by some factor

Scales object in place. All coordinates are multiplied with the given factor and if necessary rounded.

Python specific notes:
This method is not available for Python

==
Signature: [const] bool == (const DPoint p)

Description: Equality test operator

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called on
self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it is
known that some C++ object holds and manages this object. Technically speaking, this method will turn

For more details visit
https://www.klayout.org

Page 1003 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.56. API reference - Class DPoint

the script's reference into a weak reference. After the script engine decides to delete the reference, the
object itself will still exist. If the object is not managed otherwise, memory leaks will occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

abs
Signature: [const] double abs

Description: The absolute value of the point (Euclidian distance to 0,0)

The returned value is 'sqrt(x*x+y*y)'.

This method has been introduced in version 0.23.

assign
Signature: void assign (const DPoint other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

distance
Signature: [const] double distance (const DPoint d)

Description: The Euclidian distance to another point

d: The other point to compute the distance to.

dup
Signature: [const] new DPoint ptr dup

Description: Creates a copy of self

from_ipoint
Signature: [static] new DPoint ptr from_ipoint (const Point point)

Description: Creates a floating-point coordinate point from an integer coordinate point

Use of this method is deprecated. Use new instead

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_ipoint'.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1004 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.56. API reference - Class DPoint

This method is the default initializer of the object

from_s
Signature: [static] new DPoint ptr from_s (string s)

Description: Creates an object from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given point. This method enables points as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called on
self.

(1) Signature: [static] new DPoint ptr new (const Point point)

Description: Creates a floating-point coordinate point from an integer coordinate point

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_ipoint'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new DPoint ptr new

Description: Default constructor: creates a point at 0,0

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new DPoint ptr new (const DVector v)

Description: Default constructor: creates a point at from an vector

This constructor is equivalent to computing point(0,0)+v. This method has been introduced in version
0.25.

Python specific notes:
This method is the default initializer of the object

new

(4) Signature: [static] new DPoint ptr new (double x, double y)

Description: Constructor for a point from two coordinate values

Python specific notes:
This method is the default initializer of the object

sq_abs
Signature: [const] double sq_abs

Description: The square of the absolute value of the point (Euclidian distance to 0,0)

For more details visit
https://www.klayout.org

Page 1005 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.56. API reference - Class DPoint

The returned value is 'x*x+y*y'.

This method has been introduced in version 0.23.

sq_distance
Signature: [const] double sq_distance (const DPoint d)

Description: The square Euclidian distance to another point

d: The other point to compute the distance to.

to_itype
Signature: [const] Point to_itype (double dbu = 1)

Description: Converts the point to an integer coordinate point

The database unit can be specified to translate the floating-point coordinate point in micron units to an
integer-coordinate point in database units. The point's' coordinates will be divided by the database unit.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s (double dbu = 0)

Description: String conversion.

If a DBU is given, the output units will be micrometers.

The DBU argument has been added in version 0.27.6.

Python specific notes:
This method is also available as 'str(object)'

to_v
Signature: [const] DVector to_v

Description: Turns the point into a vector

This method returns a vector representing the distance from (0,0) to the point.This method has been
introduced in version 0.25.

x
Signature: [const] double x

Description: Accessor to the x coordinate

Python specific notes:
The object exposes a readable attribute 'x'. This is the getter.

x=
Signature: void x= (double coord)

Description: Write accessor to the x coordinate

Python specific notes:
The object exposes a writable attribute 'x'. This is the setter.

y
Signature: [const] double y

Description: Accessor to the y coordinate

Python specific notes:
The object exposes a readable attribute 'y'. This is the getter.

y=
Signature: void y= (double coord)

Description: Write accessor to the y coordinate

Python specific notes:
The object exposes a writable attribute 'y'. This is the setter.

For more details visit
https://www.klayout.org

Page 1006 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.57. API reference - Class Point

4.57. API reference - Class Point
Notation used in Ruby API documentation

Module: db

Description: An integer point class

Points represent a coordinate in the two-dimensional coordinate space of layout. They are not geometrical objects by itself. But they are
frequently used in the database API for various purposes.

See The Database API for more details about the database objects.

Public constructors

new Point ptr new (const DPoint dpoint) Creates an integer coordinate point from a floating-
point coordinate point

new Point ptr new Default constructor: creates a point at 0,0

new Point ptr new (const Vector v) Default constructor: creates a point at from an vector

new Point ptr new (int x,
int y)

Constructor for a point from two coordinate values

Public methods

[const] bool != (const Point p) Inequality test operator

[const] Point * (double f) Scaling by some factor

[const] Point + (const Vector v) Adds a vector to a point

[const] Vector - (const Point p) Subtract one point from another

[const] Point -@ Compute the negative of a point

[const] Point / (double d) Division by some divisor

Point /= (double d) Division by some divisor

[const] bool < (const Point p) "less" comparison operator

[const] bool == (const Point p) Equality test operator

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

For more details visit
https://www.klayout.org

Page 1007 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.57. API reference - Class Point

void _unmanage Marks the object as no longer owned by the
script side.

[const] double abs The absolute value of the point (Euclidian
distance to 0,0)

void assign (const Point
other)

Assigns another object to self

[const] double distance (const Point d) The Euclidian distance to another point

[const] new Point ptr dup Creates a copy of self

[const] unsigned long hash Computes a hash value

[const] double sq_abs The square of the absolute value of the point
(Euclidian distance to 0,0)

[const] double sq_distance (const Point d) The square Euclidian distance to another point

[const] DPoint to_dtype (double dbu = 1) Converts the point to a floating-point
coordinate point

[const] string to_s (double dbu = 0) String conversion.

[const] Vector to_v Turns the point into a vector

[const] int x Accessor to the x coordinate

void x= (int coord) Write accessor to the x coordinate

[const] int y Accessor to the y coordinate

void y= (int coord) Write accessor to the y coordinate

Public static methods and constants

new Point ptr from_s (string s) Creates an object from a string

Protected methods (static, non-static and constructors)

Point = (double f)

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

For more details visit
https://www.klayout.org

Page 1008 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.57. API reference - Class Point

[static] new Point ptr from_dpoint (const
DPoint
dpoint)

Use of this method is deprecated. Use new instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

Detailed description

!=
Signature: [const] bool != (const Point p)

Description: Inequality test operator

*
Signature: [const] Point * (double f)

Description: Scaling by some factor

Returns the scaled object. All coordinates are multiplied with the given factor and if necessary rounded.

Python specific notes:
This method is also available as '__mul__'

+
Signature: [const] Point + (const Vector v)

Description: Adds a vector to a point

Adds vector v to self by adding the coordinates.

Starting with version 0.25, this method expects a vector argument.

-
Signature: [const] Vector - (const Point p)

Description: Subtract one point from another

Subtract point p from self by subtracting the coordinates. This renders a vector.

Starting with version 0.25, this method renders a vector.

-@
Signature: [const] Point -@

Description: Compute the negative of a point

Returns a new point with -x, -y.

This method has been added in version 0.23.

/
Signature: [const] Point / (double d)

Description: Division by some divisor

Returns the scaled object. All coordinates are divided with the given divisor and if necessary rounded.

/=
Signature: Point /= (double d)

Description: Division by some divisor

Divides the object in place. All coordinates are divided with the given divisor and if necessary rounded.

<
Signature: [const] bool < (const Point p)

Description: "less" comparison operator

For more details visit
https://www.klayout.org

Page 1009 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.57. API reference - Class Point

This operator is provided to establish a sorting order

=
Signature: Point = (double f)

Description: Scaling by some factor

Scales object in place. All coordinates are multiplied with the given factor and if necessary rounded.

Python specific notes:
This method is not available for Python

==
Signature: [const] bool == (const Point p)

Description: Equality test operator

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called on
self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it is
known that some C++ object holds and manages this object. Technically speaking, this method will turn

For more details visit
https://www.klayout.org

Page 1010 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.57. API reference - Class Point

the script's reference into a weak reference. After the script engine decides to delete the reference, the
object itself will still exist. If the object is not managed otherwise, memory leaks will occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

abs
Signature: [const] double abs

Description: The absolute value of the point (Euclidian distance to 0,0)

The returned value is 'sqrt(x*x+y*y)'.

This method has been introduced in version 0.23.

assign
Signature: void assign (const Point other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

distance
Signature: [const] double distance (const Point d)

Description: The Euclidian distance to another point

d: The other point to compute the distance to.

dup
Signature: [const] new Point ptr dup

Description: Creates a copy of self

from_dpoint
Signature: [static] new Point ptr from_dpoint (const DPoint dpoint)

Description: Creates an integer coordinate point from a floating-point coordinate point

Use of this method is deprecated. Use new instead

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dpoint'.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1011 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.57. API reference - Class Point

This method is the default initializer of the object

from_s
Signature: [static] new Point ptr from_s (string s)

Description: Creates an object from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given point. This method enables points as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called on
self.

(1) Signature: [static] new Point ptr new (const DPoint dpoint)

Description: Creates an integer coordinate point from a floating-point coordinate point

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dpoint'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new Point ptr new

Description: Default constructor: creates a point at 0,0

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new Point ptr new (const Vector v)

Description: Default constructor: creates a point at from an vector

This constructor is equivalent to computing point(0,0)+v. This method has been introduced in version
0.25.

Python specific notes:
This method is the default initializer of the object

new

(4) Signature: [static] new Point ptr new (int x, int y)

Description: Constructor for a point from two coordinate values

Python specific notes:
This method is the default initializer of the object

sq_abs
Signature: [const] double sq_abs

Description: The square of the absolute value of the point (Euclidian distance to 0,0)

For more details visit
https://www.klayout.org

Page 1012 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.57. API reference - Class Point

The returned value is 'x*x+y*y'.

This method has been introduced in version 0.23.

sq_distance
Signature: [const] double sq_distance (const Point d)

Description: The square Euclidian distance to another point

d: The other point to compute the distance to.

to_dtype
Signature: [const] DPoint to_dtype (double dbu = 1)

Description: Converts the point to a floating-point coordinate point

The database unit can be specified to translate the integer-coordinate point into a floating-point
coordinate point in micron units. The database unit is basically a scaling factor.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s (double dbu = 0)

Description: String conversion.

If a DBU is given, the output units will be micrometers.

The DBU argument has been added in version 0.27.6.

Python specific notes:
This method is also available as 'str(object)'

to_v
Signature: [const] Vector to_v

Description: Turns the point into a vector

This method returns a vector representing the distance from (0,0) to the point.This method has been
introduced in version 0.25.

x
Signature: [const] int x

Description: Accessor to the x coordinate

Python specific notes:
The object exposes a readable attribute 'x'. This is the getter.

x=
Signature: void x= (int coord)

Description: Write accessor to the x coordinate

Python specific notes:
The object exposes a writable attribute 'x'. This is the setter.

y
Signature: [const] int y

Description: Accessor to the y coordinate

Python specific notes:
The object exposes a readable attribute 'y'. This is the getter.

y=
Signature: void y= (int coord)

Description: Write accessor to the y coordinate

Python specific notes:
The object exposes a writable attribute 'y'. This is the setter.

For more details visit
https://www.klayout.org

Page 1013 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.58. API reference - Class SimplePolygon

4.58. API reference - Class SimplePolygon
Notation used in Ruby API documentation

Module: db

Description: A simple polygon class

A simple polygon consists of an outer hull only. To support polygons with holes, use Polygon. The hull contour consists of several points.
The point list is normalized such that the leftmost, lowest point is the first one. The orientation is normalized such that the orientation of the
hull contour is clockwise.

It is in no way checked that the contours are not overlapping This must be ensured by the user of the object when filling the contours.

The SimplePolygon class stores coordinates in integer format. A class that stores floating-point coordinates is DSimplePolygon.

See The Database API for more details about the database objects.

Public constructors

new SimplePolygon ptr new (const DSimplePolygon
dpolygon)

Creates an integer coordinate polygon from a
floating-point coordinate polygon

new SimplePolygon ptr new Default constructor: creates an empty (invalid)
polygon

new SimplePolygon ptr new (Point[] pts,
bool raw = false)

Constructor given the points of the simple polygon

new SimplePolygon ptr new (const Box box) Constructor converting a box to a polygon

Public methods

[const] bool != (const
SimplePolygon p)

Returns a value indicating whether self is
not equal to p

[const] SimplePolygon * (double f) Scales the polygon by some factor

[const] bool < (const
SimplePolygon p)

Returns a value indicating whether self is
less than p

[const] bool == (const
SimplePolygon p)

Returns a value indicating whether self is
equal to p

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

For more details visit
https://www.klayout.org

Page 1014 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.58. API reference - Class SimplePolygon

[const] long area Gets the area of the polygon

[const] long area2 Gets the double area of the polygon

void assign (const
SimplePolygon
other)

Assigns another object to self

[const] Box bbox Returns the bounding box of the simple
polygon

void compress (bool
remove_reflected)

Compressed the simple polygon.

[const] new
SimplePolygon ptr

dup Creates a copy of self

[const,iter] Edge each_edge Iterates over the edges that make up the
simple polygon

[const,iter] Point each_point Iterates over the points that make up the
simple polygon

[const] variant[] extract_rad Extracts the corner radii from a rounded
polygon

[const] unsigned long hash Computes a hash value

[const] bool inside? (Point p) Gets a value indicating whether the given
point is inside the polygon

[const] bool is_box? Returns a value indicating whether the
polygon is a simple box.

bool is_empty? Returns a value indicating whether the
polygon is empty

[const] bool is_halfmanhattan? Returns a value indicating whether the
polygon is half-manhattan

[const] bool is_rectilinear? Returns a value indicating whether the
polygon is rectilinear

[const] Polygon minkowski_sum (const Edge e,
bool
resolve_holes)

Computes the Minkowski sum of a polygon
and an edge

[const] Polygon minkowski_sum (const
SimplePolygon p,
bool
resolve_holes)

Computes the Minkowski sum of a polygon
and a polygon

[const] Polygon minkowski_sum (const Box b,
bool
resolve_holes)

Computes the Minkowski sum of a polygon
and a box

[const] Polygon minkowski_sum (Point[] c,
bool
resolve_holes)

Computes the Minkowski sum of a polygon
and a contour of points (a trace)

For more details visit
https://www.klayout.org

Page 1015 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.58. API reference - Class SimplePolygon

SimplePolygon move (const Vector p) Moves the simple polygon.

SimplePolygon move (int x,
int y)

Moves the polygon.

[const] SimplePolygon moved (const Vector p) Returns the moved simple polygon

[const] SimplePolygon moved (int x,
int y)

Returns the moved polygon (does not
modify self)

unsigned long num_points Gets the number of points

[const] unsigned long perimeter Gets the perimeter of the polygon

Point point (unsigned long p) Gets a specific point of the contour@param
p The index of the point to get

void points= (Point[] pts) Sets the points of the simple polygon

[const] SimplePolygon round_corners (double rinner,
double router,
unsigned int n)

Rounds the corners of the polygon

void set_points (Point[] pts,
bool raw = false)

Sets the points of the simple polygon

[const] SimplePolygon[] split Splits the polygon into two or more parts

[const] DSimplePolygon to_dtype (double dbu = 1) Converts the polygon to a floating-point
coordinate polygon

[const] string to_s Returns a string representing the polygon

[const] bool touches? (const Box box) Returns true, if the polygon touches the
given box.

[const] bool touches? (const Edge edge) Returns true, if the polygon touches the
given edge.

[const] bool touches? (const Polygon
polygon)

Returns true, if the polygon touches the
other polygon.

[const] bool touches? (const
SimplePolygon
simple_polygon)

Returns true, if the polygon touches the
other polygon.

SimplePolygon ptr transform (const ICplxTrans
t)

Transforms the simple polygon with a
complex transformation (in-place)

SimplePolygon ptr transform (const Trans t) Transforms the simple polygon (in-place)

[const] SimplePolygon transformed (const ICplxTrans
t)

Transforms the simple polygon.

[const] SimplePolygon transformed (const Trans t) Transforms the simple polygon.

[const] DSimplePolygon transformed (const CplxTrans t) Transforms the simple polygon.

For more details visit
https://www.klayout.org

Page 1016 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.58. API reference - Class SimplePolygon

Public static methods and constants

new SimplePolygon ptr ellipse (const Box box,
int n)

Creates a simple polygon approximating
an ellipse

new SimplePolygon ptr from_s (string s) Creates an object from a string

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use
_create instead

void destroy Use of this method is deprecated. Use
_destroy instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

[static] new
SimplePolygon
ptr

from_dpoly (const
DSimplePolygon
dpolygon)

Use of this method is deprecated. Use new
instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[const] Polygon minkowsky_sum (const Edge e,
bool resolve_holes)

Use of this method is deprecated. Use
minkowski_sum instead

[const] Polygon minkowsky_sum (const
SimplePolygon p,
bool resolve_holes)

Use of this method is deprecated. Use
minkowski_sum instead

[const] Polygon minkowsky_sum (const Box b,
bool resolve_holes)

Use of this method is deprecated. Use
minkowski_sum instead

[const] Polygon minkowsky_sum (Point[] c,
bool resolve_holes)

Use of this method is deprecated. Use
minkowski_sum instead

[const] DSimplePolygon transformed_cplx (const CplxTrans t) Use of this method is deprecated. Use
transformed instead

Detailed description

!=
Signature: [const] bool != (const SimplePolygon p)

Description: Returns a value indicating whether self is not equal to p

p: The object to compare against

*
Signature: [const] SimplePolygon * (double f)

Description: Scales the polygon by some factor

Returns the scaled object. All coordinates are multiplied with the given factor and if necessary
rounded.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1017 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.58. API reference - Class SimplePolygon

This method is also available as '__mul__'

<
Signature: [const] bool < (const SimplePolygon p)

Description: Returns a value indicating whether self is less than p

p: The object to compare against

This operator is provided to establish some, not necessarily a certain sorting order

This method has been introduced in version 0.25.

==
Signature: [const] bool == (const SimplePolygon p)

Description: Returns a value indicating whether self is equal to p

p: The object to compare against

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method

For more details visit
https://www.klayout.org

Page 1018 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.58. API reference - Class SimplePolygon

will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

area
Signature: [const] long area

Description: Gets the area of the polygon

The area is correct only if the polygon is not self-overlapping and the polygon is oriented clockwise.

area2
Signature: [const] long area2

Description: Gets the double area of the polygon

This method is provided because the area for an integer-type polygon is a multiple of 1/2. Hence the
double area can be expresses precisely as an integer for these types.

This method has been introduced in version 0.26.1

assign
Signature: void assign (const SimplePolygon other)

Description: Assigns another object to self

bbox
Signature: [const] Box bbox

Description: Returns the bounding box of the simple polygon

compress
Signature: void compress (bool remove_reflected)

Description: Compressed the simple polygon.

remove_reflected: See description of the functionality.

This method removes redundant points from the polygon, such as points being on a line formed by
two other points. If remove_reflected is true, points are also removed if the two adjacent edges form a
spike.

This method was introduced in version 0.18.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

For more details visit
https://www.klayout.org

Page 1019 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.58. API reference - Class SimplePolygon

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new SimplePolygon ptr dup

Description: Creates a copy of self

each_edge
Signature: [const,iter] Edge each_edge

Description: Iterates over the edges that make up the simple polygon

each_point
Signature: [const,iter] Point each_point

Description: Iterates over the points that make up the simple polygon

ellipse
Signature: [static] new SimplePolygon ptr ellipse (const Box box, int n)

Description: Creates a simple polygon approximating an ellipse

box: The bounding box of the ellipse

n: The number of points that will be used to approximate the ellipse

This method has been introduced in version 0.23.

extract_rad
Signature: [const] variant[] extract_rad

Description: Extracts the corner radii from a rounded polygon

Attempts to extract the radii of rounded corner polygon. This is essentially the inverse of the
round_corners method. If this method succeeds, if will return an array of four elements:

• The polygon with the rounded corners replaced by edgy ones

• The radius of the inner corners

• The radius of the outer corners

• The number of points per full circle

This method is based on some assumptions and may fail. In this case, an empty array is returned.

If successful, the following code will more or less render the original polygon and parameters

p = ... # some polygon
p.round_corners(ri, ro, n)
(p2, ri2, ro2, n2) = p.extract_rad
-> p2 == p, ro2 == ro, ri2 == ri, n2 == n (within some limits)

This method was introduced in version 0.25.

from_dpoly
Signature: [static] new SimplePolygon ptr from_dpoly (const DSimplePolygon dpolygon)

Description: Creates an integer coordinate polygon from a floating-point coordinate polygon

Use of this method is deprecated. Use new instead

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dpoly'.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1020 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.58. API reference - Class SimplePolygon

This method is the default initializer of the object

from_s
Signature: [static] new SimplePolygon ptr from_s (string s)

Description: Creates an object from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given polygon. This method enables polygons as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

inside?
Signature: [const] bool inside? (Point p)

Description: Gets a value indicating whether the given point is inside the polygon

If the given point is inside or on the edge the polygon, true is returned. This tests works well only if
the polygon is not self-overlapping and oriented clockwise.

is_box?
Signature: [const] bool is_box?

Description: Returns a value indicating whether the polygon is a simple box.

Returns: True if the polygon is a box.

A polygon is a box if it is identical to it's bounding box.

This method was introduced in version 0.23.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_empty?
Signature: bool is_empty?

Description: Returns a value indicating whether the polygon is empty

is_halfmanhattan?
Signature: [const] bool is_halfmanhattan?

Description: Returns a value indicating whether the polygon is half-manhattan

Half-manhattan polygons have edges which are multiples of 45 degree. These polygons can be
clipped at a rectangle without potential grid snapping.

This predicate was introduced in version 0.27.

is_rectilinear?
Signature: [const] bool is_rectilinear?

Description: Returns a value indicating whether the polygon is rectilinear

minkowski_sum
(1) Signature: [const] Polygon minkowski_sum (const Edge e, bool resolve_holes)

Description: Computes the Minkowski sum of a polygon and an edge

For more details visit
https://www.klayout.org

Page 1021 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.58. API reference - Class SimplePolygon

e: The edge.

resolve_holes: If true, the output polygon will not contain holes, but holes are
resolved by joining the holes with the hull.

Returns: The new polygon representing the Minkowski sum of self and e.

This method was introduced in version 0.22.

(2) Signature: [const] Polygon minkowski_sum (const SimplePolygon p, bool resolve_holes)

Description: Computes the Minkowski sum of a polygon and a polygon

p: The other polygon.

resolve_holes: If true, the output polygon will not contain holes, but holes are
resolved by joining the holes with the hull.

Returns: The new polygon representing the Minkowski sum of self and p.

This method was introduced in version 0.22.

(3) Signature: [const] Polygon minkowski_sum (const Box b, bool resolve_holes)

Description: Computes the Minkowski sum of a polygon and a box

b: The box.

resolve_holes: If true, the output polygon will not contain holes, but holes are
resolved by joining the holes with the hull.

Returns: The new polygon representing the Minkowski sum of self and b.

This method was introduced in version 0.22.

(4) Signature: [const] Polygon minkowski_sum (Point[] c, bool resolve_holes)

Description: Computes the Minkowski sum of a polygon and a contour of points (a trace)

c: The contour (a series of points forming the trace).

resolve_holes: If true, the output polygon will not contain holes, but holes are
resolved by joining the holes with the hull.

Returns: The new polygon representing the Minkowski sum of self and c.

This method was introduced in version 0.22.

(1) Signature: [const] Polygon minkowsky_sum (const Edge e, bool resolve_holes)

Description: Computes the Minkowski sum of a polygon and an edge

e: The edge.

resolve_holes: If true, the output polygon will not contain holes, but holes are
resolved by joining the holes with the hull.

Returns: The new polygon representing the Minkowski sum of self and e.

Use of this method is deprecated. Use minkowski_sum instead

This method was introduced in version 0.22.

minkowsky_sum

(2) Signature: [const] Polygon minkowsky_sum (const SimplePolygon p, bool resolve_holes)

Description: Computes the Minkowski sum of a polygon and a polygon

p: The other polygon.

resolve_holes: If true, the output polygon will not contain holes, but holes are
resolved by joining the holes with the hull.

For more details visit
https://www.klayout.org

Page 1022 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.58. API reference - Class SimplePolygon

Returns: The new polygon representing the Minkowski sum of self and p.

Use of this method is deprecated. Use minkowski_sum instead

This method was introduced in version 0.22.

(3) Signature: [const] Polygon minkowsky_sum (const Box b, bool resolve_holes)

Description: Computes the Minkowski sum of a polygon and a box

b: The box.

resolve_holes: If true, the output polygon will not contain holes, but holes are
resolved by joining the holes with the hull.

Returns: The new polygon representing the Minkowski sum of self and b.

Use of this method is deprecated. Use minkowski_sum instead

This method was introduced in version 0.22.

(4) Signature: [const] Polygon minkowsky_sum (Point[] c, bool resolve_holes)

Description: Computes the Minkowski sum of a polygon and a contour of points (a trace)

c: The contour (a series of points forming the trace).

resolve_holes: If true, the output polygon will not contain holes, but holes are
resolved by joining the holes with the hull.

Returns: The new polygon representing the Minkowski sum of self and c.

Use of this method is deprecated. Use minkowski_sum instead

This method was introduced in version 0.22.

(1) Signature: SimplePolygon move (const Vector p)

Description: Moves the simple polygon.

p: The distance to move the simple polygon.

Returns: The moved simple polygon.

Moves the simple polygon by the given offset and returns the moved simple polygon. The polygon is
overwritten.

move

(2) Signature: SimplePolygon move (int x, int y)

Description: Moves the polygon.

x: The x distance to move the polygon.

y: The y distance to move the polygon.

Returns: The moved polygon (self).

Moves the polygon by the given offset and returns the moved polygon. The polygon is overwritten.

(1) Signature: [const] SimplePolygon moved (const Vector p)

Description: Returns the moved simple polygon

p: The distance to move the simple polygon.

Returns: The moved simple polygon.

Moves the simple polygon by the given offset and returns the moved simple polygon. The polygon is
not modified.

moved

For more details visit
https://www.klayout.org

Page 1023 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.58. API reference - Class SimplePolygon

(2) Signature: [const] SimplePolygon moved (int x, int y)

Description: Returns the moved polygon (does not modify self)

x: The x distance to move the polygon.

y: The y distance to move the polygon.

Returns: The moved polygon.

Moves the polygon by the given offset and returns the moved polygon. The polygon is not modified.

This method has been introduced in version 0.23.

(1) Signature: [static] new SimplePolygon ptr new (const DSimplePolygon dpolygon)

Description: Creates an integer coordinate polygon from a floating-point coordinate polygon

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dpoly'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new SimplePolygon ptr new

Description: Default constructor: creates an empty (invalid) polygon

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new SimplePolygon ptr new (Point[] pts, bool raw = false)

Description: Constructor given the points of the simple polygon

pts: The points forming the simple polygon

raw: If true, the points are taken as they are (see below)

If the 'raw' argument is set to true, the points are taken as they are. Specifically no removal of
redundant points or joining of coincident edges will take place. In effect, polygons consisting of a
single point or two points can be constructed as well as polygons with duplicate points. Note that
such polygons may cause problems in some applications.

Regardless of raw mode, the point list will be adjusted such that the first point is the lowest-leftmost
one and the orientation is clockwise always.

The 'raw' argument has been added in version 0.24.

Python specific notes:
This method is the default initializer of the object

new

(4) Signature: [static] new SimplePolygon ptr new (const Box box)

Description: Constructor converting a box to a polygon

box: The box to convert to a polygon

Python specific notes:
This method is the default initializer of the object

num_points
Signature: unsigned long num_points

Description: Gets the number of points

perimeter
Signature: [const] unsigned long perimeter

Description: Gets the perimeter of the polygon

For more details visit
https://www.klayout.org

Page 1024 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.58. API reference - Class SimplePolygon

The perimeter is sum of the lengths of all edges making up the polygon.

point
Signature: Point point (unsigned long p)

Description: Gets a specific point of the contour@param p The index of the point to get

If the index of the point is not a valid index, a default value is returned. This method was introduced in
version 0.18.

points=
Signature: void points= (Point[] pts)

Description: Sets the points of the simple polygon

pts: An array of points to assign to the simple polygon

See the constructor description for details about raw mode.

Python specific notes:
The object exposes a writable attribute 'points'. This is the setter.

round_corners
Signature: [const] SimplePolygon round_corners (double rinner, double router, unsigned int n)

Description: Rounds the corners of the polygon

rinner: The circle radius of inner corners (in database units).

router: The circle radius of outer corners (in database units).

n: The number of points per full circle.

Returns: The new polygon.

Replaces the corners of the polygon with circle segments.

This method was introduced in version 0.22 for integer coordinates and in 0.25 for all coordinate
types.

set_points
Signature: void set_points (Point[] pts, bool raw = false)

Description: Sets the points of the simple polygon

pts: An array of points to assign to the simple polygon

raw: If true, the points are taken as they are

See the constructor description for details about raw mode.

This method has been added in version 0.24.

split
Signature: [const] SimplePolygon[] split

Description: Splits the polygon into two or more parts

This method will break the polygon into parts. The exact breaking algorithm is unspecified, the
result are smaller polygons of roughly equal number of points and 'less concave' nature. Usually
the returned polygon set consists of two polygons, but there can be more. The merged region of the
resulting polygons equals the original polygon with the exception of small snapping effects at new
vertexes.

The intended use for this method is a iteratively split polygons until the satisfy some maximum
number of points limit.

This method has been introduced in version 0.25.3.

to_dtype
Signature: [const] DSimplePolygon to_dtype (double dbu = 1)

Description: Converts the polygon to a floating-point coordinate polygon

For more details visit
https://www.klayout.org

Page 1025 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.58. API reference - Class SimplePolygon

The database unit can be specified to translate the integer-coordinate polygon into a floating-point
coordinate polygon in micron units. The database unit is basically a scaling factor.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s

Description: Returns a string representing the polygon

Python specific notes:
This method is also available as 'str(object)'

(1) Signature: [const] bool touches? (const Box box)

Description: Returns true, if the polygon touches the given box.

The box and the polygon touch if they overlap or their contours share at least one point.

This method was introduced in version 0.25.1.

(2) Signature: [const] bool touches? (const Edge edge)

Description: Returns true, if the polygon touches the given edge.

The edge and the polygon touch if they overlap or the edge shares at least one point with the
polygon's contour.

This method was introduced in version 0.25.1.

(3) Signature: [const] bool touches? (const Polygon polygon)

Description: Returns true, if the polygon touches the other polygon.

The polygons touch if they overlap or their contours share at least one point.

This method was introduced in version 0.25.1.

touches?

(4) Signature: [const] bool touches? (const SimplePolygon simple_polygon)

Description: Returns true, if the polygon touches the other polygon.

The polygons touch if they overlap or their contours share at least one point.

This method was introduced in version 0.25.1.

(1) Signature: SimplePolygon ptr transform (const ICplxTrans t)

Description: Transforms the simple polygon with a complex transformation (in-place)

t: The transformation to apply.

Transforms the simple polygon with the given complex transformation. Modifies self and returns self.
An out-of-place version which does not modify self is transformed.

This method has been introduced in version 0.24.

transform

(2) Signature: SimplePolygon ptr transform (const Trans t)

Description: Transforms the simple polygon (in-place)

t: The transformation to apply.

Transforms the simple polygon with the given transformation. Modifies self and returns self. An out-
of-place version which does not modify self is transformed.

This method has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1026 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.58. API reference - Class SimplePolygon

(1) Signature: [const] SimplePolygon transformed (const ICplxTrans t)

Description: Transforms the simple polygon.

t: The transformation to apply.

Returns: The transformed simple polygon (in this case an integer coordinate
object).

Transforms the simple polygon with the given complex transformation. Does not modify the simple
polygon but returns the transformed polygon.

This method has been introduced in version 0.18.

(2) Signature: [const] SimplePolygon transformed (const Trans t)

Description: Transforms the simple polygon.

t: The transformation to apply.

Returns: The transformed simple polygon.

Transforms the simple polygon with the given transformation. Does not modify the simple polygon but
returns the transformed polygon.

transformed

(3) Signature: [const] DSimplePolygon transformed (const CplxTrans t)

Description: Transforms the simple polygon.

t: The transformation to apply.

Returns: The transformed simple polygon.

Transforms the simple polygon with the given complex transformation. Does not modify the simple
polygon but returns the transformed polygon.

With version 0.25, the original 'transformed_cplx' method is deprecated and 'transformed' takes both
simple and complex transformations.

transformed_cplx
Signature: [const] DSimplePolygon transformed_cplx (const CplxTrans t)

Description: Transforms the simple polygon.

t: The transformation to apply.

Returns: The transformed simple polygon.

Use of this method is deprecated. Use transformed instead

Transforms the simple polygon with the given complex transformation. Does not modify the simple
polygon but returns the transformed polygon.

With version 0.25, the original 'transformed_cplx' method is deprecated and 'transformed' takes both
simple and complex transformations.

For more details visit
https://www.klayout.org

Page 1027 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.59. API reference - Class DSimplePolygon

4.59. API reference - Class DSimplePolygon
Notation used in Ruby API documentation

Module: db

Description: A simple polygon class

A simple polygon consists of an outer hull only. To support polygons with holes, use DPolygon. The contour consists of several points. The
point list is normalized such that the leftmost, lowest point is the first one. The orientation is normalized such that the orientation of the hull
contour is clockwise.

It is in no way checked that the contours are not over- lapping. This must be ensured by the user of the object when filling the contours.

The DSimplePolygon class stores coordinates in floating-point format which gives a higher precision for some operations. A class that
stores integer coordinates is SimplePolygon.

See The Database API for more details about the database objects.

Public constructors

new DSimplePolygon ptr new (const SimplePolygon
polygon)

Creates a floating-point coordinate polygon from
an integer coordinate polygon

new DSimplePolygon ptr new Default constructor: creates an empty (invalid)
polygon

new DSimplePolygon ptr new (DPoint[] pts,
bool raw = false)

Constructor given the points of the simple
polygon

new DSimplePolygon ptr new (const DBox box) Constructor converting a box to a polygon

Public methods

[const] bool != (const
DSimplePolygon
p)

Returns a value indicating whether self is not
equal to p

[const] DSimplePolygon * (double f) Scales the polygon by some factor

[const] bool < (const
DSimplePolygon
p)

Returns a value indicating whether self is
less than p

[const] bool == (const
DSimplePolygon
p)

Returns a value indicating whether self is
equal to p

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

For more details visit
https://www.klayout.org

Page 1028 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.59. API reference - Class DSimplePolygon

void _unmanage Marks the object as no longer owned by the
script side.

[const] double area Gets the area of the polygon

[const] double area2 Gets the double area of the polygon

void assign (const
DSimplePolygon
other)

Assigns another object to self

[const] DBox bbox Returns the bounding box of the simple
polygon

void compress (bool
remove_reflected)

Compressed the simple polygon.

[const] new
DSimplePolygon ptr

dup Creates a copy of self

[const,iter] DEdge each_edge Iterates over the edges that make up the
simple polygon

[const,iter] DPoint each_point Iterates over the points that make up the
simple polygon

[const] variant[] extract_rad Extracts the corner radii from a rounded
polygon

[const] unsigned long hash Computes a hash value

[const] bool inside? (DPoint p) Gets a value indicating whether the given
point is inside the polygon

[const] bool is_box? Returns a value indicating whether the
polygon is a simple box.

bool is_empty? Returns a value indicating whether the
polygon is empty

[const] bool is_halfmanhattan? Returns a value indicating whether the
polygon is half-manhattan

[const] bool is_rectilinear? Returns a value indicating whether the
polygon is rectilinear

DSimplePolygon move (const DVector p) Moves the simple polygon.

DSimplePolygon move (double x,
double y)

Moves the polygon.

[const] DSimplePolygon moved (const DVector p) Returns the moved simple polygon

[const] DSimplePolygon moved (double x,
double y)

Returns the moved polygon (does not modify
self)

unsigned long num_points Gets the number of points

For more details visit
https://www.klayout.org

Page 1029 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.59. API reference - Class DSimplePolygon

[const] double perimeter Gets the perimeter of the polygon

DPoint point (unsigned long p) Gets a specific point of the contour@param
p The index of the point to get

void points= (DPoint[] pts) Sets the points of the simple polygon

[const] DSimplePolygon round_corners (double rinner,
double router,
unsigned int n)

Rounds the corners of the polygon

void set_points (DPoint[] pts,
bool raw = false)

Sets the points of the simple polygon

[const] DSimplePolygon[] split Splits the polygon into two or more parts

[const] SimplePolygon to_itype (double dbu = 1) Converts the polygon to an integer
coordinate polygon

[const] string to_s Returns a string representing the polygon

[const] bool touches? (const DBox box) Returns true, if the polygon touches the
given box.

[const] bool touches? (const DEdge
edge)

Returns true, if the polygon touches the
given edge.

[const] bool touches? (const DPolygon
polygon)

Returns true, if the polygon touches the other
polygon.

[const] bool touches? (const
DSimplePolygon
simple_polygon)

Returns true, if the polygon touches the other
polygon.

DSimplePolygon ptr transform (const
DCplxTrans t)

Transforms the simple polygon with a
complex transformation (in-place)

DSimplePolygon ptr transform (const DTrans t) Transforms the simple polygon (in-place)

[const] SimplePolygon transformed (const VCplxTrans
t)

Transforms the polygon with the given
complex transformation

[const] DSimplePolygon transformed (const DTrans t) Transforms the simple polygon.

[const] DSimplePolygon transformed (const
DCplxTrans t)

Transforms the simple polygon.

Public static methods and constants

new DSimplePolygon ptr ellipse (const DBox box,
int n)

Creates a simple polygon approximating
an ellipse

new DSimplePolygon ptr from_s (string s) Creates an object from a string

For more details visit
https://www.klayout.org

Page 1030 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.59. API reference - Class DSimplePolygon

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

[static] new
DSimplePolygon
ptr

from_ipoly (const
SimplePolygon
polygon)

Use of this method is deprecated. Use new
instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[const] DSimplePolygon transformed_cplx (const
DCplxTrans
t)

Use of this method is deprecated. Use
transformed instead

Detailed description

!=
Signature: [const] bool != (const DSimplePolygon p)

Description: Returns a value indicating whether self is not equal to p

p: The object to compare against

*
Signature: [const] DSimplePolygon * (double f)

Description: Scales the polygon by some factor

Returns the scaled object. All coordinates are multiplied with the given factor and if necessary
rounded.

Python specific notes:
This method is also available as '__mul__'

<
Signature: [const] bool < (const DSimplePolygon p)

Description: Returns a value indicating whether self is less than p

p: The object to compare against

This operator is provided to establish some, not necessarily a certain sorting order

This method has been introduced in version 0.25.

==
Signature: [const] bool == (const DSimplePolygon p)

Description: Returns a value indicating whether self is equal to p

p: The object to compare against

_create
Signature: void _create

Description: Ensures the C++ object is created

For more details visit
https://www.klayout.org

Page 1031 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.59. API reference - Class DSimplePolygon

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

area
Signature: [const] double area

Description: Gets the area of the polygon

The area is correct only if the polygon is not self-overlapping and the polygon is oriented clockwise.

area2
Signature: [const] double area2

Description: Gets the double area of the polygon

This method is provided because the area for an integer-type polygon is a multiple of 1/2. Hence the
double area can be expresses precisely as an integer for these types.

This method has been introduced in version 0.26.1

For more details visit
https://www.klayout.org

Page 1032 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.59. API reference - Class DSimplePolygon

assign
Signature: void assign (const DSimplePolygon other)

Description: Assigns another object to self

bbox
Signature: [const] DBox bbox

Description: Returns the bounding box of the simple polygon

compress
Signature: void compress (bool remove_reflected)

Description: Compressed the simple polygon.

remove_reflected: See description of the functionality.

This method removes redundant points from the polygon, such as points being on a line formed by
two other points. If remove_reflected is true, points are also removed if the two adjacent edges form a
spike.

This method was introduced in version 0.18.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new DSimplePolygon ptr dup

Description: Creates a copy of self

each_edge
Signature: [const,iter] DEdge each_edge

Description: Iterates over the edges that make up the simple polygon

each_point
Signature: [const,iter] DPoint each_point

Description: Iterates over the points that make up the simple polygon

ellipse
Signature: [static] new DSimplePolygon ptr ellipse (const DBox box, int n)

Description: Creates a simple polygon approximating an ellipse

For more details visit
https://www.klayout.org

Page 1033 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.59. API reference - Class DSimplePolygon

box: The bounding box of the ellipse

n: The number of points that will be used to approximate the ellipse

This method has been introduced in version 0.23.

extract_rad
Signature: [const] variant[] extract_rad

Description: Extracts the corner radii from a rounded polygon

Attempts to extract the radii of rounded corner polygon. This is essentially the inverse of the
round_corners method. If this method succeeds, if will return an array of four elements:

• The polygon with the rounded corners replaced by edgy ones

• The radius of the inner corners

• The radius of the outer corners

• The number of points per full circle

This method is based on some assumptions and may fail. In this case, an empty array is returned.

If successful, the following code will more or less render the original polygon and parameters

p = ... # some polygon
p.round_corners(ri, ro, n)
(p2, ri2, ro2, n2) = p.extract_rad
-> p2 == p, ro2 == ro, ri2 == ri, n2 == n (within some limits)

This method was introduced in version 0.25.

from_ipoly
Signature: [static] new DSimplePolygon ptr from_ipoly (const SimplePolygon polygon)

Description: Creates a floating-point coordinate polygon from an integer coordinate polygon

Use of this method is deprecated. Use new instead

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_ipoly'.

Python specific notes:
This method is the default initializer of the object

from_s
Signature: [static] new DSimplePolygon ptr from_s (string s)

Description: Creates an object from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given polygon. This method enables polygons as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

For more details visit
https://www.klayout.org

Page 1034 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.59. API reference - Class DSimplePolygon

inside?
Signature: [const] bool inside? (DPoint p)

Description: Gets a value indicating whether the given point is inside the polygon

If the given point is inside or on the edge the polygon, true is returned. This tests works well only if
the polygon is not self-overlapping and oriented clockwise.

is_box?
Signature: [const] bool is_box?

Description: Returns a value indicating whether the polygon is a simple box.

Returns: True if the polygon is a box.

A polygon is a box if it is identical to it's bounding box.

This method was introduced in version 0.23.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_empty?
Signature: bool is_empty?

Description: Returns a value indicating whether the polygon is empty

is_halfmanhattan?
Signature: [const] bool is_halfmanhattan?

Description: Returns a value indicating whether the polygon is half-manhattan

Half-manhattan polygons have edges which are multiples of 45 degree. These polygons can be
clipped at a rectangle without potential grid snapping.

This predicate was introduced in version 0.27.

is_rectilinear?
Signature: [const] bool is_rectilinear?

Description: Returns a value indicating whether the polygon is rectilinear

(1) Signature: DSimplePolygon move (const DVector p)

Description: Moves the simple polygon.

p: The distance to move the simple polygon.

Returns: The moved simple polygon.

Moves the simple polygon by the given offset and returns the moved simple polygon. The polygon is
overwritten.

move

(2) Signature: DSimplePolygon move (double x, double y)

Description: Moves the polygon.

x: The x distance to move the polygon.

y: The y distance to move the polygon.

Returns: The moved polygon (self).

Moves the polygon by the given offset and returns the moved polygon. The polygon is overwritten.

For more details visit
https://www.klayout.org

Page 1035 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.59. API reference - Class DSimplePolygon

(1) Signature: [const] DSimplePolygon moved (const DVector p)

Description: Returns the moved simple polygon

p: The distance to move the simple polygon.

Returns: The moved simple polygon.

Moves the simple polygon by the given offset and returns the moved simple polygon. The polygon is
not modified.

moved

(2) Signature: [const] DSimplePolygon moved (double x, double y)

Description: Returns the moved polygon (does not modify self)

x: The x distance to move the polygon.

y: The y distance to move the polygon.

Returns: The moved polygon.

Moves the polygon by the given offset and returns the moved polygon. The polygon is not modified.

This method has been introduced in version 0.23.

(1) Signature: [static] new DSimplePolygon ptr new (const SimplePolygon polygon)

Description: Creates a floating-point coordinate polygon from an integer coordinate polygon

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_ipoly'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new DSimplePolygon ptr new

Description: Default constructor: creates an empty (invalid) polygon

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new DSimplePolygon ptr new (DPoint[] pts, bool raw = false)

Description: Constructor given the points of the simple polygon

pts: The points forming the simple polygon

raw: If true, the points are taken as they are (see below)

If the 'raw' argument is set to true, the points are taken as they are. Specifically no removal of
redundant points or joining of coincident edges will take place. In effect, polygons consisting of a
single point or two points can be constructed as well as polygons with duplicate points. Note that
such polygons may cause problems in some applications.

Regardless of raw mode, the point list will be adjusted such that the first point is the lowest-leftmost
one and the orientation is clockwise always.

The 'raw' argument has been added in version 0.24.

Python specific notes:
This method is the default initializer of the object

new

(4) Signature: [static] new DSimplePolygon ptr new (const DBox box)

Description: Constructor converting a box to a polygon

box: The box to convert to a polygon

Python specific notes:

For more details visit
https://www.klayout.org

Page 1036 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.59. API reference - Class DSimplePolygon

This method is the default initializer of the object

num_points
Signature: unsigned long num_points

Description: Gets the number of points

perimeter
Signature: [const] double perimeter

Description: Gets the perimeter of the polygon

The perimeter is sum of the lengths of all edges making up the polygon.

point
Signature: DPoint point (unsigned long p)

Description: Gets a specific point of the contour@param p The index of the point to get

If the index of the point is not a valid index, a default value is returned. This method was introduced in
version 0.18.

points=
Signature: void points= (DPoint[] pts)

Description: Sets the points of the simple polygon

pts: An array of points to assign to the simple polygon

See the constructor description for details about raw mode.

Python specific notes:
The object exposes a writable attribute 'points'. This is the setter.

round_corners
Signature: [const] DSimplePolygon round_corners (double rinner, double router, unsigned int n)

Description: Rounds the corners of the polygon

rinner: The circle radius of inner corners (in database units).

router: The circle radius of outer corners (in database units).

n: The number of points per full circle.

Returns: The new polygon.

Replaces the corners of the polygon with circle segments.

This method was introduced in version 0.22 for integer coordinates and in 0.25 for all coordinate
types.

set_points
Signature: void set_points (DPoint[] pts, bool raw = false)

Description: Sets the points of the simple polygon

pts: An array of points to assign to the simple polygon

raw: If true, the points are taken as they are

See the constructor description for details about raw mode.

This method has been added in version 0.24.

split
Signature: [const] DSimplePolygon[] split

Description: Splits the polygon into two or more parts

This method will break the polygon into parts. The exact breaking algorithm is unspecified, the
result are smaller polygons of roughly equal number of points and 'less concave' nature. Usually
the returned polygon set consists of two polygons, but there can be more. The merged region of the
resulting polygons equals the original polygon with the exception of small snapping effects at new
vertexes.

For more details visit
https://www.klayout.org

Page 1037 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.59. API reference - Class DSimplePolygon

The intended use for this method is a iteratively split polygons until the satisfy some maximum
number of points limit.

This method has been introduced in version 0.25.3.

to_itype
Signature: [const] SimplePolygon to_itype (double dbu = 1)

Description: Converts the polygon to an integer coordinate polygon

The database unit can be specified to translate the floating-point coordinate polygon in micron units
to an integer-coordinate polygon in database units. The polygon's' coordinates will be divided by the
database unit.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s

Description: Returns a string representing the polygon

Python specific notes:
This method is also available as 'str(object)'

(1) Signature: [const] bool touches? (const DBox box)

Description: Returns true, if the polygon touches the given box.

The box and the polygon touch if they overlap or their contours share at least one point.

This method was introduced in version 0.25.1.

(2) Signature: [const] bool touches? (const DEdge edge)

Description: Returns true, if the polygon touches the given edge.

The edge and the polygon touch if they overlap or the edge shares at least one point with the
polygon's contour.

This method was introduced in version 0.25.1.

(3) Signature: [const] bool touches? (const DPolygon polygon)

Description: Returns true, if the polygon touches the other polygon.

The polygons touch if they overlap or their contours share at least one point.

This method was introduced in version 0.25.1.

touches?

(4) Signature: [const] bool touches? (const DSimplePolygon simple_polygon)

Description: Returns true, if the polygon touches the other polygon.

The polygons touch if they overlap or their contours share at least one point.

This method was introduced in version 0.25.1.

(1) Signature: DSimplePolygon ptr transform (const DCplxTrans t)

Description: Transforms the simple polygon with a complex transformation (in-place)

t: The transformation to apply.

Transforms the simple polygon with the given complex transformation. Modifies self and returns self.
An out-of-place version which does not modify self is transformed.

This method has been introduced in version 0.24.

transform

(2) Signature: DSimplePolygon ptr transform (const DTrans t)

For more details visit
https://www.klayout.org

Page 1038 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.59. API reference - Class DSimplePolygon

Description: Transforms the simple polygon (in-place)

t: The transformation to apply.

Transforms the simple polygon with the given transformation. Modifies self and returns self. An out-
of-place version which does not modify self is transformed.

This method has been introduced in version 0.24.

(1) Signature: [const] SimplePolygon transformed (const VCplxTrans t)

Description: Transforms the polygon with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed polygon (in this case an integer coordinate polygon)

This method has been introduced in version 0.25.

(2) Signature: [const] DSimplePolygon transformed (const DTrans t)

Description: Transforms the simple polygon.

t: The transformation to apply.

Returns: The transformed simple polygon.

Transforms the simple polygon with the given transformation. Does not modify the simple polygon but
returns the transformed polygon.

transformed

(3) Signature: [const] DSimplePolygon transformed (const DCplxTrans t)

Description: Transforms the simple polygon.

t: The transformation to apply.

Returns: The transformed simple polygon.

Transforms the simple polygon with the given complex transformation. Does not modify the simple
polygon but returns the transformed polygon.

With version 0.25, the original 'transformed_cplx' method is deprecated and 'transformed' takes both
simple and complex transformations.

transformed_cplx
Signature: [const] DSimplePolygon transformed_cplx (const DCplxTrans t)

Description: Transforms the simple polygon.

t: The transformation to apply.

Returns: The transformed simple polygon.

Use of this method is deprecated. Use transformed instead

Transforms the simple polygon with the given complex transformation. Does not modify the simple
polygon but returns the transformed polygon.

With version 0.25, the original 'transformed_cplx' method is deprecated and 'transformed' takes both
simple and complex transformations.

For more details visit
https://www.klayout.org

Page 1039 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

4.60. API reference - Class Polygon
Notation used in Ruby API documentation

Module: db

Description: A polygon class

A polygon consists of an outer hull and zero to many holes. Each contour consists of several points. The point list is normalized such that
the leftmost, lowest point is the first one. The orientation is normalized such that the orientation of the hull contour is clockwise, while the
orientation of the holes is counterclockwise.

It is in no way checked that the contours are not overlapping. This must be ensured by the user of the object when filling the contours.

A polygon can be asked for the number of holes using the holes method. each_point_hull delivers the points of the hull contour.
each_point_hole delivers the points of a specific hole. each_edge delivers the edges (point-to-point connections) of both hull and holes.
bbox delivers the bounding box, area the area and perimeter the perimeter of the polygon.

Here's an example of how to create a polygon:

hull = [RBA::Point::new(0, 0), RBA::Point::new(6000, 0),
 RBA::Point::new(6000, 3000), RBA::Point::new(0, 3000)]
hole1 = [RBA::Point::new(1000, 1000), RBA::Point::new(2000, 1000),
 RBA::Point::new(2000, 2000), RBA::Point::new(1000, 2000)]
hole2 = [RBA::Point::new(3000, 1000), RBA::Point::new(4000, 1000),
 RBA::Point::new(4000, 2000), RBA::Point::new(3000, 2000)]
poly = RBA::Polygon::new(hull)
poly.insert_hole(hole1)
poly.insert_hole(hole2)

ask the polygon for some properties
poly.holes # -> 2
poly.area # -> 16000000
poly.perimeter # -> 26000
poly.bbox # -> (0,0;6000,3000)

The Polygon class stores coordinates in integer format. A class that stores floating-point coordinates is DPolygon.

See The Database API for more details about the database objects.

Public constructors

new Polygon ptr new (const DPolygon dpolygon) Creates an integer coordinate polygon from a
floating-point coordinate polygon

new Polygon ptr new Creates an empty (invalid) polygon

new Polygon ptr new (const SimplePolygon sp) Creates a polygon from a simple polygon

new Polygon ptr new (Point[] pts,
bool raw = false)

Creates a polygon from a point array for the hull

new Polygon ptr new (const Box box) Creates a polygon from a box

Public methods

[const] bool != (const Polygon p) Returns a value indicating whether the
polygons are not equal

[const] Polygon * (double f) Scales the polygon by some factor

For more details visit
https://www.klayout.org

Page 1040 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

[const] bool < (const Polygon p) Returns a value indicating whether self is
less than p

[const] bool == (const Polygon p) Returns a value indicating whether the
polygons are equal

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by
the script side.

[const] long area Gets the area of the polygon

[const] long area2 Gets the double area of the polygon

void assign (const Polygon other) Assigns another object to self

void assign_hole (unsigned int n,
Point[] p,
bool raw = false)

Sets the points of the given hole of the
polygon

void assign_hole (unsigned int n,
const Box b)

Sets the box as the given hole of the
polygon

void assign_hull (Point[] p,
bool raw = false)

Sets the points of the hull of polygon

[const] Box bbox Returns the bounding box of the polygon

void compress (bool
remove_reflected)

Compresses the polygon.

[const] SimplePolygon[] decompose_convex (int
preferred_orientation
= PO_any)

Decomposes the polygon into convex
pieces

[const] SimplePolygon[] decompose_trapezoids(int mode =
TD_simple)

Decomposes the polygon into trapezoids

[const] new Polygon ptr dup Creates a copy of self

[const,iter] Edge each_edge Iterates over the edges that make up the
polygon

[const,iter] Edge each_edge (unsigned int
contour)

Iterates over the edges of one contour of
the polygon

For more details visit
https://www.klayout.org

Page 1041 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

[const,iter] Point each_point_hole (unsigned int n) Iterates over the points that make up the
nth hole

[const,iter] Point each_point_hull Iterates over the points that make up the
hull

[const] variant[] extract_rad Extracts the corner radii from a rounded
polygon

[const] unsigned long hash Computes a hash value

[const] unsigned int holes Returns the number of holes

void hull= (Point[] p) Sets the points of the hull of polygon

void insert_hole (Point[] p,
bool raw = false)

Inserts a hole with the given points

void insert_hole (const Box b) Inserts a hole from the given box

[const] bool inside? (Point p) Tests, if the given point is inside the
polygon

[const] bool is_box? Returns true, if the polygon is a simple box.

[const] bool is_convex? Returns a value indicating whether the
polygon is convex

bool is_empty? Returns a value indicating whether the
polygon is empty

[const] bool is_halfmanhattan? Returns a value indicating whether the
polygon is half-manhattan

[const] bool is_rectilinear? Returns a value indicating whether the
polygon is rectilinear

[const] Polygon minkowski_sum (const Edge e,
bool resolve_holes)

Computes the Minkowski sum of the
polygon and an edge

[const] Polygon minkowski_sum (const Polygon b,
bool resolve_holes)

Computes the Minkowski sum of the
polygon and a polygon

[const] Polygon minkowski_sum (const Box b,
bool resolve_holes)

Computes the Minkowski sum of the
polygon and a box

[const] Polygon minkowski_sum (Point[] b,
bool resolve_holes)

Computes the Minkowski sum of the
polygon and a contour of points (a trace)

Polygon move (const Vector p) Moves the polygon.

Polygon move (int x,
int y)

Moves the polygon.

[const] Polygon moved (const Vector p) Returns the moved polygon (does not
modify self)

For more details visit
https://www.klayout.org

Page 1042 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

[const] Polygon moved (int x,
int y)

Returns the moved polygon (does not
modify self)

unsigned long num_points Gets the total number of points (hull plus
holes)

unsigned long num_points_hole (unsigned int n) Gets the number of points of the given hole

unsigned long num_points_hull Gets the number of points of the hull

[const] unsigned long perimeter Gets the perimeter of the polygon

Point point_hole (unsigned int n,
unsigned long p)

Gets a specific point of a hole

Point point_hull (unsigned long p) Gets a specific point of the hull

void resolve_holes Resolve holes by inserting cut lines and
joining the holes with the hull

[const] Polygon resolved_holes Returns a polygon without holes

[const] Polygon round_corners (double rinner,
double router,
unsigned int n)

Rounds the corners of the polygon

void size (int dx,
int dy,
unsigned int mode)

Sizes the polygon (biasing)

void size (const Vector dv,
unsigned int mode =
2)

Sizes the polygon (biasing)

void size (int d,
unsigned int mode =
2)

Sizes the polygon (biasing)

[const] Polygon sized (int dx,
int dy,
unsigned int mode)

Sizes the polygon (biasing) without
modifying self

[const] Polygon sized (const Vector dv,
unsigned int mode =
2)

Sizes the polygon (biasing) without
modifying self

[const] Polygon sized (int d,
unsigned int mode =
2)

Sizes the polygon (biasing) without
modifying self

[const] Polygon smooth (int d,
bool keep_hv = false)

Smooths a polygon

[const] Polygon[] split Splits the polygon into two or more parts

[const] DPolygon to_dtype (double dbu = 1) Converts the polygon to a floating-point
coordinate polygon

[const] string to_s Returns a string representing the polygon

For more details visit
https://www.klayout.org

Page 1043 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

[const] SimplePolygon to_simple_polygon Converts a polygon to a simple polygon

[const] bool touches? (const Box box) Returns true, if the polygon touches the
given box.

[const] bool touches? (const Edge edge) Returns true, if the polygon touches the
given edge.

[const] bool touches? (const Polygon
polygon)

Returns true, if the polygon touches the
other polygon.

[const] bool touches? (const
SimplePolygon
simple_polygon)

Returns true, if the polygon touches the
other polygon.

Polygon ptr transform (const ICplxTrans t) Transforms the polygon with a complex
transformation (in-place)

Polygon ptr transform (const Trans t) Transforms the polygon (in-place)

[const] Polygon transformed (const Trans t) Transforms the polygon

[const] DPolygon transformed (const CplxTrans t) Transforms the polygon with a complex
transformation

Public static methods and constants

[static,const] int PO_any A value for the preferred orientation parameter of
decompose_convex

[static,const] int PO_horizontal A value for the preferred orientation parameter of
decompose_convex

[static,const] int PO_htrapezoids A value for the preferred orientation parameter of
decompose_convex

[static,const] int PO_vertical A value for the preferred orientation parameter of
decompose_convex

[static,const] int PO_vtrapezoids A value for the preferred orientation parameter of
decompose_convex

[static,const] int TD_htrapezoids A value for the mode parameter of
decompose_trapezoids

[static,const] int TD_simple A value for the mode parameter of
decompose_trapezoids

[static,const] int TD_vtrapezoids A value for the mode parameter of
decompose_trapezoids

new Polygon
ptr

ellipse (const
Box
box,
int n)

Creates a simple polygon approximating an ellipse

new Polygon
ptr

from_s (string
s)

Creates a polygon from a string

For more details visit
https://www.klayout.org

Page 1044 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use
_create instead

void destroy Use of this method is deprecated. Use
_destroy instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

[static] new Polygon
ptr

from_dpoly (const DPolygon
dpolygon)

Use of this method is deprecated. Use new
instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[const] Polygon minkowsky_sum (const Edge e,
bool resolve_holes)

Use of this method is deprecated. Use
minkowski_sum instead

[const] Polygon minkowsky_sum (const Polygon b,
bool resolve_holes)

Use of this method is deprecated. Use
minkowski_sum instead

[const] Polygon minkowsky_sum (const Box b,
bool resolve_holes)

Use of this method is deprecated. Use
minkowski_sum instead

[const] Polygon minkowsky_sum (Point[] b,
bool resolve_holes)

Use of this method is deprecated. Use
minkowski_sum instead

[const] Polygon transformed (const ICplxTrans t) Use of this method is deprecated

[const] DPolygon transformed_cplx (const CplxTrans t) Use of this method is deprecated. Use
transformed instead

Detailed description

!=
Signature: [const] bool != (const Polygon p)

Description: Returns a value indicating whether the polygons are not equal

p: The object to compare against

*
Signature: [const] Polygon * (double f)

Description: Scales the polygon by some factor

Returns the scaled object. All coordinates are multiplied with the given factor and if necessary
rounded.

Python specific notes:
This method is also available as '__mul__'

<
Signature: [const] bool < (const Polygon p)

Description: Returns a value indicating whether self is less than p

p: The object to compare against

For more details visit
https://www.klayout.org

Page 1045 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

This operator is provided to establish some, not necessarily a certain sorting order

==
Signature: [const] bool == (const Polygon p)

Description: Returns a value indicating whether the polygons are equal

p: The object to compare against

PO_any
Signature: [static,const] int PO_any

Description: A value for the preferred orientation parameter of decompose_convex

This value indicates that there is not cut preference This constant has been introduced in version
0.25.

PO_horizontal
Signature: [static,const] int PO_horizontal

Description: A value for the preferred orientation parameter of decompose_convex

This value indicates that there only horizontal cuts are allowed This constant has been introduced in
version 0.25.

PO_htrapezoids
Signature: [static,const] int PO_htrapezoids

Description: A value for the preferred orientation parameter of decompose_convex

This value indicates that cuts shall favor decomposition into horizontal trapezoids This constant has
been introduced in version 0.25.

PO_vertical
Signature: [static,const] int PO_vertical

Description: A value for the preferred orientation parameter of decompose_convex

This value indicates that there only vertical cuts are allowed This constant has been introduced in
version 0.25.

PO_vtrapezoids
Signature: [static,const] int PO_vtrapezoids

Description: A value for the preferred orientation parameter of decompose_convex

This value indicates that cuts shall favor decomposition into vertical trapezoids This constant has
been introduced in version 0.25.

TD_htrapezoids
Signature: [static,const] int TD_htrapezoids

Description: A value for the mode parameter of decompose_trapezoids

This value indicates simple decomposition mode. This mode produces horizontal trapezoids and tries
to minimize the number of trapezoids. This constant has been introduced in version 0.25.

TD_simple
Signature: [static,const] int TD_simple

Description: A value for the mode parameter of decompose_trapezoids

This value indicates simple decomposition mode. This mode is fast but does not make any attempts
to produce less trapezoids. This constant has been introduced in version 0.25.

TD_vtrapezoids
Signature: [static,const] int TD_vtrapezoids

Description: A value for the mode parameter of decompose_trapezoids

This value indicates simple decomposition mode. This mode produces vertical trapezoids and tries to
minimize the number of trapezoids.

For more details visit
https://www.klayout.org

Page 1046 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

area
Signature: [const] long area

Description: Gets the area of the polygon

The area is correct only if the polygon is not self-overlapping and the polygon is oriented
clockwise.Orientation is ensured automatically in most cases.

area2
Signature: [const] long area2

Description: Gets the double area of the polygon

For more details visit
https://www.klayout.org

Page 1047 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

This method is provided because the area for an integer-type polygon is a multiple of 1/2. Hence the
double area can be expresses precisely as an integer for these types.

This method has been introduced in version 0.26.1

assign
Signature: void assign (const Polygon other)

Description: Assigns another object to self

(1) Signature: void assign_hole (unsigned int n, Point[] p, bool raw = false)

Description: Sets the points of the given hole of the polygon

n: The index of the hole to which the points should be assigned

p: An array of points to assign to the polygon's hole

raw: If true, the points won't be compressed (see assign_hull)

If the hole index is not valid, this method does nothing.

This method was introduced in version 0.18. The 'raw' argument was added in version 0.24.

assign_hole

(2) Signature: void assign_hole (unsigned int n, const Box b)

Description: Sets the box as the given hole of the polygon

n: The index of the hole to which the points should be assigned

b: The box to assign to the polygon's hole

If the hole index is not valid, this method does nothing. This method was introduced in version 0.23.

assign_hull
Signature: void assign_hull (Point[] p, bool raw = false)

Description: Sets the points of the hull of polygon

p: An array of points to assign to the polygon's hull

raw: If true, the points won't be compressed

If the 'raw' argument is set to true, the points are taken as they are. Specifically no removal of
redundant points or joining of coincident edges will take place. In effect, polygons consisting of a
single point or two points can be constructed as well as polygons with duplicate points. Note that
such polygons may cause problems in some applications.

Regardless of raw mode, the point list will be adjusted such that the first point is the lowest-leftmost
one and the orientation is clockwise always.

The 'assign_hull' variant is provided in analogy to 'assign_hole'.

The 'raw' argument was added in version 0.24.

bbox
Signature: [const] Box bbox

Description: Returns the bounding box of the polygon

The bounding box is the box enclosing all points of the polygon.

compress
Signature: void compress (bool remove_reflected)

Description: Compresses the polygon.

remove_reflected: See description of the functionality.

This method removes redundant points from the polygon, such as points being on a line formed by
two other points. If remove_reflected is true, points are also removed if the two adjacent edges form
a spike.

For more details visit
https://www.klayout.org

Page 1048 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

This method was introduced in version 0.18.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

decompose_convex
Signature: [const] SimplePolygon[] decompose_convex (int preferred_orientation = PO_any)

Description: Decomposes the polygon into convex pieces

preferred_orientation: One of the PO_... constants

This method returns a decomposition of the polygon that contains convex pieces only. If the polygon
was convex already, the list returned has a single element which is the original polygon.

This method was introduced in version 0.25.

decompose_trapezoids
Signature: [const] SimplePolygon[] decompose_trapezoids (int mode = TD_simple)

Description: Decomposes the polygon into trapezoids

mode: One of the TD_... constants

This method returns a decomposition of the polygon into trapezoid pieces. It supports different
modes for various applications. See the TD_... constants for details.

This method was introduced in version 0.25.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new Polygon ptr dup

Description: Creates a copy of self

(1) Signature: [const,iter] Edge each_edge

Description: Iterates over the edges that make up the polygon

This iterator will deliver all edges, including those of the holes. Hole edges are oriented
counterclockwise while hull edges are oriented clockwise.

each_edge

(2) Signature: [const,iter] Edge each_edge (unsigned int contour)

For more details visit
https://www.klayout.org

Page 1049 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

Description: Iterates over the edges of one contour of the polygon

contour: The contour number (0 for hull, 1 for first hole ...)

This iterator will deliver all edges of the contour specified by the contour parameter. The hull has
contour number 0, the first hole has contour 1 etc. Hole edges are oriented counterclockwise while
hull edges are oriented clockwise.

This method was introduced in version 0.24.

each_point_hole
Signature: [const,iter] Point each_point_hole (unsigned int n)

Description: Iterates over the points that make up the nth hole

The hole number must be less than the number of holes (see holes)

each_point_hull
Signature: [const,iter] Point each_point_hull

Description: Iterates over the points that make up the hull

ellipse
Signature: [static] new Polygon ptr ellipse (const Box box, int n)

Description: Creates a simple polygon approximating an ellipse

box: The bounding box of the ellipse

n: The number of points that will be used to approximate the ellipse

This method has been introduced in version 0.23.

extract_rad
Signature: [const] variant[] extract_rad

Description: Extracts the corner radii from a rounded polygon

Attempts to extract the radii of rounded corner polygon. This is essentially the inverse of the
round_corners method. If this method succeeds, if will return an array of four elements:

• The polygon with the rounded corners replaced by edgy ones

• The radius of the inner corners

• The radius of the outer corners

• The number of points per full circle

This method is based on some assumptions and may fail. In this case, an empty array is returned.

If successful, the following code will more or less render the original polygon and parameters

p = ... # some polygon
p.round_corners(ri, ro, n)
(p2, ri2, ro2, n2) = p.extract_rad
-> p2 == p, ro2 == ro, ri2 == ri, n2 == n (within some limits)

This method was introduced in version 0.25.

from_dpoly
Signature: [static] new Polygon ptr from_dpoly (const DPolygon dpolygon)

Description: Creates an integer coordinate polygon from a floating-point coordinate polygon

Use of this method is deprecated. Use new instead

For more details visit
https://www.klayout.org

Page 1050 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dpolygon'.

Python specific notes:
This method is the default initializer of the object

from_s
Signature: [static] new Polygon ptr from_s (string s)

Description: Creates a polygon from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given polygon. This method enables polygons as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

holes
Signature: [const] unsigned int holes

Description: Returns the number of holes

hull=
Signature: void hull= (Point[] p)

Description: Sets the points of the hull of polygon

p: An array of points to assign to the polygon's hull

The 'assign_hull' variant is provided in analogy to 'assign_hole'.

Python specific notes:
The object exposes a writable attribute 'hull'. This is the setter.

(1) Signature: void insert_hole (Point[] p, bool raw = false)

Description: Inserts a hole with the given points

p: An array of points to insert as a new hole

raw: If true, the points won't be compressed (see assign_hull)

The 'raw' argument was added in version 0.24.

insert_hole

(2) Signature: void insert_hole (const Box b)

Description: Inserts a hole from the given box

b: The box to insert as a new hole

This method was introduced in version 0.23.

inside?
Signature: [const] bool inside? (Point p)

Description: Tests, if the given point is inside the polygon

If the given point is inside or on the edge of the polygon, true is returned. This tests works well only if
the polygon is not self-overlapping and oriented clockwise.

For more details visit
https://www.klayout.org

Page 1051 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

is_box?
Signature: [const] bool is_box?

Description: Returns true, if the polygon is a simple box.

Returns: True if the polygon is a box.

A polygon is a box if it is identical to it's bounding box.

This method was introduced in version 0.23.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_convex?
Signature: [const] bool is_convex?

Description: Returns a value indicating whether the polygon is convex

This method will return true, if the polygon is convex.

This method was introduced in version 0.25.

is_empty?
Signature: bool is_empty?

Description: Returns a value indicating whether the polygon is empty

is_halfmanhattan?
Signature: [const] bool is_halfmanhattan?

Description: Returns a value indicating whether the polygon is half-manhattan

Half-manhattan polygons have edges which are multiples of 45 degree. These polygons can be
clipped at a rectangle without potential grid snapping.

This predicate was introduced in version 0.27.

is_rectilinear?
Signature: [const] bool is_rectilinear?

Description: Returns a value indicating whether the polygon is rectilinear

(1) Signature: [const] Polygon minkowski_sum (const Edge e, bool resolve_holes)

Description: Computes the Minkowski sum of the polygon and an edge

e: The edge.

resolve_holes: If true, the output polygon will not contain holes, but holes are
resolved by joining the holes with the hull.

Returns: The new polygon representing the Minkowski sum with the edge
e.

The Minkowski sum of a polygon and an edge basically results in the area covered when "dragging"
the polygon along the line given by the edge. The effect is similar to drawing the line with a pencil
that has the shape of the given polygon.

This method was introduced in version 0.22.

minkowski_sum

(2) Signature: [const] Polygon minkowski_sum (const Polygon b, bool resolve_holes)

Description: Computes the Minkowski sum of the polygon and a polygon

p: The first argument.

For more details visit
https://www.klayout.org

Page 1052 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

resolve_holes: If true, the output polygon will not contain holes, but holes are
resolved by joining the holes with the hull.

Returns: The new polygon representing the Minkowski sum of self and p.

This method was introduced in version 0.22.

(3) Signature: [const] Polygon minkowski_sum (const Box b, bool resolve_holes)

Description: Computes the Minkowski sum of the polygon and a box

b: The box.

resolve_holes: If true, the output polygon will not contain holes, but holes are
resolved by joining the holes with the hull.

Returns: The new polygon representing the Minkowski sum of self and the
box.

This method was introduced in version 0.22.

(4) Signature: [const] Polygon minkowski_sum (Point[] b, bool resolve_holes)

Description: Computes the Minkowski sum of the polygon and a contour of points (a trace)

b: The contour (a series of points forming the trace).

resolve_holes: If true, the output polygon will not contain holes, but holes are
resolved by joining the holes with the hull.

Returns: The new polygon representing the Minkowski sum of self and the
contour.

This method was introduced in version 0.22.

(1) Signature: [const] Polygon minkowsky_sum (const Edge e, bool resolve_holes)

Description: Computes the Minkowski sum of the polygon and an edge

e: The edge.

resolve_holes: If true, the output polygon will not contain holes, but holes are
resolved by joining the holes with the hull.

Returns: The new polygon representing the Minkowski sum with the edge
e.

Use of this method is deprecated. Use minkowski_sum instead

The Minkowski sum of a polygon and an edge basically results in the area covered when "dragging"
the polygon along the line given by the edge. The effect is similar to drawing the line with a pencil
that has the shape of the given polygon.

This method was introduced in version 0.22.

(2) Signature: [const] Polygon minkowsky_sum (const Polygon b, bool resolve_holes)

Description: Computes the Minkowski sum of the polygon and a polygon

p: The first argument.

resolve_holes: If true, the output polygon will not contain holes, but holes are
resolved by joining the holes with the hull.

Returns: The new polygon representing the Minkowski sum of self and p.

Use of this method is deprecated. Use minkowski_sum instead

This method was introduced in version 0.22.

minkowsky_sum

For more details visit
https://www.klayout.org

Page 1053 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

(3) Signature: [const] Polygon minkowsky_sum (const Box b, bool resolve_holes)

Description: Computes the Minkowski sum of the polygon and a box

b: The box.

resolve_holes: If true, the output polygon will not contain holes, but holes are
resolved by joining the holes with the hull.

Returns: The new polygon representing the Minkowski sum of self and the
box.

Use of this method is deprecated. Use minkowski_sum instead

This method was introduced in version 0.22.

(4) Signature: [const] Polygon minkowsky_sum (Point[] b, bool resolve_holes)

Description: Computes the Minkowski sum of the polygon and a contour of points (a trace)

b: The contour (a series of points forming the trace).

resolve_holes: If true, the output polygon will not contain holes, but holes are
resolved by joining the holes with the hull.

Returns: The new polygon representing the Minkowski sum of self and the
contour.

Use of this method is deprecated. Use minkowski_sum instead

This method was introduced in version 0.22.

(1) Signature: Polygon move (const Vector p)

Description: Moves the polygon.

p: The distance to move the polygon.

Returns: The moved polygon (self).

Moves the polygon by the given offset and returns the moved polygon. The polygon is overwritten.

This method has been introduced in version 0.23.

move

(2) Signature: Polygon move (int x, int y)

Description: Moves the polygon.

x: The x distance to move the polygon.

y: The y distance to move the polygon.

Returns: The moved polygon (self).

Moves the polygon by the given offset and returns the moved polygon. The polygon is overwritten.

(1) Signature: [const] Polygon moved (const Vector p)

Description: Returns the moved polygon (does not modify self)

p: The distance to move the polygon.

Returns: The moved polygon.

Moves the polygon by the given offset and returns the moved polygon. The polygon is not modified.

This method has been introduced in version 0.23.

moved

(2) Signature: [const] Polygon moved (int x, int y)

Description: Returns the moved polygon (does not modify self)

For more details visit
https://www.klayout.org

Page 1054 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

x: The x distance to move the polygon.

y: The y distance to move the polygon.

Returns: The moved polygon.

Moves the polygon by the given offset and returns the moved polygon. The polygon is not modified.

This method has been introduced in version 0.23.

(1) Signature: [static] new Polygon ptr new (const DPolygon dpolygon)

Description: Creates an integer coordinate polygon from a floating-point coordinate polygon

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dpolygon'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new Polygon ptr new

Description: Creates an empty (invalid) polygon

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new Polygon ptr new (const SimplePolygon sp)

Description: Creates a polygon from a simple polygon

sp: The simple polygon that is converted into the polygon

This method was introduced in version 0.22.

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new Polygon ptr new (Point[] pts, bool raw = false)

Description: Creates a polygon from a point array for the hull

pts: The points forming the polygon hull

raw: If true, the point list won't be modified (see assign_hull)

The 'raw' argument was added in version 0.24.

Python specific notes:
This method is the default initializer of the object

new

(5) Signature: [static] new Polygon ptr new (const Box box)

Description: Creates a polygon from a box

box: The box to convert to a polygon

Python specific notes:
This method is the default initializer of the object

num_points
Signature: unsigned long num_points

Description: Gets the total number of points (hull plus holes)

This method was introduced in version 0.18.

For more details visit
https://www.klayout.org

Page 1055 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

num_points_hole
Signature: unsigned long num_points_hole (unsigned int n)

Description: Gets the number of points of the given hole

The argument gives the index of the hole of which the number of points are requested. The index
must be less than the number of holes (see holes).

num_points_hull
Signature: unsigned long num_points_hull

Description: Gets the number of points of the hull

perimeter
Signature: [const] unsigned long perimeter

Description: Gets the perimeter of the polygon

The perimeter is sum of the lengths of all edges making up the polygon.

This method has been introduce in version 0.23.

point_hole
Signature: Point point_hole (unsigned int n, unsigned long p)

Description: Gets a specific point of a hole

n: The index of the hole to which the points should be assigned

p: The index of the point to get

If the index of the point or of the hole is not valid, a default value is returned. This method was
introduced in version 0.18.

point_hull
Signature: Point point_hull (unsigned long p)

Description: Gets a specific point of the hull

p: The index of the point to get

If the index of the point is not a valid index, a default value is returned. This method was introduced
in version 0.18.

resolve_holes
Signature: void resolve_holes

Description: Resolve holes by inserting cut lines and joining the holes with the hull

This method modifies the polygon. The out-of-place version is resolved_holes. This method was
introduced in version 0.22.

resolved_holes
Signature: [const] Polygon resolved_holes

Description: Returns a polygon without holes

Returns: The new polygon without holes.

This method does not modify the polygon but return a new polygon. This method was introduced in
version 0.22.

round_corners
Signature: [const] Polygon round_corners (double rinner, double router, unsigned int n)

Description: Rounds the corners of the polygon

rinner: The circle radius of inner corners (in database units).

router: The circle radius of outer corners (in database units).

n: The number of points per full circle.

Returns: The new polygon.

For more details visit
https://www.klayout.org

Page 1056 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

Replaces the corners of the polygon with circle segments.

This method was introduced in version 0.20 for integer coordinates and in 0.25 for all coordinate
types.

(1) Signature: void size (int dx, int dy, unsigned int mode)

Description: Sizes the polygon (biasing)

Shifts the contour outwards (dx,dy>0) or inwards (dx,dy<0). dx is the sizing in x-direction and dy is
the sizing in y-direction. The sign of dx and dy should be identical. The sizing operation create invalid
(self-overlapping, reverse oriented) contours.

The mode defines at which bending angle cutoff occurs (0:>0, 1:>45, 2:>90, 3:>135, 4:>approx. 168,
other:>approx. 179)

In order to obtain a proper polygon in the general case, the sized polygon must be merged in 'greater
than zero' wrap count mode. This is necessary since in the general case, sizing can be complicated
operation which lets a single polygon fall apart into disjoint pieces for example. This can be achieved
using the EdgeProcessor class for example:

poly = ... # a RBA::Polygon
poly.size(-50, 2)
ep = RBA::EdgeProcessor::new
result is an array of RBA::Polygon objects
result = ep.simple_merge_p2p([poly], false, false, 1)

(2) Signature: void size (const Vector dv, unsigned int mode = 2)

Description: Sizes the polygon (biasing)

This method is equivalent to

size(dv.x, dv.y, mode)

See size for a detailed description.

This version has been introduced in version 0.28.

size

(3) Signature: void size (int d, unsigned int mode = 2)

Description: Sizes the polygon (biasing)

Shifts the contour outwards (d>0) or inwards (d<0). This method is equivalent to

size(d, d, mode)

See size for a detailed description.

This method has been introduced in version 0.23.

sized
(1) Signature: [const] Polygon sized (int dx, int dy, unsigned int mode)

Description: Sizes the polygon (biasing) without modifying self

This method applies sizing to the polygon but does not modify self. Instead a sized copy is returned.
See size for a description of the operation.

For more details visit
https://www.klayout.org

Page 1057 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

This method has been introduced in version 0.23.

(2) Signature: [const] Polygon sized (const Vector dv, unsigned int mode = 2)

Description: Sizes the polygon (biasing) without modifying self

This method is equivalent to

sized(dv.x, dv.y, mode)

See size and sized for a detailed description.

This version has been introduced in version 0.28.

(3) Signature: [const] Polygon sized (int d, unsigned int mode = 2)

Description: Sizes the polygon (biasing) without modifying self

Shifts the contour outwards (d>0) or inwards (d<0). This method is equivalent to

sized(d, d, mode)

See size and sized for a detailed description.

smooth
Signature: [const] Polygon smooth (int d, bool keep_hv = false)

Description: Smooths a polygon

d: The smoothing "roughness".

keep_hv: If true, horizontal and vertical edges will be preserved always.

Returns: The smoothed polygon.

Remove vertices that deviate by more than the distance d from the average contour. The value d is
basically the roughness which is removed.

This method was introduced in version 0.23. The 'keep_hv' optional parameter was added in version
0.27.

split
Signature: [const] Polygon[] split

Description: Splits the polygon into two or more parts

This method will break the polygon into parts. The exact breaking algorithm is unspecified, the
result are smaller polygons of roughly equal number of points and 'less concave' nature. Usually
the returned polygon set consists of two polygons, but there can be more. The merged region of the
resulting polygons equals the original polygon with the exception of small snapping effects at new
vertexes.

The intended use for this method is a iteratively split polygons until the satisfy some maximum
number of points limit.

This method has been introduced in version 0.25.3.

to_dtype
Signature: [const] DPolygon to_dtype (double dbu = 1)

Description: Converts the polygon to a floating-point coordinate polygon

The database unit can be specified to translate the integer-coordinate polygon into a floating-point
coordinate polygon in micron units. The database unit is basically a scaling factor.

For more details visit
https://www.klayout.org

Page 1058 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s

Description: Returns a string representing the polygon

Python specific notes:
This method is also available as 'str(object)'

to_simple_polygon
Signature: [const] SimplePolygon to_simple_polygon

Description: Converts a polygon to a simple polygon

Returns: The simple polygon.

If the polygon contains holes, these will be resolved. This operation requires a well-formed polygon.
Reflecting edges, self-intersections and coincident points will be removed.

This method was introduced in version 0.22.

(1) Signature: [const] bool touches? (const Box box)

Description: Returns true, if the polygon touches the given box.

The box and the polygon touch if they overlap or their contours share at least one point.

This method was introduced in version 0.25.1.

(2) Signature: [const] bool touches? (const Edge edge)

Description: Returns true, if the polygon touches the given edge.

The edge and the polygon touch if they overlap or the edge shares at least one point with the
polygon's contour.

This method was introduced in version 0.25.1.

(3) Signature: [const] bool touches? (const Polygon polygon)

Description: Returns true, if the polygon touches the other polygon.

The polygons touch if they overlap or their contours share at least one point.

This method was introduced in version 0.25.1.

touches?

(4) Signature: [const] bool touches? (const SimplePolygon simple_polygon)

Description: Returns true, if the polygon touches the other polygon.

The polygons touch if they overlap or their contours share at least one point.

This method was introduced in version 0.25.1.

(1) Signature: Polygon ptr transform (const ICplxTrans t)

Description: Transforms the polygon with a complex transformation (in-place)

t: The transformation to apply.

Transforms the polygon with the given complex transformation. This version modifies self and
will return self as the modified polygon. An out-of-place version which does not modify self is
transformed.

This method was introduced in version 0.24.

transform

(2) Signature: Polygon ptr transform (const Trans t)

For more details visit
https://www.klayout.org

Page 1059 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.60. API reference - Class Polygon

Description: Transforms the polygon (in-place)

t: The transformation to apply.

Transforms the polygon with the given transformation. Modifies self and returns self. An out-of-place
version which does not modify self is transformed.

This method has been introduced in version 0.24.

(1) Signature: [const] Polygon transformed (const ICplxTrans t)

Description: Transforms the polygon with a complex transformation

t: The transformation to apply.

Returns: The transformed polygon (in this case an integer coordinate
polygon).

Use of this method is deprecated

Transforms the polygon with the given complex transformation. Does not modify the polygon but
returns the transformed polygon.

This method was introduced in version 0.18.

(2) Signature: [const] Polygon transformed (const Trans t)

Description: Transforms the polygon

t: The transformation to apply.

Returns: The transformed polygon.

Transforms the polygon with the given transformation. Does not modify the polygon but returns the
transformed polygon.

transformed

(3) Signature: [const] DPolygon transformed (const CplxTrans t)

Description: Transforms the polygon with a complex transformation

t: The transformation to apply.

Returns: The transformed polygon.

Transforms the polygon with the given complex transformation. Does not modify the polygon but
returns the transformed polygon.

With version 0.25, the original 'transformed_cplx' method is deprecated and 'transformed' takes both
simple and complex transformations.

transformed_cplx
Signature: [const] DPolygon transformed_cplx (const CplxTrans t)

Description: Transforms the polygon with a complex transformation

t: The transformation to apply.

Returns: The transformed polygon.

Use of this method is deprecated. Use transformed instead

Transforms the polygon with the given complex transformation. Does not modify the polygon but
returns the transformed polygon.

With version 0.25, the original 'transformed_cplx' method is deprecated and 'transformed' takes both
simple and complex transformations.

For more details visit
https://www.klayout.org

Page 1060 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.61. API reference - Class DPolygon

4.61. API reference - Class DPolygon
Notation used in Ruby API documentation

Module: db

Description: A polygon class

A polygon consists of an outer hull and zero to many holes. Each contour consists of several points. The point list is normalized such that
the leftmost, lowest point is the first one. The orientation is normalized such that the orientation of the hull contour is clockwise, while the
orientation of the holes is counterclockwise.

It is in no way checked that the contours are not overlapping. This must be ensured by the user of the object when filling the contours.

A polygon can be asked for the number of holes using the holes method. each_point_hull delivers the points of the hull contour.
each_point_hole delivers the points of a specific hole. each_edge delivers the edges (point-to-point connections) of both hull and holes.
bbox delivers the bounding box, area the area and perimeter the perimeter of the polygon.

Here's an example of how to create a polygon:

hull = [RBA::DPoint::new(0, 0), RBA::DPoint::new(6000, 0),
 RBA::DPoint::new(6000, 3000), RBA::DPoint::new(0, 3000)]
hole1 = [RBA::DPoint::new(1000, 1000), RBA::DPoint::new(2000, 1000),
 RBA::DPoint::new(2000, 2000), RBA::DPoint::new(1000, 2000)]
hole2 = [RBA::DPoint::new(3000, 1000), RBA::DPoint::new(4000, 1000),
 RBA::DPoint::new(4000, 2000), RBA::DPoint::new(3000, 2000)]
poly = RBA::DPolygon::new(hull)
poly.insert_hole(hole1)
poly.insert_hole(hole2)

ask the polygon for some properties
poly.holes # -> 2
poly.area # -> 16000000.0
poly.perimeter # -> 26000.0
poly.bbox # -> (0,0;6000,3000)

The DPolygon class stores coordinates in floating-point format which gives a higher precision for some operations. A class that stores
integer coordinates is Polygon.

See The Database API for more details about the database objects.

Public constructors

new DPolygon ptr new (const Polygon polygon) Creates a floating-point coordinate polygon
from an integer coordinate polygon

new DPolygon ptr new Creates an empty (invalid) polygon

new DPolygon ptr new (const DSimplePolygon sp) Creates a polygon from a simple polygon

new DPolygon ptr new (DPoint[] pts,
bool raw = false)

Creates a polygon from a point array for the
hull

new DPolygon ptr new (const DBox box) Creates a polygon from a box

Public methods

[const] bool != (const DPolygon p) Returns a value indicating whether the
polygons are not equal

For more details visit
https://www.klayout.org

Page 1061 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.61. API reference - Class DPolygon

[const] DPolygon * (double f) Scales the polygon by some factor

[const] bool < (const DPolygon p) Returns a value indicating whether self is
less than p

[const] bool == (const DPolygon p) Returns a value indicating whether the
polygons are equal

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] double area Gets the area of the polygon

[const] double area2 Gets the double area of the polygon

void assign (const DPolygon
other)

Assigns another object to self

void assign_hole (unsigned int n,
DPoint[] p,
bool raw = false)

Sets the points of the given hole of the
polygon

void assign_hole (unsigned int n,
const DBox b)

Sets the box as the given hole of the
polygon

void assign_hull (DPoint[] p,
bool raw = false)

Sets the points of the hull of polygon

[const] DBox bbox Returns the bounding box of the polygon

void compress (bool
remove_reflected)

Compresses the polygon.

[const] new DPolygon ptr dup Creates a copy of self

[const,iter] DEdge each_edge Iterates over the edges that make up the
polygon

[const,iter] DEdge each_edge (unsigned int contour) Iterates over the edges of one contour of
the polygon

[const,iter] DPoint each_point_hole (unsigned int n) Iterates over the points that make up the
nth hole

For more details visit
https://www.klayout.org

Page 1062 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.61. API reference - Class DPolygon

[const,iter] DPoint each_point_hull Iterates over the points that make up the
hull

[const] variant[] extract_rad Extracts the corner radii from a rounded
polygon

[const] unsigned long hash Computes a hash value

[const] unsigned int holes Returns the number of holes

void hull= (DPoint[] p) Sets the points of the hull of polygon

void insert_hole (DPoint[] p,
bool raw = false)

Inserts a hole with the given points

void insert_hole (const DBox b) Inserts a hole from the given box

[const] bool inside? (DPoint p) Tests, if the given point is inside the
polygon

[const] bool is_box? Returns true, if the polygon is a simple box.

bool is_empty? Returns a value indicating whether the
polygon is empty

[const] bool is_halfmanhattan? Returns a value indicating whether the
polygon is half-manhattan

[const] bool is_rectilinear? Returns a value indicating whether the
polygon is rectilinear

DPolygon move (const DVector p) Moves the polygon.

DPolygon move (double x,
double y)

Moves the polygon.

[const] DPolygon moved (const DVector p) Returns the moved polygon (does not
modify self)

[const] DPolygon moved (double x,
double y)

Returns the moved polygon (does not
modify self)

unsigned long num_points Gets the total number of points (hull plus
holes)

unsigned long num_points_hole (unsigned int n) Gets the number of points of the given hole

unsigned long num_points_hull Gets the number of points of the hull

[const] double perimeter Gets the perimeter of the polygon

DPoint point_hole (unsigned int n,
unsigned long p)

Gets a specific point of a hole

DPoint point_hull (unsigned long p) Gets a specific point of the hull

[const] DPolygon round_corners (double rinner,
double router,

Rounds the corners of the polygon

For more details visit
https://www.klayout.org

Page 1063 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.61. API reference - Class DPolygon

unsigned int n)

void size (double dx,
double dy,
unsigned int mode)

Sizes the polygon (biasing)

void size (const Vector dv,
unsigned int mode =
2)

Sizes the polygon (biasing)

void size (double d,
unsigned int mode =
2)

Sizes the polygon (biasing)

[const] DPolygon sized (double dx,
double dy,
unsigned int mode)

Sizes the polygon (biasing) without
modifying self

[const] DPolygon sized (const Vector dv,
unsigned int mode =
2)

Sizes the polygon (biasing) without
modifying self

[const] DPolygon sized (double d,
unsigned int mode =
2)

Sizes the polygon (biasing) without
modifying self

[const] DPolygon[] split Splits the polygon into two or more parts

[const] Polygon to_itype (double dbu = 1) Converts the polygon to an integer
coordinate polygon

[const] string to_s Returns a string representing the polygon

[const] bool touches? (const DBox box) Returns true, if the polygon touches the
given box.

[const] bool touches? (const DEdge edge) Returns true, if the polygon touches the
given edge.

[const] bool touches? (const DPolygon
polygon)

Returns true, if the polygon touches the
other polygon.

[const] bool touches? (const
DSimplePolygon
simple_polygon)

Returns true, if the polygon touches the
other polygon.

DPolygon ptr transform (const DCplxTrans t) Transforms the polygon with a complex
transformation (in-place)

DPolygon ptr transform (const DTrans t) Transforms the polygon (in-place)

[const] Polygon transformed (const VCplxTrans t) Transforms the polygon with the given
complex transformation

[const] DPolygon transformed (const DTrans t) Transforms the polygon

[const] DPolygon transformed (const DCplxTrans t) Transforms the polygon with a complex
transformation

For more details visit
https://www.klayout.org

Page 1064 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.61. API reference - Class DPolygon

Public static methods and constants

new DPolygon ptr ellipse (const DBox box,
int n)

Creates a simple polygon approximating
an ellipse

new DPolygon ptr from_s (string s) Creates a polygon from a string

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

[static] new DPolygon ptr from_ipoly (const
Polygon
polygon)

Use of this method is deprecated. Use new
instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[const] DPolygon transformed_cplx (const
DCplxTrans
t)

Use of this method is deprecated. Use
transformed instead

Detailed description

!=
Signature: [const] bool != (const DPolygon p)

Description: Returns a value indicating whether the polygons are not equal

p: The object to compare against

*
Signature: [const] DPolygon * (double f)

Description: Scales the polygon by some factor

Returns the scaled object. All coordinates are multiplied with the given factor and if necessary
rounded.

Python specific notes:
This method is also available as '__mul__'

<
Signature: [const] bool < (const DPolygon p)

Description: Returns a value indicating whether self is less than p

p: The object to compare against

This operator is provided to establish some, not necessarily a certain sorting order

==
Signature: [const] bool == (const DPolygon p)

Description: Returns a value indicating whether the polygons are equal

For more details visit
https://www.klayout.org

Page 1065 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.61. API reference - Class DPolygon

p: The object to compare against

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

area
Signature: [const] double area

Description: Gets the area of the polygon

The area is correct only if the polygon is not self-overlapping and the polygon is oriented
clockwise.Orientation is ensured automatically in most cases.

For more details visit
https://www.klayout.org

Page 1066 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.61. API reference - Class DPolygon

area2
Signature: [const] double area2

Description: Gets the double area of the polygon

This method is provided because the area for an integer-type polygon is a multiple of 1/2. Hence the
double area can be expresses precisely as an integer for these types.

This method has been introduced in version 0.26.1

assign
Signature: void assign (const DPolygon other)

Description: Assigns another object to self

(1) Signature: void assign_hole (unsigned int n, DPoint[] p, bool raw = false)

Description: Sets the points of the given hole of the polygon

n: The index of the hole to which the points should be assigned

p: An array of points to assign to the polygon's hole

raw: If true, the points won't be compressed (see assign_hull)

If the hole index is not valid, this method does nothing.

This method was introduced in version 0.18. The 'raw' argument was added in version 0.24.

assign_hole

(2) Signature: void assign_hole (unsigned int n, const DBox b)

Description: Sets the box as the given hole of the polygon

n: The index of the hole to which the points should be assigned

b: The box to assign to the polygon's hole

If the hole index is not valid, this method does nothing. This method was introduced in version 0.23.

assign_hull
Signature: void assign_hull (DPoint[] p, bool raw = false)

Description: Sets the points of the hull of polygon

p: An array of points to assign to the polygon's hull

raw: If true, the points won't be compressed

If the 'raw' argument is set to true, the points are taken as they are. Specifically no removal of
redundant points or joining of coincident edges will take place. In effect, polygons consisting of a
single point or two points can be constructed as well as polygons with duplicate points. Note that
such polygons may cause problems in some applications.

Regardless of raw mode, the point list will be adjusted such that the first point is the lowest-leftmost
one and the orientation is clockwise always.

The 'assign_hull' variant is provided in analogy to 'assign_hole'.

The 'raw' argument was added in version 0.24.

bbox
Signature: [const] DBox bbox

Description: Returns the bounding box of the polygon

The bounding box is the box enclosing all points of the polygon.

compress
Signature: void compress (bool remove_reflected)

Description: Compresses the polygon.

remove_reflected: See description of the functionality.

For more details visit
https://www.klayout.org

Page 1067 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.61. API reference - Class DPolygon

This method removes redundant points from the polygon, such as points being on a line formed by
two other points. If remove_reflected is true, points are also removed if the two adjacent edges form a
spike.

This method was introduced in version 0.18.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new DPolygon ptr dup

Description: Creates a copy of self

(1) Signature: [const,iter] DEdge each_edge

Description: Iterates over the edges that make up the polygon

This iterator will deliver all edges, including those of the holes. Hole edges are oriented
counterclockwise while hull edges are oriented clockwise.

each_edge

(2) Signature: [const,iter] DEdge each_edge (unsigned int contour)

Description: Iterates over the edges of one contour of the polygon

contour: The contour number (0 for hull, 1 for first hole ...)

This iterator will deliver all edges of the contour specified by the contour parameter. The hull has
contour number 0, the first hole has contour 1 etc. Hole edges are oriented counterclockwise while
hull edges are oriented clockwise.

This method was introduced in version 0.24.

each_point_hole
Signature: [const,iter] DPoint each_point_hole (unsigned int n)

Description: Iterates over the points that make up the nth hole

The hole number must be less than the number of holes (see holes)

For more details visit
https://www.klayout.org

Page 1068 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.61. API reference - Class DPolygon

each_point_hull
Signature: [const,iter] DPoint each_point_hull

Description: Iterates over the points that make up the hull

ellipse
Signature: [static] new DPolygon ptr ellipse (const DBox box, int n)

Description: Creates a simple polygon approximating an ellipse

box: The bounding box of the ellipse

n: The number of points that will be used to approximate the ellipse

This method has been introduced in version 0.23.

extract_rad
Signature: [const] variant[] extract_rad

Description: Extracts the corner radii from a rounded polygon

Attempts to extract the radii of rounded corner polygon. This is essentially the inverse of the
round_corners method. If this method succeeds, if will return an array of four elements:

• The polygon with the rounded corners replaced by edgy ones

• The radius of the inner corners

• The radius of the outer corners

• The number of points per full circle

This method is based on some assumptions and may fail. In this case, an empty array is returned.

If successful, the following code will more or less render the original polygon and parameters

p = ... # some polygon
p.round_corners(ri, ro, n)
(p2, ri2, ro2, n2) = p.extract_rad
-> p2 == p, ro2 == ro, ri2 == ri, n2 == n (within some limits)

This method was introduced in version 0.25.

from_ipoly
Signature: [static] new DPolygon ptr from_ipoly (const Polygon polygon)

Description: Creates a floating-point coordinate polygon from an integer coordinate polygon

Use of this method is deprecated. Use new instead

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_ipolygon'.

Python specific notes:
This method is the default initializer of the object

from_s
Signature: [static] new DPolygon ptr from_s (string s)

Description: Creates a polygon from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

For more details visit
https://www.klayout.org

Page 1069 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.61. API reference - Class DPolygon

Returns a hash value for the given polygon. This method enables polygons as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

holes
Signature: [const] unsigned int holes

Description: Returns the number of holes

hull=
Signature: void hull= (DPoint[] p)

Description: Sets the points of the hull of polygon

p: An array of points to assign to the polygon's hull

The 'assign_hull' variant is provided in analogy to 'assign_hole'.

Python specific notes:
The object exposes a writable attribute 'hull'. This is the setter.

(1) Signature: void insert_hole (DPoint[] p, bool raw = false)

Description: Inserts a hole with the given points

p: An array of points to insert as a new hole

raw: If true, the points won't be compressed (see assign_hull)

The 'raw' argument was added in version 0.24.

insert_hole

(2) Signature: void insert_hole (const DBox b)

Description: Inserts a hole from the given box

b: The box to insert as a new hole

This method was introduced in version 0.23.

inside?
Signature: [const] bool inside? (DPoint p)

Description: Tests, if the given point is inside the polygon

If the given point is inside or on the edge of the polygon, true is returned. This tests works well only if
the polygon is not self-overlapping and oriented clockwise.

is_box?
Signature: [const] bool is_box?

Description: Returns true, if the polygon is a simple box.

Returns: True if the polygon is a box.

A polygon is a box if it is identical to it's bounding box.

This method was introduced in version 0.23.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

For more details visit
https://www.klayout.org

Page 1070 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.61. API reference - Class DPolygon

is_empty?
Signature: bool is_empty?

Description: Returns a value indicating whether the polygon is empty

is_halfmanhattan?
Signature: [const] bool is_halfmanhattan?

Description: Returns a value indicating whether the polygon is half-manhattan

Half-manhattan polygons have edges which are multiples of 45 degree. These polygons can be
clipped at a rectangle without potential grid snapping.

This predicate was introduced in version 0.27.

is_rectilinear?
Signature: [const] bool is_rectilinear?

Description: Returns a value indicating whether the polygon is rectilinear

(1) Signature: DPolygon move (const DVector p)

Description: Moves the polygon.

p: The distance to move the polygon.

Returns: The moved polygon (self).

Moves the polygon by the given offset and returns the moved polygon. The polygon is overwritten.

This method has been introduced in version 0.23.

move

(2) Signature: DPolygon move (double x, double y)

Description: Moves the polygon.

x: The x distance to move the polygon.

y: The y distance to move the polygon.

Returns: The moved polygon (self).

Moves the polygon by the given offset and returns the moved polygon. The polygon is overwritten.

(1) Signature: [const] DPolygon moved (const DVector p)

Description: Returns the moved polygon (does not modify self)

p: The distance to move the polygon.

Returns: The moved polygon.

Moves the polygon by the given offset and returns the moved polygon. The polygon is not modified.

This method has been introduced in version 0.23.

moved

(2) Signature: [const] DPolygon moved (double x, double y)

Description: Returns the moved polygon (does not modify self)

x: The x distance to move the polygon.

y: The y distance to move the polygon.

Returns: The moved polygon.

Moves the polygon by the given offset and returns the moved polygon. The polygon is not modified.

This method has been introduced in version 0.23.

For more details visit
https://www.klayout.org

Page 1071 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.61. API reference - Class DPolygon

(1) Signature: [static] new DPolygon ptr new (const Polygon polygon)

Description: Creates a floating-point coordinate polygon from an integer coordinate polygon

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_ipolygon'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new DPolygon ptr new

Description: Creates an empty (invalid) polygon

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new DPolygon ptr new (const DSimplePolygon sp)

Description: Creates a polygon from a simple polygon

sp: The simple polygon that is converted into the polygon

This method was introduced in version 0.22.

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new DPolygon ptr new (DPoint[] pts, bool raw = false)

Description: Creates a polygon from a point array for the hull

pts: The points forming the polygon hull

raw: If true, the point list won't be modified (see assign_hull)

The 'raw' argument was added in version 0.24.

Python specific notes:
This method is the default initializer of the object

new

(5) Signature: [static] new DPolygon ptr new (const DBox box)

Description: Creates a polygon from a box

box: The box to convert to a polygon

Python specific notes:
This method is the default initializer of the object

num_points
Signature: unsigned long num_points

Description: Gets the total number of points (hull plus holes)

This method was introduced in version 0.18.

num_points_hole
Signature: unsigned long num_points_hole (unsigned int n)

Description: Gets the number of points of the given hole

The argument gives the index of the hole of which the number of points are requested. The index
must be less than the number of holes (see holes).

num_points_hull
Signature: unsigned long num_points_hull

Description: Gets the number of points of the hull

For more details visit
https://www.klayout.org

Page 1072 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.61. API reference - Class DPolygon

perimeter
Signature: [const] double perimeter

Description: Gets the perimeter of the polygon

The perimeter is sum of the lengths of all edges making up the polygon.

This method has been introduce in version 0.23.

point_hole
Signature: DPoint point_hole (unsigned int n, unsigned long p)

Description: Gets a specific point of a hole

n: The index of the hole to which the points should be assigned

p: The index of the point to get

If the index of the point or of the hole is not valid, a default value is returned. This method was
introduced in version 0.18.

point_hull
Signature: DPoint point_hull (unsigned long p)

Description: Gets a specific point of the hull

p: The index of the point to get

If the index of the point is not a valid index, a default value is returned. This method was introduced in
version 0.18.

round_corners
Signature: [const] DPolygon round_corners (double rinner, double router, unsigned int n)

Description: Rounds the corners of the polygon

rinner: The circle radius of inner corners (in database units).

router: The circle radius of outer corners (in database units).

n: The number of points per full circle.

Returns: The new polygon.

Replaces the corners of the polygon with circle segments.

This method was introduced in version 0.20 for integer coordinates and in 0.25 for all coordinate
types.

size
(1) Signature: void size (double dx, double dy, unsigned int mode)

Description: Sizes the polygon (biasing)

Shifts the contour outwards (dx,dy>0) or inwards (dx,dy<0). dx is the sizing in x-direction and dy is
the sizing in y-direction. The sign of dx and dy should be identical. The sizing operation create invalid
(self-overlapping, reverse oriented) contours.

The mode defines at which bending angle cutoff occurs (0:>0, 1:>45, 2:>90, 3:>135, 4:>approx. 168,
other:>approx. 179)

In order to obtain a proper polygon in the general case, the sized polygon must be merged in 'greater
than zero' wrap count mode. This is necessary since in the general case, sizing can be complicated
operation which lets a single polygon fall apart into disjoint pieces for example. This can be achieved
using the EdgeProcessor class for example:

poly = ... # a RBA::Polygon
poly.size(-50, 2)
ep = RBA::EdgeProcessor::new
result is an array of RBA::Polygon objects

For more details visit
https://www.klayout.org

Page 1073 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.61. API reference - Class DPolygon

result = ep.simple_merge_p2p([poly], false, false, 1)

(2) Signature: void size (const Vector dv, unsigned int mode = 2)

Description: Sizes the polygon (biasing)

This method is equivalent to

size(dv.x, dv.y, mode)

See size for a detailed description.

This version has been introduced in version 0.28.

(3) Signature: void size (double d, unsigned int mode = 2)

Description: Sizes the polygon (biasing)

Shifts the contour outwards (d>0) or inwards (d<0). This method is equivalent to

size(d, d, mode)

See size for a detailed description.

This method has been introduced in version 0.23.

(1) Signature: [const] DPolygon sized (double dx, double dy, unsigned int mode)

Description: Sizes the polygon (biasing) without modifying self

This method applies sizing to the polygon but does not modify self. Instead a sized copy is returned.
See size for a description of the operation.

This method has been introduced in version 0.23.

(2) Signature: [const] DPolygon sized (const Vector dv, unsigned int mode = 2)

Description: Sizes the polygon (biasing) without modifying self

This method is equivalent to

sized(dv.x, dv.y, mode)

See size and sized for a detailed description.

This version has been introduced in version 0.28.

sized

(3) Signature: [const] DPolygon sized (double d, unsigned int mode = 2)

Description: Sizes the polygon (biasing) without modifying self

Shifts the contour outwards (d>0) or inwards (d<0). This method is equivalent to

sized(d, d, mode)

For more details visit
https://www.klayout.org

Page 1074 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.61. API reference - Class DPolygon

See size and sized for a detailed description.

split
Signature: [const] DPolygon[] split

Description: Splits the polygon into two or more parts

This method will break the polygon into parts. The exact breaking algorithm is unspecified, the
result are smaller polygons of roughly equal number of points and 'less concave' nature. Usually
the returned polygon set consists of two polygons, but there can be more. The merged region of the
resulting polygons equals the original polygon with the exception of small snapping effects at new
vertexes.

The intended use for this method is a iteratively split polygons until the satisfy some maximum
number of points limit.

This method has been introduced in version 0.25.3.

to_itype
Signature: [const] Polygon to_itype (double dbu = 1)

Description: Converts the polygon to an integer coordinate polygon

The database unit can be specified to translate the floating-point coordinate polygon in micron units
to an integer-coordinate polygon in database units. The polygons coordinates will be divided by the
database unit.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s

Description: Returns a string representing the polygon

Python specific notes:
This method is also available as 'str(object)'

(1) Signature: [const] bool touches? (const DBox box)

Description: Returns true, if the polygon touches the given box.

The box and the polygon touch if they overlap or their contours share at least one point.

This method was introduced in version 0.25.1.

(2) Signature: [const] bool touches? (const DEdge edge)

Description: Returns true, if the polygon touches the given edge.

The edge and the polygon touch if they overlap or the edge shares at least one point with the
polygon's contour.

This method was introduced in version 0.25.1.

(3) Signature: [const] bool touches? (const DPolygon polygon)

Description: Returns true, if the polygon touches the other polygon.

The polygons touch if they overlap or their contours share at least one point.

This method was introduced in version 0.25.1.

touches?

(4) Signature: [const] bool touches? (const DSimplePolygon simple_polygon)

Description: Returns true, if the polygon touches the other polygon.

The polygons touch if they overlap or their contours share at least one point.

This method was introduced in version 0.25.1.

For more details visit
https://www.klayout.org

Page 1075 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.61. API reference - Class DPolygon

(1) Signature: DPolygon ptr transform (const DCplxTrans t)

Description: Transforms the polygon with a complex transformation (in-place)

t: The transformation to apply.

Transforms the polygon with the given complex transformation. Modifies self and returns self. An out-
of-place version which does not modify self is transformed.

This method has been introduced in version 0.24.

transform

(2) Signature: DPolygon ptr transform (const DTrans t)

Description: Transforms the polygon (in-place)

t: The transformation to apply.

Transforms the polygon with the given transformation. Modifies self and returns self. An out-of-place
version which does not modify self is transformed.

This method has been introduced in version 0.24.

(1) Signature: [const] Polygon transformed (const VCplxTrans t)

Description: Transforms the polygon with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed polygon (in this case an integer coordinate polygon)

This method has been introduced in version 0.25.

(2) Signature: [const] DPolygon transformed (const DTrans t)

Description: Transforms the polygon

t: The transformation to apply.

Returns: The transformed polygon.

Transforms the polygon with the given transformation. Does not modify the polygon but returns the
transformed polygon.

transformed

(3) Signature: [const] DPolygon transformed (const DCplxTrans t)

Description: Transforms the polygon with a complex transformation

t: The transformation to apply.

Returns: The transformed polygon.

Transforms the polygon with the given complex transformation. Does not modify the polygon but
returns the transformed polygon.

With version 0.25, the original 'transformed_cplx' method is deprecated and 'transformed' takes both
simple and complex transformations.

transformed_cplx
Signature: [const] DPolygon transformed_cplx (const DCplxTrans t)

Description: Transforms the polygon with a complex transformation

t: The transformation to apply.

Returns: The transformed polygon.

Use of this method is deprecated. Use transformed instead

Transforms the polygon with the given complex transformation. Does not modify the polygon but
returns the transformed polygon.

For more details visit
https://www.klayout.org

Page 1076 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.61. API reference - Class DPolygon

With version 0.25, the original 'transformed_cplx' method is deprecated and 'transformed' takes both
simple and complex transformations.

For more details visit
https://www.klayout.org

Page 1077 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.62. API reference - Class LayerMap

4.62. API reference - Class LayerMap
Notation used in Ruby API documentation

Module: db

Description: An object representing an arbitrary mapping of physical layers to logical layers

"Physical" layers are stream layers or other separated layers in a CAD file. "Logical" layers are the layers present in a Layout object.
Logical layers are represented by an integer index while physical layers are given by a layer and datatype number or name. A logical layer
is created automatically in the layout on reading if it does not exist yet.

The mapping describes an association of a set of physical layers to a set of logical ones, where multiple physical layers can be mapped to
a single logical one, which effectively merges the layers.

For each logical layer, a target layer can be specified. A target layer is the layer/datatype/name combination as which the logical layer
appears in the layout. By using a target layer different from the source layer renaming a layer can be achieved while loading a layout.
Another use case for that feature is to assign layer names to GDS layer/datatype combinations which are numerical only.

LayerMap objects are used in two ways: as input for the reader (inside a LoadLayoutOptions class) and as output from the reader (i.e.
Layout::read method). For layer map objects used as input, the layer indexes (logical layers) can be consecutive numbers. They do not
need to correspond with real layer indexes from a layout object. When used as output, the layer map's logical layers correspond to the layer
indexes inside the layout that the layer map was used upon.

This is a sample how to use the LayerMap object. It maps all datatypes of layers 1, 2 and 3 to datatype 0 and assigns the names 'ONE',
'TWO' and 'THREE' to these layout layers:

lm = RBA::LayerMap::new
lm.map("1/0-255 : ONE (1/0)", 0)
lm.map("2/0-255 : TWO (2/0)", 1)
lm.map("3/0-255 : THREE (3/0)", 2)

read the layout using the layer map
lo = RBA::LoadLayoutOptions::new
lo.layer_map.assign(lm)
ly = RBA::Layout::new
ly.read("input.gds", lo)

1:n mapping is supported: a physical layer can be mapped to multiple logical layers using 'mmap' instead of 'map'. When using this variant,
mapping acts additive. The following example will map layer 1, datatypes 0 to 255 to logical layer 0, and layer 1, datatype 17 to logical
layers 0 plus 1:

lm = RBA::LayerMap::new
lm.map("1/0-255", 0) # (can be 'mmap' too)
lm.mmap("1/17", 1)

'unmapping' allows removing a mapping. This allows creating 'holes' in mapping ranges. The following example maps layer 1, datatypes 0
to 16 and 18 to 255 to logical layer 0:

lm = RBA::LayerMap::new
lm.map("1/0-255", 0)
lm.unmap("1/17")

The LayerMap class has been introduced in version 0.18. Target layer have been introduced in version 0.20. 1:n mapping and unmapping
has been introduced in version 0.27.

Public constructors

new LayerMap ptr new Creates a new object of this class

For more details visit
https://www.klayout.org

Page 1078 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.62. API reference - Class LayerMap

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const LayerMap other) Assigns another object to self

void clear Clears the map

[const] new LayerMap
ptr

dup Creates a copy of self

[const] bool is_mapped? (const LayerInfo layer) Check, if a given physical layer is mapped

[const] unsigned int[] logicals (const LayerInfo layer) Returns the logical layers for a given physical
layer.n@param layer The physical layer
specified with an LayerInfo object.

void map (const LayerInfo phys_layer,
unsigned int log_layer)

Maps a physical layer to a logical one

void map (const LayerInfo phys_layer,
unsigned int log_layer,
const LayerInfo target_layer)

Maps a physical layer to a logical one with a
target layer

void map (const LayerInfo pl_start,
const LayerInfo pl_stop,
unsigned int log_layer)

Maps a physical layer interval to a logical one

void map (const LayerInfo pl_start,
const LayerInfo pl_stop,
unsigned int log_layer,
const LayerInfo
layer_properties)

Maps a physical layer interval to a logical one
with a target layer

void map (string map_expr,
unsigned int log_layer)

Maps a physical layer given by a string to a
logical one

[const] LayerInfo mapping (unsigned int log_layer) Returns the mapped physical (or target if one
is specified) layer for a given logical layer

[const] string mapping_str (unsigned int log_layer) Returns the mapping string for a given logical
layer

For more details visit
https://www.klayout.org

Page 1079 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.62. API reference - Class LayerMap

void mmap (const LayerInfo phys_layer,
unsigned int log_layer)

Maps a physical layer to a logical one and
adds to existing mappings

void mmap (const LayerInfo phys_layer,
unsigned int log_layer,
const LayerInfo target_layer)

Maps a physical layer to a logical one, adds
to existing mappings and specifies a target
layer

void mmap (const LayerInfo pl_start,
const LayerInfo pl_stop,
unsigned int log_layer)

Maps a physical layer from the given
interval to a logical one and adds to existing
mappings

void mmap (const LayerInfo pl_start,
const LayerInfo pl_stop,
unsigned int log_layer,
const LayerInfo
layer_properties)

Maps a physical layer from the given interval
to a logical one, adds to existing mappings
and specifies a target layer

void mmap (string map_expr,
unsigned int log_layer)

Maps a physical layer given by an expression
to a logical one and adds to existing
mappings

[const] string to_string Converts a layer mapping object to a string

void unmap (const LayerInfo phys_layer) Unmaps the given layer

void unmap (const LayerInfo pl_start,
const LayerInfo pl_stop)

Unmaps the layers from the given interval

void unmap (string expr) Unmaps the layers from the given expression

Public static methods and constants

LayerMap from_string (string arg1) Creates a layer map from the given string

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[const] int logical (const
LayerInfo
layer)

Use of this method is deprecated

For more details visit
https://www.klayout.org

Page 1080 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.62. API reference - Class LayerMap

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const LayerMap other)

Description: Assigns another object to self

clear
Signature: void clear

Description: Clears the map

For more details visit
https://www.klayout.org

Page 1081 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.62. API reference - Class LayerMap

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new LayerMap ptr dup

Description: Creates a copy of self

from_string
Signature: [static] LayerMap from_string (string arg1)

Description: Creates a layer map from the given string

The format of the string is that used in layer mapping files: one mapping entry per line, comments are
allowed using '#' or '//'. The format of each line is that used in the 'map(string, index)' method.

This method has been introduced in version 0.23.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_mapped?
Signature: [const] bool is_mapped? (const LayerInfo layer)

Description: Check, if a given physical layer is mapped

layer: The physical layer specified with an LayerInfo object.

Returns: True, if the layer is mapped.

logical
Signature: [const] int logical (const LayerInfo layer)

Description: Returns the logical layer (the layer index in the layout object) for a given physical
layer.n@param layer The physical layer specified with an LayerInfo object.

Returns: The logical layer index or -1 if the layer is not mapped.

Use of this method is deprecated

For more details visit
https://www.klayout.org

Page 1082 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.62. API reference - Class LayerMap

This method is deprecated with version 0.27 as in this version, layers can be mapped to multiple
targets which this method can't capture. Use logicals instead.

logicals
Signature: [const] unsigned int[] logicals (const LayerInfo layer)

Description: Returns the logical layers for a given physical layer.n@param layer The physical layer
specified with an LayerInfo object.

Returns: This list of logical layers this physical layer as mapped to or empty if
there is no mapping.

This method has been introduced in version 0.27.

(1) Signature: void map (const LayerInfo phys_layer, unsigned int log_layer)

Description: Maps a physical layer to a logical one

phys_layer: The physical layer (a LayerInfo object).

log_layer: The logical layer to which the physical layer is mapped.

In general, there may be more than one physical layer mapped to one logical layer. This method will
add the given physical layer to the mapping for the logical layer.

(2) Signature: void map (const LayerInfo phys_layer, unsigned int log_layer, const LayerInfo
target_layer)

Description: Maps a physical layer to a logical one with a target layer

phys_layer: The physical layer (a LayerInfo object).

log_layer: The logical layer to which the physical layer is mapped.

target_layer: The properties of the layer that will be created unless it
already exists.

In general, there may be more than one physical layer mapped to one logical layer. This method will
add the given physical layer to the mapping for the logical layer.

This method has been added in version 0.20.

(3) Signature: void map (const LayerInfo pl_start, const LayerInfo pl_stop, unsigned int log_layer)

Description: Maps a physical layer interval to a logical one

pl_start: The first physical layer (a LayerInfo object).

pl_stop: The last physical layer (a LayerInfo object).

log_layer: The logical layer to which the physical layers are mapped.

This method maps an interval of layers l1..l2 and datatypes d1..d2 to the mapping for the given
logical layer. l1 and d1 are given by the pl_start argument, while l2 and d2 are given by the pl_stop
argument.

map

(4) Signature: void map (const LayerInfo pl_start, const LayerInfo pl_stop, unsigned int log_layer,
const LayerInfo layer_properties)

Description: Maps a physical layer interval to a logical one with a target layer

pl_start: The first physical layer (a LayerInfo object).

pl_stop: The last physical layer (a LayerInfo object).

log_layer: The logical layer to which the physical layers are mapped.

target_layer: The properties of the layer that will be created unless it
already exists.

For more details visit
https://www.klayout.org

Page 1083 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.62. API reference - Class LayerMap

This method maps an interval of layers l1..l2 and datatypes d1..d2 to the mapping for the given
logical layer. l1 and d1 are given by the pl_start argument, while l2 and d2 are given by the pl_stop
argument. This method has been added in version 0.20.

(5) Signature: void map (string map_expr, unsigned int log_layer)

Description: Maps a physical layer given by a string to a logical one

map_expr: The string describing the physical layer to map.

log_layer: The logical layer to which the physical layers are mapped.

The string expression is constructed using the syntax: "list[/list][;..]" for layer/datatype pairs. "list" is a
sequence of numbers, separated by comma values or a range separated by a hyphen. Examples are:
"1/2", "1-5/0", "1,2,5/0", "1/5;5/6".

layer/datatype wildcards can be specified with "*". When "*" is used for the upper limit, it is equivalent
to "all layer above". When used alone, it is equivalent to "all layers". Examples: "1 / *", "* / 10-*"

Named layers are specified simply by specifying the name, if necessary in single or double quotes (if
the name begins with a digit or contains non-word characters). layer/datatype and name descriptions
can be mixed, i.e. "AA;1/5" (meaning: name "AA" or layer 1/datatype 5).

A target layer can be specified with the ":<target>" notation, where target is a valid string for a
LayerProperties() object.

A target can include relative layer/datatype specifications and wildcards. For example, "1-10/0: *+1/0"
will add 1 to the original layer number. "1-10/0-50: * / *" will use the original layers.

Target mapping has been added in version 0.20.

mapping
Signature: [const] LayerInfo mapping (unsigned int log_layer)

Description: Returns the mapped physical (or target if one is specified) layer for a given logical layer

log_layer: The logical layer for which the mapping is requested.

Returns: A LayerInfo object which is the physical layer mapped to the
logical layer.

In general, there may be more than one physical layer mapped to one logical layer. This method will
return a single one of them. It will return the one with the lowest layer and datatype.

mapping_str
Signature: [const] string mapping_str (unsigned int log_layer)

Description: Returns the mapping string for a given logical layer

log_layer: The logical layer for which the mapping is requested.

Returns: A string describing the mapping.

The mapping string is compatible with the string that the "map" method accepts.

(1) Signature: void mmap (const LayerInfo phys_layer, unsigned int log_layer)

Description: Maps a physical layer to a logical one and adds to existing mappings

This method acts like the corresponding 'map' method, but adds the logical layer to the receivers
of the given physical one. Hence this method implements 1:n mapping capabilities. For backward
compatibility, 'map' still substitutes mapping.

Multi-mapping has been added in version 0.27.

mmap

(2) Signature: void mmap (const LayerInfo phys_layer, unsigned int log_layer, const LayerInfo
target_layer)

Description: Maps a physical layer to a logical one, adds to existing mappings and specifies a target
layer

For more details visit
https://www.klayout.org

Page 1084 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.62. API reference - Class LayerMap

This method acts like the corresponding 'map' method, but adds the logical layer to the receivers
of the given physical one. Hence this method implements 1:n mapping capabilities. For backward
compatibility, 'map' still substitutes mapping.

Multi-mapping has been added in version 0.27.

(3) Signature: void mmap (const LayerInfo pl_start, const LayerInfo pl_stop, unsigned int log_layer)

Description: Maps a physical layer from the given interval to a logical one and adds to existing
mappings

This method acts like the corresponding 'map' method, but adds the logical layer to the receivers
of the given physical one. Hence this method implements 1:n mapping capabilities. For backward
compatibility, 'map' still substitutes mapping.

Multi-mapping has been added in version 0.27.

(4) Signature: void mmap (const LayerInfo pl_start, const LayerInfo pl_stop, unsigned int log_layer,
const LayerInfo layer_properties)

Description: Maps a physical layer from the given interval to a logical one, adds to existing mappings
and specifies a target layer

This method acts like the corresponding 'map' method, but adds the logical layer to the receivers
of the given physical one. Hence this method implements 1:n mapping capabilities. For backward
compatibility, 'map' still substitutes mapping.

Multi-mapping has been added in version 0.27.

(5) Signature: void mmap (string map_expr, unsigned int log_layer)

Description: Maps a physical layer given by an expression to a logical one and adds to existing
mappings

This method acts like the corresponding 'map' method, but adds the logical layer to the receivers
of the given physical one. Hence this method implements 1:n mapping capabilities. For backward
compatibility, 'map' still substitutes mapping.

Multi-mapping has been added in version 0.27.

new
Signature: [static] new LayerMap ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

to_string
Signature: [const] string to_string

Description: Converts a layer mapping object to a string

This method is the inverse of the from_string method.

This method has been introduced in version 0.23.

(1) Signature: void unmap (const LayerInfo phys_layer)

Description: Unmaps the given layer

Unmapping will remove the specific layer from the mapping. This method allows generating 'mapping
holes' by first mapping a range and then unmapping parts of it.

This method has been introduced in version 0.27.

unmap

For more details visit
https://www.klayout.org

Page 1085 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.62. API reference - Class LayerMap

(2) Signature: void unmap (const LayerInfo pl_start, const LayerInfo pl_stop)

Description: Unmaps the layers from the given interval

This method has been introduced in version 0.27.

(3) Signature: void unmap (string expr)

Description: Unmaps the layers from the given expression

This method has been introduced in version 0.27.

For more details visit
https://www.klayout.org

Page 1086 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

4.63. API reference - Class LoadLayoutOptions
Notation used in Ruby API documentation

Module: db

Description: Layout reader options

Sub-classes: CellConflictResolution

This object describes various layer reader options used for loading layouts.

This class has been introduced in version 0.18.

Public constructors

new LoadLayoutOptions ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
LoadLayoutOptions
other)

Assigns another object to self

[const] LoadLayoutOptions::CellConflictResolutioncell_conflict_resolution Gets the cell conflict resolution mode

void cell_conflict_resolution= (LoadLayoutOptions::CellConflictResolution
mode)

Sets the cell conflict resolution mode

void cif_create_other_layers= (bool create) Specifies whether other layers shall be
created

[const] bool cif_create_other_layers? Gets a value indicating whether other layers
shall be created

[const] double cif_dbu Specifies the database unit which the reader
uses and produces

void cif_dbu= (double arg1) Specifies the database unit which the reader
uses and produces

void cif_keep_layer_names= (bool keep) Gets a value indicating whether layer names
are kept

For more details visit
https://www.klayout.org

Page 1087 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

[const] bool cif_keep_layer_names? Gets a value indicating whether layer names
are kept

LayerMap cif_layer_map Gets the layer map

void cif_layer_map= (const
LayerMap
map)

Sets the layer map

void cif_select_all_layers Selects all layers and disables the layer map

void cif_set_layer_map (const
LayerMap
map,
bool
create_other_layers)

Sets the layer map

[const] unsigned int cif_wire_mode Specifies how to read 'W' objects

void cif_wire_mode= (unsigned int
arg1)

How to read 'W' objects

void create_other_layers= (bool create) Specifies whether other layers shall be
created

[const] bool create_other_layers? Gets a value indicating whether other layers
shall be created

[const] new
LoadLayoutOptions
ptr

dup Creates a copy of self

[const] double dxf_circle_accuracy Gets the accuracy of the circle approximation

void dxf_circle_accuracy= (double
accuracy)

Specifies the accuracy of the circle
approximation

[const] int dxf_circle_points Gets the number of points used per full circle
for arc interpolation

void dxf_circle_points= (int points) Specifies the number of points used per full
circle for arc interpolation

[const] double dxf_contour_accuracy Gets the accuracy for contour closing

void dxf_contour_accuracy= (double
accuracy)

Specifies the accuracy for contour closing

void dxf_create_other_layers= (bool create) Specifies whether other layers shall be
created

[const] bool dxf_create_other_layers? Gets a value indicating whether other layers
shall be created

[const] double dxf_dbu Specifies the database unit which the reader
uses and produces

void dxf_dbu= (double dbu) Specifies the database unit which the reader
uses and produces

For more details visit
https://www.klayout.org

Page 1088 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

void dxf_keep_layer_names= (bool keep) Gets a value indicating whether layer names
are kept

[const] bool dxf_keep_layer_names? Gets a value indicating whether layer names
are kept

void dxf_keep_other_cells= (bool value) If this option is set to true, all cells are kept,
not only the top cell and it's children

[const] bool dxf_keep_other_cells? If this option is true, all cells are kept, not only
the top cell and it's children

LayerMap dxf_layer_map Gets the layer map

void dxf_layer_map= (const
LayerMap
map)

Sets the layer map

[const] int dxf_polyline_mode Specifies whether closed POLYLINE and
LWPOLYLINE entities with width 0 are
converted to polygons.

void dxf_polyline_mode= (int mode) Specifies how to treat POLYLINE/
LWPOLYLINE entities.

void dxf_render_texts_as_polygons=(bool value) If this option is set to true, text objects are
rendered as polygons

[const] bool dxf_render_texts_as_polygons? If this option is true, text objects are rendered
as polygons

void dxf_select_all_layers Selects all layers and disables the layer map

void dxf_set_layer_map (const
LayerMap
map,
bool
create_other_layers)

Sets the layer map

[const] double dxf_text_scaling Gets the text scaling factor (see
dxf_text_scaling=)

void dxf_text_scaling= (double unit) Specifies the text scaling in percent of the
default scaling

[const] double dxf_unit Specifies the unit in which the DXF file is
drawn

void dxf_unit= (double unit) Specifies the unit in which the DXF file is
drawn.

void gds2_allow_big_records= (bool arg1) Allows big records with more than 32767
bytes

[const] bool gds2_allow_big_records? Gets a value specifying whether to allow big
records with a length of 32768 to 65535 bytes.

For more details visit
https://www.klayout.org

Page 1089 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

void gds2_allow_multi_xy_records=(bool arg1) Allows the use of multiple XY records in
BOUNDARY elements for unlimited large
polygons

[const] bool gds2_allow_multi_xy_records? Gets a value specifying whether to allow big
polygons with multiple XY records.

[const] unsigned int gds2_box_mode Gets a value specifying how to treat BOX
records

void gds2_box_mode= (unsigned int
arg1)

Sets a value specifying how to treat BOX
records

LayerMap layer_map Gets the layer map

void layer_map= (const
LayerMap
map)

Sets the layer map, but does not affect the
"create_other_layers" flag.

LEFDEFReaderConfigurationlefdef_config Gets a copy of the LEF/DEF reader
configuration

void lefdef_config= (const
LEFDEFReaderConfiguration
config)

Sets the LEF/DEF reader configuration

void mag_create_other_layers= (bool create) Specifies whether other layers shall be
created

[const] bool mag_create_other_layers? Gets a value indicating whether other layers
shall be created

[const] double mag_dbu Specifies the database unit which the reader
uses and produces

void mag_dbu= (double dbu) Specifies the database unit which the reader
uses and produces

void mag_keep_layer_names= (bool keep) Gets a value indicating whether layer names
are kept

[const] bool mag_keep_layer_names? Gets a value indicating whether layer names
are kept

[const] double mag_lambda Gets the lambda value

void mag_lambda= (double
lambda)

Specifies the lambda value to used for reading

LayerMap mag_layer_map Gets the layer map

void mag_layer_map= (const
LayerMap
map)

Sets the layer map

[const] string[] mag_library_paths Gets the locations where to look up libraries
(in this order)

For more details visit
https://www.klayout.org

Page 1090 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

void mag_library_paths= (string[]
lib_paths)

Specifies the locations where to look up
libraries (in this order)

void mag_merge= (bool merge) Sets a value indicating whether boxes are
merged into polygons

[const] bool mag_merge? Gets a value indicating whether boxes are
merged into polygons

void mag_select_all_layers Selects all layers and disables the layer map

void mag_set_layer_map (const
LayerMap
map,
bool
create_other_layers)

Sets the layer map

[const] int mebes_boundary_datatype Gets the datatype number of the boundary
layer to produce

void mebes_boundary_datatype= (int datatype) Sets the datatype number of the boundary
layer to produce

[const] int mebes_boundary_layer Gets the layer number of the boundary layer
to produce

void mebes_boundary_layer= (int layer) Sets the layer number of the boundary layer to
produce

[const] string mebes_boundary_name Gets the name of the boundary layer to
produce

void mebes_boundary_name= (string name) Sets the name of the boundary layer to
produce

void mebes_create_other_layers= (bool create) Specifies whether other layers shall be
created

[const] bool mebes_create_other_layers? Gets a value indicating whether other layers
shall be created

[const] int mebes_data_datatype Gets the datatype number of the data layer to
produce

void mebes_data_datatype= (int datatype) Sets the datatype number of the data layer to
produce

[const] int mebes_data_layer Gets the layer number of the data layer to
produce

void mebes_data_layer= (int layer) Sets the layer number of the data layer to
produce

[const] string mebes_data_name Gets the name of the data layer to produce

void mebes_data_name= (string name) Sets the name of the data layer to produce

[const] bool mebes_invert Gets a value indicating whether to invert the
MEBES pattern

For more details visit
https://www.klayout.org

Page 1091 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

void mebes_invert= (bool flag) Specify whether to invert the MEBES pattern

[const] LayerMap mebes_layer_map Gets the layer map

void mebes_layer_map= (const
LayerMap
map)

Sets the layer map

[const] int mebes_num_shapes_per_cell Gets the number of stripes collected per cell

void mebes_num_shapes_per_cell=(int n) Specify the number of stripes collected per
cell

[const] int mebes_num_stripes_per_cell Gets the number of stripes collected per cell

void mebes_num_stripes_per_cell=(int n) Specify the number of stripes collected per
cell

[const] bool mebes_produce_boundary Gets a value indicating whether a boundary
layer will be produced

void mebes_produce_boundary= (bool flag) Specify whether to produce a boundary layer

void mebes_select_all_layers Selects all layers and disables the layer map

void mebes_set_layer_map (const
LayerMap
map,
bool
create_other_layers)

Sets the layer map

[const] bool mebes_subresolution Gets a value indicating whether to invert the
MEBES pattern

void mebes_subresolution= (bool flag) Specify whether subresolution trapezoids are
supported

[const] int mebes_top_cell_index Gets the cell index for the top cell to use

void mebes_top_cell_index= (int cell_index) Specify the cell index for the top cell to use

void properties_enabled= (bool enabled) Specifies whether properties should be read

[const] bool properties_enabled? Gets a value indicating whether properties
shall be read

void select_all_layers Selects all layers and disables the layer map

void set_layer_map (const
LayerMap
map,
bool
create_other_layers)

Sets the layer map

void text_enabled= (bool enabled) Specifies whether text objects shall be read

[const] bool text_enabled? Gets a value indicating whether text objects
shall be read

For more details visit
https://www.klayout.org

Page 1092 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

Public static methods and constants

[static,const] LoadLayoutOptions::CellConflictResolutionAddToCell Add content to existing cell

[static,const] LoadLayoutOptions::CellConflictResolutionOverwriteCell The old cell is overwritten entirely
(including child cells which are not used
otherwise)

[static,const] LoadLayoutOptions::CellConflictResolutionRenameCell The new cell will be renamed to
become unique

[static,const] LoadLayoutOptions::CellConflictResolutionSkipNewCell The new cell is skipped entirely
(including child cells which are not used
otherwise)

LoadLayoutOptions from_technology (string
technology)

Gets the reader options of a given
technology

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool dxf_keep_other_cells Use of this method is deprecated. Use
dxf_keep_other_cells? instead

[const] bool dxf_render_texts_as_polygons Use of this method is deprecated. Use
dxf_render_texts_as_polygons? instead

[const] bool gds2_allow_big_records Use of this method is deprecated. Use
gds2_allow_big_records? instead

[const] bool gds2_allow_multi_xy_records Use of this method is deprecated. Use
gds2_allow_multi_xy_records? instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[const] bool is_properties_enabled? Use of this method is deprecated. Use
properties_enabled? instead

[const] bool is_text_enabled? Use of this method is deprecated. Use text_enabled?
instead

Detailed description

AddToCell
Signature: [static,const] LoadLayoutOptions::CellConflictResolution AddToCell

Description: Add content to existing cell

For more details visit
https://www.klayout.org

Page 1093 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

This is the mode use in before version 0.27. Content of new cells is simply added to existing cells
with the same name.

OverwriteCell
Signature: [static,const] LoadLayoutOptions::CellConflictResolution OverwriteCell

Description: The old cell is overwritten entirely (including child cells which are not used
otherwise)

RenameCell
Signature: [static,const] LoadLayoutOptions::CellConflictResolution RenameCell

Description: The new cell will be renamed to become unique

SkipNewCell
Signature: [static,const] LoadLayoutOptions::CellConflictResolution SkipNewCell

Description: The new cell is skipped entirely (including child cells which are not used otherwise)

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of
the object. This method may be called if an object is returned from a C++ function and the object
is known not to be owned by any C++ instance. If necessary, the script side may delete the object
if the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method

For more details visit
https://www.klayout.org

Page 1094 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const LoadLayoutOptions other)

Description: Assigns another object to self

cell_conflict_resolution
Signature: [const] LoadLayoutOptions::CellConflictResolution cell_conflict_resolution

Description: Gets the cell conflict resolution mode

Multiple layout files can be collected into a single Layout object by reading file after file into the
Layout object. Cells with same names are considered a conflict. This mode indicates how such
conflicts are resolved. See LoadLayoutOptions::CellConflictResolution for the values allowed. The
default mode is LoadLayoutOptions::CellConflictResolution#AddToCell.

This option has been introduced in version 0.27.

Python specific notes:
The object exposes a readable attribute 'cell_conflict_resolution'. This is the getter.

cell_conflict_resolution=
Signature: void cell_conflict_resolution= (LoadLayoutOptions::CellConflictResolution mode)

Description: Sets the cell conflict resolution mode

See cell_conflict_resolution for details about this option.

This option has been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'cell_conflict_resolution'. This is the setter.

cif_create_other_layers=
Signature: void cif_create_other_layers= (bool create)

Description: Specifies whether other layers shall be created

create: True, if other layers will be created.

See cif_create_other_layers? for a description of this attribute.

This method has been added in version 0.25 and replaces the respective global option in
LoadLayoutOptions in a format-specific fashion.

Python specific notes:
The object exposes a writable attribute 'cif_create_other_layers'. This is the setter.

cif_create_other_layers?
Signature: [const] bool cif_create_other_layers?

Description: Gets a value indicating whether other layers shall be created

Returns: True, if other layers will be created.

This attribute acts together with a layer map (see cif_layer_map=). Layers not listed in this map
are created as well when cif_create_other_layers? is true. Otherwise they are ignored.

This method has been added in version 0.25 and replaces the respective global option in
LoadLayoutOptions in a format-specific fashion.

Python specific notes:
The object exposes a readable attribute 'cif_create_other_layers'. This is the getter.

cif_dbu
Signature: [const] double cif_dbu

Description: Specifies the database unit which the reader uses and produces

For more details visit
https://www.klayout.org

Page 1095 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

See cif_dbu= method for a description of this property. This property has been added in version
0.21.

Python specific notes:
The object exposes a readable attribute 'cif_dbu'. This is the getter.

cif_dbu=
Signature: void cif_dbu= (double arg1)

Description: Specifies the database unit which the reader uses and produces

This property has been added in version 0.21.

Python specific notes:
The object exposes a writable attribute 'cif_dbu'. This is the setter.

cif_keep_layer_names=
Signature: void cif_keep_layer_names= (bool keep)

Description: Gets a value indicating whether layer names are kept

keep: True, if layer names are to be kept.

See cif_keep_layer_names? for a description of this property.

This method has been added in version 0.25.3.

Python specific notes:
The object exposes a writable attribute 'cif_keep_layer_names'. This is the setter.

cif_keep_layer_names?
Signature: [const] bool cif_keep_layer_names?

Description: Gets a value indicating whether layer names are kept

Returns: True, if layer names are kept.

When set to true, no attempt is made to translate layer names to GDS layer/datatype numbers. If
set to false (the default), a layer named "L2D15" will be translated to GDS layer 2, datatype 15.

This method has been added in version 0.25.3.

Python specific notes:
The object exposes a readable attribute 'cif_keep_layer_names'. This is the getter.

cif_layer_map
Signature: LayerMap cif_layer_map

Description: Gets the layer map

Returns: A reference to the layer map

This method has been added in version 0.25 and replaces the respective global option in
LoadLayoutOptions in a format-specific fashion.

Python note: this method has been turned into a property in version 0.26.

Python specific notes:
The object exposes a readable attribute 'cif_layer_map'. This is the getter.

cif_layer_map=
Signature: void cif_layer_map= (const LayerMap map)

Description: Sets the layer map

map: The layer map to set.

This sets a layer mapping for the reader. Unlike cif_set_layer_map, the 'create_other_layers' flag
is not changed.

This convenience method has been added in version 0.26.

Python specific notes:
The object exposes a writable attribute 'cif_layer_map'. This is the setter.

For more details visit
https://www.klayout.org

Page 1096 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

cif_select_all_layers
Signature: void cif_select_all_layers

Description: Selects all layers and disables the layer map

This disables any layer map and enables reading of all layers. New layers will be created when
required.

This method has been added in version 0.25 and replaces the respective global option in
LoadLayoutOptions in a format-specific fashion.

cif_set_layer_map
Signature: void cif_set_layer_map (const LayerMap map, bool create_other_layers)

Description: Sets the layer map

map: The layer map to set.

create_other_layers: The flag indicating whether other layers will be created as
well. Set to false to read only the layers in the layer map.

This sets a layer mapping for the reader. The layer map allows selection and translation of the
original layers, for example to assign layer/datatype numbers to the named layers.

This method has been added in version 0.25 and replaces the respective global option in
LoadLayoutOptions in a format-specific fashion.

cif_wire_mode
Signature: [const] unsigned int cif_wire_mode

Description: Specifies how to read 'W' objects

See cif_wire_mode= method for a description of this mode. This property has been added in
version 0.21 and was renamed to cif_wire_mode in 0.25.

Python specific notes:
The object exposes a readable attribute 'cif_wire_mode'. This is the getter.

cif_wire_mode=
Signature: void cif_wire_mode= (unsigned int arg1)

Description: How to read 'W' objects

This property specifies how to read 'W' (wire) objects. Allowed values are 0 (as square ended
paths), 1 (as flush ended paths), 2 (as round paths)

This property has been added in version 0.21.

Python specific notes:
The object exposes a writable attribute 'cif_wire_mode'. This is the setter.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

create_other_layers=
Signature: void create_other_layers= (bool create)

Description: Specifies whether other layers shall be created

create: True, if other layers should be created.

See create_other_layers? for a description of this attribute.

Starting with version 0.25 this option only applies to GDS2 and OASIS format. Other formats
provide their own configuration.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1097 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

The object exposes a writable attribute 'create_other_layers'. This is the setter.

create_other_layers?
Signature: [const] bool create_other_layers?

Description: Gets a value indicating whether other layers shall be created

Returns: True, if other layers should be created.

This attribute acts together with a layer map (see layer_map=). Layers not listed in this map are
created as well when create_other_layers? is true. Otherwise they are ignored.

Starting with version 0.25 this option only applies to GDS2 and OASIS format. Other formats
provide their own configuration.

Python specific notes:
The object exposes a readable attribute 'create_other_layers'. This is the getter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new LoadLayoutOptions ptr dup

Description: Creates a copy of self

dxf_circle_accuracy
Signature: [const] double dxf_circle_accuracy

Description: Gets the accuracy of the circle approximation

This property has been added in version 0.24.9.

Python specific notes:
The object exposes a readable attribute 'dxf_circle_accuracy'. This is the getter.

dxf_circle_accuracy=
Signature: void dxf_circle_accuracy= (double accuracy)

Description: Specifies the accuracy of the circle approximation

In addition to the number of points per circle, the circle accuracy can be specified. If set to a
value larger than the database unit, the number of points per circle will be chosen such that the
deviation from the ideal circle becomes less than this value.

The actual number of points will not become bigger than the points specified through
dxf_circle_points=. The accuracy value is given in the DXF file units (see dxf_unit) which is usually
micrometers.

dxf_circle_points and dxf_circle_accuracy also apply to other "round" structures such as arcs,
ellipses and splines in the same sense than for circles.

This property has been added in version 0.24.9.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1098 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

The object exposes a writable attribute 'dxf_circle_accuracy'. This is the setter.

dxf_circle_points
Signature: [const] int dxf_circle_points

Description: Gets the number of points used per full circle for arc interpolation

This property has been added in version 0.21.6.

Python specific notes:
The object exposes a readable attribute 'dxf_circle_points'. This is the getter.

dxf_circle_points=
Signature: void dxf_circle_points= (int points)

Description: Specifies the number of points used per full circle for arc interpolation

See also dxf_circle_accuracy for how to specify the number of points based on an approximation
accuracy.

dxf_circle_points and dxf_circle_accuracy also apply to other "round" structures such as arcs,
ellipses and splines in the same sense than for circles.

This property has been added in version 0.21.6.

Python specific notes:
The object exposes a writable attribute 'dxf_circle_points'. This is the setter.

dxf_contour_accuracy
Signature: [const] double dxf_contour_accuracy

Description: Gets the accuracy for contour closing

This property has been added in version 0.25.3.

Python specific notes:
The object exposes a readable attribute 'dxf_contour_accuracy'. This is the getter.

dxf_contour_accuracy=
Signature: void dxf_contour_accuracy= (double accuracy)

Description: Specifies the accuracy for contour closing

When polylines need to be connected or closed, this value is used to indicate the accuracy. This is
the value (in DXF units) by which points may be separated and still be considered connected. The
default is 0.0 which implies exact (within one DBU) closing.

This value is effective in polyline mode 3 and 4.

This property has been added in version 0.25.3.

Python specific notes:
The object exposes a writable attribute 'dxf_contour_accuracy'. This is the setter.

dxf_create_other_layers=
Signature: void dxf_create_other_layers= (bool create)

Description: Specifies whether other layers shall be created

create: True, if other layers will be created.

See dxf_create_other_layers? for a description of this attribute.

This method has been added in version 0.25 and replaces the respective global option in
LoadLayoutOptions in a format-specific fashion.

Python specific notes:
The object exposes a writable attribute 'dxf_create_other_layers'. This is the setter.

dxf_create_other_layers?
Signature: [const] bool dxf_create_other_layers?

Description: Gets a value indicating whether other layers shall be created

For more details visit
https://www.klayout.org

Page 1099 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

Returns: True, if other layers will be created.

This attribute acts together with a layer map (see dxf_layer_map=). Layers not listed in this map
are created as well when dxf_create_other_layers? is true. Otherwise they are ignored.

This method has been added in version 0.25 and replaces the respective global option in
LoadLayoutOptions in a format-specific fashion.

Python specific notes:
The object exposes a readable attribute 'dxf_create_other_layers'. This is the getter.

dxf_dbu
Signature: [const] double dxf_dbu

Description: Specifies the database unit which the reader uses and produces

This property has been added in version 0.21.

Python specific notes:
The object exposes a readable attribute 'dxf_dbu'. This is the getter.

dxf_dbu=
Signature: void dxf_dbu= (double dbu)

Description: Specifies the database unit which the reader uses and produces

This property has been added in version 0.21.

Python specific notes:
The object exposes a writable attribute 'dxf_dbu'. This is the setter.

dxf_keep_layer_names=
Signature: void dxf_keep_layer_names= (bool keep)

Description: Gets a value indicating whether layer names are kept

keep: True, if layer names are to be kept.

See cif_keep_layer_names? for a description of this property.

This method has been added in version 0.25.3.

Python specific notes:
The object exposes a writable attribute 'dxf_keep_layer_names'. This is the setter.

dxf_keep_layer_names?
Signature: [const] bool dxf_keep_layer_names?

Description: Gets a value indicating whether layer names are kept

Returns: True, if layer names are kept.

When set to true, no attempt is made to translate layer names to GDS layer/datatype numbers. If
set to false (the default), a layer named "L2D15" will be translated to GDS layer 2, datatype 15.

This method has been added in version 0.25.3.

Python specific notes:
The object exposes a readable attribute 'dxf_keep_layer_names'. This is the getter.

dxf_keep_other_cells
Signature: [const] bool dxf_keep_other_cells

Description: If this option is true, all cells are kept, not only the top cell and it's children

Use of this method is deprecated. Use dxf_keep_other_cells? instead

This property has been added in version 0.21.15.

Python specific notes:
The object exposes a readable attribute 'dxf_keep_other_cells'. This is the getter. The object
exposes a readable attribute 'dxf_keep_other_cells'. This is the getter.

For more details visit
https://www.klayout.org

Page 1100 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

dxf_keep_other_cells=
Signature: void dxf_keep_other_cells= (bool value)

Description: If this option is set to true, all cells are kept, not only the top cell and it's children

This property has been added in version 0.21.15.

Python specific notes:
The object exposes a writable attribute 'dxf_keep_other_cells'. This is the setter.

dxf_keep_other_cells?
Signature: [const] bool dxf_keep_other_cells?

Description: If this option is true, all cells are kept, not only the top cell and it's children

This property has been added in version 0.21.15.

Python specific notes:
The object exposes a readable attribute 'dxf_keep_other_cells'. This is the getter. The object
exposes a readable attribute 'dxf_keep_other_cells'. This is the getter.

dxf_layer_map
Signature: LayerMap dxf_layer_map

Description: Gets the layer map

Returns: A reference to the layer map

This method has been added in version 0.25 and replaces the respective global option in
LoadLayoutOptions in a format-specific fashion. Python note: this method has been turned into a
property in version 0.26.

Python specific notes:
The object exposes a readable attribute 'dxf_layer_map'. This is the getter.

dxf_layer_map=
Signature: void dxf_layer_map= (const LayerMap map)

Description: Sets the layer map

map: The layer map to set.

This sets a layer mapping for the reader. Unlike dxf_set_layer_map, the 'create_other_layers' flag
is not changed.

This convenience method has been added in version 0.26.

Python specific notes:
The object exposes a writable attribute 'dxf_layer_map'. This is the setter.

dxf_polyline_mode
Signature: [const] int dxf_polyline_mode

Description: Specifies whether closed POLYLINE and LWPOLYLINE entities with width 0 are
converted to polygons.

See dxf_polyline_mode= for a description of this property.

This property has been added in version 0.21.3.

Python specific notes:
The object exposes a readable attribute 'dxf_polyline_mode'. This is the getter.

dxf_polyline_mode=
Signature: void dxf_polyline_mode= (int mode)

Description: Specifies how to treat POLYLINE/LWPOLYLINE entities.

The mode is 0 (automatic), 1 (keep lines), 2 (create polygons from closed polylines with width =
0), 3 (merge all lines with width = 0 into polygons), 4 (as 3 plus auto-close open contours).

This property has been added in version 0.21.3.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1101 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

The object exposes a writable attribute 'dxf_polyline_mode'. This is the setter.

dxf_render_texts_as_polygons
Signature: [const] bool dxf_render_texts_as_polygons

Description: If this option is true, text objects are rendered as polygons

Use of this method is deprecated. Use dxf_render_texts_as_polygons? instead

This property has been added in version 0.21.15.

Python specific notes:
The object exposes a readable attribute 'dxf_render_texts_as_polygons'. This is the getter. The
object exposes a readable attribute 'dxf_render_texts_as_polygons'. This is the getter.

dxf_render_texts_as_polygons=
Signature: void dxf_render_texts_as_polygons= (bool value)

Description: If this option is set to true, text objects are rendered as polygons

This property has been added in version 0.21.15.

Python specific notes:
The object exposes a writable attribute 'dxf_render_texts_as_polygons'. This is the setter.

dxf_render_texts_as_polygons?
Signature: [const] bool dxf_render_texts_as_polygons?

Description: If this option is true, text objects are rendered as polygons

This property has been added in version 0.21.15.

Python specific notes:
The object exposes a readable attribute 'dxf_render_texts_as_polygons'. This is the getter. The
object exposes a readable attribute 'dxf_render_texts_as_polygons'. This is the getter.

dxf_select_all_layers
Signature: void dxf_select_all_layers

Description: Selects all layers and disables the layer map

This disables any layer map and enables reading of all layers. New layers will be created when
required.

This method has been added in version 0.25 and replaces the respective global option in
LoadLayoutOptions in a format-specific fashion.

dxf_set_layer_map
Signature: void dxf_set_layer_map (const LayerMap map, bool create_other_layers)

Description: Sets the layer map

map: The layer map to set.

create_other_layers: The flag indicating whether other layers will be created as
well. Set to false to read only the layers in the layer map.

This sets a layer mapping for the reader. The layer map allows selection and translation of the
original layers, for example to assign layer/datatype numbers to the named layers.

This method has been added in version 0.25 and replaces the respective global option in
LoadLayoutOptions in a format-specific fashion.

dxf_text_scaling
Signature: [const] double dxf_text_scaling

Description: Gets the text scaling factor (see dxf_text_scaling=)

This property has been added in version 0.21.20.

Python specific notes:
The object exposes a readable attribute 'dxf_text_scaling'. This is the getter.

For more details visit
https://www.klayout.org

Page 1102 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

dxf_text_scaling=
Signature: void dxf_text_scaling= (double unit)

Description: Specifies the text scaling in percent of the default scaling

The default value 100, meaning that the letter pitch is roughly 92 percent of the specified text
height. Decrease this value to get smaller fonts and increase it to get larger fonts.

This property has been added in version 0.21.20.

Python specific notes:
The object exposes a writable attribute 'dxf_text_scaling'. This is the setter.

dxf_unit
Signature: [const] double dxf_unit

Description: Specifies the unit in which the DXF file is drawn

This property has been added in version 0.21.3.

Python specific notes:
The object exposes a readable attribute 'dxf_unit'. This is the getter.

dxf_unit=
Signature: void dxf_unit= (double unit)

Description: Specifies the unit in which the DXF file is drawn.

This property has been added in version 0.21.3.

Python specific notes:
The object exposes a writable attribute 'dxf_unit'. This is the setter.

from_technology
Signature: [static] LoadLayoutOptions from_technology (string technology)

Description: Gets the reader options of a given technology

technology: The name of the technology to apply

Returns the reader options of a specific technology. If the technology name is not valid or an
empty string, the reader options of the default technology are returned.

This method has been introduced in version 0.25

gds2_allow_big_records
Signature: [const] bool gds2_allow_big_records

Description: Gets a value specifying whether to allow big records with a length of 32768 to 65535
bytes.

Use of this method is deprecated. Use gds2_allow_big_records? instead

See gds2_allow_big_records= method for a description of this property. This property has been
added in version 0.18.

Python specific notes:
The object exposes a readable attribute 'gds2_allow_big_records'. This is the getter. The object
exposes a readable attribute 'gds2_allow_big_records'. This is the getter.

gds2_allow_big_records=
Signature: void gds2_allow_big_records= (bool arg1)

Description: Allows big records with more than 32767 bytes

Setting this property to true allows larger records by treating the record length as unsigned short,
which for example allows larger polygons (~8000 points rather than ~4000 points) without using
multiple XY records. For strict compatibility with the standard, this property should be set to false.
The default is true.

This property has been added in version 0.18.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1103 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

The object exposes a writable attribute 'gds2_allow_big_records'. This is the setter.

gds2_allow_big_records?
Signature: [const] bool gds2_allow_big_records?

Description: Gets a value specifying whether to allow big records with a length of 32768 to 65535
bytes.

See gds2_allow_big_records= method for a description of this property. This property has been
added in version 0.18.

Python specific notes:
The object exposes a readable attribute 'gds2_allow_big_records'. This is the getter. The object
exposes a readable attribute 'gds2_allow_big_records'. This is the getter.

gds2_allow_multi_xy_records
Signature: [const] bool gds2_allow_multi_xy_records

Description: Gets a value specifying whether to allow big polygons with multiple XY records.

Use of this method is deprecated. Use gds2_allow_multi_xy_records? instead

See gds2_allow_multi_xy_records= method for a description of this property. This property has
been added in version 0.18.

Python specific notes:
The object exposes a readable attribute 'gds2_allow_multi_xy_records'. This is the getter. The
object exposes a readable attribute 'gds2_allow_multi_xy_records'. This is the getter.

gds2_allow_multi_xy_records=
Signature: void gds2_allow_multi_xy_records= (bool arg1)

Description: Allows the use of multiple XY records in BOUNDARY elements for unlimited large
polygons

Setting this property to true allows big polygons that span over multiple XY records. For strict
compatibility with the standard, this property should be set to false. The default is true.

This property has been added in version 0.18.

Python specific notes:
The object exposes a writable attribute 'gds2_allow_multi_xy_records'. This is the setter.

gds2_allow_multi_xy_records?
Signature: [const] bool gds2_allow_multi_xy_records?

Description: Gets a value specifying whether to allow big polygons with multiple XY records.

See gds2_allow_multi_xy_records= method for a description of this property. This property has
been added in version 0.18.

Python specific notes:
The object exposes a readable attribute 'gds2_allow_multi_xy_records'. This is the getter. The
object exposes a readable attribute 'gds2_allow_multi_xy_records'. This is the getter.

gds2_box_mode
Signature: [const] unsigned int gds2_box_mode

Description: Gets a value specifying how to treat BOX records

See gds2_box_mode= method for a description of this mode. This property has been added in
version 0.18.

Python specific notes:
The object exposes a readable attribute 'gds2_box_mode'. This is the getter.

gds2_box_mode=
Signature: void gds2_box_mode= (unsigned int arg1)

Description: Sets a value specifying how to treat BOX records

This property specifies how BOX records are treated. Allowed values are 0 (ignore), 1 (treat as
rectangles), 2 (treat as boundaries) or 3 (treat as errors). The default is 1.

For more details visit
https://www.klayout.org

Page 1104 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

This property has been added in version 0.18.

Python specific notes:
The object exposes a writable attribute 'gds2_box_mode'. This is the setter.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

is_properties_enabled?
Signature: [const] bool is_properties_enabled?

Description: Gets a value indicating whether properties shall be read

Returns: True, if properties should be read.

Use of this method is deprecated. Use properties_enabled? instead

Starting with version 0.25 this option only applies to GDS2 and OASIS format. Other formats
provide their own configuration.

Python specific notes:
The object exposes a readable attribute 'properties_enabled'. This is the getter.

is_text_enabled?
Signature: [const] bool is_text_enabled?

Description: Gets a value indicating whether text objects shall be read

Returns: True, if text objects should be read.

Use of this method is deprecated. Use text_enabled? instead

Starting with version 0.25 this option only applies to GDS2 and OASIS format. Other formats
provide their own configuration.

Python specific notes:
The object exposes a readable attribute 'text_enabled'. This is the getter.

layer_map
Signature: LayerMap layer_map

Description: Gets the layer map

Returns: A reference to the layer map

Starting with version 0.25 this option only applies to GDS2 and OASIS format. Other formats
provide their own configuration. Python note: this method has been turned into a property in
version 0.26.

Python specific notes:
The object exposes a readable attribute 'layer_map'. This is the getter.

layer_map=
Signature: void layer_map= (const LayerMap map)

Description: Sets the layer map, but does not affect the "create_other_layers" flag.

map: The layer map to set.

Use create_other_layers? to enable or disable other layers not listed in the layer map.

This convenience method has been introduced with version 0.26.

Python specific notes:
The object exposes a writable attribute 'layer_map'. This is the setter.

For more details visit
https://www.klayout.org

Page 1105 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

lefdef_config
Signature: LEFDEFReaderConfiguration lefdef_config

Description: Gets a copy of the LEF/DEF reader configuration

The LEF/DEF reader configuration is wrapped in a separate object of class
LEFDEFReaderConfiguration. See there for details. This method will return a copy of the reader
configuration. To modify the configuration, modify the copy and set the modified configuration with
lefdef_config=.

This method has been added in version 0.25.

Python specific notes:
The object exposes a readable attribute 'lefdef_config'. This is the getter.

lefdef_config=
Signature: void lefdef_config= (const LEFDEFReaderConfiguration config)

Description: Sets the LEF/DEF reader configuration

This method has been added in version 0.25.

Python specific notes:
The object exposes a writable attribute 'lefdef_config'. This is the setter.

mag_create_other_layers=
Signature: void mag_create_other_layers= (bool create)

Description: Specifies whether other layers shall be created

create: True, if other layers will be created.

See mag_create_other_layers? for a description of this attribute.

This method has been added in version 0.26.2.

Python specific notes:
The object exposes a writable attribute 'mag_create_other_layers'. This is the setter.

mag_create_other_layers?
Signature: [const] bool mag_create_other_layers?

Description: Gets a value indicating whether other layers shall be created

Returns: True, if other layers will be created.

This attribute acts together with a layer map (see mag_layer_map=). Layers not listed in this map
are created as well when mag_create_other_layers? is true. Otherwise they are ignored.

This method has been added in version 0.26.2.

Python specific notes:
The object exposes a readable attribute 'mag_create_other_layers'. This is the getter.

mag_dbu
Signature: [const] double mag_dbu

Description: Specifies the database unit which the reader uses and produces

See mag_dbu= method for a description of this property.

This property has been added in version 0.26.2.

Python specific notes:
The object exposes a readable attribute 'mag_dbu'. This is the getter.

mag_dbu=
Signature: void mag_dbu= (double dbu)

Description: Specifies the database unit which the reader uses and produces

The database unit is the final resolution of the produced layout. This physical resolution is usually
defined by the layout system - GDS for example typically uses 1nm (mag_dbu=0.001). All
geometry in the MAG file will first be scaled to mag_lambda and is then brought to the database
unit.

For more details visit
https://www.klayout.org

Page 1106 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

This property has been added in version 0.26.2.

Python specific notes:
The object exposes a writable attribute 'mag_dbu'. This is the setter.

mag_keep_layer_names=
Signature: void mag_keep_layer_names= (bool keep)

Description: Gets a value indicating whether layer names are kept

keep: True, if layer names are to be kept.

See mag_keep_layer_names? for a description of this property.

This method has been added in version 0.26.2.

Python specific notes:
The object exposes a writable attribute 'mag_keep_layer_names'. This is the setter.

mag_keep_layer_names?
Signature: [const] bool mag_keep_layer_names?

Description: Gets a value indicating whether layer names are kept

Returns: True, if layer names are kept.

When set to true, no attempt is made to translate layer names to GDS layer/datatype numbers. If
set to false (the default), a layer named "L2D15" will be translated to GDS layer 2, datatype 15.

This method has been added in version 0.26.2.

Python specific notes:
The object exposes a readable attribute 'mag_keep_layer_names'. This is the getter.

mag_lambda
Signature: [const] double mag_lambda

Description: Gets the lambda value

See mag_lambda= method for a description of this attribute.

This property has been added in version 0.26.2.

Python specific notes:
The object exposes a readable attribute 'mag_lambda'. This is the getter.

mag_lambda=
Signature: void mag_lambda= (double lambda)

Description: Specifies the lambda value to used for reading

The lambda value is the basic unit of the layout. Magic draws layout as multiples of this basic
unit. The layout read by the MAG reader will use the database unit specified by mag_dbu, but the
physical layout coordinates will be multiples of mag_lambda.

This property has been added in version 0.26.2.

Python specific notes:
The object exposes a writable attribute 'mag_lambda'. This is the setter.

mag_layer_map
Signature: LayerMap mag_layer_map

Description: Gets the layer map

Returns: A reference to the layer map

This method has been added in version 0.26.2.

Python specific notes:
The object exposes a readable attribute 'mag_layer_map'. This is the getter.

For more details visit
https://www.klayout.org

Page 1107 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

mag_layer_map=
Signature: void mag_layer_map= (const LayerMap map)

Description: Sets the layer map

map: The layer map to set.

This sets a layer mapping for the reader. Unlike mag_set_layer_map, the 'create_other_layers'
flag is not changed.

This method has been added in version 0.26.2.

Python specific notes:
The object exposes a writable attribute 'mag_layer_map'. This is the setter.

mag_library_paths
Signature: [const] string[] mag_library_paths

Description: Gets the locations where to look up libraries (in this order)

See mag_library_paths= method for a description of this attribute.

This property has been added in version 0.26.2.

Python specific notes:
The object exposes a readable attribute 'mag_library_paths'. This is the getter.

mag_library_paths=
Signature: void mag_library_paths= (string[] lib_paths)

Description: Specifies the locations where to look up libraries (in this order)

The reader will look up library reference in these paths when it can't find them locally. Relative
paths in this collection are resolved relative to the initial file's path. Expression interpolation is
supported in the path strings.

This property has been added in version 0.26.2.

Python specific notes:
The object exposes a writable attribute 'mag_library_paths'. This is the setter.

mag_merge=
Signature: void mag_merge= (bool merge)

Description: Sets a value indicating whether boxes are merged into polygons

merge: True, if boxes and triangles will be merged into polygons.

See mag_merge? for a description of this property.

This method has been added in version 0.26.2.

Python specific notes:
The object exposes a writable attribute 'mag_merge'. This is the setter.

mag_merge?
Signature: [const] bool mag_merge?

Description: Gets a value indicating whether boxes are merged into polygons

Returns: True, if boxes are merged.

When set to true, the boxes and triangles of the Magic layout files are merged into polygons
where possible.

This method has been added in version 0.26.2.

Python specific notes:
The object exposes a readable attribute 'mag_merge'. This is the getter.

mag_select_all_layers
Signature: void mag_select_all_layers

Description: Selects all layers and disables the layer map

For more details visit
https://www.klayout.org

Page 1108 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

This disables any layer map and enables reading of all layers. New layers will be created when
required.

This method has been added in version 0.26.2.

mag_set_layer_map
Signature: void mag_set_layer_map (const LayerMap map, bool create_other_layers)

Description: Sets the layer map

map: The layer map to set.

create_other_layers: The flag indicating whether other layers will be created as
well. Set to false to read only the layers in the layer map.

This sets a layer mapping for the reader. The layer map allows selection and translation of the
original layers, for example to assign layer/datatype numbers to the named layers.

This method has been added in version 0.26.2.

mebes_boundary_datatype
Signature: [const] int mebes_boundary_datatype

Description: Gets the datatype number of the boundary layer to produce

See mebes_produce_boundary= for a description of this attribute.

This property has been added in version 0.23.10.

Python specific notes:
The object exposes a readable attribute 'mebes_boundary_datatype'. This is the getter.

mebes_boundary_datatype=
Signature: void mebes_boundary_datatype= (int datatype)

Description: Sets the datatype number of the boundary layer to produce

See mebes_produce_boundary= for a description of this attribute.

This property has been added in version 0.23.10.

Python specific notes:
The object exposes a writable attribute 'mebes_boundary_datatype'. This is the setter.

mebes_boundary_layer
Signature: [const] int mebes_boundary_layer

Description: Gets the layer number of the boundary layer to produce

See mebes_produce_boundary= for a description of this attribute.

This property has been added in version 0.23.10.

Python specific notes:
The object exposes a readable attribute 'mebes_boundary_layer'. This is the getter.

mebes_boundary_layer=
Signature: void mebes_boundary_layer= (int layer)

Description: Sets the layer number of the boundary layer to produce

See mebes_produce_boundary= for a description of this attribute.

This property has been added in version 0.23.10.

Python specific notes:
The object exposes a writable attribute 'mebes_boundary_layer'. This is the setter.

mebes_boundary_name
Signature: [const] string mebes_boundary_name

Description: Gets the name of the boundary layer to produce

See mebes_produce_boundary= for a description of this attribute.

This property has been added in version 0.23.10.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1109 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

The object exposes a readable attribute 'mebes_boundary_name'. This is the getter.

mebes_boundary_name=
Signature: void mebes_boundary_name= (string name)

Description: Sets the name of the boundary layer to produce

See mebes_produce_boundary= for a description of this attribute.

This property has been added in version 0.23.10.

Python specific notes:
The object exposes a writable attribute 'mebes_boundary_name'. This is the setter.

mebes_create_other_layers=
Signature: void mebes_create_other_layers= (bool create)

Description: Specifies whether other layers shall be created

create: True, if other layers will be created.

See mebes_create_other_layers? for a description of this attribute.

This method has been added in version 0.25 and replaces the respective global option in
LoadLayoutOptions in a format-specific fashion.

Python specific notes:
The object exposes a writable attribute 'mebes_create_other_layers'. This is the setter.

mebes_create_other_layers?
Signature: [const] bool mebes_create_other_layers?

Description: Gets a value indicating whether other layers shall be created

Returns: True, if other layers will be created.

This attribute acts together with a layer map (see mebes_layer_map=). Layers not listed in this
map are created as well when mebes_create_other_layers? is true. Otherwise they are ignored.

This method has been added in version 0.25 and replaces the respective global option in
LoadLayoutOptions in a format-specific fashion.

Python specific notes:
The object exposes a readable attribute 'mebes_create_other_layers'. This is the getter.

mebes_data_datatype
Signature: [const] int mebes_data_datatype

Description: Gets the datatype number of the data layer to produce

This property has been added in version 0.23.10.

Python specific notes:
The object exposes a readable attribute 'mebes_data_datatype'. This is the getter.

mebes_data_datatype=
Signature: void mebes_data_datatype= (int datatype)

Description: Sets the datatype number of the data layer to produce

This property has been added in version 0.23.10.

Python specific notes:
The object exposes a writable attribute 'mebes_data_datatype'. This is the setter.

mebes_data_layer
Signature: [const] int mebes_data_layer

Description: Gets the layer number of the data layer to produce

This property has been added in version 0.23.10.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1110 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

The object exposes a readable attribute 'mebes_data_layer'. This is the getter.

mebes_data_layer=
Signature: void mebes_data_layer= (int layer)

Description: Sets the layer number of the data layer to produce

This property has been added in version 0.23.10.

Python specific notes:
The object exposes a writable attribute 'mebes_data_layer'. This is the setter.

mebes_data_name
Signature: [const] string mebes_data_name

Description: Gets the name of the data layer to produce

This property has been added in version 0.23.10.

Python specific notes:
The object exposes a readable attribute 'mebes_data_name'. This is the getter.

mebes_data_name=
Signature: void mebes_data_name= (string name)

Description: Sets the name of the data layer to produce

This property has been added in version 0.23.10.

Python specific notes:
The object exposes a writable attribute 'mebes_data_name'. This is the setter.

mebes_invert
Signature: [const] bool mebes_invert

Description: Gets a value indicating whether to invert the MEBES pattern

If this property is set to true, the pattern will be inverted.

This property has been added in version 0.22.

Python specific notes:
The object exposes a readable attribute 'mebes_invert'. This is the getter.

mebes_invert=
Signature: void mebes_invert= (bool flag)

Description: Specify whether to invert the MEBES pattern

If this property is set to true, the pattern will be inverted.

This property has been added in version 0.22.

Python specific notes:
The object exposes a writable attribute 'mebes_invert'. This is the setter.

mebes_layer_map
Signature: [const] LayerMap mebes_layer_map

Description: Gets the layer map

Returns: The layer map.

This method has been added in version 0.25 and replaces the respective global option in
LoadLayoutOptions in a format-specific fashion.

Python specific notes:
The object exposes a readable attribute 'mebes_layer_map'. This is the getter.

mebes_layer_map=
Signature: void mebes_layer_map= (const LayerMap map)

Description: Sets the layer map

For more details visit
https://www.klayout.org

Page 1111 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

map: The layer map to set.

This sets a layer mapping for the reader. Unlike mebes_set_layer_map, the 'create_other_layers'
flag is not changed.

This convenience method has been added in version 0.26.2.

Python specific notes:
The object exposes a writable attribute 'mebes_layer_map'. This is the setter.

mebes_num_shapes_per_cell
Signature: [const] int mebes_num_shapes_per_cell

Description: Gets the number of stripes collected per cell

See mebes_num_stripes_per_cell= for details about this property.

This property has been added in version 0.24.5.

Python specific notes:
The object exposes a readable attribute 'mebes_num_shapes_per_cell'. This is the getter.

mebes_num_shapes_per_cell=
Signature: void mebes_num_shapes_per_cell= (int n)

Description: Specify the number of stripes collected per cell

See mebes_num_stripes_per_cell= for details about this property.

This property has been added in version 0.24.5.

Python specific notes:
The object exposes a writable attribute 'mebes_num_shapes_per_cell'. This is the setter.

mebes_num_stripes_per_cell
Signature: [const] int mebes_num_stripes_per_cell

Description: Gets the number of stripes collected per cell

See mebes_num_stripes_per_cell= for details about this property.

This property has been added in version 0.23.10.

Python specific notes:
The object exposes a readable attribute 'mebes_num_stripes_per_cell'. This is the getter.

mebes_num_stripes_per_cell=
Signature: void mebes_num_stripes_per_cell= (int n)

Description: Specify the number of stripes collected per cell

This property specifies how many stripes will be collected into one cell. A smaller value means
less but bigger cells. The default value is 64. New cells will be formed whenever more than this
number of stripes has been read or a new segment is started and the number of shapes given by
mebes_num_shapes_per_cell is exceeded.

This property has been added in version 0.23.10.

Python specific notes:
The object exposes a writable attribute 'mebes_num_stripes_per_cell'. This is the setter.

mebes_produce_boundary
Signature: [const] bool mebes_produce_boundary

Description: Gets a value indicating whether a boundary layer will be produced

See mebes_produce_boundary= for details about this property.

This property has been added in version 0.23.10.

Python specific notes:
The object exposes a readable attribute 'mebes_produce_boundary'. This is the getter.

mebes_produce_boundary=
Signature: void mebes_produce_boundary= (bool flag)

For more details visit
https://www.klayout.org

Page 1112 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

Description: Specify whether to produce a boundary layer

If this property is set to true, the pattern boundary will be written to the layer and datatype
specified with mebes_boundary_name, mebes_boundary_layer and mebes_boundary_datatype.
By default, the boundary layer is produced.

This property has been added in version 0.23.10.

Python specific notes:
The object exposes a writable attribute 'mebes_produce_boundary'. This is the setter.

mebes_select_all_layers
Signature: void mebes_select_all_layers

Description: Selects all layers and disables the layer map

This disables any layer map and enables reading of all layers. New layers will be created when
required.

This method has been added in version 0.25 and replaces the respective global option in
LoadLayoutOptions in a format-specific fashion.

mebes_set_layer_map
Signature: void mebes_set_layer_map (const LayerMap map, bool create_other_layers)

Description: Sets the layer map

map: The layer map to set.

create_other_layers: The flag indicating whether other layers will be created as
well. Set to false to read only the layers in the layer map.

This sets a layer mapping for the reader. The layer map allows selection and translation of the
original layers.

This method has been added in version 0.25 and replaces the respective global option in
LoadLayoutOptions in a format-specific fashion.

mebes_subresolution
Signature: [const] bool mebes_subresolution

Description: Gets a value indicating whether to invert the MEBES pattern

See subresolution= for details about this property.

This property has been added in version 0.23.10.

Python specific notes:
The object exposes a readable attribute 'mebes_subresolution'. This is the getter.

mebes_subresolution=
Signature: void mebes_subresolution= (bool flag)

Description: Specify whether subresolution trapezoids are supported

If this property is set to true, subresolution trapezoid vertices are supported. In order to implement
support, the reader will create magnified instances with a magnification of 1/16. By default this
property is enabled.

This property has been added in version 0.23.10.

Python specific notes:
The object exposes a writable attribute 'mebes_subresolution'. This is the setter.

mebes_top_cell_index
Signature: [const] int mebes_top_cell_index

Description: Gets the cell index for the top cell to use

See mebes_top_cell_index= for a description of this property.

This property has been added in version 0.23.10.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1113 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

The object exposes a readable attribute 'mebes_top_cell_index'. This is the getter.

mebes_top_cell_index=
Signature: void mebes_top_cell_index= (int cell_index)

Description: Specify the cell index for the top cell to use

If this property is set to a valid cell index, the MEBES reader will put the subcells and shapes into
this cell.

This property has been added in version 0.23.10.

Python specific notes:
The object exposes a writable attribute 'mebes_top_cell_index'. This is the setter.

new
Signature: [static] new LoadLayoutOptions ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

properties_enabled=
Signature: void properties_enabled= (bool enabled)

Description: Specifies whether properties should be read

enabled: True, if properties should be read.

Starting with version 0.25 this option only applies to GDS2 and OASIS format. Other formats
provide their own configuration.

Python specific notes:
The object exposes a writable attribute 'properties_enabled'. This is the setter.

properties_enabled?
Signature: [const] bool properties_enabled?

Description: Gets a value indicating whether properties shall be read

Returns: True, if properties should be read.

Starting with version 0.25 this option only applies to GDS2 and OASIS format. Other formats
provide their own configuration.

Python specific notes:
The object exposes a readable attribute 'properties_enabled'. This is the getter.

select_all_layers
Signature: void select_all_layers

Description: Selects all layers and disables the layer map

This disables any layer map and enables reading of all layers. New layers will be created when
required.

Starting with version 0.25 this method only applies to GDS2 and OASIS format. Other formats
provide their own configuration.

set_layer_map
Signature: void set_layer_map (const LayerMap map, bool create_other_layers)

Description: Sets the layer map

map: The layer map to set.@param create_other_layers The flag telling
whether other layer should be created as well. Set to false if just the
layers in the mapping table should be read.

This sets a layer mapping for the reader. The layer map allows selection and translation of the
original layers, for example to add a layer name.

For more details visit
https://www.klayout.org

Page 1114 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.63. API reference - Class LoadLayoutOptions

Starting with version 0.25 this option only applies to GDS2 and OASIS format. Other formats
provide their own configuration.

text_enabled=
Signature: void text_enabled= (bool enabled)

Description: Specifies whether text objects shall be read

enabled: True, if text objects should be read.

Starting with version 0.25 this option only applies to GDS2 and OASIS format. Other formats
provide their own configuration.

Python specific notes:
The object exposes a writable attribute 'text_enabled'. This is the setter.

text_enabled?
Signature: [const] bool text_enabled?

Description: Gets a value indicating whether text objects shall be read

Returns: True, if text objects should be read.

Starting with version 0.25 this option only applies to GDS2 and OASIS format. Other formats
provide their own configuration.

Python specific notes:
The object exposes a readable attribute 'text_enabled'. This is the getter.

For more details visit
https://www.klayout.org

Page 1115 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.64. API reference - Class LoadLayoutOptions::CellConflictResolution

4.64. API reference - Class LoadLayoutOptions::CellConflictResolution
Notation used in Ruby API documentation

Module: db

Description: This enum specifies how cell conflicts are handled if a layout read into another layout and a cell name conflict arises.

This class is equivalent to the class LoadLayoutOptions::CellConflictResolution

Until version 0.26.8 and before, the mode was always 'AddToCell'. On reading, a cell was 'reopened' when encountering a cell name which
already existed. This mode is still the default. The other modes are made available to support other ways of merging layouts.

Proxy cells are never modified in the existing layout. Proxy cells are always local to their layout file. So if the existing cell is a proxy cell, the
new cell will be renamed.

If the new or existing cell is a ghost cell, both cells are merged always.

This enum was introduced in version 0.27.

Public constructors

new LoadLayoutOptions::CellConflictResolution
ptr

new (int i) Creates an enum from an integer value

new LoadLayoutOptions::CellConflictResolution
ptr

new (string s) Creates an enum from a string value

Public methods

[const] bool != (const
LoadLayoutOptions::CellConflictResolution
other)

Compares two enums for inequality

[const] bool < (const
LoadLayoutOptions::CellConflictResolution
other)

Returns true if the first enum is less (in the
enum symbol order) than the second

[const] bool == (const
LoadLayoutOptions::CellConflictResolution
other)

Compares two enums

[const] string inspect Converts an enum to a visual string

[const] int to_i Gets the integer value from the enum

[const] string to_s Gets the symbolic string from an enum

Public static methods and constants

[static,const] LoadLayoutOptions::CellConflictResolutionAddToCell Add content to existing cell

[static,const] LoadLayoutOptions::CellConflictResolutionOverwriteCell The old cell is overwritten entirely
(including child cells which are not used
otherwise)

[static,const] LoadLayoutOptions::CellConflictResolutionRenameCell The new cell will be renamed to become
unique

For more details visit
https://www.klayout.org

Page 1116 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.64. API reference - Class LoadLayoutOptions::CellConflictResolution

[static,const] LoadLayoutOptions::CellConflictResolutionSkipNewCell The new cell is skipped entirely
(including child cells which are not used
otherwise)

Detailed description

!=
Signature: [const] bool != (const LoadLayoutOptions::CellConflictResolution other)

Description: Compares two enums for inequality

<
Signature: [const] bool < (const LoadLayoutOptions::CellConflictResolution other)

Description: Returns true if the first enum is less (in the enum symbol order) than the second

==
Signature: [const] bool == (const LoadLayoutOptions::CellConflictResolution other)

Description: Compares two enums

AddToCell
Signature: [static,const] LoadLayoutOptions::CellConflictResolution AddToCell

Description: Add content to existing cell

This is the mode use in before version 0.27. Content of new cells is simply added to existing cells
with the same name.

OverwriteCell
Signature: [static,const] LoadLayoutOptions::CellConflictResolution OverwriteCell

Description: The old cell is overwritten entirely (including child cells which are not used otherwise)

RenameCell
Signature: [static,const] LoadLayoutOptions::CellConflictResolution RenameCell

Description: The new cell will be renamed to become unique

SkipNewCell
Signature: [static,const] LoadLayoutOptions::CellConflictResolution SkipNewCell

Description: The new cell is skipped entirely (including child cells which are not used otherwise)

inspect
Signature: [const] string inspect

Description: Converts an enum to a visual string

Python specific notes:
This method is also available as 'repr(object)'

(1) Signature: [static] new LoadLayoutOptions::CellConflictResolution ptr new (int i)

Description: Creates an enum from an integer value

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new LoadLayoutOptions::CellConflictResolution ptr new (string s)

Description: Creates an enum from a string value

Python specific notes:
This method is the default initializer of the object

to_i
Signature: [const] int to_i

For more details visit
https://www.klayout.org

Page 1117 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.64. API reference - Class LoadLayoutOptions::CellConflictResolution

Description: Gets the integer value from the enum

to_s
Signature: [const] string to_s

Description: Gets the symbolic string from an enum

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 1118 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.65. API reference - Class RecursiveInstanceIterator

4.65. API reference - Class RecursiveInstanceIterator
Notation used in Ruby API documentation

Module: db

Description: An iterator delivering instances recursively

The iterator can be obtained from a cell and optionally a region. It simplifies retrieval of instances while considering subcells as well. Some
options can be specified in addition, i.e. the hierarchy level to which to look into. The search can be confined to instances of certain cells
(see targets=) or to certain regions. Subtrees can be selected for traversal or excluded from it (see select_cells).

This is some sample code:

prints the effective instances of cell "A" as seen from the initial cell "cell"
iter = cell.begin_instances_rec
iter.targets = "A"
while !iter.at_end?
 puts "Instance of #{iter.inst_cell.name} in #{cell.name}: " + (iter.dtrans * iter.inst_dtrans).to_s
 iter.next
end

or shorter:
cell.begin_instances_rec.each do |iter|
 puts "Instance of #{iter.inst_cell.name} in #{cell.name}: " + (iter.dtrans * iter.inst_dtrans).to_s
end

Here, a target cell is specified which confines the search to instances of this particular cell. 'iter.dtrans' gives us the accumulated
transformation of all parents up to the top cell. 'iter.inst_dtrans' gives us the transformation from the current instance. 'iter.inst_cell' finally
gives us the target cell of the current instance (which is always 'A' in our case).

Cell offers three methods to get these iterators: begin_instances_rec, begin_instances_rec_touching and
begin_instances_rec_overlapping. Cell#begin_instances_rec will deliver a standard recursive instance iterator which starts from the given
cell and iterates over all child cells. Cell#begin_instances_rec_touching creates a RecursiveInstanceIterator which delivers the instances
whose bounding boxed touch the given search box. Cell#begin_instances_rec_overlapping gives an iterator which delivers all instances
whose bounding box overlaps the search box.

A RecursiveInstanceIterator object can also be created directly, like this:

iter = RBA::RecursiveInstanceIterator::new(layout, cell [, options])

"layout" is the layout object, "cell" the Cell object of the initial cell.

The recursive instance iterator can be confined to a maximum hierarchy depth. By using max_depth=, the iterator will restrict the search
depth to the given depth in the cell tree. In the same way, the iterator can be configured to start from a certain hierarchy depth using
min_depth=. The hierarchy depth always applies to the parent of the instances iterated.

In addition, the recursive instance iterator supports selection and exclusion of subtrees. For that purpose it keeps flags per cell telling it for
which cells to turn instance delivery on and off. The select_cells method sets the "start delivery" flag while unselect_cells sets the "stop
delivery" flag. In effect, using unselect_cells will exclude that cell plus the subtree from delivery. Parts of that subtree can be turned on
again using select_cells. For the cells selected that way, the instances of these cells and their child cells are delivered, even if their parent
was unselected.

To get instances from a specific cell, i.e. "MACRO" plus its child cells, unselect the top cell first and the select the desired cell again:

deliver all instances inside "MACRO" and the sub-hierarchy:
iter = RBA::RecursiveInstanceIterator::new(layout, cell)
iter.unselect_cells(cell.cell_index)
iter.select_cells("MACRO")

For more details visit
https://www.klayout.org

Page 1119 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.65. API reference - Class RecursiveInstanceIterator

...

The unselect_all_cells and select_all_cells methods turn on the "stop" and "start" flag for all cells respectively. If you use unselect_all_cells
and use select_cells for a specific cell, the iterator will deliver only the instances of the selected cell, not its children. Those are still
unselected by unselect_all_cells:

deliver all instance inside "MACRO" but not of child cells:
iter = RBA::RecursiveInstanceIterator::new(layout, cell)
iter.unselect_all_cells
iter.select_cells("MACRO")
...

Cell selection is done using cell indexes or glob pattern. Glob pattern are equivalent to the usual file name wildcards used on various
command line shells. For example "A*" matches all cells starting with an "A". The curly brace notation and character classes are supported
as well. For example "C{125,512}" matches "C125" and "C512" and "[ABC]*" matches all cells starting with an "A", a "B" or "C". "[^ABC]*"
matches all cells not starting with one of that letters.

To confine instance iteration to instances of certain cells, use the targets feature:

deliver all instance of "INV1":
iter = RBA::RecursiveInstanceIterator::new(layout, cell)
iter.targets = "INV1"
...

Targets can be specified either as lists of cell indexes or through a glob pattern.

Instances are always delivered depth-first with child instances before their parents. A default recursive instance iterator will first deliver leaf
cells, followed by the parent of these cells.

When a search region is used, instances whose bounding box touch or overlap (depending on 'overlapping' flag) will be reported. The
instance bounding box taken as reference is computed using all layers of the layout.

The iterator will deliver the individual elements of instance arrays, confined to the search region if one is given. Consequently the return
value (current_inst_element) is an InstElement object which is basically a combination of an Instance object and information about the
current array element. inst_cell, inst_trans and inst_dtrans are methods provided for convenience to access the current array member's
transformation and the target cell of the current instance.

The RecursiveInstanceIterator class has been introduced in version 0.27.

Public constructors

new
RecursiveInstanceIterator ptr

new (const Layout layout,
const Cell cell)

Creates a recursive instance iterator.

new
RecursiveInstanceIterator ptr

new (const Layout layout,
const Cell cell,
const Box box,
bool overlapping = false)

Creates a recursive instance iterator
with a search region.

new
RecursiveInstanceIterator ptr

new (const Layout layout,
const Cell cell,
const Region region,
bool overlapping)

Creates a recursive instance iterator
with a search region.

For more details visit
https://www.klayout.org

Page 1120 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.65. API reference - Class RecursiveInstanceIterator

Public methods

[const] bool != (const
RecursiveInstanceIterator
other)

Comparison of iterators - inequality

[const] bool == (const
RecursiveInstanceIterator
other)

Comparison of iterators - equality

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] bool all_targets_enabled? Gets a value indicating whether instances of all
cells are reported

void assign (const
RecursiveInstanceIterator
other)

Assigns another object to self

[const] bool at_end? End of iterator predicate

[const] const Cell ptr cell Gets the cell the current instance sits in

[const] unsigned int cell_index Gets the index of the cell the current instance
sits in

[const] Region complex_region Gets the complex region that this iterator is
using

void confine_region (const Box
box_region)

Confines the region that this iterator is iterating
over

void confine_region (const
Region
complex_region)

Confines the region that this iterator is iterating
over

[const] InstElement current_inst_element Gets the current instance

[const] DCplxTrans dtrans Gets the accumulated transformation of the
current instance parent cell to the top cell

[const] new
RecursiveInstanceIterator
ptr

dup Creates a copy of self

For more details visit
https://www.klayout.org

Page 1121 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.65. API reference - Class RecursiveInstanceIterator

[iter] RecursiveInstanceIteratoreach Native iteration

void enable_all_targets Enables 'all targets' mode in which instances of
all cells are reported

[const] Cell ptr inst_cell Gets the target cell of the current instance

[const] DCplxTrans inst_dtrans Gets the micron-unit transformation of the
current instance

[const] ICplxTrans inst_trans Gets the integer-unit transformation of the
current instance

[const] const Layout ptr layout Gets the layout this iterator is connected to

[const] int max_depth Gets the maximum hierarchy depth

void max_depth= (int depth) Specifies the maximum hierarchy depth to look
into

[const] int min_depth Gets the minimum hierarchy depth

void min_depth= (int depth) Specifies the minimum hierarchy depth to look
into

void next Increments the iterator

void overlapping= (bool region) Sets a flag indicating whether overlapping
instances are selected when a region is used

[const] bool overlapping? Gets a flag indicating whether overlapping
instances are selected when a region is used

[const] InstElement[] path Gets the instantiation path of the instance
addressed currently

[const] Box region Gets the basic region that this iterator is using

void region= (const Box
box_region)

Sets the rectangular region that this iterator is
iterating over

void region= (const
Region
complex_region)

Sets the complex region that this iterator is
using

void reset Resets the iterator to the initial state

void reset_selection Resets the selection to the default state

void select_all_cells Selects all cells.

void select_cells (unsigned
int[] cells)

Unselects the given cells.

void select_cells (string cells) Unselects the given cells.

[const] unsigned int[] targets Gets the list of target cells

For more details visit
https://www.klayout.org

Page 1122 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.65. API reference - Class RecursiveInstanceIterator

void targets= (unsigned
int[] cells)

Specifies the target cells.

void targets= (string cells) Specifies the target cells.

[const] const Cell ptr top_cell Gets the top cell this iterator is connected to

[const] ICplxTrans trans Gets the accumulated transformation of the
current instance parent cell to the top cell

void unselect_all_cells Unselects all cells.

void unselect_cells (unsigned
int[] cells)

Unselects the given cells.

void unselect_cells (string cells) Unselects the given cells.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

!=
Signature: [const] bool != (const RecursiveInstanceIterator other)

Description: Comparison of iterators - inequality

Two iterators are not equal if they do not point to the same instance.

==
Signature: [const] bool == (const RecursiveInstanceIterator other)

Description: Comparison of iterators - equality

Two iterators are equal if they point to the same instance.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

For more details visit
https://www.klayout.org

Page 1123 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.65. API reference - Class RecursiveInstanceIterator

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

all_targets_enabled?
Signature: [const] bool all_targets_enabled?

Description: Gets a value indicating whether instances of all cells are reported

See targets= for a description of the target cell concept.

assign
Signature: void assign (const RecursiveInstanceIterator other)

Description: Assigns another object to self

at_end?
Signature: [const] bool at_end?

Description: End of iterator predicate

Returns true, if the iterator is at the end of the sequence

cell
Signature: [const] const Cell ptr cell

Description: Gets the cell the current instance sits in

cell_index
Signature: [const] unsigned int cell_index

Description: Gets the index of the cell the current instance sits in

This is equivalent to 'cell.cell_index'.

For more details visit
https://www.klayout.org

Page 1124 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.65. API reference - Class RecursiveInstanceIterator

complex_region
Signature: [const] Region complex_region

Description: Gets the complex region that this iterator is using

The complex region is the effective region (a Region object) that the iterator is selecting from the
layout. This region can be a single box or a complex region.

(1) Signature: void confine_region (const Box box_region)

Description: Confines the region that this iterator is iterating over

This method is similar to setting the region (see region=), but will confine any region (complex or
simple) already set. Essentially it does a logical AND operation between the existing and given
region. Hence this method can only reduce a region, not extend it.

confine_region

(2) Signature: void confine_region (const Region complex_region)

Description: Confines the region that this iterator is iterating over

This method is similar to setting the region (see region=), but will confine any region (complex or
simple) already set. Essentially it does a logical AND operation between the existing and given
region. Hence this method can only reduce a region, not extend it.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

current_inst_element
Signature: [const] InstElement current_inst_element

Description: Gets the current instance

This is the instance/array element the iterator currently refers to. This is a InstElement object
representing the current instance and the array element the iterator currently points at.

See inst_trans, inst_dtrans and inst_cell for convenience methods to access the details of the
current element.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dtrans
Signature: [const] DCplxTrans dtrans

Description: Gets the accumulated transformation of the current instance parent cell to the top cell

For more details visit
https://www.klayout.org

Page 1125 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.65. API reference - Class RecursiveInstanceIterator

This transformation represents how the current instance is seen in the top cell. This version returns
the micron-unit transformation.

dup
Signature: [const] new RecursiveInstanceIterator ptr dup

Description: Creates a copy of self

each
Signature: [iter] RecursiveInstanceIterator each

Description: Native iteration

This method enables native iteration, e.g.

 iter = ... # RecursiveInstanceIterator
 iter.each do |i|
 ... i is the iterator itself
 end

This is slightly more convenient than the 'at_end' .. 'next' loop.

This feature has been introduced in version 0.28.

Python specific notes:
This method enables iteration of the object

enable_all_targets
Signature: void enable_all_targets

Description: Enables 'all targets' mode in which instances of all cells are reported

See targets= for a description of the target cell concept.

inst_cell
Signature: [const] Cell ptr inst_cell

Description: Gets the target cell of the current instance

This is the cell the current instance refers to. It is one of the targets if a target list is given.

inst_dtrans
Signature: [const] DCplxTrans inst_dtrans

Description: Gets the micron-unit transformation of the current instance

This is the transformation of the current instance inside its parent. 'dtrans * inst_dtrans' gives the
full micron-unit transformation how the current cell is seen in the top cell. See also inst_trans and
inst_cell.

inst_trans
Signature: [const] ICplxTrans inst_trans

Description: Gets the integer-unit transformation of the current instance

This is the transformation of the current instance inside its parent. 'trans * inst_trans' gives the full
transformation how the current cell is seen in the top cell. See also inst_dtrans and inst_cell.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

For more details visit
https://www.klayout.org

Page 1126 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.65. API reference - Class RecursiveInstanceIterator

layout
Signature: [const] const Layout ptr layout

Description: Gets the layout this iterator is connected to

max_depth
Signature: [const] int max_depth

Description: Gets the maximum hierarchy depth

See max_depth= for a description of that attribute.

Python specific notes:
The object exposes a readable attribute 'max_depth'. This is the getter.

max_depth=
Signature: void max_depth= (int depth)

Description: Specifies the maximum hierarchy depth to look into

A depth of 0 instructs the iterator to deliver only instances from the initial cell. A higher depth
instructs the iterator to look deeper. The depth must be specified before the instances are being
retrieved.

Python specific notes:
The object exposes a writable attribute 'max_depth'. This is the setter.

min_depth
Signature: [const] int min_depth

Description: Gets the minimum hierarchy depth

See min_depth= for a description of that attribute.

Python specific notes:
The object exposes a readable attribute 'min_depth'. This is the getter.

min_depth=
Signature: void min_depth= (int depth)

Description: Specifies the minimum hierarchy depth to look into

A depth of 0 instructs the iterator to deliver instances from the top level. 1 instructs to deliver
instances from the first child level. The minimum depth must be specified before the instances are
being retrieved.

Python specific notes:
The object exposes a writable attribute 'min_depth'. This is the setter.

(1) Signature: [static] new RecursiveInstanceIterator ptr new (const Layout layout, const Cell cell)

Description: Creates a recursive instance iterator.

layout: The layout which shall be iterated

cell: The initial cell which shall be iterated (including its children)

layer: The layer (index) from which the shapes are taken

This constructor creates a new recursive instance iterator which delivers the instances of the given
cell plus its children.

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new RecursiveInstanceIterator ptr new (const Layout layout, const Cell cell,
const Box box, bool overlapping = false)

Description: Creates a recursive instance iterator with a search region.

layout: The layout which shall be iterated

For more details visit
https://www.klayout.org

Page 1127 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.65. API reference - Class RecursiveInstanceIterator

cell: The initial cell which shall be iterated (including its children)

box: The search region

overlapping: If set to true, instances overlapping the search region are
reported, otherwise touching is sufficient

This constructor creates a new recursive instance iterator which delivers the instances of the given
cell plus its children.

The search is confined to the region given by the "box" parameter. If "overlapping" is true, instances
whose bounding box is overlapping the search region are reported. If "overlapping" is false,
instances whose bounding box touches the search region are reported. The bounding box of
instances is measured taking all layers of the target cell into account.

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new RecursiveInstanceIterator ptr new (const Layout layout, const Cell cell,
const Region region, bool overlapping)

Description: Creates a recursive instance iterator with a search region.

layout: The layout which shall be iterated

cell: The initial cell which shall be iterated (including its children)

region: The search region

overlapping: If set to true, instances overlapping the search region are
reported, otherwise touching is sufficient

This constructor creates a new recursive instance iterator which delivers the instances of the given
cell plus its children.

The search is confined to the region given by the "region" parameter. The region needs to be a
rectilinear region. If "overlapping" is true, instances whose bounding box is overlapping the search
region are reported. If "overlapping" is false, instances whose bounding box touches the search
region are reported. The bounding box of instances is measured taking all layers of the target cell
into account.

Python specific notes:
This method is the default initializer of the object

next
Signature: void next

Description: Increments the iterator

This moves the iterator to the next instance inside the search scope.

overlapping=
Signature: void overlapping= (bool region)

Description: Sets a flag indicating whether overlapping instances are selected when a region is
used

If this flag is false, instances touching the search region are returned.

Python specific notes:
The object exposes a writable attribute 'overlapping'. This is the setter.

overlapping?
Signature: [const] bool overlapping?

Description: Gets a flag indicating whether overlapping instances are selected when a region is
used

Python specific notes:
The object exposes a readable attribute 'overlapping'. This is the getter.

For more details visit
https://www.klayout.org

Page 1128 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.65. API reference - Class RecursiveInstanceIterator

path
Signature: [const] InstElement[] path

Description: Gets the instantiation path of the instance addressed currently

This attribute is a sequence of InstElement objects describing the cell instance path from the initial
cell to the current instance. The path is empty if the current instance is in the top cell.

region
Signature: [const] Box region

Description: Gets the basic region that this iterator is using

The basic region is the overall box the region iterator iterates over. There may be an additional
complex region that confines the region iterator. See complex_region for this attribute.

Python specific notes:
The object exposes a readable attribute 'region'. This is the getter.

(1) Signature: void region= (const Box box_region)

Description: Sets the rectangular region that this iterator is iterating over

See region for a description of this attribute. Setting a simple region will reset the complex region to
a rectangle and reset the iterator to the beginning of the sequence.

Python specific notes:
The object exposes a writable attribute 'region'. This is the setter.

region=

(2) Signature: void region= (const Region complex_region)

Description: Sets the complex region that this iterator is using

See complex_region for a description of this attribute. Setting the complex region will reset the basic
region (see region) to the bounding box of the complex region and reset the iterator to the beginning
of the sequence.

Python specific notes:
The object exposes a writable attribute 'region'. This is the setter.

reset
Signature: void reset

Description: Resets the iterator to the initial state

reset_selection
Signature: void reset_selection

Description: Resets the selection to the default state

In the initial state, the top cell and its children are selected. Child cells can be switched on and off
together with their sub-hierarchy using select_cells and unselect_cells.

This method will also reset the iterator.

select_all_cells
Signature: void select_all_cells

Description: Selects all cells.

This method will set the "selected" mark on all cells. The effect is that subsequent calls of
unselect_cells will unselect only the specified cells, not their children, because they are still
unselected.

This method will also reset the iterator.

select_cells
(1) Signature: void select_cells (unsigned int[] cells)

Description: Unselects the given cells.

For more details visit
https://www.klayout.org

Page 1129 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.65. API reference - Class RecursiveInstanceIterator

This method will sets the "selected" mark on the given cells. That means that these cells or their
child cells are visited, unless they are marked as "unselected" again with the unselect_cells method.

The cells are given as a list of cell indexes.

This method will also reset the iterator.

(2) Signature: void select_cells (string cells)

Description: Unselects the given cells.

This method will sets the "selected" mark on the given cells. That means that these cells or their
child cells are visited, unless they are marked as "unselected" again with the unselect_cells method.

The cells are given as a glob pattern. A glob pattern follows the syntax of file names on the shell (i.e.
"A*" are all cells starting with a letter "A").

This method will also reset the iterator.

targets
Signature: [const] unsigned int[] targets

Description: Gets the list of target cells

See targets= for a description of the target cell concept. This method returns a list of cell indexes of
the selected target cells.

Python specific notes:
The object exposes a readable attribute 'targets'. This is the getter.

(1) Signature: void targets= (unsigned int[] cells)

Description: Specifies the target cells.

If target cells are specified, only instances of these cells are delivered. This version takes a list of
cell indexes for the targets. By default, no target cell list is present and the instances of all cells are
delivered by the iterator. See all_targets_enabled? and enable_all_targets for a description of this
mode. Once a target list is specified, the iteration is confined to the cells from this list. The cells are
given as a list of cell indexes.

This method will also reset the iterator.

Python specific notes:
The object exposes a writable attribute 'targets'. This is the setter.

targets=

(2) Signature: void targets= (string cells)

Description: Specifies the target cells.

If target cells are specified, only instances of these cells are delivered. This version takes a cell list
as a glob pattern. A glob pattern follows the syntax of file names on the shell (i.e. "A*" are all cells
starting with a letter "A"). Use the curly-bracket notation to list different cells, e.g "{A,B,C}" for cells A,
B and C.

By default, no target cell list is present and the instances of all cells are delivered by the iterator.
See all_targets_enabled? and enable_all_targets for a description of this mode. Once a target list
is specified, the iteration is confined to the cells from this list. The cells are given as a list of cell
indexes.

This method will also reset the iterator.

Python specific notes:
The object exposes a writable attribute 'targets'. This is the setter.

top_cell
Signature: [const] const Cell ptr top_cell

Description: Gets the top cell this iterator is connected to

For more details visit
https://www.klayout.org

Page 1130 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.65. API reference - Class RecursiveInstanceIterator

trans
Signature: [const] ICplxTrans trans

Description: Gets the accumulated transformation of the current instance parent cell to the top cell

This transformation represents how the current instance is seen in the top cell.

unselect_all_cells
Signature: void unselect_all_cells

Description: Unselects all cells.

This method will set the "unselected" mark on all cells. The effect is that subsequent calls of
select_cells will select only the specified cells, not their children, because they are still unselected.

This method will also reset the iterator.

(1) Signature: void unselect_cells (unsigned int[] cells)

Description: Unselects the given cells.

This method will sets the "unselected" mark on the given cells. That means that these cells or
their child cells will not be visited, unless they are marked as "selected" again with the select_cells
method.

The cells are given as a list of cell indexes.

This method will also reset the iterator.

unselect_cells

(2) Signature: void unselect_cells (string cells)

Description: Unselects the given cells.

This method will sets the "unselected" mark on the given cells. That means that these cells or
their child cells will not be visited, unless they are marked as "selected" again with the select_cells
method.

The cells are given as a glob pattern. A glob pattern follows the syntax of file names on the shell (i.e.
"A*" are all cells starting with a letter "A").

This method will also reset the iterator.

For more details visit
https://www.klayout.org

Page 1131 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.66. API reference - Class RecursiveShapeIterator

4.66. API reference - Class RecursiveShapeIterator
Notation used in Ruby API documentation

Module: db

Description: An iterator delivering shapes recursively

The iterator can be obtained from a cell, a layer and optionally a region. It simplifies retrieval of shapes from a geometrical region while
considering subcells as well. Some options can be specified in addition, i.e. the level to which to look into or shape classes and shape
properties. The shapes are retrieved by using the shape method, next moves to the next shape and at_end tells, if the iterator has move
shapes to deliver.

This is some sample code:

print the polygon-like objects as seen from the initial cell "cell"
iter = cell.begin_shapes_rec(layer)
while !iter.at_end?
 if iter.shape.renders_polygon?
 polygon = iter.shape.polygon.transformed(iter.itrans)
 puts "In cell #{iter.cell.name}: " + polygon.to_s
 end
 iter.next
end

or shorter:
cell.begin_shapes_rec(layer).each do |iter|
 if iter.shape.renders_polygon?
 polygon = iter.shape.polygon.transformed(iter.itrans)
 puts "In cell #{iter.cell.name}: " + polygon.to_s
 end
end

Cell offers three methods to get these iterators: begin_shapes_rec, begin_shapes_rec_touching and begin_shapes_rec_overlapping.
Cell#begin_shapes_rec will deliver a standard recursive shape iterator which starts from the given cell and iterates over all child cells.
Cell#begin_shapes_rec_touching delivers a RecursiveShapeIterator which delivers the shapes whose bounding boxed touch the given
search box. Cell#begin_shapes_rec_overlapping delivers all shapes whose bounding box overlaps the search box.

A RecursiveShapeIterator object can also be created explicitly. This allows some more options, i.e. using multiple layers. A multi-layer
recursive shape iterator can be created like this:

iter = RBA::RecursiveShapeIterator::new(layout, cell, [layer_index1, layer_index2 ..])

"layout" is the layout object, "cell" the RBA::Cell object of the initial cell. layer_index1 etc. are the layer indexes of the layers to get the
shapes from. While iterating, RecursiveShapeIterator#layer delivers the layer index of the current shape.

The recursive shape iterator can be confined to a maximum hierarchy depth. By using max_depth=, the iterator will restrict the search
depth to the given depth in the cell tree.

In addition, the recursive shape iterator supports selection and exclusion of subtrees. For that purpose it keeps flags per cell telling it for
which cells to turn shape delivery on and off. The select_cells method sets the "start delivery" flag while unselect_cells sets the "stop
delivery" flag. In effect, using unselect_cells will exclude that cell plus the subtree from delivery. Parts of that subtree can be turned on
again using select_cells. For the cells selected that way, the shapes of these cells and their child cells are delivered, even if their parent
was unselected.

To get shapes from a specific cell, i.e. "MACRO" plus its child cells, unselect the top cell first and the select the desired cell again:

deliver all shapes inside "MACRO" and the sub-hierarchy:
iter = RBA::RecursiveShapeIterator::new(layout, cell, layer)
iter.unselect_cells(cell.cell_index)

For more details visit
https://www.klayout.org

Page 1132 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.66. API reference - Class RecursiveShapeIterator

iter.select_cells("MACRO")

Note that if "MACRO" uses library cells for example which are used otherwise as well, the iterator will only deliver the shapes for those
instances belonging to "MACRO" (directly or indirectly), not those for other instances of these library cells.

The unselect_all_cells and select_all_cells methods turn on the "stop" and "start" flag for all cells respectively. If you use unselect_all_cells
and use select_cells for a specific cell, the iterator will deliver only the shapes of the selected cell, not its children. Those are still unselected
by unselect_all_cells:

deliver all shapes of "MACRO" but not of child cells:
iter = RBA::RecursiveShapeIterator::new(layout, cell, layer)
iter.unselect_all_cells
iter.select_cells("MACRO")

Cell selection is done using cell indexes or glob pattern. Glob pattern are equivalent to the usual file name wildcards used on various
command line shells. For example "A*" matches all cells starting with an "A". The curly brace notation and character classes are supported
as well. For example "C{125,512}" matches "C125" and "C512" and "[ABC]*" matches all cells starting with an "A", a "B" or "C". "[^ABC]*"
matches all cells not starting with one of that letters.

The RecursiveShapeIterator class has been introduced in version 0.18 and has been extended substantially in 0.23.

Public constructors

new RecursiveShapeIterator
ptr

new (const Layout layout,
const Cell cell,
unsigned int layer)

Creates a recursive, single-layer
shape iterator.

new RecursiveShapeIterator
ptr

new (const Layout layout,
const Cell cell,
unsigned int[] layers)

Creates a recursive, multi-layer
shape iterator.

new RecursiveShapeIterator
ptr

new (const Layout layout,
const Cell cell,
unsigned int layer,
const Box box,
bool overlapping = false)

Creates a recursive, single-layer
shape iterator with a region.

new RecursiveShapeIterator
ptr

new (const Layout layout,
const Cell cell,
unsigned int layer,
const Region region,
bool overlapping = false)

Creates a recursive, single-layer
shape iterator with a region.

new RecursiveShapeIterator
ptr

new (const Layout layout,
const Cell cell,
unsigned int[] layers,
const Box box,
bool overlapping = false)

Creates a recursive, multi-layer
shape iterator with a region.

new RecursiveShapeIterator
ptr

new (const Layout layout,
const Cell cell,
unsigned int[] layers,
const Region region,
bool overlapping = false)

Creates a recursive, multi-layer
shape iterator with a region.

For more details visit
https://www.klayout.org

Page 1133 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.66. API reference - Class RecursiveShapeIterator

Public methods

[const] bool != (const
RecursiveShapeIterator
other)

Comparison of iterators - inequality

[const] bool == (const
RecursiveShapeIterator
other)

Comparison of iterators - equality

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] DCplxTrans always_apply_dtrans Gets the global transformation if at top level,
unity otherwise (micrometer-unit version)

[const] ICplxTrans always_apply_trans Gets the global transformation if at top level,
unity otherwise

void assign (const
RecursiveShapeIterator
other)

Assigns another object to self

[const] bool at_end? End of iterator predicate

[const] const Cell ptr cell Gets the current cell's object

[const] unsigned int cell_index Gets the current cell's index

[const] Region complex_region Gets the complex region that this iterator is
using

void confine_region (const Box
box_region)

Confines the region that this iterator is iterating
over

void confine_region (const Region
complex_region)

Confines the region that this iterator is iterating
over

[const] DCplxTrans dtrans Gets the transformation into the initial cell
applicable for floating point types

[const] new
RecursiveShapeIterator
ptr

dup Creates a copy of self

[iter] RecursiveShapeIterator each Native iteration

For more details visit
https://www.klayout.org

Page 1134 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.66. API reference - Class RecursiveShapeIterator

[const] DCplxTrans global_dtrans Gets the global transformation to apply to all
shapes delivered (in micrometer units)

void global_dtrans= (const
DCplxTrans
arg1)

Sets the global transformation to apply to all
shapes delivered (transformation in micrometer
units)

[const] ICplxTrans global_trans Gets the global transformation to apply to all
shapes delivered

void global_trans= (const
ICplxTrans t)

Sets the global transformation to apply to all
shapes delivered

[const] unsigned int layer Returns the layer index where the current shape
is coming from.

[const] const Layout ptr layout Gets the layout this iterator is connected to

[const] int max_depth Gets the maximum hierarchy depth

void max_depth= (int depth) Specifies the maximum hierarchy depth to look
into

[const] int min_depth Gets the minimum hierarchy depth

void min_depth= (int depth) Specifies the minimum hierarchy depth to look
into

void next Increments the iterator

void overlapping= (bool region) Sets a flag indicating whether overlapping
shapes are selected when a region is used

[const] bool overlapping? Gets a flag indicating whether overlapping
shapes are selected when a region is used

[const] InstElement[] path Gets the instantiation path of the shape
addressed currently

[const] Box region Gets the basic region that this iterator is using

void region= (const Box
box_region)

Sets the rectangular region that this iterator is
iterating over

void region= (const Region
complex_region)

Sets the complex region that this iterator is using

void reset Resets the iterator to the initial state

void reset_selection Resets the selection to the default state

void select_all_cells Selects all cells.

void select_cells (unsigned
int[] cells)

Unselects the given cells.

void select_cells (string cells) Unselects the given cells.

For more details visit
https://www.klayout.org

Page 1135 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.66. API reference - Class RecursiveShapeIterator

[const] Shape shape Gets the current shape

void shape_flags= (unsigned int
flags)

Specifies the shape selection flags

[const] const Cell ptr top_cell Gets the top cell this iterator is connected to

[const] ICplxTrans trans Gets the current transformation by which the
shapes must be transformed into the initial cell

void unselect_all_cells Unselects all cells.

void unselect_cells (unsigned
int[] cells)

Unselects the given cells.

void unselect_cells (string cells) Unselects the given cells.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[const] ICplxTrans itrans Use of this method is deprecated. Use trans instead

Detailed description

!=
Signature: [const] bool != (const RecursiveShapeIterator other)

Description: Comparison of iterators - inequality

Two iterators are not equal if they do not point to the same shape.

==
Signature: [const] bool == (const RecursiveShapeIterator other)

Description: Comparison of iterators - equality

Two iterators are equal if they point to the same shape.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 1136 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.66. API reference - Class RecursiveShapeIterator

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

always_apply_dtrans
Signature: [const] DCplxTrans always_apply_dtrans

Description: Gets the global transformation if at top level, unity otherwise (micrometer-unit version)

As the global transformation is only applicable on top level, use this method to transform shapes and
instances into their local (cell-level) version while considering the global transformation properly.

This method has been introduced in version 0.27.

always_apply_trans
Signature: [const] ICplxTrans always_apply_trans

Description: Gets the global transformation if at top level, unity otherwise

As the global transformation is only applicable on top level, use this method to transform shapes and
instances into their local (cell-level) version while considering the global transformation properly.

This method has been introduced in version 0.27.

assign
Signature: void assign (const RecursiveShapeIterator other)

Description: Assigns another object to self

For more details visit
https://www.klayout.org

Page 1137 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.66. API reference - Class RecursiveShapeIterator

at_end?
Signature: [const] bool at_end?

Description: End of iterator predicate

Returns true, if the iterator is at the end of the sequence

cell
Signature: [const] const Cell ptr cell

Description: Gets the current cell's object

This method has been introduced in version 0.23.

cell_index
Signature: [const] unsigned int cell_index

Description: Gets the current cell's index

complex_region
Signature: [const] Region complex_region

Description: Gets the complex region that this iterator is using

The complex region is the effective region (a Region object) that the iterator is selecting from the
layout layers. This region can be a single box or a complex region.

This method has been introduced in version 0.25.

(1) Signature: void confine_region (const Box box_region)

Description: Confines the region that this iterator is iterating over

This method is similar to setting the region (see region=), but will confine any region (complex or
simple) already set. Essentially it does a logical AND operation between the existing and given
region. Hence this method can only reduce a region, not extend it.

This method has been introduced in version 0.25.

confine_region

(2) Signature: void confine_region (const Region complex_region)

Description: Confines the region that this iterator is iterating over

This method is similar to setting the region (see region=), but will confine any region (complex or
simple) already set. Essentially it does a logical AND operation between the existing and given
region. Hence this method can only reduce a region, not extend it.

This method has been introduced in version 0.25.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

For more details visit
https://www.klayout.org

Page 1138 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.66. API reference - Class RecursiveShapeIterator

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dtrans
Signature: [const] DCplxTrans dtrans

Description: Gets the transformation into the initial cell applicable for floating point types

This transformation corresponds to the one delivered by trans, but is applicable for the floating-point
shape types in micron unit space.

This method has been introduced in version 0.25.3.

dup
Signature: [const] new RecursiveShapeIterator ptr dup

Description: Creates a copy of self

each
Signature: [iter] RecursiveShapeIterator each

Description: Native iteration

This method enables native iteration, e.g.

 iter = ... # RecursiveShapeIterator
 iter.each do |i|
 ... i is the iterator itself
 end

This is slightly more convenient than the 'at_end' .. 'next' loop.

This feature has been introduced in version 0.28.

Python specific notes:
This method enables iteration of the object

global_dtrans
Signature: [const] DCplxTrans global_dtrans

Description: Gets the global transformation to apply to all shapes delivered (in micrometer units)

See also global_dtrans=.

This method has been introduced in version 0.27.

Python specific notes:
The object exposes a readable attribute 'global_dtrans'. This is the getter.

global_dtrans=
Signature: void global_dtrans= (const DCplxTrans arg1)

Description: Sets the global transformation to apply to all shapes delivered (transformation in
micrometer units)

The global transformation will be applied to all shapes delivered by biasing the "trans" attribute. The
search regions apply to the coordinate space after global transformation.

This method has been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'global_dtrans'. This is the setter.

For more details visit
https://www.klayout.org

Page 1139 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.66. API reference - Class RecursiveShapeIterator

global_trans
Signature: [const] ICplxTrans global_trans

Description: Gets the global transformation to apply to all shapes delivered

See also global_trans=.

This method has been introduced in version 0.27.

Python specific notes:
The object exposes a readable attribute 'global_trans'. This is the getter.

global_trans=
Signature: void global_trans= (const ICplxTrans t)

Description: Sets the global transformation to apply to all shapes delivered

The global transformation will be applied to all shapes delivered by biasing the "trans" attribute. The
search regions apply to the coordinate space after global transformation.

This method has been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'global_trans'. This is the setter.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

itrans
Signature: [const] ICplxTrans itrans

Description: Gets the current transformation by which the shapes must be transformed into the initial
cell

Use of this method is deprecated. Use trans instead

The shapes delivered are not transformed. Instead, this transformation must be applied to get the
shape in the coordinate system of the top cell.

Starting with version 0.25, this transformation is a int-to-int transformation the 'itrans' method which
was providing this transformation before is deprecated.

layer
Signature: [const] unsigned int layer

Description: Returns the layer index where the current shape is coming from.

This method has been introduced in version 0.23.

layout
Signature: [const] const Layout ptr layout

Description: Gets the layout this iterator is connected to

This method has been introduced in version 0.23.

max_depth
Signature: [const] int max_depth

Description: Gets the maximum hierarchy depth

See max_depth= for a description of that attribute.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a readable attribute 'max_depth'. This is the getter.

For more details visit
https://www.klayout.org

Page 1140 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.66. API reference - Class RecursiveShapeIterator

max_depth=
Signature: void max_depth= (int depth)

Description: Specifies the maximum hierarchy depth to look into

A depth of 0 instructs the iterator to deliver only shapes from the initial cell. The depth must be
specified before the shapes are being retrieved. Setting the depth resets the iterator.

Python specific notes:
The object exposes a writable attribute 'max_depth'. This is the setter.

min_depth
Signature: [const] int min_depth

Description: Gets the minimum hierarchy depth

See min_depth= for a description of that attribute.

This method has been introduced in version 0.27.

Python specific notes:
The object exposes a readable attribute 'min_depth'. This is the getter.

min_depth=
Signature: void min_depth= (int depth)

Description: Specifies the minimum hierarchy depth to look into

A depth of 0 instructs the iterator to deliver shapes from the top level. 1 instructs to deliver shapes
from the first child level. The minimum depth must be specified before the shapes are being
retrieved.

This method has been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'min_depth'. This is the setter.

(1) Signature: [static] new RecursiveShapeIterator ptr new (const Layout layout, const Cell cell,
unsigned int layer)

Description: Creates a recursive, single-layer shape iterator.

layout: The layout which shall be iterated

cell: The initial cell which shall be iterated (including its children)

layer: The layer (index) from which the shapes are taken

This constructor creates a new recursive shape iterator which delivers the shapes of the given cell
plus its children from the layer given by the layer index in the "layer" parameter.

This constructor has been introduced in version 0.23.

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new RecursiveShapeIterator ptr new (const Layout layout, const Cell cell,
unsigned int[] layers)

Description: Creates a recursive, multi-layer shape iterator.

layout: The layout which shall be iterated

cell: The initial cell which shall be iterated (including its children)

layers: The layer indexes from which the shapes are taken

This constructor creates a new recursive shape iterator which delivers the shapes of the given cell
plus its children from the layers given by the layer indexes in the "layers" parameter. While iterating
use the layer method to retrieve the layer of the current shape.

This constructor has been introduced in version 0.23.

For more details visit
https://www.klayout.org

Page 1141 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.66. API reference - Class RecursiveShapeIterator

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new RecursiveShapeIterator ptr new (const Layout layout, const Cell cell,
unsigned int layer, const Box box, bool overlapping = false)

Description: Creates a recursive, single-layer shape iterator with a region.

layout: The layout which shall be iterated

cell: The initial cell which shall be iterated (including its children)

layer: The layer (index) from which the shapes are taken

box: The search region

overlapping: If set to true, shapes overlapping the search region are
reported, otherwise touching is sufficient

This constructor creates a new recursive shape iterator which delivers the shapes of the given cell
plus its children from the layer given by the layer index in the "layer" parameter.

The search is confined to the region given by the "box" parameter. If "overlapping" is true, shapes
whose bounding box is overlapping the search region are reported. If "overlapping" is false, shapes
whose bounding box touches the search region are reported.

This constructor has been introduced in version 0.23. The 'overlapping' parameter has been made
optional in version 0.27.

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new RecursiveShapeIterator ptr new (const Layout layout, const Cell cell,
unsigned int layer, const Region region, bool overlapping = false)

Description: Creates a recursive, single-layer shape iterator with a region.

layout: The layout which shall be iterated

cell: The initial cell which shall be iterated (including its children)

layer: The layer (index) from which the shapes are taken

region: The search region

overlapping: If set to true, shapes overlapping the search region are
reported, otherwise touching is sufficient

This constructor creates a new recursive shape iterator which delivers the shapes of the given cell
plus its children from the layer given by the layer index in the "layer" parameter.

The search is confined to the region given by the "region" parameter. The region needs to be a
rectilinear region. If "overlapping" is true, shapes whose bounding box is overlapping the search
region are reported. If "overlapping" is false, shapes whose bounding box touches the search region
are reported.

This constructor has been introduced in version 0.25. The 'overlapping' parameter has been made
optional in version 0.27.

Python specific notes:
This method is the default initializer of the object

(5) Signature: [static] new RecursiveShapeIterator ptr new (const Layout layout, const Cell cell,
unsigned int[] layers, const Box box, bool overlapping = false)

Description: Creates a recursive, multi-layer shape iterator with a region.

layout: The layout which shall be iterated

cell: The initial cell which shall be iterated (including its children)

layers: The layer indexes from which the shapes are taken

For more details visit
https://www.klayout.org

Page 1142 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.66. API reference - Class RecursiveShapeIterator

box: The search region

overlapping: If set to true, shapes overlapping the search region are
reported, otherwise touching is sufficient

This constructor creates a new recursive shape iterator which delivers the shapes of the given cell
plus its children from the layers given by the layer indexes in the "layers" parameter. While iterating
use the layer method to retrieve the layer of the current shape.

The search is confined to the region given by the "box" parameter. If "overlapping" is true, shapes
whose bounding box is overlapping the search region are reported. If "overlapping" is false, shapes
whose bounding box touches the search region are reported.

This constructor has been introduced in version 0.23. The 'overlapping' parameter has been made
optional in version 0.27.

Python specific notes:
This method is the default initializer of the object

(6) Signature: [static] new RecursiveShapeIterator ptr new (const Layout layout, const Cell cell,
unsigned int[] layers, const Region region, bool overlapping = false)

Description: Creates a recursive, multi-layer shape iterator with a region.

layout: The layout which shall be iterated

cell: The initial cell which shall be iterated (including its children)

layers: The layer indexes from which the shapes are taken

region: The search region

overlapping: If set to true, shapes overlapping the search region are
reported, otherwise touching is sufficient

This constructor creates a new recursive shape iterator which delivers the shapes of the given cell
plus its children from the layers given by the layer indexes in the "layers" parameter. While iterating
use the layer method to retrieve the layer of the current shape.

The search is confined to the region given by the "region" parameter. The region needs to be a
rectilinear region. If "overlapping" is true, shapes whose bounding box is overlapping the search
region are reported. If "overlapping" is false, shapes whose bounding box touches the search region
are reported.

This constructor has been introduced in version 0.23. The 'overlapping' parameter has been made
optional in version 0.27.

Python specific notes:
This method is the default initializer of the object

next
Signature: void next

Description: Increments the iterator

This moves the iterator to the next shape inside the search scope.

overlapping=
Signature: void overlapping= (bool region)

Description: Sets a flag indicating whether overlapping shapes are selected when a region is used

If this flag is false, shapes touching the search region are returned.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'overlapping'. This is the setter.

overlapping?
Signature: [const] bool overlapping?

For more details visit
https://www.klayout.org

Page 1143 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.66. API reference - Class RecursiveShapeIterator

Description: Gets a flag indicating whether overlapping shapes are selected when a region is used

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a readable attribute 'overlapping'. This is the getter.

path
Signature: [const] InstElement[] path

Description: Gets the instantiation path of the shape addressed currently

This attribute is a sequence of InstElement objects describing the cell instance path from the initial
cell to the current cell containing the current shape.

This method has been introduced in version 0.25.

region
Signature: [const] Box region

Description: Gets the basic region that this iterator is using

The basic region is the overall box the region iterator iterates over. There may be an additional
complex region that confines the region iterator. See complex_region for this attribute.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a readable attribute 'region'. This is the getter.

(1) Signature: void region= (const Box box_region)

Description: Sets the rectangular region that this iterator is iterating over

See region for a description of this attribute. Setting a simple region will reset the complex region to a
rectangle and reset the iterator to the beginning of the sequence. This method has been introduced
in version 0.23.

Python specific notes:
The object exposes a writable attribute 'region'. This is the setter.

region=

(2) Signature: void region= (const Region complex_region)

Description: Sets the complex region that this iterator is using

See complex_region for a description of this attribute. Setting the complex region will reset the basic
region (see region) to the bounding box of the complex region and reset the iterator to the beginning
of the sequence.

This method overload has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'region'. This is the setter.

reset
Signature: void reset

Description: Resets the iterator to the initial state

This method has been introduced in version 0.23.

reset_selection
Signature: void reset_selection

Description: Resets the selection to the default state

In the initial state, the top cell and its children are selected. Child cells can be switched on and off
together with their sub-hierarchy using select_cells and unselect_cells.

This method will also reset the iterator.

For more details visit
https://www.klayout.org

Page 1144 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.66. API reference - Class RecursiveShapeIterator

This method has been introduced in version 0.23.

select_all_cells
Signature: void select_all_cells

Description: Selects all cells.

This method will set the "selected" mark on all cells. The effect is that subsequent calls of
unselect_cells will unselect only the specified cells, not their children, because they are still
unselected.

This method will also reset the iterator.

This method has been introduced in version 0.23.

(1) Signature: void select_cells (unsigned int[] cells)

Description: Unselects the given cells.

This method will sets the "selected" mark on the given cells. That means that these cells or their child
cells are visited, unless they are marked as "unselected" again with the unselect_cells method.

The cells are given as a list of cell indexes.

This method will also reset the iterator.

This method has been introduced in version 0.23.

select_cells

(2) Signature: void select_cells (string cells)

Description: Unselects the given cells.

This method will sets the "selected" mark on the given cells. That means that these cells or their child
cells are visited, unless they are marked as "unselected" again with the unselect_cells method.

The cells are given as a glob pattern. A glob pattern follows the syntax of file names on the shell (i.e.
"A*" are all cells starting with a letter "A").

This method will also reset the iterator.

This method has been introduced in version 0.23.

shape
Signature: [const] Shape shape

Description: Gets the current shape

Returns the shape currently referred to by the recursive iterator. This shape is not transformed yet
and is located in the current cell.

shape_flags=
Signature: void shape_flags= (unsigned int flags)

Description: Specifies the shape selection flags

The flags are the same then being defined in Shapes (the default is RBA::Shapes::SAll). The flags
must be specified before the shapes are being retrieved. Settings the shapes flags will reset the
iterator.

Python specific notes:
The object exposes a writable attribute 'shape_flags'. This is the setter.

top_cell
Signature: [const] const Cell ptr top_cell

Description: Gets the top cell this iterator is connected to

This method has been introduced in version 0.23.

For more details visit
https://www.klayout.org

Page 1145 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.66. API reference - Class RecursiveShapeIterator

trans
Signature: [const] ICplxTrans trans

Description: Gets the current transformation by which the shapes must be transformed into the initial
cell

The shapes delivered are not transformed. Instead, this transformation must be applied to get the
shape in the coordinate system of the top cell.

Starting with version 0.25, this transformation is a int-to-int transformation the 'itrans' method which
was providing this transformation before is deprecated.

unselect_all_cells
Signature: void unselect_all_cells

Description: Unselects all cells.

This method will set the "unselected" mark on all cells. The effect is that subsequent calls of
select_cells will select only the specified cells, not their children, because they are still unselected.

This method will also reset the iterator.

This method has been introduced in version 0.23.

(1) Signature: void unselect_cells (unsigned int[] cells)

Description: Unselects the given cells.

This method will sets the "unselected" mark on the given cells. That means that these cells or
their child cells will not be visited, unless they are marked as "selected" again with the select_cells
method.

The cells are given as a list of cell indexes.

This method will also reset the iterator.

This method has been introduced in version 0.23.

unselect_cells

(2) Signature: void unselect_cells (string cells)

Description: Unselects the given cells.

This method will sets the "unselected" mark on the given cells. That means that these cells or
their child cells will not be visited, unless they are marked as "selected" again with the select_cells
method.

The cells are given as a glob pattern. A glob pattern follows the syntax of file names on the shell (i.e.
"A*" are all cells starting with a letter "A").

This method will also reset the iterator.

This method has been introduced in version 0.23.

For more details visit
https://www.klayout.org

Page 1146 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

4.67. API reference - Class Region
Notation used in Ruby API documentation

Module: db

Description: A region (a potentially complex area consisting of multiple polygons)

Class hierarchy: Region » ShapeCollection

Sub-classes: Metrics, RectFilter, OppositeFilter

This class was introduced to simplify operations on polygon sets like boolean or sizing operations. Regions consist of many polygons and
thus are a generalization of single polygons which describes a single coherence set of points. Regions support a variety of operations and
have several states.

The region's state can be empty (does not contain anything) or box-like, i.e. the region consists of a single box. In that case, some
operations can be simplified. Regions can have merged state. In merged state, regions consist of merged (non-touching, non-self
overlapping) polygons. Each polygon describes one coherent area in merged state.

The preferred representation of polygons inside the region are polygons with holes.

Regions are always expressed in database units. If you want to use regions from different database unit domains, scale the regions
accordingly, i.e. by using the transformed method.

Regions provide convenient operators for the boolean operations. Hence it is often no longer required to work with the EdgeProcessor
class. For example:

r1 = RBA::Region::new(RBA::Box::new(0, 0, 100, 100))
r2 = RBA::Region::new(RBA::Box::new(20, 20, 80, 80))
compute the XOR:
r1_xor_r2 = r1 ^ r2

Regions can be used in two different flavors: in raw mode or merged semantics. With merged semantics (the default), connected polygons
are considered to belong together and are effectively merged. Overlapping areas are counted once in that mode. Internal edges (i.e.
arising from cut lines) are not considered. In raw mode (without merged semantics), each polygon is considered as it is. Overlaps
between polygons may exists and merging has to be done explicitly using the merge method. The semantics can be selected using
merged_semantics=.

This class has been introduced in version 0.23.

Public constructors

new Region ptr new Default constructor

new Region ptr new (Polygon[] array) Constructor from a polygon array

new Region ptr new (const Box box) Box constructor

new Region ptr new (const Polygon polygon) Polygon constructor

new Region ptr new (const SimplePolygon polygon) Simple polygon constructor

new Region ptr new (const Path path) Path constructor

new Region ptr new (const Shapes shapes) Shapes constructor

new Region ptr new (const RecursiveShapeIterator
shape_iterator)

Constructor from a hierarchical shape
set

new Region ptr new (const RecursiveShapeIterator
shape_iterator,

Constructor from a hierarchical shape
set with a transformation

For more details visit
https://www.klayout.org

Page 1147 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

const ICplxTrans trans)

new Region ptr new (const RecursiveShapeIterator
shape_iterator,
DeepShapeStore deep_shape_store,
double area_ratio = 0,
unsigned long max_vertex_count = 0)

Constructor for a deep region from a
hierarchical shape set

new Region ptr new (const RecursiveShapeIterator
shape_iterator,
DeepShapeStore deep_shape_store,
const ICplxTrans trans,
double area_ratio = 0,
unsigned long max_vertex_count = 0)

Constructor for a deep region from a
hierarchical shape set

new Region ptr new (const RecursiveShapeIterator
shape_iterator,
string expr,
bool as_pattern = true,
int enl = 1)

Constructor from a text set

new Region ptr new (const RecursiveShapeIterator
shape_iterator,
DeepShapeStore dss,
string expr,
bool as_pattern = true,
int enl = 1)

Constructor from a text set

Public methods

[const] Region & (const Region other) Returns the boolean AND between self
and the other region

Region &= (const Region other) Performs the boolean AND between self
and the other region

[const] Region + (const Region other) Returns the combined region of self and
the other region

Region += (const Region other) Adds the polygons of the other region to
self

[const] Region - (const Region other) Returns the boolean NOT between self
and the other region

Region -= (const Region other) Performs the boolean NOT between self
and the other region

[const] const Polygon
ptr

[] (unsigned long n) Returns the nth polygon of the region

[const] Region ^ (const Region other) Returns the boolean NOT between self
and the other region

Region ^= (const Region other) Performs the boolean XOR between self
and the other region

void _create Ensures the C++ object is created

For more details visit
https://www.klayout.org

Page 1148 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the
script side.

void _unmanage Marks the object as no longer owned by
the script side.

[const] Region[] andnot (const Region other) Returns the boolean AND and NOT
between self and the other region

[const] long area The area of the region

[const] long area (const Box rect) The area of the region (restricted to a
rectangle)

void assign (const Region other) Assigns another object to self

[const] unsigned int base_verbosity Gets the minimum verbosity for timing
reports

void base_verbosity= (int verbosity) Sets the minimum verbosity for timing
reports

[const] Box bbox Return the bounding box of the region

void break (unsigned long
max_vertex_count,
double max_area_ratio = 0)

Breaks the polygons of the region into
smaller ones

void clear Clears the region

variant complex_op (CompoundRegionOperationNode
ptr node)

Executes a complex operation (see
CompoundRegionOperationNode for
details)

[const] Region corners (double angle_min = -180,
double angle_max = 180,
int dim = 1,
bool include_min_angle =
true,
bool include_max_angle =
true)

This method will select all corners
whose attached edges satisfy the angle
condition.

[const] Edges corners_dots (double angle_start = -180,
double angle_end = 180,
bool include_min_angle =
true,
bool include_max_angle =
true)

This method will select all corners
whose attached edges satisfy the angle
condition.

For more details visit
https://www.klayout.org

Page 1149 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

[const] EdgePairs corners_edge_pairs (double angle_start = -180,
double angle_end = 180,
bool include_min_angle =
true,
bool include_max_angle =
true)

This method will select all corners
whose attached edges satisfy the angle
condition.

[const] unsigned long count Returns the (flat) number of polygons in
the region

[const] Region covering (const Region other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Returns the polygons of this region
which are completely covering polygons
from the other region

[const] unsigned long data_id Returns the data ID (a unique identifier
for the underlying data storage)

[const] new Shapes
ptr

decompose_convex (int preferred_orientation =
Polygon#PO_any)

Decomposes the region into convex
pieces.

[const] new Region ptr decompose_convex_to_region(int preferred_orientation =
Polygon#PO_any)

Decomposes the region into convex
pieces into a region.

[const] new Shapes
ptr

decompose_trapezoids(int mode =
Polygon#TD_simple)

Decomposes the region into trapezoids.

[const] new Region ptr decompose_trapezoids_to_region(int mode =
Polygon#TD_simple)

Decomposes the region into trapezoids.

void disable_progress Disable progress reporting

[const] new Region ptr dup Creates a copy of self

[const,iter] Polygon each Returns each polygon of the region

[const,iter] Polygon each_merged Returns each merged polygon of the
region

[const] Edges edges Returns an edge collection representing
all edges of the polygons in this region

void enable_progress (string label) Enable progress reporting

[const] EdgePairs enclosed_check (const Region other,
unsigned int d,
bool whole_edges = false,
Region::Metrics metrics =
Euclidian,
variant ignore_angle = default,
variant min_projection = 0,
variant max_projection = max,
bool shielded = true,
Region::OppositeFilter
opposite_filter =
NoOppositeFilter,
Region::RectFilter rect_filter =
NoRectFilter,
bool negative = false)

Performs an inside check with options

For more details visit
https://www.klayout.org

Page 1150 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

[const] EdgePairs enclosing_check (const Region other,
unsigned int d,
bool whole_edges = false,
Region::Metrics metrics =
Euclidian,
variant ignore_angle = default,
variant min_projection = 0,
variant max_projection = max,
bool shielded = true,
Region::OppositeFilter
opposite_filter =
NoOppositeFilter,
Region::RectFilter rect_filter =
NoRectFilter,
bool negative = false)

Performs an enclosing check with
options

[const] Region extents Returns a region with the bounding
boxes of the polygons

[const] Region extents (int d) Returns a region with the enlarged
bounding boxes of the polygons

[const] Region extents (int dx,
int dy)

Returns a region with the enlarged
bounding boxes of the polygons

[const] void fill (Cell ptr in_cell,
unsigned int fill_cell_index,
const Box fc_box,
const Point ptr origin = (0, 0),
Region ptr remaining_parts =
nil,
const Vector fill_margin = 0,0,
Region ptr
remaining_polygons = nil,
const Box glue_box = ())

A mapping of Cell#fill_region to the
Region class

[const] void fill (Cell ptr in_cell,
unsigned int fill_cell_index,
const Box fc_origin,
const Vector row_step,
const Vector column_step,
const Point ptr origin = (0, 0),
Region ptr remaining_parts =
nil,
const Vector fill_margin = 0,0,
Region ptr
remaining_polygons = nil,
const Box glue_box = ())

A mapping of Cell#fill_region to the
Region class

[const] void fill_multi (Cell ptr in_cell,
unsigned int fill_cell_index,
const Box fc_origin,
const Vector row_step,
const Vector column_step,
const Vector fill_margin = 0,0,
Region ptr
remaining_polygons = nil,
const Box glue_box = ())

A mapping of Cell#fill_region to the
Region class

Region flatten Explicitly flattens a region

For more details visit
https://www.klayout.org

Page 1151 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

[const] EdgePairs grid_check (int gx,
int gy)

Returns a marker for all vertices not
being on the given grid

[const] bool has_valid_polygons? Returns true if the region is flat and
individual polygons can be accessed
randomly

[const] unsigned long hier_count Returns the (hierarchical) number of
polygons in the region

[const] Region holes Returns the holes of the region

[const] Region hulls Returns the hulls of the region

void insert (const Box box) Inserts a box

void insert (const Polygon polygon) Inserts a polygon

void insert (const SimplePolygon
polygon)

Inserts a simple polygon

void insert (const Path path) Inserts a path

void insert (RecursiveShapeIterator
shape_iterator)

Inserts all shapes delivered by the
recursive shape iterator into this region

void insert (RecursiveShapeIterator
shape_iterator,
ICplxTrans trans)

Inserts all shapes delivered by the
recursive shape iterator into this region
with a transformation

void insert (Polygon[] array) Inserts all polygons from the array into
this region

void insert (const Region region) Inserts all polygons from the other
region into this region

void insert (const Shapes shapes) Inserts all polygons from the shape
collection into this region

void insert (const Shapes shapes,
const Trans trans)

Inserts all polygons from the shape
collection into this region with
transformation

void insert (const Shapes shapes,
const ICplxTrans trans)

Inserts all polygons from the shape
collection into this region with complex
transformation

[const] void insert_into (Layout ptr layout,
unsigned int cell_index,
unsigned int layer)

Inserts this region into the given layout,
below the given cell and into the given
layer.

[const] Region inside (const Region other) Returns the polygons of this region
which are completely inside polygons
from the other region

[const] EdgePairs inside_check (const Region other,
unsigned int d,
bool whole_edges = false,

Performs an inside check with options

For more details visit
https://www.klayout.org

Page 1152 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

Region::Metrics metrics =
Euclidian,
variant ignore_angle = default,
variant min_projection = 0,
variant max_projection = max,
bool shielded = true,
Region::OppositeFilter
opposite_filter =
NoOppositeFilter,
Region::RectFilter rect_filter =
NoRectFilter,
bool negative = false)

[const] Region interacting (const Region other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Returns the polygons of this region
which overlap or touch polygons from
the other region

[const] Region interacting (const Edges other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Returns the polygons of this region
which overlap or touch edges from the
edge collection

[const] Region interacting (const Texts other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Returns the polygons of this region
which overlap or touch texts

[const] bool is_box? Returns true, if the region is a simple
box

[const] bool is_deep? Returns true if the region is a deep
(hierarchical) one

[const] bool is_empty? Returns true if the region is empty

[const] bool is_merged? Returns true if the region is merged

[const] EdgePairs isolated_check (unsigned int d,
bool whole_edges = false,
Region::Metrics metrics =
Euclidian,
variant ignore_angle = default,
variant min_projection = 0,
variant max_projection = max,
bool shielded = true,
Region::OppositeFilter
opposite_filter =
NoOppositeFilter,
Region::RectFilter rect_filter =
NoRectFilter,
bool negative = false)

Performs a space check between edges
of different polygons with options

[const] Region members_of (const Region other) Returns all polygons which are
members of the other region

Region merge Merge the region

Region merge (int min_wc) Merge the region with options

For more details visit
https://www.klayout.org

Page 1153 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

Region merge (bool min_coherence,
int min_wc)

Merge the region with options

[const] Region merged Returns the merged region

Region merged (int min_wc) Returns the merged region (with
options)

Region merged (bool min_coherence,
int min_wc)

Returns the merged region (with
options)

void merged_semantics= (bool f) Enables or disables merged semantics

[const] bool merged_semantics? Gets a flag indicating whether merged
semantics is enabled

void min_coherence= (bool f) Enable or disable minimum coherence

[const] bool min_coherence? Gets a flag indicating whether minimum
coherence is selected

[const] Region minkowski_sum (const Edge e) Compute the Minkowski sum of the
region and an edge

[const] Region minkowski_sum (const Polygon p) Compute the Minkowski sum of the
region and a polygon

[const] Region minkowski_sum (const Box b) Compute the Minkowski sum of the
region and a box

[const] Region minkowski_sum (Point[] b) Compute the Minkowski sum of the
region and a contour of points (a trace)

Region move (const Vector v) Moves the region

Region move (int x,
int y)

Moves the region

[const] Region moved (const Vector v) Returns the moved region (does not
modify self)

[const] Region moved (int x,
int y)

Returns the moved region (does not
modify self)

[const] Region non_rectangles Returns all polygons which are not
rectangles

[const] Region non_rectilinear Returns all polygons which are not
rectilinear

[const] Region non_squares Returns all polygons which are not
squares

[const] Region not_covering (const Region other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Returns the polygons of this region
which are not completely covering
polygons from the other region

For more details visit
https://www.klayout.org

Page 1154 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

[const] Region not_inside (const Region other) Returns the polygons of this region
which are not completely inside
polygons from the other region

[const] Region not_interacting (const Region other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Returns the polygons of this region
which do not overlap or touch polygons
from the other region

[const] Region not_interacting (const Edges other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Returns the polygons of this region
which do not overlap or touch edges
from the edge collection

[const] Region not_interacting (const Texts other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Returns the polygons of this region
which do not overlap or touch texts

[const] Region not_members_of (const Region other) Returns all polygons which are not
members of the other region

[const] Region not_outside (const Region other) Returns the polygons of this region
which are not completely outside
polygons from the other region

[const] Region not_overlapping (const Region other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Returns the polygons of this region
which do not overlap polygons from the
other region

[const] EdgePairs notch_check (unsigned int d,
bool whole_edges = false,
Region::Metrics metrics =
Euclidian,
variant ignore_angle = default,
variant min_projection = 0,
variant max_projection = max,
bool shielded = true,
bool negative = false)

Performs a space check between edges
of the same polygon with options

[const] Region outside (const Region other) Returns the polygons of this region
which are completely outside polygons
from the other region

[const] EdgePairs overlap_check (const Region other,
unsigned int d,
bool whole_edges = false,
Region::Metrics metrics =
Euclidian,
variant ignore_angle = default,
variant min_projection = 0,
variant max_projection = max,
bool shielded = true,
Region::OppositeFilter
opposite_filter =
NoOppositeFilter,
Region::RectFilter rect_filter =
NoRectFilter,

Performs an overlap check with options

For more details visit
https://www.klayout.org

Page 1155 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

bool negative = false)

[const] Region overlapping (const Region other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Returns the polygons of this region
which overlap polygons from the other
region

[const] unsigned long perimeter The total perimeter of the polygons

[const] unsigned long perimeter (const Box rect) The total perimeter of the polygons
(restricted to a rectangle)

[const] Region pull_inside (const Region other) Returns all polygons of "other" which are
inside polygons of this region

[const] Region pull_interacting (const Region other) Returns all polygons of "other" which are
interacting with (overlapping, touching)
polygons of this region

[const] Edges pull_interacting (const Edges other) Returns all edges of "other" which are
interacting with polygons of this region

[const] Texts pull_interacting (const Texts other) Returns all texts of "other" which are
interacting with polygons of this region

[const] Region pull_overlapping (const Region other) Returns all polygons of "other" which are
overlapping polygons of this region

[const] Region rectangles Returns all polygons which are
rectangles

[const] Region rectilinear Returns all polygons which are
rectilinear

void round_corners (double r_inner,
double r_outer,
unsigned int n)

Corner rounding

[const] Region rounded_corners (double r_inner,
double r_outer,
unsigned int n)

Corner rounding

void scale_and_snap (int gx,
int mx,
int dx,
int gy,
int my,
int dy)

Scales and snaps the region to the
given grid

[const] Region scaled_and_snapped (int gx,
int mx,
int dx,
int gy,
int my,
int dy)

Returns the scaled and snapped region

Region select_covering (const Region other,
unsigned long min_count = 1,

Selects the polygons of this region
which are completely covering polygons
from the other region

For more details visit
https://www.klayout.org

Page 1156 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

unsigned long max_count =
unlimited)

Region select_inside (const Region other) Selects the polygons of this region
which are completely inside polygons
from the other region

Region select_interacting (const Region other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Selects the polygons from this region
which overlap or touch polygons from
the other region

Region select_interacting (const Edges other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Selects the polygons from this region
which overlap or touch edges from the
edge collection

Region select_interacting (const Texts other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Selects the polygons of this region
which overlap or touch texts

Region select_not_covering (const Region other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Selects the polygons of this region
which are not completely covering
polygons from the other region

Region select_not_inside (const Region other) Selects the polygons of this region
which are not completely inside
polygons from the other region

Region select_not_interacting(const Region other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Selects the polygons from this region
which do not overlap or touch polygons
from the other region

Region select_not_interacting(const Edges other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Selects the polygons from this region
which do not overlap or touch edges
from the edge collection

Region select_not_interacting(const Texts other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Selects the polygons of this region
which do not overlap or touch texts

Region select_not_outside (const Region other) Selects the polygons of this region
which are not completely outside
polygons from the other region

Region select_not_overlapping(const Region other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Selects the polygons from this region
which do not overlap polygons from the
other region

Region select_outside (const Region other) Selects the polygons of this region
which are completely outside polygons
from the other region

For more details visit
https://www.klayout.org

Page 1157 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

Region select_overlapping (const Region other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Selects the polygons from this region
which overlap polygons from the other
region

[const] EdgePairs separation_check (const Region other,
unsigned int d,
bool whole_edges = false,
Region::Metrics metrics =
Euclidian,
variant ignore_angle = default,
variant min_projection = 0,
variant max_projection = max,
bool shielded = true,
Region::OppositeFilter
opposite_filter =
NoOppositeFilter,
Region::RectFilter rect_filter =
NoRectFilter,
bool negative = false)

Performs a separation check with
options

Region size (int dx,
int dy,
unsigned int mode)

Anisotropic sizing (biasing)

Region size (const Vector dv,
unsigned int mode = 2)

Anisotropic sizing (biasing)

Region size (int d,
unsigned int mode = 2)

Isotropic sizing (biasing)

[const] Region sized (int dx,
int dy,
unsigned int mode)

Returns the anisotropically sized region

[const] Region sized (const Vector dv,
unsigned int mode = 2)

Returns the (an)isotropically sized
region

[const] Region sized (int d,
unsigned int mode = 2)

Returns the isotropically sized region

void smooth (int d,
bool keep_hv = false)

Smoothing

[const] Region smoothed (int d,
bool keep_hv = false)

Smoothing

void snap (int gx,
int gy)

Snaps the region to the given grid

[const] Region snapped (int gx,
int gy)

Returns the snapped region

[const] EdgePairs space_check (unsigned int d,
bool whole_edges = false,
Region::Metrics metrics =
Euclidian,
variant ignore_angle = default,
variant min_projection = 0,
variant max_projection = max,

Performs a space check with options

For more details visit
https://www.klayout.org

Page 1158 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

bool shielded = true,
Region::OppositeFilter
opposite_filter =
NoOppositeFilter,
Region::RectFilter rect_filter =
NoRectFilter,
bool negative = false)

[const] Region[] split_covering (const Region other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Returns the polygons of this region
which are completely covering polygons
from the other region and the ones
which are not at the same time

[const] Region[] split_inside (const Region other) Returns the polygons of this region
which are completely inside polygons
from the other region and the ones
which are not at the same time

[const] Region[] split_interacting (const Region other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Returns the polygons of this region
which are interacting with polygons from
the other region and the ones which are
not at the same time

[const] Region[] split_interacting (const Edges other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Returns the polygons of this region
which are interacting with edges from
the other edge collection and the ones
which are not at the same time

[const] Region[] split_interacting (const Texts other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Returns the polygons of this region
which are interacting with texts from the
other text collection and the ones which
are not at the same time

[const] Region[] split_outside (const Region other) Returns the polygons of this region
which are completely outside polygons
from the other region and the ones
which are not at the same time

[const] Region[] split_overlapping (const Region other,
unsigned long min_count = 1,
unsigned long max_count =
unlimited)

Returns the polygons of this region
which are overlapping with polygons
from the other region and the ones
which are not at the same time

[const] Region squares Returns all polygons which are squares

[const] Region strange_polygon_check Returns a region containing those parts
of polygons which are "strange"

void strict_handling= (bool f) Enables or disables strict handling

[const] bool strict_handling? Gets a flag indicating whether merged
semantics is enabled

void swap (Region other) Swap the contents of this region with the
contents of another region

[const] string to_s Converts the region to a string

[const] string to_s (unsigned long max_count) Converts the region to a string

For more details visit
https://www.klayout.org

Page 1159 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

Region transform (const Trans t) Transform the region (modifies self)

Region transform (const ICplxTrans t) Transform the region with a complex
transformation (modifies self)

Region transform (const IMatrix2d t) Transform the region (modifies self)

Region transform (const IMatrix3d t) Transform the region (modifies self)

[const] Region transformed (const Trans t) Transforms the region

[const] Region transformed (const ICplxTrans t) Transforms the region with a complex
transformation

[const] Region transformed (const IMatrix2d t) Transforms the region

[const] Region transformed (const IMatrix3d t) Transforms the region

[const] EdgePairs width_check (unsigned int d,
bool whole_edges = false,
Region::Metrics metrics =
Euclidian,
variant ignore_angle = default,
variant min_projection = 0,
variant max_projection = max,
bool shielded = true,
bool negative = false)

Performs a width check with options

[const] EdgePairs with_angle (double angle,
bool inverse)

Returns markers on every corner with
the given angle (or not with the given
angle)

[const] EdgePairs with_angle (double amin,
double amax,
bool inverse)

Returns markers on every corner with
an angle of more than amin and less
than amax (or the opposite)

[const] Region with_area (long area,
bool inverse)

Filter the polygons by area

[const] Region with_area (variant min_area,
variant max_area,
bool inverse)

Filter the polygons by area

[const] Region with_area_ratio (double ratio,
bool inverse)

Filters the polygons by the bounding box
area to polygon area ratio

[const] Region with_area_ratio (variant min_ratio,
variant max_ratio,
bool inverse,
bool min_included = true,
bool max_included = true)

Filters the polygons by the aspect ratio
of their bounding boxes

[const] Region with_bbox_aspect_ratio(double ratio,
bool inverse)

Filters the polygons by the aspect ratio
of their bounding boxes

[const] Region with_bbox_aspect_ratio(variant min_ratio,
variant max_ratio,
bool inverse,
bool min_included = true,

Filters the polygons by the aspect ratio
of their bounding boxes

For more details visit
https://www.klayout.org

Page 1160 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

bool max_included = true)

[const] Region with_bbox_height (unsigned int height,
bool inverse)

Filter the polygons by bounding box
height

[const] Region with_bbox_height (variant min_height,
variant max_height,
bool inverse)

Filter the polygons by bounding box
height

[const] Region with_bbox_max (unsigned int dim,
bool inverse)

Filter the polygons by bounding box
width or height, whichever is larger

[const] Region with_bbox_max (variant min_dim,
variant max_dim,
bool inverse)

Filter the polygons by bounding box
width or height, whichever is larger

[const] Region with_bbox_min (unsigned int dim,
bool inverse)

Filter the polygons by bounding box
width or height, whichever is smaller

[const] Region with_bbox_min (variant min_dim,
variant max_dim,
bool inverse)

Filter the polygons by bounding box
width or height, whichever is smaller

[const] Region with_bbox_width (unsigned int width,
bool inverse)

Filter the polygons by bounding box
width

[const] Region with_bbox_width (variant min_width,
variant max_width,
bool inverse)

Filter the polygons by bounding box
width

[const] Region with_holes (unsigned long nholes,
bool inverse)

Filters the polygons by their number of
holes

[const] Region with_holes (variant min_bholes,
variant max_nholes,
bool inverse)

Filter the polygons by their number of
holes

[const] Region with_perimeter (unsigned long perimeter,
bool inverse)

Filter the polygons by perimeter

[const] Region with_perimeter (variant min_perimeter,
variant max_perimeter,
bool inverse)

Filter the polygons by perimeter

[const] Region with_relative_height (double ratio,
bool inverse)

Filters the polygons by the ratio of height
to width

[const] Region with_relative_height (variant min_ratio,
variant max_ratio,
bool inverse,
bool min_included = true,
bool max_included = true)

Filters the polygons by the bounding box
height to width ratio

[const] Region | (const Region other) Returns the boolean OR between self
and the other region

Region |= (const Region other) Performs the boolean OR between self
and the other region

For more details visit
https://www.klayout.org

Page 1161 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

Public static methods and constants

[static,const] Region::Metrics Euclidian Specifies Euclidian metrics for the
check functions

[static,const] Region::RectFilter FourSidesAllowed Allow errors when on all sides

[static,const] Region::OppositeFilter NoOppositeFilter No opposite filtering

[static,const] Region::RectFilter NoRectFilter Specifies no filtering

[static,const] Region::OppositeFilter NotOpposite Only errors NOT appearing on
opposite sides of a figure will be
reported

[static,const] Region::RectFilter OneSideAllowed Allow errors on one side

[static,const] Region::OppositeFilter OnlyOpposite Only errors appearing on opposite
sides of a figure will be reported

[static,const] Region::Metrics Projection Specifies projected distance metrics for
the check functions

[static,const] Region::Metrics Square Specifies square metrics for the check
functions

[static,const] Region::RectFilter ThreeSidesAllowed Allow errors when on three sides

[static,const] Region::RectFilter TwoConnectedSidesAllowed Allow errors on two sides ("L"
configuration)

[static,const] Region::RectFilter TwoOppositeSidesAllowed Allow errors on two opposite sides

[static,const] Region::RectFilter TwoSidesAllowed Allow errors on two sides (not specified
which)

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

[const] Region in (const Region
other)

Use of this method is deprecated. Use
members_of instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[const] Region minkowsky_sum (const Edge e) Use of this method is deprecated. Use
minkowski_sum instead

For more details visit
https://www.klayout.org

Page 1162 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

[const] Region minkowsky_sum (const Polygon p) Use of this method is deprecated. Use
minkowski_sum instead

[const] Region minkowsky_sum (const Box b) Use of this method is deprecated. Use
minkowski_sum instead

[const] Region minkowsky_sum (Point[] b) Use of this method is deprecated. Use
minkowski_sum instead

[const] Region not_in (const Region
other)

Use of this method is deprecated. Use
not_members_of instead

[const] unsigned long size Use of this method is deprecated. Use count
instead

Region transform_icplx (const ICplxTrans
t)

Use of this method is deprecated. Use
transform instead

[const] Region transformed_icplx (const ICplxTrans
t)

Use of this method is deprecated. Use
transformed instead

Detailed description

&
Signature: [const] Region & (const Region other)

Description: Returns the boolean AND between self and the other region

Returns: The result of the boolean AND operation

This method will compute the boolean AND (intersection) between two regions. The result is often but
not necessarily always merged.

&=
Signature: Region &= (const Region other)

Description: Performs the boolean AND between self and the other region

Returns: The region after modification (self)

This method will compute the boolean AND (intersection) between two regions. The result is often but
not necessarily always merged.

+
Signature: [const] Region + (const Region other)

Description: Returns the combined region of self and the other region

Returns: The resulting region

This operator adds the polygons of the other region to self and returns a new combined region. This
usually creates unmerged regions and polygons may overlap. Use merge if you want to ensure the
result region is merged.

+=
Signature: Region += (const Region other)

Description: Adds the polygons of the other region to self

Returns: The region after modification (self)

This operator adds the polygons of the other region to self. This usually creates unmerged regions and
polygons may overlap. Use merge if you want to ensure the result region is merged.

For more details visit
https://www.klayout.org

Page 1163 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

-
Signature: [const] Region - (const Region other)

Description: Returns the boolean NOT between self and the other region

Returns: The result of the boolean NOT operation

This method will compute the boolean NOT (intersection) between two regions. The result is often but
not necessarily always merged.

-=
Signature: Region -= (const Region other)

Description: Performs the boolean NOT between self and the other region

Returns: The region after modification (self)

This method will compute the boolean NOT (intersection) between two regions. The result is often but
not necessarily always merged.

Euclidian
Signature: [static,const] Region::Metrics Euclidian

Description: Specifies Euclidian metrics for the check functions

This value can be used for the metrics parameter in the check functions, i.e. width_check. This value
specifies Euclidian metrics, i.e. the distance between two points is measured by:

d = sqrt(dx^2 + dy^2)

All points within a circle with radius d around one point are considered to have a smaller distance than
d.

FourSidesAllowed
Signature: [static,const] Region::RectFilter FourSidesAllowed

Description: Allow errors when on all sides

NoOppositeFilter
Signature: [static,const] Region::OppositeFilter NoOppositeFilter

Description: No opposite filtering

NoRectFilter
Signature: [static,const] Region::RectFilter NoRectFilter

Description: Specifies no filtering

NotOpposite
Signature: [static,const] Region::OppositeFilter NotOpposite

Description: Only errors NOT appearing on opposite sides of a figure will be reported

OneSideAllowed
Signature: [static,const] Region::RectFilter OneSideAllowed

Description: Allow errors on one side

OnlyOpposite
Signature: [static,const] Region::OppositeFilter OnlyOpposite

Description: Only errors appearing on opposite sides of a figure will be reported

Projection
Signature: [static,const] Region::Metrics Projection

Description: Specifies projected distance metrics for the check functions

This value can be used for the metrics parameter in the check functions, i.e. width_check. This
value specifies projected metrics, i.e. the distance is defined as the minimum distance measured

For more details visit
https://www.klayout.org

Page 1164 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

perpendicular to one edge. That implies that the distance is defined only where two edges have a non-
vanishing projection onto each other.

Square
Signature: [static,const] Region::Metrics Square

Description: Specifies square metrics for the check functions

This value can be used for the metrics parameter in the check functions, i.e. width_check. This value
specifies square metrics, i.e. the distance between two points is measured by:

d = max(abs(dx), abs(dy))

All points within a square with length 2*d around one point are considered to have a smaller distance
than d in this metrics.

ThreeSidesAllowed
Signature: [static,const] Region::RectFilter ThreeSidesAllowed

Description: Allow errors when on three sides

TwoConnectedSidesAllowed
Signature: [static,const] Region::RectFilter TwoConnectedSidesAllowed

Description: Allow errors on two sides ("L" configuration)

TwoOppositeSidesAllowed
Signature: [static,const] Region::RectFilter TwoOppositeSidesAllowed

Description: Allow errors on two opposite sides

TwoSidesAllowed
Signature: [static,const] Region::RectFilter TwoSidesAllowed

Description: Allow errors on two sides (not specified which)

[]
Signature: [const] const Polygon ptr [] (unsigned long n)

Description: Returns the nth polygon of the region

This method returns nil if the index is out of range. It is available for flat regions only - i.e. those for
which has_valid_polygons? is true. Use flatten to explicitly flatten a region. This method returns the
raw polygon (not merged polygons, even if merged semantics is enabled).

The each iterator is the more general approach to access the polygons.

^
Signature: [const] Region ^ (const Region other)

Description: Returns the boolean NOT between self and the other region

Returns: The result of the boolean XOR operation

This method will compute the boolean XOR (intersection) between two regions. The result is often but
not necessarily always merged.

^=
Signature: Region ^= (const Region other)

Description: Performs the boolean XOR between self and the other region

Returns: The region after modification (self)

This method will compute the boolean XOR (intersection) between two regions. The result is often but
not necessarily always merged.

For more details visit
https://www.klayout.org

Page 1165 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

andnot
Signature: [const] Region[] andnot (const Region other)

Description: Returns the boolean AND and NOT between self and the other region

Returns: A two-element array of regions with the first one being the AND result
and the second one being the NOT result

This method will compute the boolean AND and NOT between two regions simultaneously. Because
this requires a single sweep only, using this method is faster than doing AND and NOT separately.

This method has been added in version 0.27.

For more details visit
https://www.klayout.org

Page 1166 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

(1) Signature: [const] long area

Description: The area of the region

Merged semantics applies for this method (see merged_semantics= for a description of this concept)
If merged semantics is not enabled, overlapping areas are counted twice.

area

(2) Signature: [const] long area (const Box rect)

Description: The area of the region (restricted to a rectangle)

This version will compute the area of the shapes, restricting the computation to the given rectangle.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)
If merged semantics is not enabled, overlapping areas are counted twice.

assign
Signature: void assign (const Region other)

Description: Assigns another object to self

base_verbosity
Signature: [const] unsigned int base_verbosity

Description: Gets the minimum verbosity for timing reports

See base_verbosity= for details.

This method has been introduced in version 0.26.

Python specific notes:
The object exposes a readable attribute 'base_verbosity'. This is the getter.

base_verbosity=
Signature: void base_verbosity= (int verbosity)

Description: Sets the minimum verbosity for timing reports

Timing reports will be given only if the verbosity is larger than this value. Detailed reports will be given
when the verbosity is more than this value plus 10. In binary operations, the base verbosity of the first
argument is considered.

This method has been introduced in version 0.26.

Python specific notes:
The object exposes a writable attribute 'base_verbosity'. This is the setter.

bbox
Signature: [const] Box bbox

Description: Return the bounding box of the region

The bounding box is the box enclosing all points of all polygons.

break
Signature: void break (unsigned long max_vertex_count, double max_area_ratio = 0)

Description: Breaks the polygons of the region into smaller ones

There are two criteria for splitting a polygon: a polygon is split into parts with less then
'max_vertex_count' points and an bounding box-to-polygon area ratio less than 'max_area_ratio'. The
area ratio is supposed to render polygons whose bounding box is a better approximation. This applies
for example to 'L' shape polygons.

Using a value of 0 for either limit means that the respective limit isn't checked. Breaking happens
by cutting the polygons into parts at 'good' locations. The algorithm does not have a specific goal to
minimize the number of parts for example. The only goal is to achieve parts within the given limits.

This method has been introduced in version 0.26.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1167 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

This attribute is available as 'break_' in Python

clear
Signature: void clear

Description: Clears the region

complex_op
Signature: variant complex_op (CompoundRegionOperationNode ptr node)

Description: Executes a complex operation (see CompoundRegionOperationNode for details)

This method has been introduced in version 0.27.

corners
Signature: [const] Region corners (double angle_min = -180, double angle_max = 180, int dim = 1,
bool include_min_angle = true, bool include_max_angle = true)

Description: This method will select all corners whose attached edges satisfy the angle condition.

The angle values specify a range of angles: all corners whose attached edges form an angle
between angle_min and angle_max will be reported boxes with 2*dim x 2*dim dimension. The default
dimension is 2x2 DBU.

If 'include_angle_min' is true, the angle condition is >= min. angle, otherwise it is > min. angle. Same
for 'include_angle_,ax' and the max. angle.

The angle is measured between the incoming and the outcoming edge in mathematical sense: a
positive value is a turn left while a negative value is a turn right. Since polygon contours are oriented
clockwise, positive angles will report concave corners while negative ones report convex ones.

A similar function that reports corners as point-like edges is corners_dots.

This method has been introduced in version 0.25. 'include_min_angle' and 'include_max_angle' have
been added in version 0.27.

corners_dots
Signature: [const] Edges corners_dots (double angle_start = -180, double angle_end = 180, bool
include_min_angle = true, bool include_max_angle = true)

Description: This method will select all corners whose attached edges satisfy the angle condition.

This method is similar to corners, but delivers an Edges collection with dot-like edges for each corner.

This method has been introduced in version 0.25. 'include_min_angle' and 'include_max_angle' have
been added in version 0.27.

corners_edge_pairs
Signature: [const] EdgePairs corners_edge_pairs (double angle_start = -180, double angle_end =
180, bool include_min_angle = true, bool include_max_angle = true)

Description: This method will select all corners whose attached edges satisfy the angle condition.

This method is similar to corners, but delivers an EdgePairs collection with an edge pairs for each
corner. The first edge is the incoming edge of the corner, the second one the outgoing edge.

This method has been introduced in version 0.27.1.

count
Signature: [const] unsigned long count

Description: Returns the (flat) number of polygons in the region

This returns the number of raw polygons (not merged polygons if merged semantics is enabled). The
count is computed 'as if flat', i.e. polygons inside a cell are multiplied by the number of times a cell is
instantiated.

The 'count' alias has been provided in version 0.26 to avoid ambiguity with the 'size' method which
applies a geometrical bias.

For more details visit
https://www.klayout.org

Page 1168 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

covering
Signature: [const] Region covering (const Region other, unsigned long min_count = 1, unsigned
long max_count = unlimited)

Description: Returns the polygons of this region which are completely covering polygons from the
other region

Returns: A new region containing the polygons which are covering polygons
from the other region

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This attribute is sometimes called 'enclosing' instead of 'covering', but this term is reserved for the
respective DRC function.

This method has been introduced in version 0.27.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

data_id
Signature: [const] unsigned long data_id

Description: Returns the data ID (a unique identifier for the underlying data storage)

This method has been added in version 0.26.

decompose_convex
Signature: [const] new Shapes ptr decompose_convex (int preferred_orientation =
Polygon#PO_any)

Description: Decomposes the region into convex pieces.

This method will return a Shapes container that holds a decomposition of the region into convex,
simple polygons. See Polygon#decompose_convex for details. If you want Region output, you should
use decompose_convex_to_region.

This method has been introduced in version 0.25.

decompose_convex_to_region
Signature: [const] new Region ptr decompose_convex_to_region (int preferred_orientation =
Polygon#PO_any)

Description: Decomposes the region into convex pieces into a region.

This method is identical to decompose_convex, but delivers a Region object.

This method has been introduced in version 0.25.

decompose_trapezoids
Signature: [const] new Shapes ptr decompose_trapezoids (int mode = Polygon#TD_simple)

Description: Decomposes the region into trapezoids.

This method will return a Shapes container that holds a decomposition of the region into trapezoids.
See Polygon#decompose_trapezoids for details. If you want Region output, you should use
decompose_trapezoids_to_region.

This method has been introduced in version 0.25.

decompose_trapezoids_to_region
Signature: [const] new Region ptr decompose_trapezoids_to_region (int mode =
Polygon#TD_simple)

For more details visit
https://www.klayout.org

Page 1169 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

Description: Decomposes the region into trapezoids.

This method is identical to decompose_trapezoids, but delivers a Region object.

This method has been introduced in version 0.25.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

disable_progress
Signature: void disable_progress

Description: Disable progress reporting

Calling this method will disable progress reporting. See enable_progress.

dup
Signature: [const] new Region ptr dup

Description: Creates a copy of self

each
Signature: [const,iter] Polygon each

Description: Returns each polygon of the region

This returns the raw polygons (not merged polygons if merged semantics is enabled).

Python specific notes:
This method enables iteration of the object

each_merged
Signature: [const,iter] Polygon each_merged

Description: Returns each merged polygon of the region

This returns the raw polygons if merged semantics is disabled or the merged ones if merged
semantics is enabled.

edges
Signature: [const] Edges edges

Description: Returns an edge collection representing all edges of the polygons in this region

This method will decompose the polygons into the individual edges. Edges making up the hulls of the
polygons are oriented clockwise while edges making up the holes are oriented counterclockwise.

The edge collection returned can be manipulated in various ways. See Edges for a description of the
possibilities of the edge collection.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

enable_progress
Signature: void enable_progress (string label)

Description: Enable progress reporting

For more details visit
https://www.klayout.org

Page 1170 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

After calling this method, the region will report the progress through a progress bar while expensive
operations are running. The label is a text which is put in front of the progress bar. Using a progress
bar will imply a performance penalty of a few percent typically.

enclosed_check
Signature: [const] EdgePairs enclosed_check (const Region other, unsigned int d, bool
whole_edges = false, Region::Metrics metrics = Euclidian, variant ignore_angle = default, variant
min_projection = 0, variant max_projection = max, bool shielded = true, Region::OppositeFilter
opposite_filter = NoOppositeFilter, Region::RectFilter rect_filter = NoRectFilter, bool negative = false)

Description: Performs an inside check with options

d: The minimum distance for which the polygons are checked

other: The other region against which to check

whole_edges: If true, deliver the whole edges

metrics: Specify the metrics type

ignore_angle: The angle above which no check is performed

min_projection: The lower threshold of the projected length of one edge onto
another

max_projection: The upper limit of the projected length of one edge onto
another

opposite_filter: Specifies a filter mode for errors happening on opposite sides
of inputs shapes

rect_filter: Specifies an error filter for rectangular input shapes

negative: Negative output from the first input

If "whole_edges" is true, the resulting EdgePairs collection will receive the whole edges which
contribute in the width check.

"metrics" can be one of the constants Euclidian, Square or Projection. See there for a description of
these constants. Use nil for this value to select the default (Euclidian metrics).

"ignore_angle" specifies the angle limit of two edges. If two edges form an angle equal or above the
given value, they will not contribute in the check. Setting this value to 90 (the default) will exclude
edges with an angle of 90 degree or more from the check. Use nil for this value to select the default.

"min_projection" and "max_projection" allow selecting edges by their projected value upon each other.
It is sufficient if the projection of one edge on the other matches the specified condition. The projected
length must be larger or equal to "min_projection" and less than "max_projection". If you don't want to
specify one limit, pass nil to the respective value.

"shielded" controls whether shielding is applied. Shielding means that rule violations are not detected
'through' other features. Measurements are only made where the opposite edge is unobstructed.
Shielding often is not optional as a rule violation in shielded case automatically comes with rule
violations between the original and the shielding features. If not necessary, shielding can be disabled
by setting this flag to false. In general, this will improve performance somewhat.

"opposite_filter" specifies whether to require or reject errors happening on opposite sides of a figure.
"rect_filter" allows suppressing specific error configurations on rectangular input figures.

If "negative" is true, only edges from the first input are output as pseudo edge-pairs where the
distance is larger or equal to the limit. This is a way to flag the parts of the first input where the
distance to the second input is bigger. Note that only the first input's edges are output. The output is
still edge pairs, but each edge pair contains one edge from the original input and the reverse version
of the edge as the second edge.

Merged semantics applies for the input of this method (see merged_semantics= for a description of
this concept)

The 'shielded', 'negative', 'not_opposite' and 'rect_sides' options have been introduced in version 0.27.
The interpretation of the 'negative' flag has been restriced to first-layout only output in 0.27.1. The
'enclosed_check' alias was introduced in version 0.27.5.

For more details visit
https://www.klayout.org

Page 1171 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

enclosing_check
Signature: [const] EdgePairs enclosing_check (const Region other, unsigned int d, bool
whole_edges = false, Region::Metrics metrics = Euclidian, variant ignore_angle = default, variant
min_projection = 0, variant max_projection = max, bool shielded = true, Region::OppositeFilter
opposite_filter = NoOppositeFilter, Region::RectFilter rect_filter = NoRectFilter, bool negative = false)

Description: Performs an enclosing check with options

d: The minimum enclosing distance for which the polygons are
checked

other: The other region against which to check

whole_edges: If true, deliver the whole edges

metrics: Specify the metrics type

ignore_angle: The angle above which no check is performed

min_projection: The lower threshold of the projected length of one edge onto
another

max_projection: The upper limit of the projected length of one edge onto
another

opposite_filter: Specifies a filter mode for errors happening on opposite sides
of inputs shapes

rect_filter: Specifies an error filter for rectangular input shapes

negative: Negative output from the first input

If "whole_edges" is true, the resulting EdgePairs collection will receive the whole edges which
contribute in the width check.

"metrics" can be one of the constants Euclidian, Square or Projection. See there for a description of
these constants. Use nil for this value to select the default (Euclidian metrics).

"ignore_angle" specifies the angle limit of two edges. If two edges form an angle equal or above the
given value, they will not contribute in the check. Setting this value to 90 (the default) will exclude
edges with an angle of 90 degree or more from the check. Use nil for this value to select the default.

"min_projection" and "max_projection" allow selecting edges by their projected value upon each other.
It is sufficient if the projection of one edge on the other matches the specified condition. The projected
length must be larger or equal to "min_projection" and less than "max_projection". If you don't want to
specify one limit, pass nil to the respective value.

"shielded" controls whether shielding is applied. Shielding means that rule violations are not detected
'through' other features. Measurements are only made where the opposite edge is unobstructed.
Shielding often is not optional as a rule violation in shielded case automatically comes with rule
violations between the original and the shielding features. If not necessary, shielding can be disabled
by setting this flag to false. In general, this will improve performance somewhat.

"opposite_filter" specifies whether to require or reject errors happening on opposite sides of a figure.
"rect_filter" allows suppressing specific error configurations on rectangular input figures.

If "negative" is true, only edges from the first input are output as pseudo edge-pairs where the
enclosure is larger or equal to the limit. This is a way to flag the parts of the first input where the
enclosure vs. the second input is bigger. Note that only the first input's edges are output. The output is
still edge pairs, but each edge pair contains one edge from the original input and the reverse version
of the edge as the second edge.

Merged semantics applies for the input of this method (see merged_semantics= for a description of
this concept)

The 'shielded', 'negative', 'not_opposite' and 'rect_sides' options have been introduced in version 0.27.
The interpretation of the 'negative' flag has been restriced to first-layout only output in 0.27.1.

extents
(1) Signature: [const] Region extents

Description: Returns a region with the bounding boxes of the polygons

For more details visit
https://www.klayout.org

Page 1172 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

This method will return a region consisting of the bounding boxes of the polygons. The boxes will not
be merged, so it is possible to determine overlaps of these boxes for example.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

(2) Signature: [const] Region extents (int d)

Description: Returns a region with the enlarged bounding boxes of the polygons

This method will return a region consisting of the bounding boxes of the polygons enlarged by the
given distance d. The enlargement is specified per edge, i.e the width and height will be increased by
2*d. The boxes will not be merged, so it is possible to determine overlaps of these boxes for example.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

(3) Signature: [const] Region extents (int dx, int dy)

Description: Returns a region with the enlarged bounding boxes of the polygons

This method will return a region consisting of the bounding boxes of the polygons enlarged by the
given distance dx in x direction and dy in y direction. The enlargement is specified per edge, i.e the
width will be increased by 2*dx. The boxes will not be merged, so it is possible to determine overlaps
of these boxes for example.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

(1) Signature: [const] void fill (Cell ptr in_cell, unsigned int fill_cell_index, const Box fc_box, const
Point ptr origin = (0, 0), Region ptr remaining_parts = nil, const Vector fill_margin = 0,0, Region ptr
remaining_polygons = nil, const Box glue_box = ())

Description: A mapping of Cell#fill_region to the Region class

This method is equivalent to Cell#fill_region, but is based on Region (with the cell being the first
parameter).

This method has been introduced in version 0.27.

fill

(2) Signature: [const] void fill (Cell ptr in_cell, unsigned int fill_cell_index, const Box fc_origin, const
Vector row_step, const Vector column_step, const Point ptr origin = (0, 0), Region ptr remaining_parts
= nil, const Vector fill_margin = 0,0, Region ptr remaining_polygons = nil, const Box glue_box = ())

Description: A mapping of Cell#fill_region to the Region class

This method is equivalent to Cell#fill_region, but is based on Region (with the cell being the first
parameter).

This method has been introduced in version 0.27.

fill_multi
Signature: [const] void fill_multi (Cell ptr in_cell, unsigned int fill_cell_index, const Box fc_origin,
const Vector row_step, const Vector column_step, const Vector fill_margin = 0,0, Region ptr
remaining_polygons = nil, const Box glue_box = ())

Description: A mapping of Cell#fill_region to the Region class

This method is equivalent to Cell#fill_region, but is based on Region (with the cell being the first
parameter).

This method has been introduced in version 0.27.

flatten
Signature: Region flatten

Description: Explicitly flattens a region

If the region is already flat (i.e. has_valid_polygons? returns true), this method will not change it.

Returns 'self', so this method can be used in a dot concatenation.

For more details visit
https://www.klayout.org

Page 1173 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

This method has been introduced in version 0.26.

grid_check
Signature: [const] EdgePairs grid_check (int gx, int gy)

Description: Returns a marker for all vertices not being on the given grid

This method will return an edge pair object for every vertex whose x coordinate is not a multiple of gx
or whose y coordinate is not a multiple of gy. The edge pair objects contain two edges consisting of
the same single point - the original vertex.

If gx or gy is 0 or less, the grid is not checked in that direction.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

has_valid_polygons?
Signature: [const] bool has_valid_polygons?

Description: Returns true if the region is flat and individual polygons can be accessed randomly

This method has been introduced in version 0.26.

hier_count
Signature: [const] unsigned long hier_count

Description: Returns the (hierarchical) number of polygons in the region

This returns the number of raw polygons (not merged polygons if merged semantics is enabled).
The count is computed 'hierarchical', i.e. polygons inside a cell are counted once even if the cell is
instantiated multiple times.

This method has been introduced in version 0.27.

holes
Signature: [const] Region holes

Description: Returns the holes of the region

This method returns all holes as filled polygons.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)
If merge semantics is not enabled, the holes may not be detected if the polygons are taken from a
hole-less representation (i.e. GDS2 file). Use explicit merge (merge method) in order to merge the
polygons and detect holes.

hulls
Signature: [const] Region hulls

Description: Returns the hulls of the region

This method returns all hulls as polygons. The holes will be removed (filled). Merged semantics
applies for this method (see merged_semantics= for a description of this concept) If merge
semantics is not enabled, the hull may also enclose holes if the polygons are taken from a hole-less
representation (i.e. GDS2 file). Use explicit merge (merge method) in order to merge the polygons and
detect holes.

in
Signature: [const] Region in (const Region other)

Description: Returns all polygons which are members of the other region

Use of this method is deprecated. Use members_of instead

This method returns all polygons in self which can be found in the other region as well with exactly the
same geometry.

Python specific notes:
This attribute is available as 'in_' in Python

insert
(1) Signature: void insert (const Box box)

Description: Inserts a box

For more details visit
https://www.klayout.org

Page 1174 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

Inserts a box into the region.

(2) Signature: void insert (const Polygon polygon)

Description: Inserts a polygon

Inserts a polygon into the region.

(3) Signature: void insert (const SimplePolygon polygon)

Description: Inserts a simple polygon

Inserts a simple polygon into the region.

(4) Signature: void insert (const Path path)

Description: Inserts a path

Inserts a path into the region.

(5) Signature: void insert (RecursiveShapeIterator shape_iterator)

Description: Inserts all shapes delivered by the recursive shape iterator into this region

This method will insert all shapes delivered by the shape iterator and insert them into the region. Text
objects and edges are not inserted, because they cannot be converted to polygons.

(6) Signature: void insert (RecursiveShapeIterator shape_iterator, ICplxTrans trans)

Description: Inserts all shapes delivered by the recursive shape iterator into this region with a
transformation

This method will insert all shapes delivered by the shape iterator and insert them into the region. Text
objects and edges are not inserted, because they cannot be converted to polygons. This variant will
apply the given transformation to the shapes. This is useful to scale the shapes to a specific database
unit for example.

(7) Signature: void insert (Polygon[] array)

Description: Inserts all polygons from the array into this region

(8) Signature: void insert (const Region region)

Description: Inserts all polygons from the other region into this region

This method has been introduced in version 0.25.

(9) Signature: void insert (const Shapes shapes)

Description: Inserts all polygons from the shape collection into this region

This method takes each "polygon-like" shape from the shape collection and inserts this shape into the
region. Paths and boxes are converted to polygons during this process. Edges and text objects are
ignored.

This method has been introduced in version 0.25.

(10) Signature: void insert (const Shapes shapes, const Trans trans)

Description: Inserts all polygons from the shape collection into this region with transformation

For more details visit
https://www.klayout.org

Page 1175 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

This method takes each "polygon-like" shape from the shape collection and inserts this shape into the
region after applying the given transformation. Paths and boxes are converted to polygons during this
process. Edges and text objects are ignored.

This method has been introduced in version 0.25.

(11) Signature: void insert (const Shapes shapes, const ICplxTrans trans)

Description: Inserts all polygons from the shape collection into this region with complex
transformation

This method takes each "polygon-like" shape from the shape collection and inserts this shape into the
region after applying the given complex transformation. Paths and boxes are converted to polygons
during this process. Edges and text objects are ignored.

This method has been introduced in version 0.25.

insert_into
Signature: [const] void insert_into (Layout ptr layout, unsigned int cell_index, unsigned int layer)

Description: Inserts this region into the given layout, below the given cell and into the given layer.

If the region is a hierarchical one, a suitable hierarchy will be built below the top cell or and existing
hierarchy will be reused.

This method has been introduced in version 0.26.

inside
Signature: [const] Region inside (const Region other)

Description: Returns the polygons of this region which are completely inside polygons from the other
region

Returns: A new region containing the polygons which are inside polygons from
the other region

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

inside_check
Signature: [const] EdgePairs inside_check (const Region other, unsigned int d, bool whole_edges
= false, Region::Metrics metrics = Euclidian, variant ignore_angle = default, variant min_projection
= 0, variant max_projection = max, bool shielded = true, Region::OppositeFilter opposite_filter =
NoOppositeFilter, Region::RectFilter rect_filter = NoRectFilter, bool negative = false)

Description: Performs an inside check with options

d: The minimum distance for which the polygons are checked

other: The other region against which to check

whole_edges: If true, deliver the whole edges

metrics: Specify the metrics type

ignore_angle: The angle above which no check is performed

min_projection: The lower threshold of the projected length of one edge onto
another

max_projection: The upper limit of the projected length of one edge onto
another

opposite_filter: Specifies a filter mode for errors happening on opposite sides
of inputs shapes

rect_filter: Specifies an error filter for rectangular input shapes

negative: Negative output from the first input

If "whole_edges" is true, the resulting EdgePairs collection will receive the whole edges which
contribute in the width check.

For more details visit
https://www.klayout.org

Page 1176 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

"metrics" can be one of the constants Euclidian, Square or Projection. See there for a description of
these constants. Use nil for this value to select the default (Euclidian metrics).

"ignore_angle" specifies the angle limit of two edges. If two edges form an angle equal or above the
given value, they will not contribute in the check. Setting this value to 90 (the default) will exclude
edges with an angle of 90 degree or more from the check. Use nil for this value to select the default.

"min_projection" and "max_projection" allow selecting edges by their projected value upon each other.
It is sufficient if the projection of one edge on the other matches the specified condition. The projected
length must be larger or equal to "min_projection" and less than "max_projection". If you don't want to
specify one limit, pass nil to the respective value.

"shielded" controls whether shielding is applied. Shielding means that rule violations are not detected
'through' other features. Measurements are only made where the opposite edge is unobstructed.
Shielding often is not optional as a rule violation in shielded case automatically comes with rule
violations between the original and the shielding features. If not necessary, shielding can be disabled
by setting this flag to false. In general, this will improve performance somewhat.

"opposite_filter" specifies whether to require or reject errors happening on opposite sides of a figure.
"rect_filter" allows suppressing specific error configurations on rectangular input figures.

If "negative" is true, only edges from the first input are output as pseudo edge-pairs where the
distance is larger or equal to the limit. This is a way to flag the parts of the first input where the
distance to the second input is bigger. Note that only the first input's edges are output. The output is
still edge pairs, but each edge pair contains one edge from the original input and the reverse version
of the edge as the second edge.

Merged semantics applies for the input of this method (see merged_semantics= for a description of
this concept)

The 'shielded', 'negative', 'not_opposite' and 'rect_sides' options have been introduced in version 0.27.
The interpretation of the 'negative' flag has been restriced to first-layout only output in 0.27.1. The
'enclosed_check' alias was introduced in version 0.27.5.

(1) Signature: [const] Region interacting (const Region other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Returns the polygons of this region which overlap or touch polygons from the other
region

Returns: A new region containing the polygons overlapping or touching
polygons from the other region

'min_count' and 'max_count' impose a constraint on the number of times a polygon of this region has
to interact with (different) polygons of the other region to make the polygon selected. A polygon is
selected by this method if the number of polygons interacting with a polygon of this region is between
min_count and max_count (including max_count).

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

The min_count and max_count arguments have been added in version 0.27.

interacting

(2) Signature: [const] Region interacting (const Edges other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Returns the polygons of this region which overlap or touch edges from the edge
collection

Returns: A new region containing the polygons overlapping or touching edges
from the edge collection

'min_count' and 'max_count' impose a constraint on the number of times a polygon of this region has
to interact with edges of the edge collection to make the polygon selected. A polygon is selected by
this method if the number of edges interacting with the polygon is between min_count and max_count
(including max_count).

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

For more details visit
https://www.klayout.org

Page 1177 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

This method has been introduced in version 0.25. The min_count and max_count arguments have
been added in version 0.27.

(3) Signature: [const] Region interacting (const Texts other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Returns the polygons of this region which overlap or touch texts

Returns: A new region containing the polygons overlapping or touching texts

'min_count' and 'max_count' impose a constraint on the number of times a polygon of this region has
to interact with texts of the text collection to make the polygon selected. A polygon is selected by
this method if the number of texts interacting with the polygon is between min_count and max_count
(including max_count).

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.27

is_box?
Signature: [const] bool is_box?

Description: Returns true, if the region is a simple box

Returns: True if the region is a box.

This method does not apply implicit merging if merge semantics is enabled. If the region is not
merged, this method may return false even if the merged region would be a box.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_deep?
Signature: [const] bool is_deep?

Description: Returns true if the region is a deep (hierarchical) one

This method has been added in version 0.26.

is_empty?
Signature: [const] bool is_empty?

Description: Returns true if the region is empty

is_merged?
Signature: [const] bool is_merged?

Description: Returns true if the region is merged

If the region is merged, polygons will not touch or overlap. You can ensure merged state by calling
merge.

isolated_check
Signature: [const] EdgePairs isolated_check (unsigned int d, bool whole_edges = false,
Region::Metrics metrics = Euclidian, variant ignore_angle = default, variant min_projection = 0, variant
max_projection = max, bool shielded = true, Region::OppositeFilter opposite_filter = NoOppositeFilter,
Region::RectFilter rect_filter = NoRectFilter, bool negative = false)

Description: Performs a space check between edges of different polygons with options

d: The minimum space for which the polygons are checked

whole_edges: If true, deliver the whole edges

metrics: Specify the metrics type

For more details visit
https://www.klayout.org

Page 1178 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

ignore_angle: The angle above which no check is performed

min_projection: The lower threshold of the projected length of one edge onto
another

max_projection: The upper limit of the projected length of one edge onto
another

opposite_filter: Specifies a filter mode for errors happening on opposite sides
of inputs shapes

rect_filter: Specifies an error filter for rectangular input shapes

negative: If true, edges not violation the condition will be output as
pseudo-edge pairs

If "whole_edges" is true, the resulting EdgePairs collection will receive the whole edges which
contribute in the width check.

"metrics" can be one of the constants Euclidian, Square or Projection. See there for a description of
these constants. Use nil for this value to select the default (Euclidian metrics).

"ignore_angle" specifies the angle limit of two edges. If two edges form an angle equal or above the
given value, they will not contribute in the check. Setting this value to 90 (the default) will exclude
edges with an angle of 90 degree or more from the check. Use nil for this value to select the default.

"min_projection" and "max_projection" allow selecting edges by their projected value upon each other.
It is sufficient if the projection of one edge on the other matches the specified condition. The projected
length must be larger or equal to "min_projection" and less than "max_projection". If you don't want to
specify one limit, pass nil to the respective value.

"shielded" controls whether shielding is applied. Shielding means that rule violations are not detected
'through' other features. Measurements are only made where the opposite edge is unobstructed.
Shielding often is not optional as a rule violation in shielded case automatically comes with rule
violations between the original and the shielding features. If not necessary, shielding can be disabled
by setting this flag to false. In general, this will improve performance somewhat.

"opposite_filter" specifies whether to require or reject errors happening on opposite sides of a figure.
"rect_filter" allows suppressing specific error configurations on rectangular input figures.

Merged semantics applies for the input of this method (see merged_semantics= for a description of
this concept)

The 'shielded', 'negative', 'not_opposite' and 'rect_sides' options have been introduced in version 0.27.

members_of
Signature: [const] Region members_of (const Region other)

Description: Returns all polygons which are members of the other region

This method returns all polygons in self which can be found in the other region as well with exactly the
same geometry.

Python specific notes:
This attribute is available as 'in_' in Python

(1) Signature: Region merge

Description: Merge the region

Returns: The region after is has been merged (self).

Merging removes overlaps and joins touching polygons. If the region is already merged, this method
does nothing

merge

(2) Signature: Region merge (int min_wc)

Description: Merge the region with options

min_wc: Overlap selection

Returns: The region after is has been merged (self).

For more details visit
https://www.klayout.org

Page 1179 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

Merging removes overlaps and joins touching polygons. This version provides one additional option:
"min_wc" controls whether output is only produced if multiple polygons overlap. The value specifies
the number of polygons that need to overlap. A value of 2 means that output is only produced if two or
more polygons overlap.

This method is equivalent to "merge(false, min_wc).

(3) Signature: Region merge (bool min_coherence, int min_wc)

Description: Merge the region with options

min_coherence: A flag indicating whether the resulting polygons shall have
minimum coherence

min_wc: Overlap selection

Returns: The region after is has been merged (self).

Merging removes overlaps and joins touching polygons. This version provides two additional options:
if "min_coherence" is set to true, "kissing corners" are resolved by producing separate polygons.
"min_wc" controls whether output is only produced if multiple polygons overlap. The value specifies
the number of polygons that need to overlap. A value of 2 means that output is only produced if two or
more polygons overlap.

(1) Signature: [const] Region merged

Description: Returns the merged region

Returns: The region after is has been merged.

Merging removes overlaps and joins touching polygons. If the region is already merged, this method
does nothing. In contrast to merge, this method does not modify the region but returns a merged copy.

(2) Signature: Region merged (int min_wc)

Description: Returns the merged region (with options)

Returns: The region after is has been merged.

This version provides one additional options: "min_wc" controls whether output is only produced if
multiple polygons overlap. The value specifies the number of polygons that need to overlap. A value of
2 means that output is only produced if two or more polygons overlap.

This method is equivalent to "merged(false, min_wc)".

In contrast to merge, this method does not modify the region but returns a merged copy.

merged

(3) Signature: Region merged (bool min_coherence, int min_wc)

Description: Returns the merged region (with options)

min_coherence: A flag indicating whether the resulting polygons shall have
minimum coherence

min_wc: Overlap selection

Returns: The region after is has been merged (self).

Merging removes overlaps and joins touching polygons. This version provides two additional options:
if "min_coherence" is set to true, "kissing corners" are resolved by producing separate polygons.
"min_wc" controls whether output is only produced if multiple polygons overlap. The value specifies
the number of polygons that need to overlap. A value of 2 means that output is only produced if two or
more polygons overlap.

In contrast to merge, this method does not modify the region but returns a merged copy.

For more details visit
https://www.klayout.org

Page 1180 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

merged_semantics=
Signature: void merged_semantics= (bool f)

Description: Enables or disables merged semantics

If merged semantics is enabled (the default), coherent polygons will be considered as single regions
and artificial edges such as cut-lines will not be considered. Merged semantics thus is equivalent to
considering coherent areas rather than single polygons

Python specific notes:
The object exposes a writable attribute 'merged_semantics'. This is the setter.

merged_semantics?
Signature: [const] bool merged_semantics?

Description: Gets a flag indicating whether merged semantics is enabled

See merged_semantics= for a description of this attribute.

Python specific notes:
The object exposes a readable attribute 'merged_semantics'. This is the getter.

min_coherence=
Signature: void min_coherence= (bool f)

Description: Enable or disable minimum coherence

If minimum coherence is set, the merge operations (explicit merge with merge or implicit merge
through merged_semantics) are performed using minimum coherence mode. The coherence mode
determines how kissing-corner situations are resolved. If minimum coherence is selected, they are
resolved such that multiple polygons are created which touch at a corner).

The default setting is maximum coherence (min_coherence = false).

Python specific notes:
The object exposes a writable attribute 'min_coherence'. This is the setter.

min_coherence?
Signature: [const] bool min_coherence?

Description: Gets a flag indicating whether minimum coherence is selected

See min_coherence= for a description of this attribute.

Python specific notes:
The object exposes a readable attribute 'min_coherence'. This is the getter.

(1) Signature: [const] Region minkowski_sum (const Edge e)

Description: Compute the Minkowski sum of the region and an edge

e: The edge.

Returns: The new polygons representing the Minkowski sum with the edge
e.

The Minkowski sum of a region and an edge basically results in the area covered when "dragging" the
region along the line given by the edge. The effect is similar to drawing the line with a pencil that has
the shape of the given region.

The resulting polygons are not merged. In order to remove overlaps, use the merge or merged
method.Merged semantics applies for the input of this method (see merged_semantics= for a
description of this concept)

minkowski_sum

(2) Signature: [const] Region minkowski_sum (const Polygon p)

Description: Compute the Minkowski sum of the region and a polygon

p: The first argument.

Returns: The new polygons representing the Minkowski sum of self and p.

For more details visit
https://www.klayout.org

Page 1181 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

The Minkowski sum of a region and a polygon is basically the result of "painting" the region with a pen
that has the shape of the second polygon.

The resulting polygons are not merged. In order to remove overlaps, use the merge or merged
method.Merged semantics applies for the input of this method (see merged_semantics= for a
description of this concept)

(3) Signature: [const] Region minkowski_sum (const Box b)

Description: Compute the Minkowski sum of the region and a box

b: The box.

Returns: The new polygons representing the Minkowski sum of self and
the box.

The result is equivalent to the region-with-polygon Minkowski sum with the box used as the second
polygon.

The resulting polygons are not merged. In order to remove overlaps, use the merge or merged
method.Merged semantics applies for the input of this method (see merged_semantics= for a
description of this concept)

(4) Signature: [const] Region minkowski_sum (Point[] b)

Description: Compute the Minkowski sum of the region and a contour of points (a trace)

b: The contour (a series of points forming the trace).

Returns: The new polygons representing the Minkowski sum of self and the
contour.

The Minkowski sum of a region and a contour basically results in the area covered when "dragging"
the region along the contour. The effect is similar to drawing the contour with a pencil that has the
shape of the given region.

The resulting polygons are not merged. In order to remove overlaps, use the merge or merged
method.Merged semantics applies for the input of this method (see merged_semantics= for a
description of this concept)

(1) Signature: [const] Region minkowsky_sum (const Edge e)

Description: Compute the Minkowski sum of the region and an edge

e: The edge.

Returns: The new polygons representing the Minkowski sum with the edge
e.

Use of this method is deprecated. Use minkowski_sum instead

The Minkowski sum of a region and an edge basically results in the area covered when "dragging" the
region along the line given by the edge. The effect is similar to drawing the line with a pencil that has
the shape of the given region.

The resulting polygons are not merged. In order to remove overlaps, use the merge or merged
method.Merged semantics applies for the input of this method (see merged_semantics= for a
description of this concept)

minkowsky_sum

(2) Signature: [const] Region minkowsky_sum (const Polygon p)

Description: Compute the Minkowski sum of the region and a polygon

p: The first argument.

Returns: The new polygons representing the Minkowski sum of self and p.

Use of this method is deprecated. Use minkowski_sum instead

For more details visit
https://www.klayout.org

Page 1182 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

The Minkowski sum of a region and a polygon is basically the result of "painting" the region with a pen
that has the shape of the second polygon.

The resulting polygons are not merged. In order to remove overlaps, use the merge or merged
method.Merged semantics applies for the input of this method (see merged_semantics= for a
description of this concept)

(3) Signature: [const] Region minkowsky_sum (const Box b)

Description: Compute the Minkowski sum of the region and a box

b: The box.

Returns: The new polygons representing the Minkowski sum of self and
the box.

Use of this method is deprecated. Use minkowski_sum instead

The result is equivalent to the region-with-polygon Minkowski sum with the box used as the second
polygon.

The resulting polygons are not merged. In order to remove overlaps, use the merge or merged
method.Merged semantics applies for the input of this method (see merged_semantics= for a
description of this concept)

(4) Signature: [const] Region minkowsky_sum (Point[] b)

Description: Compute the Minkowski sum of the region and a contour of points (a trace)

b: The contour (a series of points forming the trace).

Returns: The new polygons representing the Minkowski sum of self and the
contour.

Use of this method is deprecated. Use minkowski_sum instead

The Minkowski sum of a region and a contour basically results in the area covered when "dragging"
the region along the contour. The effect is similar to drawing the contour with a pencil that has the
shape of the given region.

The resulting polygons are not merged. In order to remove overlaps, use the merge or merged
method.Merged semantics applies for the input of this method (see merged_semantics= for a
description of this concept)

(1) Signature: Region move (const Vector v)

Description: Moves the region

v: The distance to move the region.

Returns: The moved region (self).

Moves the polygon by the given offset and returns the moved region. The region is overwritten.

Starting with version 0.25 this method accepts a vector argument.

move

(2) Signature: Region move (int x, int y)

Description: Moves the region

x: The x distance to move the region.

y: The y distance to move the region.

Returns: The moved region (self).

Moves the region by the given offset and returns the moved region. The region is overwritten.

For more details visit
https://www.klayout.org

Page 1183 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

(1) Signature: [const] Region moved (const Vector v)

Description: Returns the moved region (does not modify self)

p: The distance to move the region.

Returns: The moved region.

Moves the region by the given offset and returns the moved region. The region is not modified.

Starting with version 0.25 this method accepts a vector argument.

moved

(2) Signature: [const] Region moved (int x, int y)

Description: Returns the moved region (does not modify self)

x: The x distance to move the region.

y: The y distance to move the region.

Returns: The moved region.

Moves the region by the given offset and returns the moved region. The region is not modified.

(1) Signature: [static] new Region ptr new

Description: Default constructor

This constructor creates an empty region.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new Region ptr new (Polygon[] array)

Description: Constructor from a polygon array

This constructor creates a region from an array of polygons.

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new Region ptr new (const Box box)

Description: Box constructor

This constructor creates a region from a box.

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new Region ptr new (const Polygon polygon)

Description: Polygon constructor

This constructor creates a region from a polygon.

Python specific notes:
This method is the default initializer of the object

new

(5) Signature: [static] new Region ptr new (const SimplePolygon polygon)

Description: Simple polygon constructor

This constructor creates a region from a simple polygon.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1184 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

This method is the default initializer of the object

(6) Signature: [static] new Region ptr new (const Path path)

Description: Path constructor

This constructor creates a region from a path.

Python specific notes:
This method is the default initializer of the object

(7) Signature: [static] new Region ptr new (const Shapes shapes)

Description: Shapes constructor

This constructor creates a region from a Shapes collection.

This constructor has been introduced in version 0.25.

Python specific notes:
This method is the default initializer of the object

(8) Signature: [static] new Region ptr new (const RecursiveShapeIterator shape_iterator)

Description: Constructor from a hierarchical shape set

This constructor creates a region from the shapes delivered by the given recursive shape iterator.
Text objects and edges are not inserted, because they cannot be converted to polygons. This method
allows feeding the shapes from a hierarchy of cells into the region.

layout = ... # a layout
cell = ... # the index of the initial cell
layer = ... # the index of the layer from where to take the shapes from
r = RBA::Region::new(layout.begin_shapes(cell, layer))

Python specific notes:
This method is the default initializer of the object

(9) Signature: [static] new Region ptr new (const RecursiveShapeIterator shape_iterator, const
ICplxTrans trans)

Description: Constructor from a hierarchical shape set with a transformation

This constructor creates a region from the shapes delivered by the given recursive shape iterator. Text
objects and edges are not inserted, because they cannot be converted to polygons. On the delivered
shapes it applies the given transformation. This method allows feeding the shapes from a hierarchy of
cells into the region. The transformation is useful to scale to a specific database unit for example.

layout = ... # a layout
cell = ... # the index of the initial cell
layer = ... # the index of the layer from where to take the shapes from
dbu = 0.1 # the target database unit
r = RBA::Region::new(layout.begin_shapes(cell, layer),
 RBA::ICplxTrans::new(layout.dbu / dbu))

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1185 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

(10) Signature: [static] new Region ptr new (const RecursiveShapeIterator shape_iterator,
DeepShapeStore deep_shape_store, double area_ratio = 0, unsigned long max_vertex_count = 0)

Description: Constructor for a deep region from a hierarchical shape set

shape_iterator: The recursive shape iterator which delivers the hierarchy to
take

deep_shape_store: The hierarchical heap (see there)

area_ratio: The maximum ratio of bounding box to polygon area before
polygons are split

This constructor creates a hierarchical region. Use a DeepShapeStore object to supply the
hierarchical heap. See DeepShapeStore for more details.

'area_ratio' and 'max_vertex' supply two optimization parameters which control how big polygons are
split to reduce the region's polygon complexity.

This method has been introduced in version 0.26.

Python specific notes:
This method is the default initializer of the object

(11) Signature: [static] new Region ptr new (const RecursiveShapeIterator shape_iterator,
DeepShapeStore deep_shape_store, const ICplxTrans trans, double area_ratio = 0, unsigned long
max_vertex_count = 0)

Description: Constructor for a deep region from a hierarchical shape set

shape_iterator: The recursive shape iterator which delivers the hierarchy to
take

deep_shape_store: The hierarchical heap (see there)

area_ratio: The maximum ratio of bounding box to polygon area before
polygons are split

trans: The transformation to apply when storing the layout data

This constructor creates a hierarchical region. Use a DeepShapeStore object to supply the
hierarchical heap. See DeepShapeStore for more details.

'area_ratio' and 'max_vertex' supply two optimization parameters which control how big polygons are
split to reduce the region's polygon complexity.

The transformation is useful to scale to a specific database unit for example.

This method has been introduced in version 0.26.

Python specific notes:
This method is the default initializer of the object

(12) Signature: [static] new Region ptr new (const RecursiveShapeIterator shape_iterator, string
expr, bool as_pattern = true, int enl = 1)

Description: Constructor from a text set

shape_iterator: The iterator from which to derive the texts

expr: The selection string

as_pattern: If true, the selection string is treated as a glob pattern.
Otherwise the match is exact.

enl: The per-side enlargement of the box to mark the text (1 gives a
2x2 DBU box)

This special constructor will create a region from the text objects delivered by the shape iterator. Each
text object will give a small (non-empty) box that represents the text origin. Texts can be selected by
their strings - either through a glob pattern or by exact comparison with the given string. The following
options are available:

For more details visit
https://www.klayout.org

Page 1186 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

region = RBA::Region::new(iter, "*") # all texts
region = RBA::Region::new(iter, "A*") # all texts starting with an 'A'
region = RBA::Region::new(iter, "A*", false) # all texts exactly matching
 'A*'

This method has been introduced in version 0.25. The enlargement parameter has been added in
version 0.26.

Python specific notes:
This method is the default initializer of the object

(13) Signature: [static] new Region ptr new (const RecursiveShapeIterator shape_iterator,
DeepShapeStore dss, string expr, bool as_pattern = true, int enl = 1)

Description: Constructor from a text set

shape_iterator: The iterator from which to derive the texts

dss: The DeepShapeStore object that acts as a heap for hierarchical
operations.

expr: The selection string

as_pattern: If true, the selection string is treated as a glob pattern.
Otherwise the match is exact.

enl: The per-side enlargement of the box to mark the text (1 gives a
2x2 DBU box)

This special constructor will create a deep region from the text objects delivered by the shape iterator.
Each text object will give a small (non-empty) box that represents the text origin. Texts can be
selected by their strings - either through a glob pattern or by exact comparison with the given string.
The following options are available:

region = RBA::Region::new(iter, dss, "*") # all texts
region = RBA::Region::new(iter, dss, "A*") # all texts starting with
 an 'A'
region = RBA::Region::new(iter, dss, "A*", false) # all texts exactly
 matching 'A*'

This variant has been introduced in version 0.26.

Python specific notes:
This method is the default initializer of the object

non_rectangles
Signature: [const] Region non_rectangles

Description: Returns all polygons which are not rectangles

This method returns all polygons in self which are not rectangles.Merged semantics applies for this
method (see merged_semantics= for a description of this concept)

non_rectilinear
Signature: [const] Region non_rectilinear

Description: Returns all polygons which are not rectilinear

This method returns all polygons in self which are not rectilinear.Merged semantics applies for this
method (see merged_semantics= for a description of this concept)

non_squares
Signature: [const] Region non_squares

Description: Returns all polygons which are not squares

For more details visit
https://www.klayout.org

Page 1187 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

This method returns all polygons in self which are not squares.Merged semantics applies for this
method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.27.

not_covering
Signature: [const] Region not_covering (const Region other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Returns the polygons of this region which are not completely covering polygons from the
other region

Returns: A new region containing the polygons which are not covering
polygons from the other region

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This attribute is sometimes called 'enclosing' instead of 'covering', but this term is reserved for the
respective DRC function.

This method has been introduced in version 0.27.

not_in
Signature: [const] Region not_in (const Region other)

Description: Returns all polygons which are not members of the other region

Use of this method is deprecated. Use not_members_of instead

This method returns all polygons in self which can not be found in the other region with exactly the
same geometry.

not_inside
Signature: [const] Region not_inside (const Region other)

Description: Returns the polygons of this region which are not completely inside polygons from the
other region

Returns: A new region containing the polygons which are not inside polygons
from the other region

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

(1) Signature: [const] Region not_interacting (const Region other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Returns the polygons of this region which do not overlap or touch polygons from the
other region

Returns: A new region containing the polygons not overlapping or touching
polygons from the other region

'min_count' and 'max_count' impose a constraint on the number of times a polygon of this region has
to interact with (different) polygons of the other region to make the polygon not selected. A polygon
is not selected by this method if the number of polygons interacting with a polygon of this region is
between min_count and max_count (including max_count).

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

The min_count and max_count arguments have been added in version 0.27.

not_interacting

(2) Signature: [const] Region not_interacting (const Edges other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Returns the polygons of this region which do not overlap or touch edges from the edge
collection

Returns: A new region containing the polygons not overlapping or touching
edges from the edge collection

For more details visit
https://www.klayout.org

Page 1188 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

'min_count' and 'max_count' impose a constraint on the number of times a polygon of this region
has to interact with edges of the edge collection to make the polygon not selected. A polygon is not
selected by this method if the number of edges interacting with the polygon is between min_count and
max_count (including max_count).

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.25 The min_count and max_count arguments have
been added in version 0.27.

(3) Signature: [const] Region not_interacting (const Texts other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Returns the polygons of this region which do not overlap or touch texts

Returns: A new region containing the polygons not overlapping or touching
texts

'min_count' and 'max_count' impose a constraint on the number of times a polygon of this region
has to interact with texts of the text collection to make the polygon not selected. A polygon is not
selected by this method if the number of texts interacting with the polygon is between min_count and
max_count (including max_count).

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.27

not_members_of
Signature: [const] Region not_members_of (const Region other)

Description: Returns all polygons which are not members of the other region

This method returns all polygons in self which can not be found in the other region with exactly the
same geometry.

not_outside
Signature: [const] Region not_outside (const Region other)

Description: Returns the polygons of this region which are not completely outside polygons from the
other region

Returns: A new region containing the polygons which are not outside polygons
from the other region

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

not_overlapping
Signature: [const] Region not_overlapping (const Region other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Returns the polygons of this region which do not overlap polygons from the other region

Returns: A new region containing the polygons not overlapping polygons from
the other region

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

The count options have been introduced in version 0.27.

notch_check
Signature: [const] EdgePairs notch_check (unsigned int d, bool whole_edges = false,
Region::Metrics metrics = Euclidian, variant ignore_angle = default, variant min_projection = 0, variant
max_projection = max, bool shielded = true, bool negative = false)

Description: Performs a space check between edges of the same polygon with options

d: The minimum space for which the polygons are checked

whole_edges: If true, deliver the whole edges

metrics: Specify the metrics type

For more details visit
https://www.klayout.org

Page 1189 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

ignore_angle: The angle above which no check is performed

min_projection: The lower threshold of the projected length of one edge onto
another

max_projection: The upper limit of the projected length of one edge onto
another

shielded: Enables shielding

negative: If true, edges not violation the condition will be output as
pseudo-edge pairs

This version is similar to the simple version with one parameter. In addition, it allows to specify many
more options.

If "whole_edges" is true, the resulting EdgePairs collection will receive the whole edges which
contribute in the space check.

"metrics" can be one of the constants Euclidian, Square or Projection. See there for a description of
these constants. Use nil for this value to select the default (Euclidian metrics).

"ignore_angle" specifies the angle limit of two edges. If two edges form an angle equal or above the
given value, they will not contribute in the check. Setting this value to 90 (the default) will exclude
edges with an angle of 90 degree or more from the check. Use nil for this value to select the default.

"min_projection" and "max_projection" allow selecting edges by their projected value upon each other.
It is sufficient if the projection of one edge on the other matches the specified condition. The projected
length must be larger or equal to "min_projection" and less than "max_projection". If you don't want to
specify one limit, pass nil to the respective value.

"shielded" controls whether shielding is applied. Shielding means that rule violations are not detected
'through' other features. Measurements are only made where the opposite edge is unobstructed.
Shielding often is not optional as a rule violation in shielded case automatically comes with rule
violations between the original and the shielding features. If not necessary, shielding can be disabled
by setting this flag to false. In general, this will improve performance somewhat.

Merged semantics applies for the input of this method (see merged_semantics= for a description of
this concept)

The 'shielded' and 'negative' options have been introduced in version 0.27.

outside
Signature: [const] Region outside (const Region other)

Description: Returns the polygons of this region which are completely outside polygons from the
other region

Returns: A new region containing the polygons which are outside polygons
from the other region

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

overlap_check
Signature: [const] EdgePairs overlap_check (const Region other, unsigned int d, bool
whole_edges = false, Region::Metrics metrics = Euclidian, variant ignore_angle = default, variant
min_projection = 0, variant max_projection = max, bool shielded = true, Region::OppositeFilter
opposite_filter = NoOppositeFilter, Region::RectFilter rect_filter = NoRectFilter, bool negative = false)

Description: Performs an overlap check with options

d: The minimum overlap for which the polygons are checked

other: The other region against which to check

whole_edges: If true, deliver the whole edges

metrics: Specify the metrics type

ignore_angle: The angle above which no check is performed

min_projection: The lower threshold of the projected length of one edge onto
another

For more details visit
https://www.klayout.org

Page 1190 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

max_projection: The upper limit of the projected length of one edge onto
another

opposite_filter: Specifies a filter mode for errors happening on opposite sides
of inputs shapes

rect_filter: Specifies an error filter for rectangular input shapes

negative: Negative output from the first input

If "whole_edges" is true, the resulting EdgePairs collection will receive the whole edges which
contribute in the width check.

"metrics" can be one of the constants Euclidian, Square or Projection. See there for a description of
these constants. Use nil for this value to select the default (Euclidian metrics).

"ignore_angle" specifies the angle limit of two edges. If two edges form an angle equal or above the
given value, they will not contribute in the check. Setting this value to 90 (the default) will exclude
edges with an angle of 90 degree or more from the check. Use nil for this value to select the default.

"min_projection" and "max_projection" allow selecting edges by their projected value upon each other.
It is sufficient if the projection of one edge on the other matches the specified condition. The projected
length must be larger or equal to "min_projection" and less than "max_projection". If you don't want to
specify one limit, pass nil to the respective value.

"shielded" controls whether shielding is applied. Shielding means that rule violations are not detected
'through' other features. Measurements are only made where the opposite edge is unobstructed.
Shielding often is not optional as a rule violation in shielded case automatically comes with rule
violations between the original and the shielding features. If not necessary, shielding can be disabled
by setting this flag to false. In general, this will improve performance somewhat.

"opposite_filter" specifies whether to require or reject errors happening on opposite sides of a figure.
"rect_filter" allows suppressing specific error configurations on rectangular input figures.

If "negative" is true, only edges from the first input are output as pseudo edge-pairs where the overlap
is larger or equal to the limit. This is a way to flag the parts of the first input where the overlap vs. the
second input is bigger. Note that only the first input's edges are output. The output is still edge pairs,
but each edge pair contains one edge from the original input and the reverse version of the edge as
the second edge.

Merged semantics applies for the input of this method (see merged_semantics= for a description of
this concept)

The 'shielded', 'negative', 'not_opposite' and 'rect_sides' options have been introduced in version 0.27.
The interpretation of the 'negative' flag has been restriced to first-layout only output in 0.27.1.

overlapping
Signature: [const] Region overlapping (const Region other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Returns the polygons of this region which overlap polygons from the other region

Returns: A new region containing the polygons overlapping polygons from
the other region

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

The count options have been introduced in version 0.27.

(1) Signature: [const] unsigned long perimeter

Description: The total perimeter of the polygons

Merged semantics applies for this method (see merged_semantics= for a description of this concept)
If merged semantics is not enabled, internal edges are counted as well.

perimeter

(2) Signature: [const] unsigned long perimeter (const Box rect)

Description: The total perimeter of the polygons (restricted to a rectangle)

For more details visit
https://www.klayout.org

Page 1191 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

This version will compute the perimeter of the polygons, restricting the computation to the given
rectangle. Edges along the border are handled in a special way: they are counted when they are
oriented with their inside side toward the rectangle (in other words: outside edges must coincide with
the rectangle's border in order to be counted).

Merged semantics applies for this method (see merged_semantics= for a description of this concept)
If merged semantics is not enabled, internal edges are counted as well.

pull_inside
Signature: [const] Region pull_inside (const Region other)

Description: Returns all polygons of "other" which are inside polygons of this region

Returns: The region after the polygons have been selected (from other)

The "pull_..." methods are similar to "select_..." but work the opposite way: they select shapes
from the argument region rather than self. In a deep (hierarchical) context the output region will be
hierarchically aligned with self, so the "pull_..." methods provide a way for re-hierarchization.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.26.1

(1) Signature: [const] Region pull_interacting (const Region other)

Description: Returns all polygons of "other" which are interacting with (overlapping, touching)
polygons of this region

Returns: The region after the polygons have been selected (from other)

See pull_inside for a description of the "pull_..." methods.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.26.1

(2) Signature: [const] Edges pull_interacting (const Edges other)

Description: Returns all edges of "other" which are interacting with polygons of this region

Returns: The edge collection after the edges have been selected (from other)

See pull_inside for a description of the "pull_..." methods.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.26.1

pull_interacting

(3) Signature: [const] Texts pull_interacting (const Texts other)

Description: Returns all texts of "other" which are interacting with polygons of this region

Returns: The text collection after the texts have been selected (from other)

See pull_inside for a description of the "pull_..." methods.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.27

pull_overlapping
Signature: [const] Region pull_overlapping (const Region other)

Description: Returns all polygons of "other" which are overlapping polygons of this region

Returns: The region after the polygons have been selected (from other)

See pull_inside for a description of the "pull_..." methods.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.26.1

For more details visit
https://www.klayout.org

Page 1192 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

rectangles
Signature: [const] Region rectangles

Description: Returns all polygons which are rectangles

This method returns all polygons in self which are rectangles.Merged semantics applies for this
method (see merged_semantics= for a description of this concept)

rectilinear
Signature: [const] Region rectilinear

Description: Returns all polygons which are rectilinear

This method returns all polygons in self which are rectilinear.Merged semantics applies for this method
(see merged_semantics= for a description of this concept)

round_corners
Signature: void round_corners (double r_inner, double r_outer, unsigned int n)

Description: Corner rounding

r_inner: Inner corner radius (in database units)

r_outer: Outer corner radius (in database units)

n: The number of points per circle

This method rounds the corners of the polygons in the region. Inner corners will be rounded with
a radius of r_inner and outer corners with a radius of r_outer. The circles will be approximated by
segments using n segments per full circle.

This method modifies the region. rounded_corners is a method that does the same but returns a new
region without modifying self. Merged semantics applies for this method.

rounded_corners
Signature: [const] Region rounded_corners (double r_inner, double r_outer, unsigned int n)

Description: Corner rounding

r_inner: Inner corner radius (in database units)

r_outer: Outer corner radius (in database units)

n: The number of points per circle

See round_corners for a description of this method. This version returns a new region instead of
modifying self (out-of-place).

scale_and_snap
Signature: void scale_and_snap (int gx, int mx, int dx, int gy, int my, int dy)

Description: Scales and snaps the region to the given grid

This method will first scale the region by a rational factor of mx/dx horizontally and my/dy vertically
and then snap the region to the given grid - each x or y coordinate is brought on the gx or gy grid by
rounding to the nearest value which is a multiple of gx or gy.

If gx or gy is 0, the result is brought on a grid of 1.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.26.1.

scaled_and_snapped
Signature: [const] Region scaled_and_snapped (int gx, int mx, int dx, int gy, int my, int dy)

Description: Returns the scaled and snapped region

This method will scale and snap the region to the given grid and return the scaled and snapped region
(see scale_and_snap). The original region is not modified.

This method has been introduced in version 0.26.1.

For more details visit
https://www.klayout.org

Page 1193 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

select_covering
Signature: Region select_covering (const Region other, unsigned long min_count = 1, unsigned
long max_count = unlimited)

Description: Selects the polygons of this region which are completely covering polygons from the
other region

Returns: The region after the polygons have been selected (self)

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This attribute is sometimes called 'enclosing' instead of 'covering', but this term is reserved for the
respective DRC function.

This method has been introduced in version 0.27.

select_inside
Signature: Region select_inside (const Region other)

Description: Selects the polygons of this region which are completely inside polygons from the other
region

Returns: The region after the polygons have been selected (self)

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

(1) Signature: Region select_interacting (const Region other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Selects the polygons from this region which overlap or touch polygons from the other
region

Returns: The region after the polygons have been selected (self)

'min_count' and 'max_count' impose a constraint on the number of times a polygon of this region has
to interact with (different) polygons of the other region to make the polygon selected. A polygon is
selected by this method if the number of polygons interacting with a polygon of this region is between
min_count and max_count (including max_count).

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

The min_count and max_count arguments have been added in version 0.27.

(2) Signature: Region select_interacting (const Edges other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Selects the polygons from this region which overlap or touch edges from the edge
collection

Returns: The region after the polygons have been selected (self)

'min_count' and 'max_count' impose a constraint on the number of times a polygon of this region has
to interact with edges of the edge collection to make the polygon selected. A polygon is selected by
this method if the number of edges interacting with the polygon is between min_count and max_count
(including max_count).

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.25 The min_count and max_count arguments have
been added in version 0.27.

select_interacting

(3) Signature: Region select_interacting (const Texts other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Selects the polygons of this region which overlap or touch texts

Returns: The region after the polygons have been selected (self)

'min_count' and 'max_count' impose a constraint on the number of times a polygon of this region has
to interact with texts of the text collection to make the polygon selected. A polygon is selected by

For more details visit
https://www.klayout.org

Page 1194 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

this method if the number of texts interacting with the polygon is between min_count and max_count
(including max_count).

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.27

select_not_covering
Signature: Region select_not_covering (const Region other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Selects the polygons of this region which are not completely covering polygons from the
other region

Returns: The region after the polygons have been selected (self)

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This attribute is sometimes called 'enclosing' instead of 'covering', but this term is reserved for the
respective DRC function.

This method has been introduced in version 0.27.

select_not_inside
Signature: Region select_not_inside (const Region other)

Description: Selects the polygons of this region which are not completely inside polygons from the
other region

Returns: The region after the polygons have been selected (self)

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

(1) Signature: Region select_not_interacting (const Region other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Selects the polygons from this region which do not overlap or touch polygons from the
other region

Returns: The region after the polygons have been selected (self)

'min_count' and 'max_count' impose a constraint on the number of times a polygon of this region has
to interact with (different) polygons of the other region to make the polygon not selected. A polygon
is not selected by this method if the number of polygons interacting with a polygon of this region is
between min_count and max_count (including max_count).

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

The min_count and max_count arguments have been added in version 0.27.

(2) Signature: Region select_not_interacting (const Edges other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Selects the polygons from this region which do not overlap or touch edges from the edge
collection

Returns: The region after the polygons have been selected (self)

'min_count' and 'max_count' impose a constraint on the number of times a polygon of this region
has to interact with edges of the edge collection to make the polygon not selected. A polygon is not
selected by this method if the number of edges interacting with the polygon is between min_count and
max_count (including max_count).

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.25 The min_count and max_count arguments have
been added in version 0.27.

select_not_interacting

For more details visit
https://www.klayout.org

Page 1195 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

(3) Signature: Region select_not_interacting (const Texts other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Selects the polygons of this region which do not overlap or touch texts

Returns: The region after the polygons have been selected (self)

'min_count' and 'max_count' impose a constraint on the number of times a polygon of this region
has to interact with texts of the text collection to make the polygon not selected. A polygon is not
selected by this method if the number of texts interacting with the polygon is between min_count and
max_count (including max_count).

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.27

select_not_outside
Signature: Region select_not_outside (const Region other)

Description: Selects the polygons of this region which are not completely outside polygons from the
other region

Returns: The region after the polygons have been selected (self)

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

select_not_overlapping
Signature: Region select_not_overlapping (const Region other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Selects the polygons from this region which do not overlap polygons from the other
region

Returns: The region after the polygons have been selected (self)

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

The count options have been introduced in version 0.27.

select_outside
Signature: Region select_outside (const Region other)

Description: Selects the polygons of this region which are completely outside polygons from the other
region

Returns: The region after the polygons have been selected (self)

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

select_overlapping
Signature: Region select_overlapping (const Region other, unsigned long min_count = 1, unsigned
long max_count = unlimited)

Description: Selects the polygons from this region which overlap polygons from the other region

Returns: The region after the polygons have been selected (self)

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

The count options have been introduced in version 0.27.

separation_check
Signature: [const] EdgePairs separation_check (const Region other, unsigned int d, bool
whole_edges = false, Region::Metrics metrics = Euclidian, variant ignore_angle = default, variant
min_projection = 0, variant max_projection = max, bool shielded = true, Region::OppositeFilter
opposite_filter = NoOppositeFilter, Region::RectFilter rect_filter = NoRectFilter, bool negative = false)

Description: Performs a separation check with options

d: The minimum separation for which the polygons are checked

other: The other region against which to check

For more details visit
https://www.klayout.org

Page 1196 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

whole_edges: If true, deliver the whole edges

metrics: Specify the metrics type

ignore_angle: The angle above which no check is performed

min_projection: The lower threshold of the projected length of one edge onto
another

max_projection: The upper limit of the projected length of one edge onto
another

opposite_filter: Specifies a filter mode for errors happening on opposite sides
of inputs shapes

rect_filter: Specifies an error filter for rectangular input shapes

negative: Negative output from the first input

If "whole_edges" is true, the resulting EdgePairs collection will receive the whole edges which
contribute in the width check.

"metrics" can be one of the constants Euclidian, Square or Projection. See there for a description of
these constants. Use nil for this value to select the default (Euclidian metrics).

"ignore_angle" specifies the angle limit of two edges. If two edges form an angle equal or above the
given value, they will not contribute in the check. Setting this value to 90 (the default) will exclude
edges with an angle of 90 degree or more from the check. Use nil for this value to select the default.

"min_projection" and "max_projection" allow selecting edges by their projected value upon each other.
It is sufficient if the projection of one edge on the other matches the specified condition. The projected
length must be larger or equal to "min_projection" and less than "max_projection". If you don't want to
specify one limit, pass nil to the respective value.

"shielded" controls whether shielding is applied. Shielding means that rule violations are not detected
'through' other features. Measurements are only made where the opposite edge is unobstructed.
Shielding often is not optional as a rule violation in shielded case automatically comes with rule
violations between the original and the shielding features. If not necessary, shielding can be disabled
by setting this flag to false. In general, this will improve performance somewhat.

"opposite_filter" specifies whether to require or reject errors happening on opposite sides of a figure.
"rect_filter" allows suppressing specific error configurations on rectangular input figures.

If "negative" is true, only edges from the first input are output as pseudo edge-pairs where the
separation is larger or equal to the limit. This is a way to flag the parts of the first input where the
distance to the second input is bigger. Note that only the first input's edges are output. The output is
still edge pairs, but each edge pair contains one edge from the original input and the reverse version
of the edge as the second edge.

Merged semantics applies for the input of this method (see merged_semantics= for a description of
this concept)

The 'shielded', 'negative', 'not_opposite' and 'rect_sides' options have been introduced in version 0.27.
The interpretation of the 'negative' flag has been restriced to first-layout only output in 0.27.1.

size
(1) Signature: Region size (int dx, int dy, unsigned int mode)

Description: Anisotropic sizing (biasing)

Returns: The region after the sizing has applied (self)

Shifts the contour outwards (dx,dy>0) or inwards (dx,dy<0). dx is the sizing in x-direction and dy is the
sizing in y-direction. The sign of dx and dy should be identical.

This method applies a sizing to the region. Before the sizing is done, the region is merged if this is not
the case already.

The mode defines at which bending angle cutoff occurs (0:>0, 1:>45, 2:>90, 3:>135, 4:>approx. 168,
other:>approx. 179)

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

For more details visit
https://www.klayout.org

Page 1197 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

The result is a set of polygons which may be overlapping, but are not self- intersecting. Polygons may
overlap afterwards because they grew big enough to overlap their neighbors. In that case, merge can
be used to detect this overlaps by setting the "min_wc" parameter to value 1:

r = RBA::Region::new
r.insert(RBA::Box::new(0, 0, 50, 50))
r.insert(RBA::Box::new(100, 0, 150, 50))
r.size(50, 2)
r.merge(false, 1)
r now is (50,-50;50,100;100,100;100,-50)

(2) Signature: Region size (const Vector dv, unsigned int mode = 2)

Description: Anisotropic sizing (biasing)

Returns: The region after the sizing has applied (self)

This method is equivalent to "size(dv.x, dv.y, mode)".

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This variant has been introduced in version 0.28.

(3) Signature: Region size (int d, unsigned int mode = 2)

Description: Isotropic sizing (biasing)

Returns: The region after the sizing has applied (self)

This method is equivalent to "size(d, d, mode)".

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

(4) Signature: [const] unsigned long size

Description: Returns the (flat) number of polygons in the region

Use of this method is deprecated. Use count instead

This returns the number of raw polygons (not merged polygons if merged semantics is enabled). The
count is computed 'as if flat', i.e. polygons inside a cell are multiplied by the number of times a cell is
instantiated.

The 'count' alias has been provided in version 0.26 to avoid ambiguity with the 'size' method which
applies a geometrical bias.

(1) Signature: [const] Region sized (int dx, int dy, unsigned int mode)

Description: Returns the anisotropically sized region

Returns: The sized region

This method returns the sized region (see size), but does not modify self.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

sized

(2) Signature: [const] Region sized (const Vector dv, unsigned int mode = 2)

Description: Returns the (an)isotropically sized region

Returns: The sized region

This method is equivalent to "sized(dv.x, dv.y, mode)". This method returns the sized region (see
size), but does not modify self.

For more details visit
https://www.klayout.org

Page 1198 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This variant has been introduced in version 0.28.

(3) Signature: [const] Region sized (int d, unsigned int mode = 2)

Description: Returns the isotropically sized region

Returns: The sized region

This method is equivalent to "sized(d, d, mode)". This method returns the sized region (see size), but
does not modify self.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

smooth
Signature: void smooth (int d, bool keep_hv = false)

Description: Smoothing

d: The smoothing tolerance (in database units)

keep_hv: If true, horizontal and vertical edges are maintained

This method will simplify the merged polygons of the region by removing vertexes if the resulting
polygon stays equivalent with the original polygon. Equivalence is measured in terms of a deviation
which is guaranteed to not become larger than d. This method modifies the region. smoothed is a
method that does the same but returns a new region without modifying self. Merged semantics applies
for this method.

smoothed
Signature: [const] Region smoothed (int d, bool keep_hv = false)

Description: Smoothing

d: The smoothing tolerance (in database units)

keep_hv: If true, horizontal and vertical edges are maintained

See smooth for a description of this method. This version returns a new region instead of modifying
self (out-of-place). It has been introduced in version 0.25.

snap
Signature: void snap (int gx, int gy)

Description: Snaps the region to the given grid

This method will snap the region to the given grid - each x or y coordinate is brought on the gx or gy
grid by rounding to the nearest value which is a multiple of gx or gy.

If gx or gy is 0, no snapping happens in that direction.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

snapped
Signature: [const] Region snapped (int gx, int gy)

Description: Returns the snapped region

This method will snap the region to the given grid and return the snapped region (see snap). The
original region is not modified.

space_check
Signature: [const] EdgePairs space_check (unsigned int d, bool whole_edges = false,
Region::Metrics metrics = Euclidian, variant ignore_angle = default, variant min_projection = 0, variant
max_projection = max, bool shielded = true, Region::OppositeFilter opposite_filter = NoOppositeFilter,
Region::RectFilter rect_filter = NoRectFilter, bool negative = false)

Description: Performs a space check with options

d: The minimum space for which the polygons are checked

whole_edges: If true, deliver the whole edges

For more details visit
https://www.klayout.org

Page 1199 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

metrics: Specify the metrics type

ignore_angle: The angle above which no check is performed

min_projection: The lower threshold of the projected length of one edge onto
another

max_projection: The upper limit of the projected length of one edge onto
another

opposite_filter: Specifies a filter mode for errors happening on opposite sides
of inputs shapes

rect_filter: Specifies an error filter for rectangular input shapes

negative: If true, edges not violation the condition will be output as
pseudo-edge pairs

If "whole_edges" is true, the resulting EdgePairs collection will receive the whole edges which
contribute in the width check.

"metrics" can be one of the constants Euclidian, Square or Projection. See there for a description of
these constants. Use nil for this value to select the default (Euclidian metrics).

"ignore_angle" specifies the angle limit of two edges. If two edges form an angle equal or above the
given value, they will not contribute in the check. Setting this value to 90 (the default) will exclude
edges with an angle of 90 degree or more from the check. Use nil for this value to select the default.

"min_projection" and "max_projection" allow selecting edges by their projected value upon each other.
It is sufficient if the projection of one edge on the other matches the specified condition. The projected
length must be larger or equal to "min_projection" and less than "max_projection". If you don't want to
specify one limit, pass nil to the respective value.

"shielded" controls whether shielding is applied. Shielding means that rule violations are not detected
'through' other features. Measurements are only made where the opposite edge is unobstructed.
Shielding often is not optional as a rule violation in shielded case automatically comes with rule
violations between the original and the shielding features. If not necessary, shielding can be disabled
by setting this flag to false. In general, this will improve performance somewhat.

"opposite_filter" specifies whether to require or reject errors happening on opposite sides of a figure.
"rect_filter" allows suppressing specific error configurations on rectangular input figures.

Merged semantics applies for the input of this method (see merged_semantics= for a description of
this concept)

The 'shielded', 'negative', 'not_opposite' and 'rect_sides' options have been introduced in version 0.27.

split_covering
Signature: [const] Region[] split_covering (const Region other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Returns the polygons of this region which are completely covering polygons from the
other region and the ones which are not at the same time

Returns: Two new regions: the first containing the result of covering, the
second the result of not_covering

This method is equivalent to calling covering and not_covering, but is faster when both results are
required. Merged semantics applies for this method (see merged_semantics= for a description of this
concept).

This method has been introduced in version 0.27.

split_inside
Signature: [const] Region[] split_inside (const Region other)

Description: Returns the polygons of this region which are completely inside polygons from the other
region and the ones which are not at the same time

Returns: Two new regions: the first containing the result of inside, the second
the result of not_inside

For more details visit
https://www.klayout.org

Page 1200 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

This method is equivalent to calling inside and not_inside, but is faster when both results are required.
Merged semantics applies for this method (see merged_semantics= for a description of this concept).

This method has been introduced in version 0.27.

(1) Signature: [const] Region[] split_interacting (const Region other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Returns the polygons of this region which are interacting with polygons from the other
region and the ones which are not at the same time

Returns: Two new regions: the first containing the result of interacting, the
second the result of not_interacting

This method is equivalent to calling interacting and not_interacting, but is faster when both results are
required. Merged semantics applies for this method (see merged_semantics= for a description of this
concept).

This method has been introduced in version 0.27.

(2) Signature: [const] Region[] split_interacting (const Edges other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Returns the polygons of this region which are interacting with edges from the other edge
collection and the ones which are not at the same time

Returns: Two new regions: the first containing the result of interacting, the
second the result of not_interacting

This method is equivalent to calling interacting and not_interacting, but is faster when both results are
required. Merged semantics applies for this method (see merged_semantics= for a description of this
concept).

This method has been introduced in version 0.27.

split_interacting

(3) Signature: [const] Region[] split_interacting (const Texts other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Returns the polygons of this region which are interacting with texts from the other text
collection and the ones which are not at the same time

Returns: Two new regions: the first containing the result of interacting, the
second the result of not_interacting

This method is equivalent to calling interacting and not_interacting, but is faster when both results are
required. Merged semantics applies for this method (see merged_semantics= for a description of this
concept).

This method has been introduced in version 0.27.

split_outside
Signature: [const] Region[] split_outside (const Region other)

Description: Returns the polygons of this region which are completely outside polygons from the
other region and the ones which are not at the same time

Returns: Two new regions: the first containing the result of outside, the second
the result of not_outside

This method is equivalent to calling outside and not_outside, but is faster when both results are
required. Merged semantics applies for this method (see merged_semantics= for a description of this
concept).

This method has been introduced in version 0.27.

For more details visit
https://www.klayout.org

Page 1201 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

split_overlapping
Signature: [const] Region[] split_overlapping (const Region other, unsigned long min_count = 1,
unsigned long max_count = unlimited)

Description: Returns the polygons of this region which are overlapping with polygons from the other
region and the ones which are not at the same time

Returns: Two new regions: the first containing the result of overlapping, the
second the result of not_overlapping

This method is equivalent to calling overlapping and not_overlapping, but is faster when both results
are required. Merged semantics applies for this method (see merged_semantics= for a description of
this concept).

This method has been introduced in version 0.27.

squares
Signature: [const] Region squares

Description: Returns all polygons which are squares

This method returns all polygons in self which are squares.Merged semantics applies for this method
(see merged_semantics= for a description of this concept)

This method has been introduced in version 0.27.

strange_polygon_check
Signature: [const] Region strange_polygon_check

Description: Returns a region containing those parts of polygons which are "strange"

Strange parts of polygons are self-overlapping parts or non-orientable parts (i.e. in the "8"
configuration).

Merged semantics does not apply for this method (see merged_semantics= for a description of this
concept)

strict_handling=
Signature: void strict_handling= (bool f)

Description: Enables or disables strict handling

Strict handling means to leave away some optimizations. Specifically the output of boolean operations
will be merged even if one input is empty. Without strict handling, the operation will be optimized and
output won't be merged.

Strict handling is disabled by default and optimization is in place.

This method has been introduced in version 0.23.2.

Python specific notes:
The object exposes a writable attribute 'strict_handling'. This is the setter.

strict_handling?
Signature: [const] bool strict_handling?

Description: Gets a flag indicating whether merged semantics is enabled

See strict_handling= for a description of this attribute.

This method has been introduced in version 0.23.2.

Python specific notes:
The object exposes a readable attribute 'strict_handling'. This is the getter.

swap
Signature: void swap (Region other)

Description: Swap the contents of this region with the contents of another region

This method is useful to avoid excessive memory allocation in some cases. For managed memory
languages such as Ruby, those cases will be rare.

For more details visit
https://www.klayout.org

Page 1202 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

(1) Signature: [const] string to_s

Description: Converts the region to a string

The length of the output is limited to 20 polygons to avoid giant strings on large regions. For full output
use "to_s" with a maximum count parameter.

Python specific notes:
This method is also available as 'str(object)'

to_s

(2) Signature: [const] string to_s (unsigned long max_count)

Description: Converts the region to a string

This version allows specification of the maximum number of polygons contained in the string.

Python specific notes:
This method is also available as 'str(object)'

(1) Signature: Region transform (const Trans t)

Description: Transform the region (modifies self)

t: The transformation to apply.

Returns: The transformed region.

Transforms the region with the given transformation. This version modifies the region and returns a
reference to self.

(2) Signature: Region transform (const ICplxTrans t)

Description: Transform the region with a complex transformation (modifies self)

t: The transformation to apply.

Returns: The transformed region.

Transforms the region with the given transformation. This version modifies the region and returns a
reference to self.

(3) Signature: Region transform (const IMatrix2d t)

Description: Transform the region (modifies self)

t: The transformation to apply.

Returns: The transformed region.

Transforms the region with the given 2d matrix transformation. This version modifies the region and
returns a reference to self.

This variant was introduced in version 0.27.

transform

(4) Signature: Region transform (const IMatrix3d t)

Description: Transform the region (modifies self)

t: The transformation to apply.

Returns: The transformed region.

Transforms the region with the given 3d matrix transformation. This version modifies the region and
returns a reference to self.

This variant was introduced in version 0.27.

For more details visit
https://www.klayout.org

Page 1203 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

transform_icplx
Signature: Region transform_icplx (const ICplxTrans t)

Description: Transform the region with a complex transformation (modifies self)

t: The transformation to apply.

Returns: The transformed region.

Use of this method is deprecated. Use transform instead

Transforms the region with the given transformation. This version modifies the region and returns a
reference to self.

(1) Signature: [const] Region transformed (const Trans t)

Description: Transforms the region

t: The transformation to apply.

Returns: The transformed region.

Transforms the region with the given transformation. Does not modify the region but returns the
transformed region.

(2) Signature: [const] Region transformed (const ICplxTrans t)

Description: Transforms the region with a complex transformation

t: The transformation to apply.

Returns: The transformed region.

Transforms the region with the given complex transformation. Does not modify the region but returns
the transformed region.

(3) Signature: [const] Region transformed (const IMatrix2d t)

Description: Transforms the region

t: The transformation to apply.

Returns: The transformed region.

Transforms the region with the given 2d matrix transformation. Does not modify the region but returns
the transformed region.

This variant was introduced in version 0.27.

transformed

(4) Signature: [const] Region transformed (const IMatrix3d t)

Description: Transforms the region

t: The transformation to apply.

Returns: The transformed region.

Transforms the region with the given 3d matrix transformation. Does not modify the region but returns
the transformed region.

This variant was introduced in version 0.27.

transformed_icplx
Signature: [const] Region transformed_icplx (const ICplxTrans t)

Description: Transforms the region with a complex transformation

t: The transformation to apply.

Returns: The transformed region.

Use of this method is deprecated. Use transformed instead

For more details visit
https://www.klayout.org

Page 1204 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

Transforms the region with the given complex transformation. Does not modify the region but returns
the transformed region.

width_check
Signature: [const] EdgePairs width_check (unsigned int d, bool whole_edges = false,
Region::Metrics metrics = Euclidian, variant ignore_angle = default, variant min_projection = 0, variant
max_projection = max, bool shielded = true, bool negative = false)

Description: Performs a width check with options

d: The minimum width for which the polygons are checked

whole_edges: If true, deliver the whole edges

metrics: Specify the metrics type

ignore_angle: The angle above which no check is performed

min_projection: The lower threshold of the projected length of one edge onto
another

max_projection: The upper limit of the projected length of one edge onto
another

shielded: Enables shielding

negative: If true, edges not violation the condition will be output as
pseudo-edge pairs

This version is similar to the simple version with one parameter. In addition, it allows to specify many
more options.

If "whole_edges" is true, the resulting EdgePairs collection will receive the whole edges which
contribute in the width check.

"metrics" can be one of the constants Euclidian, Square or Projection. See there for a description of
these constants. Use nil for this value to select the default (Euclidian metrics).

"ignore_angle" specifies the angle limit of two edges. If two edges form an angle equal or above the
given value, they will not contribute in the check. Setting this value to 90 (the default) will exclude
edges with an angle of 90 degree or more from the check. Use nil for this value to select the default.

"min_projection" and "max_projection" allow selecting edges by their projected value upon each other.
It is sufficient if the projection of one edge on the other matches the specified condition. The projected
length must be larger or equal to "min_projection" and less than "max_projection". If you don't want to
specify one limit, pass nil to the respective value.

"shielded" controls whether shielding is applied. Shielding means that rule violations are not detected
'through' other features. Measurements are only made where the opposite edge is unobstructed.
Shielding often is not optional as a rule violation in shielded case automatically comes with rule
violations between the original and the shielding features. If not necessary, shielding can be disabled
by setting this flag to false. In general, this will improve performance somewhat.

Merged semantics applies for the input of this method (see merged_semantics= for a description of
this concept)

The 'shielded' and 'negative' options have been introduced in version 0.27.

(1) Signature: [const] EdgePairs with_angle (double angle, bool inverse)

Description: Returns markers on every corner with the given angle (or not with the given angle)

If the inverse flag is false, this method returns an error marker (an EdgePair object) for every corner
whose connected edges form an angle with the given value (in degree). If the inverse flag is true, the
method returns markers for every corner whose angle is not the given value.

The edge pair objects returned will contain both edges forming the angle.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

with_angle

(2) Signature: [const] EdgePairs with_angle (double amin, double amax, bool inverse)

For more details visit
https://www.klayout.org

Page 1205 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

Description: Returns markers on every corner with an angle of more than amin and less than amax
(or the opposite)

If the inverse flag is false, this method returns an error marker (an EdgePair object) for every corner
whose connected edges form an angle whose value is more or equal to amin (in degree) or less (but
not equal to) amax. If the inverse flag is true, the method returns markers for every corner whose
angle is not matching that criterion.

The edge pair objects returned will contain both edges forming the angle.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

(1) Signature: [const] Region with_area (long area, bool inverse)

Description: Filter the polygons by area

Filters the polygons of the region by area. If "inverse" is false, only polygons which have the given
area are returned. If "inverse" is true, polygons not having the given area are returned.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

with_area

(2) Signature: [const] Region with_area (variant min_area, variant max_area, bool inverse)

Description: Filter the polygons by area

Filters the polygons of the region by area. If "inverse" is false, only polygons which have an area larger
or equal to "min_area" and less than "max_area" are returned. If "inverse" is true, polygons having an
area less than "min_area" or larger or equal than "max_area" are returned.

If you don't want to specify a lower or upper limit, pass nil to that parameter.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

(1) Signature: [const] Region with_area_ratio (double ratio, bool inverse)

Description: Filters the polygons by the bounding box area to polygon area ratio

The area ratio is defined by the ratio of bounding box area to polygon area. It's a measure how much
the bounding box is approximating the polygon. 'Thin polygons' have a large area ratio, boxes has
an area ratio of 1. The area ratio is always larger or equal to 1. With 'inverse' set to false, this version
filters polygons which have an area ratio equal to the given value. With 'inverse' set to true, all other
polygons will be returned.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.27.

with_area_ratio

(2) Signature: [const] Region with_area_ratio (variant min_ratio, variant max_ratio, bool inverse,
bool min_included = true, bool max_included = true)

Description: Filters the polygons by the aspect ratio of their bounding boxes

The area ratio is defined by the ratio of bounding box area to polygon area. It's a measure how much
the bounding box is approximating the polygon. 'Thin polygons' have a large area ratio, boxes has
an area ratio of 1. The area ratio is always larger or equal to 1. With 'inverse' set to false, this version
filters polygons which have an area ratio between 'min_ratio' and 'max_ratio'. With 'min_included' set
to true, the 'min_ratio' value is included in the range, otherwise it's excluded. Same for 'max_included'
and 'max_ratio'. With 'inverse' set to true, all other polygons will be returned.

If you don't want to specify a lower or upper limit, pass nil to that parameter.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.27.

with_bbox_aspect_ratio
(1) Signature: [const] Region with_bbox_aspect_ratio (double ratio, bool inverse)

Description: Filters the polygons by the aspect ratio of their bounding boxes

For more details visit
https://www.klayout.org

Page 1206 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

Filters the polygons of the region by the aspect ratio of their bounding boxes. The aspect ratio is the
ratio of larger to smaller dimension of the bounding box. A square has an aspect ratio of 1.

With 'inverse' set to false, this version filters polygons which have a bounding box aspect ratio equal to
the given value. With 'inverse' set to true, all other polygons will be returned.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.27.

(2) Signature: [const] Region with_bbox_aspect_ratio (variant min_ratio, variant max_ratio, bool
inverse, bool min_included = true, bool max_included = true)

Description: Filters the polygons by the aspect ratio of their bounding boxes

Filters the polygons of the region by the aspect ratio of their bounding boxes. The aspect ratio is the
ratio of larger to smaller dimension of the bounding box. A square has an aspect ratio of 1.

With 'inverse' set to false, this version filters polygons which have a bounding box aspect ratio
between 'min_ratio' and 'max_ratio'. With 'min_included' set to true, the 'min_ratio' value is included in
the range, otherwise it's excluded. Same for 'max_included' and 'max_ratio'. With 'inverse' set to true,
all other polygons will be returned.

If you don't want to specify a lower or upper limit, pass nil to that parameter.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.27.

(1) Signature: [const] Region with_bbox_height (unsigned int height, bool inverse)

Description: Filter the polygons by bounding box height

Filters the polygons of the region by the height of their bounding box. If "inverse" is false, only
polygons whose bounding box has the given height are returned. If "inverse" is true, polygons whose
bounding box does not have the given height are returned.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

with_bbox_height

(2) Signature: [const] Region with_bbox_height (variant min_height, variant max_height, bool
inverse)

Description: Filter the polygons by bounding box height

Filters the polygons of the region by the height of their bounding box. If "inverse" is false, only
polygons whose bounding box has a height larger or equal to "min_height" and less than "max_height"
are returned. If "inverse" is true, all polygons not matching this criterion are returned. If you don't want
to specify a lower or upper limit, pass nil to that parameter.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

(1) Signature: [const] Region with_bbox_max (unsigned int dim, bool inverse)

Description: Filter the polygons by bounding box width or height, whichever is larger

Filters the polygons of the region by the maximum dimension of their bounding box. If "inverse" is
false, only polygons whose bounding box's larger dimension is equal to the given value are returned.
If "inverse" is true, all polygons not matching this criterion are returned. Merged semantics applies for
this method (see merged_semantics= for a description of this concept)

with_bbox_max

(2) Signature: [const] Region with_bbox_max (variant min_dim, variant max_dim, bool inverse)

Description: Filter the polygons by bounding box width or height, whichever is larger

Filters the polygons of the region by the minimum dimension of their bounding box. If "inverse" is false,
only polygons whose bounding box's larger dimension is larger or equal to "min_dim" and less than
"max_dim" are returned. If "inverse" is true, all polygons not matching this criterion are returned. If you
don't want to specify a lower or upper limit, pass nil to that parameter.

For more details visit
https://www.klayout.org

Page 1207 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

(1) Signature: [const] Region with_bbox_min (unsigned int dim, bool inverse)

Description: Filter the polygons by bounding box width or height, whichever is smaller

Filters the polygons inside the region by the minimum dimension of their bounding box. If "inverse" is
false, only polygons whose bounding box's smaller dimension is equal to the given value are returned.
If "inverse" is true, all polygons not matching this criterion are returned. Merged semantics applies for
this method (see merged_semantics= for a description of this concept)

with_bbox_min

(2) Signature: [const] Region with_bbox_min (variant min_dim, variant max_dim, bool inverse)

Description: Filter the polygons by bounding box width or height, whichever is smaller

Filters the polygons of the region by the minimum dimension of their bounding box. If "inverse" is false,
only polygons whose bounding box's smaller dimension is larger or equal to "min_dim" and less than
"max_dim" are returned. If "inverse" is true, all polygons not matching this criterion are returned. If you
don't want to specify a lower or upper limit, pass nil to that parameter.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

(1) Signature: [const] Region with_bbox_width (unsigned int width, bool inverse)

Description: Filter the polygons by bounding box width

Filters the polygons of the region by the width of their bounding box. If "inverse" is false, only polygons
whose bounding box has the given width are returned. If "inverse" is true, polygons whose bounding
box does not have the given width are returned.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

with_bbox_width

(2) Signature: [const] Region with_bbox_width (variant min_width, variant max_width, bool
inverse)

Description: Filter the polygons by bounding box width

Filters the polygons of the region by the width of their bounding box. If "inverse" is false, only polygons
whose bounding box has a width larger or equal to "min_width" and less than "max_width" are
returned. If "inverse" is true, all polygons not matching this criterion are returned. If you don't want to
specify a lower or upper limit, pass nil to that parameter.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

(1) Signature: [const] Region with_holes (unsigned long nholes, bool inverse)

Description: Filters the polygons by their number of holes

Filters the polygons of the region by number of holes. If "inverse" is false, only polygons which have
the given number of holes are returned. If "inverse" is true, polygons not having the given of holes are
returned.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.27.

with_holes

(2) Signature: [const] Region with_holes (variant min_bholes, variant max_nholes, bool inverse)

Description: Filter the polygons by their number of holes

Filters the polygons of the region by number of holes. If "inverse" is false, only polygons which have
a hole count larger or equal to "min_nholes" and less than "max_nholes" are returned. If "inverse" is
true, polygons having a hole count less than "min_nholes" or larger or equal than "max_nholes" are
returned.

If you don't want to specify a lower or upper limit, pass nil to that parameter.

For more details visit
https://www.klayout.org

Page 1208 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.27.

(1) Signature: [const] Region with_perimeter (unsigned long perimeter, bool inverse)

Description: Filter the polygons by perimeter

Filters the polygons of the region by perimeter. If "inverse" is false, only polygons which have the
given perimeter are returned. If "inverse" is true, polygons not having the given perimeter are returned.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

with_perimeter

(2) Signature: [const] Region with_perimeter (variant min_perimeter, variant max_perimeter, bool
inverse)

Description: Filter the polygons by perimeter

Filters the polygons of the region by perimeter. If "inverse" is false, only polygons which have a
perimeter larger or equal to "min_perimeter" and less than "max_perimeter" are returned. If "inverse"
is true, polygons having a perimeter less than "min_perimeter" or larger or equal than "max_perimeter"
are returned.

If you don't want to specify a lower or upper limit, pass nil to that parameter.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

(1) Signature: [const] Region with_relative_height (double ratio, bool inverse)

Description: Filters the polygons by the ratio of height to width

This method filters the polygons of the region by the ratio of height vs. width of their bounding boxes.
'Tall' polygons have a large value while 'flat' polygons have a small value. A square has a relative
height of 1.

An alternative method is 'with_area_ratio' which can be more efficient because it's isotropic.

With 'inverse' set to false, this version filters polygons which have a relative height equal to the given
value. With 'inverse' set to true, all other polygons will be returned.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.27.

with_relative_height

(2) Signature: [const] Region with_relative_height (variant min_ratio, variant max_ratio, bool
inverse, bool min_included = true, bool max_included = true)

Description: Filters the polygons by the bounding box height to width ratio

This method filters the polygons of the region by the ratio of height vs. width of their bounding boxes.
'Tall' polygons have a large value while 'flat' polygons have a small value. A square has a relative
height of 1.

An alternative method is 'with_area_ratio' which can be more efficient because it's isotropic.

With 'inverse' set to false, this version filters polygons which have a relative height between 'min_ratio'
and 'max_ratio'. With 'min_included' set to true, the 'min_ratio' value is included in the range,
otherwise it's excluded. Same for 'max_included' and 'max_ratio'. With 'inverse' set to true, all other
polygons will be returned.

If you don't want to specify a lower or upper limit, pass nil to that parameter.

Merged semantics applies for this method (see merged_semantics= for a description of this concept)

This method has been introduced in version 0.27.

|
Signature: [const] Region | (const Region other)

Description: Returns the boolean OR between self and the other region

Returns: The resulting region

For more details visit
https://www.klayout.org

Page 1209 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.67. API reference - Class Region

The boolean OR is implemented by merging the polygons of both regions. To simply join the regions
without merging, the + operator is more efficient.

|=
Signature: Region |= (const Region other)

Description: Performs the boolean OR between self and the other region

Returns: The region after modification (self)

The boolean OR is implemented by merging the polygons of both regions. To simply join the regions
without merging, the + operator is more efficient.

For more details visit
https://www.klayout.org

Page 1210 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.68. API reference - Class Region::Metrics

4.68. API reference - Class Region::Metrics
Notation used in Ruby API documentation

Module: db

Description: This class represents the metrics type for \Region#width and related checks.

This class is equivalent to the class Region::Metrics

This enum has been introduced in version 0.27.

Public constructors

new Region::Metrics ptr new (int i) Creates an enum from an integer value

new Region::Metrics ptr new (string s) Creates an enum from a string value

Public methods

[const] bool != (const
Region::Metrics
other)

Compares two enums for inequality

[const] bool < (const
Region::Metrics
other)

Returns true if the first enum is less (in the
enum symbol order) than the second

[const] bool == (const
Region::Metrics
other)

Compares two enums

[const] string inspect Converts an enum to a visual string

[const] int to_i Gets the integer value from the enum

[const] string to_s Gets the symbolic string from an enum

Public static methods and constants

[static,const] Region::Metrics Euclidian Specifies Euclidian metrics for the check
functions

[static,const] Region::Metrics Projection Specifies projected distance metrics for the
check functions

[static,const] Region::Metrics Square Specifies square metrics for the check
functions

Detailed description

!=
Signature: [const] bool != (const Region::Metrics other)

Description: Compares two enums for inequality

For more details visit
https://www.klayout.org

Page 1211 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.68. API reference - Class Region::Metrics

<
Signature: [const] bool < (const Region::Metrics other)

Description: Returns true if the first enum is less (in the enum symbol order) than the second

==
Signature: [const] bool == (const Region::Metrics other)

Description: Compares two enums

Euclidian
Signature: [static,const] Region::Metrics Euclidian

Description: Specifies Euclidian metrics for the check functions

This value can be used for the metrics parameter in the check functions, i.e. width_check. This value
specifies Euclidian metrics, i.e. the distance between two points is measured by:

d = sqrt(dx^2 + dy^2)

All points within a circle with radius d around one point are considered to have a smaller distance than
d.

Projection
Signature: [static,const] Region::Metrics Projection

Description: Specifies projected distance metrics for the check functions

This value can be used for the metrics parameter in the check functions, i.e. width_check. This
value specifies projected metrics, i.e. the distance is defined as the minimum distance measured
perpendicular to one edge. That implies that the distance is defined only where two edges have a non-
vanishing projection onto each other.

Square
Signature: [static,const] Region::Metrics Square

Description: Specifies square metrics for the check functions

This value can be used for the metrics parameter in the check functions, i.e. width_check. This value
specifies square metrics, i.e. the distance between two points is measured by:

d = max(abs(dx), abs(dy))

All points within a square with length 2*d around one point are considered to have a smaller distance
than d in this metrics.

inspect
Signature: [const] string inspect

Description: Converts an enum to a visual string

Python specific notes:
This method is also available as 'repr(object)'

(1) Signature: [static] new Region::Metrics ptr new (int i)

Description: Creates an enum from an integer value

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new Region::Metrics ptr new (string s)

Description: Creates an enum from a string value

For more details visit
https://www.klayout.org

Page 1212 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.68. API reference - Class Region::Metrics

Python specific notes:
This method is the default initializer of the object

to_i
Signature: [const] int to_i

Description: Gets the integer value from the enum

to_s
Signature: [const] string to_s

Description: Gets the symbolic string from an enum

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 1213 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.69. API reference - Class Region::RectFilter

4.69. API reference - Class Region::RectFilter
Notation used in Ruby API documentation

Module: db

Description: This class represents the error filter mode on rectangles for \Region#separation and related checks.

This class is equivalent to the class Region::RectFilter

This enum has been introduced in version 0.27.

Public constructors

new Region::RectFilter ptr new (int i) Creates an enum from an integer value

new Region::RectFilter ptr new (string s) Creates an enum from a string value

Public methods

[const] bool != (const
Region::RectFilter
other)

Compares two enums for inequality

[const] bool < (const
Region::RectFilter
other)

Returns true if the first enum is less (in the
enum symbol order) than the second

[const] bool == (const
Region::RectFilter
other)

Compares two enums

[const] string inspect Converts an enum to a visual string

[const] int to_i Gets the integer value from the enum

[const] string to_s Gets the symbolic string from an enum

Public static methods and constants

[static,const] Region::RectFilter FourSidesAllowed Allow errors when on all sides

[static,const] Region::RectFilter NoRectFilter Specifies no filtering

[static,const] Region::RectFilter OneSideAllowed Allow errors on one side

[static,const] Region::RectFilter ThreeSidesAllowed Allow errors when on three sides

[static,const] Region::RectFilter TwoConnectedSidesAllowed Allow errors on two sides ("L"
configuration)

[static,const] Region::RectFilter TwoOppositeSidesAllowed Allow errors on two opposite sides

[static,const] Region::RectFilter TwoSidesAllowed Allow errors on two sides (not
specified which)

For more details visit
https://www.klayout.org

Page 1214 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.69. API reference - Class Region::RectFilter

Detailed description

!=
Signature: [const] bool != (const Region::RectFilter other)

Description: Compares two enums for inequality

<
Signature: [const] bool < (const Region::RectFilter other)

Description: Returns true if the first enum is less (in the enum symbol order) than the second

==
Signature: [const] bool == (const Region::RectFilter other)

Description: Compares two enums

FourSidesAllowed
Signature: [static,const] Region::RectFilter FourSidesAllowed

Description: Allow errors when on all sides

NoRectFilter
Signature: [static,const] Region::RectFilter NoRectFilter

Description: Specifies no filtering

OneSideAllowed
Signature: [static,const] Region::RectFilter OneSideAllowed

Description: Allow errors on one side

ThreeSidesAllowed
Signature: [static,const] Region::RectFilter ThreeSidesAllowed

Description: Allow errors when on three sides

TwoConnectedSidesAllowed
Signature: [static,const] Region::RectFilter TwoConnectedSidesAllowed

Description: Allow errors on two sides ("L" configuration)

TwoOppositeSidesAllowed
Signature: [static,const] Region::RectFilter TwoOppositeSidesAllowed

Description: Allow errors on two opposite sides

TwoSidesAllowed
Signature: [static,const] Region::RectFilter TwoSidesAllowed

Description: Allow errors on two sides (not specified which)

inspect
Signature: [const] string inspect

Description: Converts an enum to a visual string

Python specific notes:
This method is also available as 'repr(object)'

(1) Signature: [static] new Region::RectFilter ptr new (int i)

Description: Creates an enum from an integer value

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new Region::RectFilter ptr new (string s)

Description: Creates an enum from a string value

For more details visit
https://www.klayout.org

Page 1215 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.69. API reference - Class Region::RectFilter

Python specific notes:
This method is the default initializer of the object

to_i
Signature: [const] int to_i

Description: Gets the integer value from the enum

to_s
Signature: [const] string to_s

Description: Gets the symbolic string from an enum

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 1216 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.70. API reference - Class Region::OppositeFilter

4.70. API reference - Class Region::OppositeFilter
Notation used in Ruby API documentation

Module: db

Description: This class represents the opposite error filter mode for \Region#separation and related checks.

This class is equivalent to the class Region::OppositeFilter

This enum has been introduced in version 0.27.

Public constructors

new Region::OppositeFilter ptr new (int i) Creates an enum from an integer value

new Region::OppositeFilter ptr new (string s) Creates an enum from a string value

Public methods

[const] bool != (const
Region::OppositeFilter
other)

Compares two enums for inequality

[const] bool < (const
Region::OppositeFilter
other)

Returns true if the first enum is less (in the
enum symbol order) than the second

[const] bool == (const
Region::OppositeFilter
other)

Compares two enums

[const] string inspect Converts an enum to a visual string

[const] int to_i Gets the integer value from the enum

[const] string to_s Gets the symbolic string from an enum

Public static methods and constants

[static,const] Region::OppositeFilter NoOppositeFilter No opposite filtering

[static,const] Region::OppositeFilter NotOpposite Only errors NOT appearing on opposite
sides of a figure will be reported

[static,const] Region::OppositeFilter OnlyOpposite Only errors appearing on opposite sides
of a figure will be reported

Detailed description

!=
Signature: [const] bool != (const Region::OppositeFilter other)

Description: Compares two enums for inequality

<
Signature: [const] bool < (const Region::OppositeFilter other)

For more details visit
https://www.klayout.org

Page 1217 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.70. API reference - Class Region::OppositeFilter

Description: Returns true if the first enum is less (in the enum symbol order) than the second

==
Signature: [const] bool == (const Region::OppositeFilter other)

Description: Compares two enums

NoOppositeFilter
Signature: [static,const] Region::OppositeFilter NoOppositeFilter

Description: No opposite filtering

NotOpposite
Signature: [static,const] Region::OppositeFilter NotOpposite

Description: Only errors NOT appearing on opposite sides of a figure will be reported

OnlyOpposite
Signature: [static,const] Region::OppositeFilter OnlyOpposite

Description: Only errors appearing on opposite sides of a figure will be reported

inspect
Signature: [const] string inspect

Description: Converts an enum to a visual string

Python specific notes:
This method is also available as 'repr(object)'

(1) Signature: [static] new Region::OppositeFilter ptr new (int i)

Description: Creates an enum from an integer value

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new Region::OppositeFilter ptr new (string s)

Description: Creates an enum from a string value

Python specific notes:
This method is the default initializer of the object

to_i
Signature: [const] int to_i

Description: Gets the integer value from the enum

to_s
Signature: [const] string to_s

Description: Gets the symbolic string from an enum

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 1218 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

4.71. API reference - Class Shape
Notation used in Ruby API documentation

Module: db

Description: An object representing a shape in the layout database

The shape proxy is basically a pointer to a shape of different kinds. No copy of the shape is created: if the shape proxy is copied the copy
still points to the original shape. If the original shape is modified or deleted, the shape proxy will also point to a modified or invalid shape.
The proxy can be "null" which indicates an invalid reference.

Shape objects are used together with the Shapes container object which stores the actual shape objects and uses Shape references as
pointers inside the actual data storage. Shape references are used in various places, i.e. when removing or transforming objects inside a
Shapes container.

Public constructors

new Shape ptr new Creates a new object of this class

Public methods

[const] bool != (const Shape
other)

Inequality operator

[const] bool == (const Shape
other)

Equality operator

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] long area Returns the area of the shape

[const] DTrans array_dtrans Gets the array instance member transformation
in micrometer units

[const] Trans array_trans Gets the array instance member transformation

void assign (const Shape
other)

Assigns another object to self

[const] Box bbox Returns the bounding box of the shape

[const] variant box Gets the box object

void box= (const Box box) Replaces the shape by the given box

For more details visit
https://www.klayout.org

Page 1219 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

void box= (const DBox
box)

Replaces the shape by the given box (in
micrometer units)

[const] Point box_center Returns the center of the box

void box_center= (const Point c) Sets the center of the box

void box_center= (const DPoint
c)

Sets the center of the box with the point being
given in micrometer units

[const] DPoint box_dcenter Returns the center of the box as a DPoint object
in micrometer units

void box_dcenter= (const DPoint
c)

Sets the center of the box with the point being
given in micrometer units

[const] double box_dheight Returns the height of the box in micrometer
units

void box_dheight= (double h) Sets the height of the box

[const] DPoint box_dp1 Returns the lower left point of the box as a
DPoint object in micrometer units

void box_dp1= (const DPoint
p)

Sets the lower left corner of the box with the
point being given in micrometer units

[const] DPoint box_dp2 Returns the upper right point of the box as a
DPoint object in micrometer units

void box_dp2= (const DPoint
p)

Sets the upper right corner of the box with the
point being given in micrometer units

[const] double box_dwidth Returns the width of the box in micrometer units

void box_dwidth= (double w) Sets the width of the box in micrometer units

[const] int box_height Returns the height of the box

void box_height= (int h) Sets the height of the box

[const] Point box_p1 Returns the lower left point of the box

void box_p1= (const Point p) Sets the lower left point of the box

void box_p1= (const DPoint
p)

Sets the lower left corner of the box with the
point being given in micrometer units

[const] Point box_p2 Returns the upper right point of the box

void box_p2= (const Point p) Sets the upper right point of the box

void box_p2= (const DPoint
p)

Sets the upper right corner of the box with the
point being given in micrometer units

[const] int box_width Returns the width of the box

void box_width= (int w) Sets the width of the box

For more details visit
https://www.klayout.org

Page 1220 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

Cell ptr cell Gets a reference to the cell the shape belongs
to

void cell= (Cell ptr cell) Moves the shape to a different cell

[const] double darea Returns the area of the shape in square
micrometer units

[const] DBox dbbox Returns the bounding box of the shape in
micrometer units

[const] variant dbox Gets the box object in micrometer units

void dbox= (const DBox
box)

Replaces the shape by the given box (in
micrometer units)

[const] variant dedge Returns the edge object as a DEdge object in
micrometer units

void dedge= (const DEdge
edge)

Replaces the shape by the given edge (in
micrometer units)

[const] variant dedge_pair Returns the edge pair object as a DEdgePair
object in micrometer units

void dedge_pair= (const
DEdgePair
edge_pair)

Replaces the shape by the given edge pair (in
micrometer units)

void delete Deletes the shape

void delete_property (variant key) Deletes the user property with the given key

[const] variant dpath Returns the path object as a DPath object in
micrometer units

void dpath= (const DPath
path)

Replaces the shape by the given path (in
micrometer units)

[const] double dperimeter Returns the perimeter of the shape in
micrometer units

[const] variant dpolygon Returns the polygon object in micrometer units

void dpolygon= (const
DPolygon
polygon)

Replaces the shape by the given polygon (in
micrometer units)

[const] variant dsimple_polygon Returns the simple polygon object in micrometer
units

void dsimple_polygon= (const
DSimplePolygon
polygon)

Replaces the shape by the given simple polygon
(in micrometer units)

[const] variant dtext Returns the path object as a DText object in
micrometer units

For more details visit
https://www.klayout.org

Page 1221 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

void dtext= (const DText
text)

Replaces the shape by the given text (in
micrometer units)

[const] new Shape ptr dup Creates a copy of self

[const,iter] DEdge each_dedge Iterates over the edges of the object and returns
edges in micrometer units

[const,iter] DEdge each_dedge (unsigned int
contour)

Iterates over the edges of a single contour of the
object and returns edges in micrometer units

[const,iter] DPoint each_dpoint Iterates over all points of the object and returns
points in micrometer units

[const,iter] DPoint each_dpoint_hole (unsigned int
hole_index)

Iterates over a hole contour of the object and
returns points in micrometer units

[const,iter] DPoint each_dpoint_hull Iterates over the hull contour of the object and
returns points in micrometer units

[const,iter] Edge each_edge Iterates over the edges of the object

[const,iter] Edge each_edge (unsigned int
contour)

Iterates over the edges of a single contour of the
object

[const,iter] Point each_point Iterates over all points of the object

[const,iter] Point each_point_hole (unsigned int
hole_index)

Iterates over the points of a hole contour

[const,iter] Point each_point_hull Iterates over the hull contour of the object

[const] variant edge Returns the edge object

void edge= (const Edge
edge)

Replaces the shape by the given edge

void edge= (const DEdge
edge)

Replaces the shape by the given edge (in
micrometer units)

[const] variant edge_pair Returns the edge pair object

void edge_pair= (const
EdgePair
edge_pair)

Replaces the shape by the given edge pair

void edge_pair= (const
DEdgePair
edge_pair)

Replaces the shape by the given edge pair (in
micrometer units)

[const] bool has_prop_id? Returns true, if the shape has properties, i.e.
has a properties ID

[const] unsigned int holes Returns the number of holes

[const] bool is_array_member? Returns true, if the shape is a member of a
shape array

For more details visit
https://www.klayout.org

Page 1222 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

[const] bool is_box? Returns true if the shape is a box

[const] bool is_edge? Returns true, if the object is an edge

[const] bool is_edge_pair? Returns true, if the object is an edge pair

[const] bool is_null? Returns true, if the shape reference is a null
reference (not referring to a shape)

[const] bool is_path? Returns true, if the shape is a path

[const] bool is_polygon? Returns true, if the shape is a polygon

[const] bool is_simple_polygon? Returns true, if the shape is a simple polygon

[const] bool is_text? Returns true, if the object is a text

[const] bool is_user_object? Returns true if the shape is a user defined
object

[const] bool is_valid? Returns true, if the shape is valid

[const] unsigned int layer Returns the layer index of the layer the shape is
on

void layer= (unsigned int
layer_index)

Moves the shape to a layer given by the layer
index object

[const] LayerInfo layer_info Returns the LayerInfo object of the layer the
shape is on

void layer_info= (const
LayerInfo
layer_info)

Moves the shape to a layer given by a LayerInfo
object

Layout ptr layout Gets a reference to the Layout the shape
belongs to

[const] variant path Returns the path object

void path= (const Path
box)

Replaces the shape by the given path object

void path= (const DPath
path)

Replaces the shape by the given path (in
micrometer units)

[const] int path_bgnext Gets the path's starting vertex extension

void path_bgnext= (int e) Sets the path's starting vertex extension

[const] double path_dbgnext Gets the path's starting vertex extension in
micrometer units

void path_dbgnext= (double e) Sets the path's starting vertex extension in
micrometer units

[const] double path_dendext Gets the path's end vertex extension in
micrometer units

For more details visit
https://www.klayout.org

Page 1223 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

void path_dendext= (double e) Sets the path's end vertex extension in
micrometer units

[const] double path_dlength Returns the length of the path in micrometer
units

[const] double path_dwidth Gets the path width in micrometer units

void path_dwidth= (double w) Sets the path width in micrometer units

[const] int path_endext Obtain the path's end vertex extension

void path_endext= (int e) Sets the path's end vertex extension

[const] int path_length Returns the length of the path

[const] int path_width Gets the path width

void path_width= (int w) Sets the path width

[const] unsigned long perimeter Returns the perimeter of the shape

[const] variant polygon Returns the polygon object

void polygon= (const Polygon
box)

Replaces the shape by the given polygon object

void polygon= (const
DPolygon
polygon)

Replaces the shape by the given polygon (in
micrometer units)

[const] unsigned long prop_id Gets the properties ID associated with the
shape

void prop_id= (unsigned long
arg1)

Sets the properties ID of this shape

[const] variant property (variant key) Gets the user property with the given key

void round_path= (bool r) The path will be a round-ended path if this
property is set to true

[const] bool round_path? Returns true, if the path has round ends

void set_property (variant key,
variant value)

Sets the user property with the given key to the
given value

Shapes ptr shapes Gets a reference to the Shapes container the
shape lives in

[const] variant simple_polygon Returns the simple polygon object

void simple_polygon= (const
SimplePolygon
polygon)

Replaces the shape by the given simple polygon
object

For more details visit
https://www.klayout.org

Page 1224 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

void simple_polygon= (const
DSimplePolygon
polygon)

Replaces the shape by the given simple polygon
(in micrometer units)

[const] variant text Returns the text object

void text= (const Text
box)

Replaces the shape by the given text object

void text= (const DText
text)

Replaces the shape by the given text (in
micrometer units)

[const] DVector text_dpos Gets the text's position in micrometer units

void text_dpos= (const DVector
p)

Sets the text's position in micrometer units

[const] double text_dsize Gets the text size in micrometer units

void text_dsize= (double size) Sets the text size in micrometer units

[const] DTrans text_dtrans Gets the text transformation in micrometer units

void text_dtrans= (const DTrans
trans)

Sets the text transformation in micrometer units

[const] int text_font Gets the text's font

void text_font= (int font) Sets the text's font

[const] int text_halign Gets the text's horizontal alignment

void text_halign= (int a) Sets the text's horizontal alignment

[const] Vector text_pos Gets the text's position

void text_pos= (const Vector
p)

Sets the text's position

void text_pos= (const DVector
p)

Sets the text's position in micrometer units

[const] int text_rot Gets the text's orientation code (see Trans)

void text_rot= (int o) Sets the text's orientation code (see Trans)

[const] int text_size Gets the text size

void text_size= (int size) Sets the text size

[const] string text_string Obtain the text string

void text_string= (string string) Sets the text string

[const] Trans text_trans Gets the text transformation

void text_trans= (const Trans
trans)

Sets the text transformation

For more details visit
https://www.klayout.org

Page 1225 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

void text_trans= (const DTrans
trans)

Sets the text transformation in micrometer units

[const] int text_valign Gets the text's vertical alignment

void text_valign= (int a) Sets the text's vertical alignment

[const] string to_s Create a string showing the contents of the
reference

void transform (const Trans
trans)

Transforms the shape with the given
transformation

void transform (const DTrans
trans)

Transforms the shape with the given
transformation, given in micrometer units

void transform (const
ICplxTrans
trans)

Transforms the shape with the given complex
transformation

void transform (const
DCplxTrans
trans)

Transforms the shape with the given complex
transformation, given in micrometer units

[const] int type Return the type of the shape

Public static methods and constants

int TBox

int TBoxArray

int TBoxArrayMember

int TEdge

int TEdgePair

int TNull

int TPath

int TPathPtrArray

int TPathPtrArrayMember

int TPathRef

int TPolygon

int TPolygonPtrArray

int TPolygonPtrArrayMember

int TPolygonRef

int TShortBox

For more details visit
https://www.klayout.org

Page 1226 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

int TShortBoxArray

int TShortBoxArrayMember

int TSimplePolygon

int TSimplePolygonPtrArray

int TSimplePolygonPtrArrayMember

int TSimplePolygonRef

int TText

int TTextPtrArray

int TTextPtrArrayMember

int TTextRef

int TUserObject

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[static] int t_box Use of this method is deprecated. Use TBox instead

[static] int t_box_array Use of this method is deprecated. Use TBoxArray
instead

[static] int t_box_array_member Use of this method is deprecated. Use
TBoxArrayMember instead

[static] int t_edge Use of this method is deprecated. Use TEdge instead

[static] int t_edge_pair Use of this method is deprecated. Use TEdgePair
instead

[static] int t_null Use of this method is deprecated. Use TNull instead

[static] int t_path Use of this method is deprecated. Use TPath instead

[static] int t_path_ptr_array Use of this method is deprecated. Use TPathPtrArray
instead

[static] int t_path_ptr_array_member Use of this method is deprecated. Use
TPathPtrArrayMember instead

For more details visit
https://www.klayout.org

Page 1227 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

[static] int t_path_ref Use of this method is deprecated. Use TPathRef
instead

[static] int t_polygon Use of this method is deprecated. Use TPolygon
instead

[static] int t_polygon_ptr_array Use of this method is deprecated. Use
TPolygonPtrArray instead

[static] int t_polygon_ptr_array_member Use of this method is deprecated. Use
TPolygonPtrArrayMember instead

[static] int t_polygon_ref Use of this method is deprecated. Use TPolygonRef
instead

[static] int t_short_box Use of this method is deprecated. Use TShortBox
instead

[static] int t_short_box_array Use of this method is deprecated. Use TShortBoxArray
instead

[static] int t_short_box_array_member Use of this method is deprecated. Use
TShortBoxArrayMember instead

[static] int t_simple_polygon Use of this method is deprecated. Use TSimplePolygon
instead

[static] int t_simple_polygon_ptr_array Use of this method is deprecated. Use
TSimplePolygonPtrArray instead

[static] int t_simple_polygon_ptr_array_member Use of this method is deprecated. Use
TSimplePolygonPtrArrayMember instead

[static] int t_simple_polygon_ref Use of this method is deprecated. Use
TSimplePolygonRef instead

[static] int t_text Use of this method is deprecated. Use TText instead

[static] int t_text_ptr_array Use of this method is deprecated. Use TTextPtrArray
instead

[static] int t_text_ptr_array_member Use of this method is deprecated. Use
TTextPtrArrayMember instead

[static] int t_text_ref Use of this method is deprecated. Use TTextRef
instead

[static] int t_user_object Use of this method is deprecated. Use TUserObject
instead

Detailed description

!=
Signature: [const] bool != (const Shape other)

Description: Inequality operator

For more details visit
https://www.klayout.org

Page 1228 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

==
Signature: [const] bool == (const Shape other)

Description: Equality operator

Equality of shapes is not specified by the identity of the objects but by the identity of the pointers -
both shapes must refer to the same object.

TBox
Signature: [static] int TBox

Description:

TBoxArray
Signature: [static] int TBoxArray

Description:

TBoxArrayMember
Signature: [static] int TBoxArrayMember

Description:

TEdge
Signature: [static] int TEdge

Description:

TEdgePair
Signature: [static] int TEdgePair

Description:

TNull
Signature: [static] int TNull

Description:

TPath
Signature: [static] int TPath

Description:

TPathPtrArray
Signature: [static] int TPathPtrArray

Description:

TPathPtrArrayMember
Signature: [static] int TPathPtrArrayMember

Description:

TPathRef
Signature: [static] int TPathRef

Description:

TPolygon
Signature: [static] int TPolygon

Description:

TPolygonPtrArray
Signature: [static] int TPolygonPtrArray

Description:

TPolygonPtrArrayMember
Signature: [static] int TPolygonPtrArrayMember

Description:

For more details visit
https://www.klayout.org

Page 1229 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

TPolygonRef
Signature: [static] int TPolygonRef

Description:

TShortBox
Signature: [static] int TShortBox

Description:

TShortBoxArray
Signature: [static] int TShortBoxArray

Description:

TShortBoxArrayMember
Signature: [static] int TShortBoxArrayMember

Description:

TSimplePolygon
Signature: [static] int TSimplePolygon

Description:

TSimplePolygonPtrArray
Signature: [static] int TSimplePolygonPtrArray

Description:

TSimplePolygonPtrArrayMember
Signature: [static] int TSimplePolygonPtrArrayMember

Description:

TSimplePolygonRef
Signature: [static] int TSimplePolygonRef

Description:

TText
Signature: [static] int TText

Description:

TTextPtrArray
Signature: [static] int TTextPtrArray

Description:

TTextPtrArrayMember
Signature: [static] int TTextPtrArrayMember

Description:

TTextRef
Signature: [static] int TTextRef

Description:

TUserObject
Signature: [static] int TUserObject

Description:

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

For more details visit
https://www.klayout.org

Page 1230 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

area
Signature: [const] long area

Description: Returns the area of the shape

This method has been added in version 0.22.

array_dtrans
Signature: [const] DTrans array_dtrans

Description: Gets the array instance member transformation in micrometer units

This attribute is valid only if is_array_member? is true. The transformation returned describes the
relative transformation of the array member addressed. The displacement is given in micrometer
units.

This method has been added in version 0.25.

array_trans
Signature: [const] Trans array_trans

Description: Gets the array instance member transformation

For more details visit
https://www.klayout.org

Page 1231 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

This attribute is valid only if is_array_member? is true. The transformation returned describes the
relative transformation of the array member addressed.

assign
Signature: void assign (const Shape other)

Description: Assigns another object to self

bbox
Signature: [const] Box bbox

Description: Returns the bounding box of the shape

box
Signature: [const] variant box

Description: Gets the box object

Starting with version 0.23, this method returns nil, if the shape does not represent a box.

Python specific notes:
The object exposes a readable attribute 'box'. This is the getter.

(1) Signature: void box= (const Box box)

Description: Replaces the shape by the given box

This method replaces the shape by the given box. This method can only be called for editable
layouts. It does not change the user properties of the shape. Calling this method will invalidate any
iterators. It should not be called inside a loop iterating over shapes.

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a writable attribute 'box'. This is the setter.

box=

(2) Signature: void box= (const DBox box)

Description: Replaces the shape by the given box (in micrometer units)

This method replaces the shape by the given box, like box= with a Box argument does. This
version translates the box from micrometer units to database units internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'box'. This is the setter. The object exposes a writable
attribute 'dbox'. This is the setter.

box_center
Signature: [const] Point box_center

Description: Returns the center of the box

Applies to boxes only. Returns the center of the box and throws an exception if the shape is not a
box.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a readable attribute 'box_center'. This is the getter.

box_center=
(1) Signature: void box_center= (const Point c)

Description: Sets the center of the box

Applies to boxes only. Changes the center of the box and throws an exception if the shape is not a
box.

This method has been introduced in version 0.23.

For more details visit
https://www.klayout.org

Page 1232 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

Python specific notes:
The object exposes a writable attribute 'box_center'. This is the setter.

(2) Signature: void box_center= (const DPoint c)

Description: Sets the center of the box with the point being given in micrometer units

Applies to boxes only. Changes the center of the box and throws an exception if the shape is not a
box. Translation from micrometer units to database units is done internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'box_center'. This is the setter. The object exposes a
writable attribute 'box_dcenter'. This is the setter.

box_dcenter
Signature: [const] DPoint box_dcenter

Description: Returns the center of the box as a DPoint object in micrometer units

Applies to boxes only. Returns the center of the box and throws an exception if the shape is not a
box. Conversion from database units to micrometers is done internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'box_dcenter'. This is the getter.

box_dcenter=
Signature: void box_dcenter= (const DPoint c)

Description: Sets the center of the box with the point being given in micrometer units

Applies to boxes only. Changes the center of the box and throws an exception if the shape is not a
box. Translation from micrometer units to database units is done internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'box_center'. This is the setter. The object exposes a
writable attribute 'box_dcenter'. This is the setter.

box_dheight
Signature: [const] double box_dheight

Description: Returns the height of the box in micrometer units

Applies to boxes only. Returns the height of the box in micrometers and throws an exception if the
shape is not a box.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'box_dheight'. This is the getter.

box_dheight=
Signature: void box_dheight= (double h)

Description: Sets the height of the box

Applies to boxes only. Changes the height of the box to the value given in micrometer units and
throws an exception if the shape is not a box. Translation to database units happens internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'box_dheight'. This is the setter.

For more details visit
https://www.klayout.org

Page 1233 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

box_dp1
Signature: [const] DPoint box_dp1

Description: Returns the lower left point of the box as a DPoint object in micrometer units

Applies to boxes only. Returns the lower left point of the box and throws an exception if the shape
is not a box. Conversion from database units to micrometers is done internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'box_dp1'. This is the getter.

box_dp1=
Signature: void box_dp1= (const DPoint p)

Description: Sets the lower left corner of the box with the point being given in micrometer units

Applies to boxes only. Changes the lower left point of the box and throws an exception if the shape
is not a box. Translation from micrometer units to database units is done internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'box_p1'. This is the setter. The object exposes a writable
attribute 'box_dp1'. This is the setter.

box_dp2
Signature: [const] DPoint box_dp2

Description: Returns the upper right point of the box as a DPoint object in micrometer units

Applies to boxes only. Returns the upper right point of the box and throws an exception if the
shape is not a box. Conversion from database units to micrometers is done internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'box_dp2'. This is the getter.

box_dp2=
Signature: void box_dp2= (const DPoint p)

Description: Sets the upper right corner of the box with the point being given in micrometer units

Applies to boxes only. Changes the upper right point of the box and throws an exception if the
shape is not a box. Translation from micrometer units to database units is done internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'box_p2'. This is the setter. The object exposes a writable
attribute 'box_dp2'. This is the setter.

box_dwidth
Signature: [const] double box_dwidth

Description: Returns the width of the box in micrometer units

Applies to boxes only. Returns the width of the box in micrometers and throws an exception if the
shape is not a box.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'box_dwidth'. This is the getter.

box_dwidth=
Signature: void box_dwidth= (double w)

Description: Sets the width of the box in micrometer units

For more details visit
https://www.klayout.org

Page 1234 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

Applies to boxes only. Changes the width of the box to the value given in micrometer units and
throws an exception if the shape is not a box. Translation to database units happens internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'box_dwidth'. This is the setter.

box_height
Signature: [const] int box_height

Description: Returns the height of the box

Applies to boxes only. Returns the height of the box and throws an exception if the shape is not a
box.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a readable attribute 'box_height'. This is the getter.

box_height=
Signature: void box_height= (int h)

Description: Sets the height of the box

Applies to boxes only. Changes the height of the box and throws an exception if the shape is not a
box.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'box_height'. This is the setter.

box_p1
Signature: [const] Point box_p1

Description: Returns the lower left point of the box

Applies to boxes only. Returns the lower left point of the box and throws an exception if the shape
is not a box.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a readable attribute 'box_p1'. This is the getter.

(1) Signature: void box_p1= (const Point p)

Description: Sets the lower left point of the box

Applies to boxes only. Changes the lower left point of the box and throws an exception if the shape
is not a box.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'box_p1'. This is the setter.

box_p1=

(2) Signature: void box_p1= (const DPoint p)

Description: Sets the lower left corner of the box with the point being given in micrometer units

Applies to boxes only. Changes the lower left point of the box and throws an exception if the shape
is not a box. Translation from micrometer units to database units is done internally.

This method has been introduced in version 0.25.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1235 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

The object exposes a writable attribute 'box_p1'. This is the setter. The object exposes a writable
attribute 'box_dp1'. This is the setter.

box_p2
Signature: [const] Point box_p2

Description: Returns the upper right point of the box

Applies to boxes only. Returns the upper right point of the box and throws an exception if the
shape is not a box.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a readable attribute 'box_p2'. This is the getter.

(1) Signature: void box_p2= (const Point p)

Description: Sets the upper right point of the box

Applies to boxes only. Changes the upper right point of the box and throws an exception if the
shape is not a box.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'box_p2'. This is the setter.

box_p2=

(2) Signature: void box_p2= (const DPoint p)

Description: Sets the upper right corner of the box with the point being given in micrometer units

Applies to boxes only. Changes the upper right point of the box and throws an exception if the
shape is not a box. Translation from micrometer units to database units is done internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'box_p2'. This is the setter. The object exposes a writable
attribute 'box_dp2'. This is the setter.

box_width
Signature: [const] int box_width

Description: Returns the width of the box

Applies to boxes only. Returns the width of the box and throws an exception if the shape is not a
box.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a readable attribute 'box_width'. This is the getter.

box_width=
Signature: void box_width= (int w)

Description: Sets the width of the box

Applies to boxes only. Changes the width of the box and throws an exception if the shape is not a
box.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'box_width'. This is the setter.

cell
Signature: Cell ptr cell

Description: Gets a reference to the cell the shape belongs to

For more details visit
https://www.klayout.org

Page 1236 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

This reference can be nil, if the Shape object is not living inside a cell

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'cell'. This is the getter.

cell=
Signature: void cell= (Cell ptr cell)

Description: Moves the shape to a different cell

Both the current and the target cell must reside in the same layout.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'cell'. This is the setter.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

darea
Signature: [const] double darea

Description: Returns the area of the shape in square micrometer units

This method has been added in version 0.25.

dbbox
Signature: [const] DBox dbbox

Description: Returns the bounding box of the shape in micrometer units

This method has been added in version 0.25.

dbox
Signature: [const] variant dbox

Description: Gets the box object in micrometer units

See box for a description of this method. This method returns the box after translation to
micrometer units.

This method has been added in version 0.25.

Python specific notes:
The object exposes a readable attribute 'dbox'. This is the getter.

dbox=
Signature: void dbox= (const DBox box)

Description: Replaces the shape by the given box (in micrometer units)

This method replaces the shape by the given box, like box= with a Box argument does. This
version translates the box from micrometer units to database units internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'box'. This is the setter. The object exposes a writable
attribute 'dbox'. This is the setter.

dedge
Signature: [const] variant dedge

Description: Returns the edge object as a DEdge object in micrometer units

For more details visit
https://www.klayout.org

Page 1237 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

See edge for a description of this method. This method returns the edge after translation to
micrometer units.

This method has been added in version 0.25.

Python specific notes:
The object exposes a readable attribute 'dedge'. This is the getter.

dedge=
Signature: void dedge= (const DEdge edge)

Description: Replaces the shape by the given edge (in micrometer units)

This method replaces the shape by the given edge, like edge= with a Edge argument does. This
version translates the edge from micrometer units to database units internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'edge'. This is the setter. The object exposes a writable
attribute 'dedge'. This is the setter.

dedge_pair
Signature: [const] variant dedge_pair

Description: Returns the edge pair object as a DEdgePair object in micrometer units

See edge_pair for a description of this method. This method returns the edge pair after translation
to micrometer units.

This method has been added in version 0.26.

Python specific notes:
The object exposes a readable attribute 'dedge_pair'. This is the getter.

dedge_pair=
Signature: void dedge_pair= (const DEdgePair edge_pair)

Description: Replaces the shape by the given edge pair (in micrometer units)

This method replaces the shape by the given edge pair, like edge_pair= with a EdgePair argument
does. This version translates the edge pair from micrometer units to database units internally.

This method has been introduced in version 0.26.

Python specific notes:
The object exposes a writable attribute 'edge_pair'. This is the setter. The object exposes a
writable attribute 'dedge_pair'. This is the setter.

delete
Signature: void delete

Description: Deletes the shape

After the shape is deleted, the shape object is emptied and points to nothing.

This method has been introduced in version 0.23.

delete_property
Signature: void delete_property (variant key)

Description: Deletes the user property with the given key

This method is a convenience method that deletes the property with the given key. It does
nothing if no property with that key exists. Using that method is more convenient than creating a
new property set with a new ID and assigning that properties ID. This method may change the
properties ID. Calling this method will invalidate any iterators. It should not be called inside a loop
iterating over shapes.

This method has been introduced in version 0.22.

For more details visit
https://www.klayout.org

Page 1238 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dpath
Signature: [const] variant dpath

Description: Returns the path object as a DPath object in micrometer units

See path for a description of this method. This method returns the path after translation to
micrometer units.

This method has been added in version 0.25.

Python specific notes:
The object exposes a readable attribute 'dpath'. This is the getter.

dpath=
Signature: void dpath= (const DPath path)

Description: Replaces the shape by the given path (in micrometer units)

This method replaces the shape by the given path, like path= with a Path argument does. This
version translates the path from micrometer units to database units internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'path'. This is the setter. The object exposes a writable
attribute 'dpath'. This is the setter.

dperimeter
Signature: [const] double dperimeter

Description: Returns the perimeter of the shape in micrometer units

This method will return an approximation of the perimeter for paths.

This method has been added in version 0.25.

dpolygon
Signature: [const] variant dpolygon

Description: Returns the polygon object in micrometer units

Returns the polygon object that this shape refers to or converts the object to a polygon. The
method returns the same object than polygon, but translates it to micrometer units internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'dpolygon'. This is the getter.

dpolygon=
Signature: void dpolygon= (const DPolygon polygon)

Description: Replaces the shape by the given polygon (in micrometer units)

For more details visit
https://www.klayout.org

Page 1239 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

This method replaces the shape by the given polygon, like polygon= with a Polygon argument
does. This version translates the polygon from micrometer units to database units internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'polygon'. This is the setter. The object exposes a writable
attribute 'dpolygon'. This is the setter.

dsimple_polygon
Signature: [const] variant dsimple_polygon

Description: Returns the simple polygon object in micrometer units

Returns the simple polygon object that this shape refers to or converts the object to a simple
polygon. The method returns the same object than simple_polygon, but translates it to micrometer
units internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'dsimple_polygon'. This is the getter.

dsimple_polygon=
Signature: void dsimple_polygon= (const DSimplePolygon polygon)

Description: Replaces the shape by the given simple polygon (in micrometer units)

This method replaces the shape by the given text, like simple_polygon= with a SimplePolygon
argument does. This version translates the polygon from micrometer units to database units
internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'simple_polygon'. This is the setter. The object exposes a
writable attribute 'dsimple_polygon'. This is the setter.

dtext
Signature: [const] variant dtext

Description: Returns the path object as a DText object in micrometer units

See text for a description of this method. This method returns the text after translation to
micrometer units.

This method has been added in version 0.25.

Python specific notes:
The object exposes a readable attribute 'dtext'. This is the getter.

dtext=
Signature: void dtext= (const DText text)

Description: Replaces the shape by the given text (in micrometer units)

This method replaces the shape by the given text, like text= with a Text argument does. This
version translates the text from micrometer units to database units internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'text'. This is the setter. The object exposes a writable
attribute 'dtext'. This is the setter.

dup
Signature: [const] new Shape ptr dup

Description: Creates a copy of self

each_dedge
(1) Signature: [const,iter] DEdge each_dedge

Description: Iterates over the edges of the object and returns edges in micrometer units

For more details visit
https://www.klayout.org

Page 1240 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

This method iterates over all edges of polygons and simple polygons like each_edge, but will
deliver edges in micrometer units. Multiplication by the database unit is done internally.

This method has been introduced in version 0.25.

(2) Signature: [const,iter] DEdge each_dedge (unsigned int contour)

Description: Iterates over the edges of a single contour of the object and returns edges in
micrometer units

This method iterates over all edges of polygons and simple polygons like each_edge, but will
deliver edges in micrometer units. Multiplication by the database unit is done internally.

This method has been introduced in version 0.25.

each_dpoint
Signature: [const,iter] DPoint each_dpoint

Description: Iterates over all points of the object and returns points in micrometer units

This method iterates over all points of the object like each_point, but it returns DPoint objects that
are given in micrometer units already. Multiplication with the database unit happens internally.

This method has been introduced in version 0.25.

each_dpoint_hole
Signature: [const,iter] DPoint each_dpoint_hole (unsigned int hole_index)

Description: Iterates over a hole contour of the object and returns points in micrometer units

This method iterates over all points of the object's contour' like each_point_hole, but it returns
DPoint objects that are given in micrometer units already. Multiplication with the database unit
happens internally.

This method has been introduced in version 0.25.

each_dpoint_hull
Signature: [const,iter] DPoint each_dpoint_hull

Description: Iterates over the hull contour of the object and returns points in micrometer units

This method iterates over all points of the object's contour' like each_point_hull, but it returns
DPoint objects that are given in micrometer units already. Multiplication with the database unit
happens internally.

This method has been introduced in version 0.25.

(1) Signature: [const,iter] Edge each_edge

Description: Iterates over the edges of the object

This method applies to polygons and simple polygons and delivers all edges that form the
polygon's contours. Hole edges are oriented counterclockwise while hull edges are oriented
clockwise.

It will throw an exception if the object is not a polygon.

each_edge

(2) Signature: [const,iter] Edge each_edge (unsigned int contour)

Description: Iterates over the edges of a single contour of the object

contour: The contour number (0 for hull, 1 for first hole ...)

This method applies to polygons and simple polygons and delivers all edges that form the given
contour of the polygon. The hull has contour number 0, the first hole has contour 1 etc. Hole edges
are oriented counterclockwise while hull edges are oriented clockwise.

It will throw an exception if the object is not a polygon.

For more details visit
https://www.klayout.org

Page 1241 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

This method was introduced in version 0.24.

each_point
Signature: [const,iter] Point each_point

Description: Iterates over all points of the object

This method applies to paths and delivers all points of the path's center line. It will throw an
exception for other objects.

each_point_hole
Signature: [const,iter] Point each_point_hole (unsigned int hole_index)

Description: Iterates over the points of a hole contour

hole: The hole index (see holes () method)

This method applies to polygons and delivers all points of the respective hole contour. It will throw
an exception for other objects. Simple polygons deliver an empty sequence.

each_point_hull
Signature: [const,iter] Point each_point_hull

Description: Iterates over the hull contour of the object

This method applies to polygons and delivers all points of the polygon hull contour. It will throw an
exception for other objects.

edge
Signature: [const] variant edge

Description: Returns the edge object

Starting with version 0.23, this method returns nil, if the shape does not represent an edge.

Python specific notes:
The object exposes a readable attribute 'edge'. This is the getter.

(1) Signature: void edge= (const Edge edge)

Description: Replaces the shape by the given edge

This method replaces the shape by the given edge. This method can only be called for editable
layouts. It does not change the user properties of the shape. Calling this method will invalidate any
iterators. It should not be called inside a loop iterating over shapes.

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a writable attribute 'edge'. This is the setter.

edge=

(2) Signature: void edge= (const DEdge edge)

Description: Replaces the shape by the given edge (in micrometer units)

This method replaces the shape by the given edge, like edge= with a Edge argument does. This
version translates the edge from micrometer units to database units internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'edge'. This is the setter. The object exposes a writable
attribute 'dedge'. This is the setter.

edge_pair
Signature: [const] variant edge_pair

Description: Returns the edge pair object

This method has been introduced in version 0.26.

For more details visit
https://www.klayout.org

Page 1242 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

Python specific notes:
The object exposes a readable attribute 'edge_pair'. This is the getter.

(1) Signature: void edge_pair= (const EdgePair edge_pair)

Description: Replaces the shape by the given edge pair

This method replaces the shape by the given edge pair. This method can only be called for
editable layouts. It does not change the user properties of the shape. Calling this method will
invalidate any iterators. It should not be called inside a loop iterating over shapes.

This method has been introduced in version 0.26.

Python specific notes:
The object exposes a writable attribute 'edge_pair'. This is the setter.

edge_pair=

(2) Signature: void edge_pair= (const DEdgePair edge_pair)

Description: Replaces the shape by the given edge pair (in micrometer units)

This method replaces the shape by the given edge pair, like edge_pair= with a EdgePair argument
does. This version translates the edge pair from micrometer units to database units internally.

This method has been introduced in version 0.26.

Python specific notes:
The object exposes a writable attribute 'edge_pair'. This is the setter. The object exposes a
writable attribute 'dedge_pair'. This is the setter.

has_prop_id?
Signature: [const] bool has_prop_id?

Description: Returns true, if the shape has properties, i.e. has a properties ID

holes
Signature: [const] unsigned int holes

Description: Returns the number of holes

This method applies to polygons and will throw an exception for other objects.. Simple polygons
deliver a value of zero.

is_array_member?
Signature: [const] bool is_array_member?

Description: Returns true, if the shape is a member of a shape array

is_box?
Signature: [const] bool is_box?

Description: Returns true if the shape is a box

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

is_edge?
Signature: [const] bool is_edge?

Description: Returns true, if the object is an edge

is_edge_pair?
Signature: [const] bool is_edge_pair?

Description: Returns true, if the object is an edge pair

For more details visit
https://www.klayout.org

Page 1243 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

This method has been introduced in version 0.26.

is_null?
Signature: [const] bool is_null?

Description: Returns true, if the shape reference is a null reference (not referring to a shape)

is_path?
Signature: [const] bool is_path?

Description: Returns true, if the shape is a path

is_polygon?
Signature: [const] bool is_polygon?

Description: Returns true, if the shape is a polygon

This method returns true only if the object is a polygon or a simple polygon. Other objects can
convert to polygons, for example paths, so it may be possible to use the polygon method also if
is_polygon? does not return true.

is_simple_polygon?
Signature: [const] bool is_simple_polygon?

Description: Returns true, if the shape is a simple polygon

This method returns true only if the object is a simple polygon. The simple polygon identity is
contained in the polygon identity, so usually it is sufficient to use is_polygon? and polygon instead
of specifically handle simply polygons. This method is provided only for specific optimisation
purposes.

is_text?
Signature: [const] bool is_text?

Description: Returns true, if the object is a text

is_user_object?
Signature: [const] bool is_user_object?

Description: Returns true if the shape is a user defined object

is_valid?
Signature: [const] bool is_valid?

Description: Returns true, if the shape is valid

After the shape is deleted, the shape object is no longer valid and this method returns false.

This method has been introduced in version 0.23.

layer
Signature: [const] unsigned int layer

Description: Returns the layer index of the layer the shape is on

Throws an exception if the shape does not reside inside a cell.

This method has been added in version 0.23.

Python specific notes:
The object exposes a readable attribute 'layer'. This is the getter.

layer=
Signature: void layer= (unsigned int layer_index)

Description: Moves the shape to a layer given by the layer index object

This method has been added in version 0.23.

Python specific notes:
The object exposes a writable attribute 'layer'. This is the setter.

For more details visit
https://www.klayout.org

Page 1244 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

layer_info
Signature: [const] LayerInfo layer_info

Description: Returns the LayerInfo object of the layer the shape is on

If the shape does not reside inside a cell, an empty layer is returned.

This method has been added in version 0.23.

Python specific notes:
The object exposes a readable attribute 'layer_info'. This is the getter.

layer_info=
Signature: void layer_info= (const LayerInfo layer_info)

Description: Moves the shape to a layer given by a LayerInfo object

If no layer with the given properties exists, an exception is thrown.

This method has been added in version 0.23.

Python specific notes:
The object exposes a writable attribute 'layer_info'. This is the setter.

layout
Signature: Layout ptr layout

Description: Gets a reference to the Layout the shape belongs to

This reference can be nil, if the Shape object is not living inside a layout.

This method has been introduced in version 0.22.

new
Signature: [static] new Shape ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

path
Signature: [const] variant path

Description: Returns the path object

Starting with version 0.23, this method returns nil, if the shape does not represent a path.

Python specific notes:
The object exposes a readable attribute 'path'. This is the getter.

(1) Signature: void path= (const Path box)

Description: Replaces the shape by the given path object

This method replaces the shape by the given path object. This method can only be called for
editable layouts. It does not change the user properties of the shape. Calling this method will
invalidate any iterators. It should not be called inside a loop iterating over shapes.

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a writable attribute 'path'. This is the setter.

path=

(2) Signature: void path= (const DPath path)

Description: Replaces the shape by the given path (in micrometer units)

This method replaces the shape by the given path, like path= with a Path argument does. This
version translates the path from micrometer units to database units internally.

This method has been introduced in version 0.25.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1245 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

The object exposes a writable attribute 'path'. This is the setter. The object exposes a writable
attribute 'dpath'. This is the setter.

path_bgnext
Signature: [const] int path_bgnext

Description: Gets the path's starting vertex extension

Applies to paths only. Will throw an exception if the object is not a path.

Python specific notes:
The object exposes a readable attribute 'path_bgnext'. This is the getter.

path_bgnext=
Signature: void path_bgnext= (int e)

Description: Sets the path's starting vertex extension

Applies to paths only. Will throw an exception if the object is not a path.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'path_bgnext'. This is the setter.

path_dbgnext
Signature: [const] double path_dbgnext

Description: Gets the path's starting vertex extension in micrometer units

Applies to paths only. Will throw an exception if the object is not a path.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'path_dbgnext'. This is the getter.

path_dbgnext=
Signature: void path_dbgnext= (double e)

Description: Sets the path's starting vertex extension in micrometer units

Applies to paths only. Will throw an exception if the object is not a path.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'path_dbgnext'. This is the setter.

path_dendext
Signature: [const] double path_dendext

Description: Gets the path's end vertex extension in micrometer units

Applies to paths only. Will throw an exception if the object is not a path.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'path_dendext'. This is the getter.

path_dendext=
Signature: void path_dendext= (double e)

Description: Sets the path's end vertex extension in micrometer units

Applies to paths only. Will throw an exception if the object is not a path.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'path_dendext'. This is the setter.

For more details visit
https://www.klayout.org

Page 1246 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

path_dlength
Signature: [const] double path_dlength

Description: Returns the length of the path in micrometer units

Applies to paths only. Will throw an exception if the object is not a path. This method returns the
length of the spine plus extensions if present. The value returned is given in micrometer units.

This method has been added in version 0.25.

path_dwidth
Signature: [const] double path_dwidth

Description: Gets the path width in micrometer units

Applies to paths only. Will throw an exception if the object is not a path.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'path_dwidth'. This is the getter.

path_dwidth=
Signature: void path_dwidth= (double w)

Description: Sets the path width in micrometer units

Applies to paths only. Will throw an exception if the object is not a path. Conversion to database
units is done internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'path_dwidth'. This is the setter.

path_endext
Signature: [const] int path_endext

Description: Obtain the path's end vertex extension

Applies to paths only. Will throw an exception if the object is not a path.

Python specific notes:
The object exposes a readable attribute 'path_endext'. This is the getter.

path_endext=
Signature: void path_endext= (int e)

Description: Sets the path's end vertex extension

Applies to paths only. Will throw an exception if the object is not a path.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'path_endext'. This is the setter.

path_length
Signature: [const] int path_length

Description: Returns the length of the path

Applies to paths only. Will throw an exception if the object is not a path. This method returns the
length of the spine plus extensions if present.

This method has been added in version 0.23.

path_width
Signature: [const] int path_width

Description: Gets the path width

Applies to paths only. Will throw an exception if the object is not a path.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1247 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

The object exposes a readable attribute 'path_width'. This is the getter.

path_width=
Signature: void path_width= (int w)

Description: Sets the path width

Applies to paths only. Will throw an exception if the object is not a path.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'path_width'. This is the setter.

perimeter
Signature: [const] unsigned long perimeter

Description: Returns the perimeter of the shape

This method will return an approximation of the perimeter for paths.

This method has been added in version 0.23.

polygon
Signature: [const] variant polygon

Description: Returns the polygon object

Returns the polygon object that this shape refers to or converts the object to a polygon. Paths,
boxes and simple polygons are converted to polygons. For paths this operation renders the path's
hull contour.

Starting with version 0.23, this method returns nil, if the shape does not represent a geometrical
primitive that can be converted to a polygon.

Python specific notes:
The object exposes a readable attribute 'polygon'. This is the getter.

(1) Signature: void polygon= (const Polygon box)

Description: Replaces the shape by the given polygon object

This method replaces the shape by the given polygon object. This method can only be called
for editable layouts. It does not change the user properties of the shape. Calling this method will
invalidate any iterators. It should not be called inside a loop iterating over shapes.

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a writable attribute 'polygon'. This is the setter.

polygon=

(2) Signature: void polygon= (const DPolygon polygon)

Description: Replaces the shape by the given polygon (in micrometer units)

This method replaces the shape by the given polygon, like polygon= with a Polygon argument
does. This version translates the polygon from micrometer units to database units internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'polygon'. This is the setter. The object exposes a writable
attribute 'dpolygon'. This is the setter.

prop_id
Signature: [const] unsigned long prop_id

Description: Gets the properties ID associated with the shape

The Layout object can be used to retrieve the actual properties associated with the ID.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1248 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

The object exposes a readable attribute 'prop_id'. This is the getter.

prop_id=
Signature: void prop_id= (unsigned long arg1)

Description: Sets the properties ID of this shape

The Layout object can be used to retrieve an ID for a given set of properties. Calling this method
will invalidate any iterators. It should not be called inside a loop iterating over shapes.

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a writable attribute 'prop_id'. This is the setter.

property
Signature: [const] variant property (variant key)

Description: Gets the user property with the given key

This method is a convenience method that gets the property with the given key. If no property
with that key does not exist, it will return nil. Using that method is more convenient than using the
layout object and the properties ID to retrieve the property value. This method has been introduced
in version 0.22.

round_path=
Signature: void round_path= (bool r)

Description: The path will be a round-ended path if this property is set to true

Applies to paths only. Will throw an exception if the object is not a path. Please note that the
extensions will apply as well. To get a path with circular ends, set the begin and end extensions to
half the path's width.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'round_path'. This is the setter.

round_path?
Signature: [const] bool round_path?

Description: Returns true, if the path has round ends

Applies to paths only. Will throw an exception if the object is not a path.

Python specific notes:
The object exposes a readable attribute 'round_path'. This is the getter.

set_property
Signature: void set_property (variant key, variant value)

Description: Sets the user property with the given key to the given value

This method is a convenience method that sets the property with the given key to the given value.
If no property with that key exists, it will create one. Using that method is more convenient than
creating a new property set with a new ID and assigning that properties ID. This method may
change the properties ID. Note: GDS only supports integer keys. OASIS supports numeric and
string keys. Calling this method will invalidate any iterators. It should not be called inside a loop
iterating over shapes.

This method has been introduced in version 0.22.

shapes
Signature: Shapes ptr shapes

Description: Gets a reference to the Shapes container the shape lives in

This reference can be nil, if the Shape object is not referring to an actual shape.

This method has been introduced in version 0.22.

For more details visit
https://www.klayout.org

Page 1249 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

simple_polygon
Signature: [const] variant simple_polygon

Description: Returns the simple polygon object

Returns the simple polygon object that this shape refers to or converts the object to a simple
polygon. Paths, boxes and polygons are converted to simple polygons. Polygons with holes will
have their holes removed but introducing cut lines that connect the hole contours with the outer
contour. Starting with version 0.23, this method returns nil, if the shape does not represent a
geometrical primitive that can be converted to a simple polygon.

Python specific notes:
The object exposes a readable attribute 'simple_polygon'. This is the getter.

(1) Signature: void simple_polygon= (const SimplePolygon polygon)

Description: Replaces the shape by the given simple polygon object

This method replaces the shape by the given simple polygon object. This method can only be
called for editable layouts. It does not change the user properties of the shape. Calling this method
will invalidate any iterators. It should not be called inside a loop iterating over shapes.

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a writable attribute 'simple_polygon'. This is the setter.

simple_polygon=

(2) Signature: void simple_polygon= (const DSimplePolygon polygon)

Description: Replaces the shape by the given simple polygon (in micrometer units)

This method replaces the shape by the given text, like simple_polygon= with a SimplePolygon
argument does. This version translates the polygon from micrometer units to database units
internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'simple_polygon'. This is the setter. The object exposes a
writable attribute 'dsimple_polygon'. This is the setter.

t_box
Signature: [static] int t_box

Description:

Use of this method is deprecated. Use TBox instead

t_box_array
Signature: [static] int t_box_array

Description:

Use of this method is deprecated. Use TBoxArray instead

t_box_array_member
Signature: [static] int t_box_array_member

Description:

Use of this method is deprecated. Use TBoxArrayMember instead

t_edge
Signature: [static] int t_edge

Description:

Use of this method is deprecated. Use TEdge instead

For more details visit
https://www.klayout.org

Page 1250 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

t_edge_pair
Signature: [static] int t_edge_pair

Description:

Use of this method is deprecated. Use TEdgePair instead

t_null
Signature: [static] int t_null

Description:

Use of this method is deprecated. Use TNull instead

t_path
Signature: [static] int t_path

Description:

Use of this method is deprecated. Use TPath instead

t_path_ptr_array
Signature: [static] int t_path_ptr_array

Description:

Use of this method is deprecated. Use TPathPtrArray instead

t_path_ptr_array_member
Signature: [static] int t_path_ptr_array_member

Description:

Use of this method is deprecated. Use TPathPtrArrayMember instead

t_path_ref
Signature: [static] int t_path_ref

Description:

Use of this method is deprecated. Use TPathRef instead

t_polygon
Signature: [static] int t_polygon

Description:

Use of this method is deprecated. Use TPolygon instead

t_polygon_ptr_array
Signature: [static] int t_polygon_ptr_array

Description:

Use of this method is deprecated. Use TPolygonPtrArray instead

t_polygon_ptr_array_member
Signature: [static] int t_polygon_ptr_array_member

Description:

Use of this method is deprecated. Use TPolygonPtrArrayMember instead

t_polygon_ref
Signature: [static] int t_polygon_ref

Description:

Use of this method is deprecated. Use TPolygonRef instead

t_short_box
Signature: [static] int t_short_box

Description:

Use of this method is deprecated. Use TShortBox instead

For more details visit
https://www.klayout.org

Page 1251 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

t_short_box_array
Signature: [static] int t_short_box_array

Description:

Use of this method is deprecated. Use TShortBoxArray instead

t_short_box_array_member
Signature: [static] int t_short_box_array_member

Description:

Use of this method is deprecated. Use TShortBoxArrayMember instead

t_simple_polygon
Signature: [static] int t_simple_polygon

Description:

Use of this method is deprecated. Use TSimplePolygon instead

t_simple_polygon_ptr_array
Signature: [static] int t_simple_polygon_ptr_array

Description:

Use of this method is deprecated. Use TSimplePolygonPtrArray instead

t_simple_polygon_ptr_array_member
Signature: [static] int t_simple_polygon_ptr_array_member

Description:

Use of this method is deprecated. Use TSimplePolygonPtrArrayMember instead

t_simple_polygon_ref
Signature: [static] int t_simple_polygon_ref

Description:

Use of this method is deprecated. Use TSimplePolygonRef instead

t_text
Signature: [static] int t_text

Description:

Use of this method is deprecated. Use TText instead

t_text_ptr_array
Signature: [static] int t_text_ptr_array

Description:

Use of this method is deprecated. Use TTextPtrArray instead

t_text_ptr_array_member
Signature: [static] int t_text_ptr_array_member

Description:

Use of this method is deprecated. Use TTextPtrArrayMember instead

t_text_ref
Signature: [static] int t_text_ref

Description:

Use of this method is deprecated. Use TTextRef instead

t_user_object
Signature: [static] int t_user_object

Description:

Use of this method is deprecated. Use TUserObject instead

For more details visit
https://www.klayout.org

Page 1252 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

text
Signature: [const] variant text

Description: Returns the text object

Starting with version 0.23, this method returns nil, if the shape does not represent a text.

Python specific notes:
The object exposes a readable attribute 'text'. This is the getter.

(1) Signature: void text= (const Text box)

Description: Replaces the shape by the given text object

This method replaces the shape by the given text object. This method can only be called for
editable layouts. It does not change the user properties of the shape. Calling this method will
invalidate any iterators. It should not be called inside a loop iterating over shapes.

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a writable attribute 'text'. This is the setter.

text=

(2) Signature: void text= (const DText text)

Description: Replaces the shape by the given text (in micrometer units)

This method replaces the shape by the given text, like text= with a Text argument does. This
version translates the text from micrometer units to database units internally.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'text'. This is the setter. The object exposes a writable
attribute 'dtext'. This is the setter.

text_dpos
Signature: [const] DVector text_dpos

Description: Gets the text's position in micrometer units

Applies to texts only. Will throw an exception if the object is not a text.

This method has been added in version 0.25.

Python specific notes:
The object exposes a readable attribute 'text_dpos'. This is the getter.

text_dpos=
Signature: void text_dpos= (const DVector p)

Description: Sets the text's position in micrometer units

Applies to texts only. Will throw an exception if the object is not a text.

This method has been added in version 0.25.

Python specific notes:
The object exposes a writable attribute 'text_pos'. This is the setter. The object exposes a writable
attribute 'text_dpos'. This is the setter.

text_dsize
Signature: [const] double text_dsize

Description: Gets the text size in micrometer units

Applies to texts only. Will throw an exception if the object is not a text.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'text_dsize'. This is the getter.

For more details visit
https://www.klayout.org

Page 1253 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

text_dsize=
Signature: void text_dsize= (double size)

Description: Sets the text size in micrometer units

Applies to texts only. Will throw an exception if the object is not a text.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'text_dsize'. This is the setter.

text_dtrans
Signature: [const] DTrans text_dtrans

Description: Gets the text transformation in micrometer units

Applies to texts only. Will throw an exception if the object is not a text.

This method has been added in version 0.25.

Python specific notes:
The object exposes a readable attribute 'text_dtrans'. This is the getter.

text_dtrans=
Signature: void text_dtrans= (const DTrans trans)

Description: Sets the text transformation in micrometer units

Applies to texts only. Will throw an exception if the object is not a text.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'text_trans'. This is the setter. The object exposes a
writable attribute 'text_dtrans'. This is the setter.

text_font
Signature: [const] int text_font

Description: Gets the text's font

Applies to texts only. Will throw an exception if the object is not a text.

Python specific notes:
The object exposes a readable attribute 'text_font'. This is the getter.

text_font=
Signature: void text_font= (int font)

Description: Sets the text's font

Applies to texts only. Will throw an exception if the object is not a text.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'text_font'. This is the setter.

text_halign
Signature: [const] int text_halign

Description: Gets the text's horizontal alignment

Applies to texts only. Will throw an exception if the object is not a text. The return value is 0 for left
alignment, 1 for center alignment and 2 to right alignment.

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'text_halign'. This is the getter.

For more details visit
https://www.klayout.org

Page 1254 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

text_halign=
Signature: void text_halign= (int a)

Description: Sets the text's horizontal alignment

Applies to texts only. Will throw an exception if the object is not a text. See text_halign for a
description of that property.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'text_halign'. This is the setter.

text_pos
Signature: [const] Vector text_pos

Description: Gets the text's position

Applies to texts only. Will throw an exception if the object is not a text.

Python specific notes:
The object exposes a readable attribute 'text_pos'. This is the getter.

(1) Signature: void text_pos= (const Vector p)

Description: Sets the text's position

Applies to texts only. Will throw an exception if the object is not a text.

Python specific notes:
The object exposes a writable attribute 'text_pos'. This is the setter.

text_pos=

(2) Signature: void text_pos= (const DVector p)

Description: Sets the text's position in micrometer units

Applies to texts only. Will throw an exception if the object is not a text.

This method has been added in version 0.25.

Python specific notes:
The object exposes a writable attribute 'text_pos'. This is the setter. The object exposes a writable
attribute 'text_dpos'. This is the setter.

text_rot
Signature: [const] int text_rot

Description: Gets the text's orientation code (see Trans)

Applies to texts only. Will throw an exception if the object is not a text.

Python specific notes:
The object exposes a readable attribute 'text_rot'. This is the getter.

text_rot=
Signature: void text_rot= (int o)

Description: Sets the text's orientation code (see Trans)

Applies to texts only. Will throw an exception if the object is not a text.

Python specific notes:
The object exposes a writable attribute 'text_rot'. This is the setter.

text_size
Signature: [const] int text_size

Description: Gets the text size

Applies to texts only. Will throw an exception if the object is not a text.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1255 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

The object exposes a readable attribute 'text_size'. This is the getter.

text_size=
Signature: void text_size= (int size)

Description: Sets the text size

Applies to texts only. Will throw an exception if the object is not a text.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'text_size'. This is the setter.

text_string
Signature: [const] string text_string

Description: Obtain the text string

Applies to texts only. Will throw an exception if the object is not a text.

Python specific notes:
The object exposes a readable attribute 'text_string'. This is the getter.

text_string=
Signature: void text_string= (string string)

Description: Sets the text string

Applies to texts only. Will throw an exception if the object is not a text.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'text_string'. This is the setter.

text_trans
Signature: [const] Trans text_trans

Description: Gets the text transformation

Applies to texts only. Will throw an exception if the object is not a text.

Python specific notes:
The object exposes a readable attribute 'text_trans'. This is the getter.

(1) Signature: void text_trans= (const Trans trans)

Description: Sets the text transformation

Applies to texts only. Will throw an exception if the object is not a text.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'text_trans'. This is the setter.

text_trans=

(2) Signature: void text_trans= (const DTrans trans)

Description: Sets the text transformation in micrometer units

Applies to texts only. Will throw an exception if the object is not a text.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'text_trans'. This is the setter. The object exposes a
writable attribute 'text_dtrans'. This is the setter.

text_valign
Signature: [const] int text_valign

For more details visit
https://www.klayout.org

Page 1256 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.71. API reference - Class Shape

Description: Gets the text's vertical alignment

Applies to texts only. Will throw an exception if the object is not a text. The return value is 0 for top
alignment, 1 for center alignment and 2 to bottom alignment.

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'text_valign'. This is the getter.

text_valign=
Signature: void text_valign= (int a)

Description: Sets the text's vertical alignment

Applies to texts only. Will throw an exception if the object is not a text. See text_valign for a
description of that property.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'text_valign'. This is the setter.

to_s
Signature: [const] string to_s

Description: Create a string showing the contents of the reference

This method has been introduced with version 0.16.

Python specific notes:
This method is also available as 'str(object)'

(1) Signature: void transform (const Trans trans)

Description: Transforms the shape with the given transformation

This method has been introduced in version 0.23.

(2) Signature: void transform (const DTrans trans)

Description: Transforms the shape with the given transformation, given in micrometer units

This method has been introduced in version 0.25.

(3) Signature: void transform (const ICplxTrans trans)

Description: Transforms the shape with the given complex transformation

This method has been introduced in version 0.23.

transform

(4) Signature: void transform (const DCplxTrans trans)

Description: Transforms the shape with the given complex transformation, given in micrometer
units

This method has been introduced in version 0.25.

type
Signature: [const] int type

Description: Return the type of the shape

The returned values are the t_... constants available through the corresponding class members.

For more details visit
https://www.klayout.org

Page 1257 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.72. API reference - Class ShapeProcessor

4.72. API reference - Class ShapeProcessor
Notation used in Ruby API documentation

Module: db

Description: The shape processor (boolean, sizing, merge on shapes)

The shape processor implements the boolean and edge set operations (size, merge). Because the shape processor might allocate
resources which can be reused in later operations, it is implemented as an object that can be used several times. The shape processor is
similar to the EdgeProcessor. The latter is specialized on handling polygons and edges directly.

Public constructors

new ShapeProcessor ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether
the object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether
the reference is a const reference

void _manage Marks the object as managed by
the script side.

void _unmanage Marks the object as no longer
owned by the script side.

void assign (const ShapeProcessor other) Assigns another object to self

void boolean (const Layout layout_a,
const Cell cell_a,
unsigned int layer_a,
const Layout layout_b,
const Cell cell_b,
unsigned int layer_b,
Shapes out,
int mode,
bool hierarchical,
bool resolve_holes,
bool min_coherence)

Boolean operation on shapes from
layouts

Edge[] boolean (Shape[] in_a,
CplxTrans[] trans_a,
Shape[] in_b,
CplxTrans[] trans_b,
int mode)

Boolean operation on two given
shape sets into an edge set

Edge[] boolean (Shape[] in_a,
Shape[] in_b,
int mode)

Boolean operation on two given
shape sets into an edge set

For more details visit
https://www.klayout.org

Page 1258 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.72. API reference - Class ShapeProcessor

Polygon[] boolean_to_polygon (Shape[] in_a,
CplxTrans[] trans_a,
Shape[] in_b,
CplxTrans[] trans_b,
int mode,
bool resolve_holes,
bool min_coherence)

Boolean operation on two given
shape sets into a polygon set

Polygon[] boolean_to_polygon (Shape[] in_a,
Shape[] in_b,
int mode,
bool resolve_holes,
bool min_coherence)

Boolean operation on two given
shape sets into a polygon set

[const] new
ShapeProcessor
ptr

dup Creates a copy of self

void merge (const Layout layout,
const Cell cell,
unsigned int layer,
Shapes out,
bool hierarchical,
unsigned int min_wc,
bool resolve_holes,
bool min_coherence)

Merge the given shapes from a
layout into a shapes container

Edge[] merge (Shape[] in,
CplxTrans[] trans,
unsigned int min_wc)

Merge the given shapes

Edge[] merge (Shape[] in,
unsigned int min_wc)

Merge the given shapes

Polygon[] merge_to_polygon (Shape[] in,
CplxTrans[] trans,
unsigned int min_wc,
bool resolve_holes,
bool min_coherence)

Merge the given shapes

Polygon[] merge_to_polygon (Shape[] in,
unsigned int min_wc,
bool resolve_holes,
bool min_coherence)

Merge the given shapes

void size (const Layout layout,
const Cell cell,
unsigned int layer,
Shapes out,
int dx,
int dy,
unsigned int mode,
bool hierarchical,
bool resolve_holes,
bool min_coherence)

Sizing operation on shapes from
layouts

void size (const Layout layout,
const Cell cell,
unsigned int layer,
Shapes out,

Sizing operation on shapes from
layouts

For more details visit
https://www.klayout.org

Page 1259 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.72. API reference - Class ShapeProcessor

int d,
unsigned int mode,
bool hierarchical,
bool resolve_holes,
bool min_coherence)

Edge[] size (Shape[] in,
CplxTrans[] trans,
int d,
unsigned int mode)

Size the given shapes

Edge[] size (Shape[] in,
CplxTrans[] trans,
int dx,
int dy,
unsigned int mode)

Size the given shapes

Edge[] size (Shape[] in,
int d,
unsigned int mode)

Size the given shapes

Edge[] size (Shape[] in,
int dx,
int dy,
unsigned int mode)

Size the given shapes

Polygon[] size_to_polygon (Shape[] in,
CplxTrans[] trans,
int d,
unsigned int mode,
bool resolve_holes,
bool min_coherence)

Size the given shapes

Polygon[] size_to_polygon (Shape[] in,
CplxTrans[] trans,
int dx,
int dy,
unsigned int mode,
bool resolve_holes,
bool min_coherence)

Size the given shapes

Polygon[] size_to_polygon (Shape[] in,
int d,
unsigned int mode,
bool resolve_holes,
bool min_coherence)

Size the given shapes

Polygon[] size_to_polygon (Shape[] in,
int dx,
int dy,
unsigned int mode,
bool resolve_holes,
bool min_coherence)

Size the given shapes

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

For more details visit
https://www.klayout.org

Page 1260 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.72. API reference - Class ShapeProcessor

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called on
self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it is
known that some C++ object holds and manages this object. Technically speaking, this method will
turn the script's reference into a weak reference. After the script engine decides to delete the reference,
the object itself will still exist. If the object is not managed otherwise, memory leaks will occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1261 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.72. API reference - Class ShapeProcessor

assign
Signature: void assign (const ShapeProcessor other)

Description: Assigns another object to self

(1) Signature: void boolean (const Layout layout_a, const Cell cell_a, unsigned int layer_a, const
Layout layout_b, const Cell cell_b, unsigned int layer_b, Shapes out, int mode, bool hierarchical, bool
resolve_holes, bool min_coherence)

Description: Boolean operation on shapes from layouts

layout_a: The layout from which to take the shapes for input A

cell_a: The cell (in 'layout') from which to take the shapes for input A

layer_a: The cell (in 'layout') from which to take the shapes for input A

layout_b: The layout from which to take the shapes for input B

cell_b: The cell (in 'layout') from which to take the shapes for input B

layer_b: The cell (in 'layout') from which to take the shapes for input B

out: The shapes container where to put the shapes into (is cleared
before)

mode: The boolean operation (see EdgeProcessor)

hierarchical: Collect shapes from sub cells as well

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if minimum polygons should be created for touching corners

See the EdgeProcessor for a description of the boolean operations. This implementation takes shapes
from layout cells (optionally all in hierarchy) and produces new shapes in a shapes container.

(2) Signature: Edge[] boolean (Shape[] in_a, CplxTrans[] trans_a, Shape[] in_b, CplxTrans[] trans_b,
int mode)

Description: Boolean operation on two given shape sets into an edge set

in_a: The set of shapes to use for input A

trans_a: A set of transformations to apply before the shapes are used

in_b: The set of shapes to use for input A

trans_b: A set of transformations to apply before the shapes are used

mode: The boolean operation (see EdgeProcessor)

See the EdgeProcessor for a description of the boolean operations. This implementation takes shapes
rather than polygons for input and produces an edge set.

boolean

(3) Signature: Edge[] boolean (Shape[] in_a, Shape[] in_b, int mode)

Description: Boolean operation on two given shape sets into an edge set

in_a: The set of shapes to use for input A

in_b: The set of shapes to use for input A

mode: The boolean operation (see EdgeProcessor)

See the EdgeProcessor for a description of the boolean operations. This implementation takes shapes
rather than polygons for input and produces an edge set.

This version does not feature a transformation for each shape (unity is assumed).

boolean_to_polygon
(1) Signature: Polygon[] boolean_to_polygon (Shape[] in_a, CplxTrans[] trans_a, Shape[] in_b,
CplxTrans[] trans_b, int mode, bool resolve_holes, bool min_coherence)

For more details visit
https://www.klayout.org

Page 1262 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.72. API reference - Class ShapeProcessor

Description: Boolean operation on two given shape sets into a polygon set

in_a: The set of shapes to use for input A

trans_a: A set of transformations to apply before the shapes are used

in_b: The set of shapes to use for input A

trans_b: A set of transformations to apply before the shapes are used

mode: The boolean operation (see EdgeProcessor)

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if minimum polygons should be created for touching
corners

See the EdgeProcessor for a description of the boolean operations. This implementation takes shapes
rather than polygons for input and produces a polygon set.

(2) Signature: Polygon[] boolean_to_polygon (Shape[] in_a, Shape[] in_b, int mode, bool
resolve_holes, bool min_coherence)

Description: Boolean operation on two given shape sets into a polygon set

in_a: The set of shapes to use for input A

in_b: The set of shapes to use for input A

mode: The boolean operation (see EdgeProcessor)

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if minimum polygons should be created for touching
corners

See the EdgeProcessor for a description of the boolean operations. This implementation takes shapes
rather than polygons for input and produces a polygon set.

This version does not feature a transformation for each shape (unity is assumed).

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

For more details visit
https://www.klayout.org

Page 1263 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.72. API reference - Class ShapeProcessor

dup
Signature: [const] new ShapeProcessor ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called on
self.

(1) Signature: void merge (const Layout layout, const Cell cell, unsigned int layer, Shapes out, bool
hierarchical, unsigned int min_wc, bool resolve_holes, bool min_coherence)

Description: Merge the given shapes from a layout into a shapes container

layout: The layout from which to take the shapes

cell: The cell (in 'layout') from which to take the shapes

layer: The cell (in 'layout') from which to take the shapes

out: The shapes container where to put the shapes into (is cleared
before)

hierarchical: Collect shapes from sub cells as well

min_wc: The minimum wrap count for output (0: all polygons, 1: at least
two overlapping)

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if minimum polygons should be created for touching corners

See the EdgeProcessor for a description of the merge method. This implementation takes shapes from
a layout cell (optionally all in hierarchy) and produces new shapes in a shapes container.

(2) Signature: Edge[] merge (Shape[] in, CplxTrans[] trans, unsigned int min_wc)

Description: Merge the given shapes

in: The set of shapes to merge

trans: A corresponding set of transformations to apply on the shapes

min_wc: The minimum wrap count for output (0: all polygons, 1: at least two
overlapping)

See the EdgeProcessor for a description of the merge method. This implementation takes shapes
rather than polygons for input and produces an edge set.

merge

(3) Signature: Edge[] merge (Shape[] in, unsigned int min_wc)

Description: Merge the given shapes

in: The set of shapes to merge

min_wc: The minimum wrap count for output (0: all polygons, 1: at least two
overlapping)

See the EdgeProcessor for a description of the merge method. This implementation takes shapes
rather than polygons for input and produces an edge set.

This version does not feature a transformation for each shape (unity is assumed).

merge_to_polygon
(1) Signature: Polygon[] merge_to_polygon (Shape[] in, CplxTrans[] trans, unsigned int min_wc,
bool resolve_holes, bool min_coherence)

For more details visit
https://www.klayout.org

Page 1264 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.72. API reference - Class ShapeProcessor

Description: Merge the given shapes

in: The set of shapes to merge

trans: A corresponding set of transformations to apply on the shapes

min_wc: The minimum wrap count for output (0: all polygons, 1: at least
two overlapping)

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if minimum polygons should be created for touching corners

See the EdgeProcessor for a description of the merge method. This implementation takes shapes
rather than polygons for input and produces a polygon set.

(2) Signature: Polygon[] merge_to_polygon (Shape[] in, unsigned int min_wc, bool resolve_holes,
bool min_coherence)

Description: Merge the given shapes

in: The set of shapes to merge

min_wc: The minimum wrap count for output (0: all polygons, 1: at least
two overlapping)

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if minimum polygons should be created for touching corners

See the EdgeProcessor for a description of the merge method. This implementation takes shapes
rather than polygons for input and produces a polygon set.

This version does not feature a transformation for each shape (unity is assumed).

new
Signature: [static] new ShapeProcessor ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

(1) Signature: void size (const Layout layout, const Cell cell, unsigned int layer, Shapes out, int dx,
int dy, unsigned int mode, bool hierarchical, bool resolve_holes, bool min_coherence)

Description: Sizing operation on shapes from layouts

layout: The layout from which to take the shapes

cell: The cell (in 'layout') from which to take the shapes

layer: The cell (in 'layout') from which to take the shapes

out: The shapes container where to put the shapes into (is cleared
before)

dx: The sizing value in x-direction (see EdgeProcessor)

dy: The sizing value in y-direction (see EdgeProcessor)

mode: The sizing mode (see EdgeProcessor)

hierarchical: Collect shapes from sub cells as well

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if minimum polygons should be created for touching corners

See the EdgeProcessor for a description of the sizing operation. This implementation takes shapes
from a layout cell (optionally all in hierarchy) and produces new shapes in a shapes container.

size

For more details visit
https://www.klayout.org

Page 1265 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.72. API reference - Class ShapeProcessor

(2) Signature: void size (const Layout layout, const Cell cell, unsigned int layer, Shapes out, int d,
unsigned int mode, bool hierarchical, bool resolve_holes, bool min_coherence)

Description: Sizing operation on shapes from layouts

layout: The layout from which to take the shapes

cell: The cell (in 'layout') from which to take the shapes

layer: The cell (in 'layout') from which to take the shapes

out: The shapes container where to put the shapes into (is cleared
before)

d: The sizing value (see EdgeProcessor)

mode: The sizing mode (see EdgeProcessor)

hierarchical: Collect shapes from sub cells as well

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if minimum polygons should be created for touching corners

See the EdgeProcessor for a description of the sizing operation. This implementation takes shapes
from a layout cell (optionally all in hierarchy) and produces new shapes in a shapes container. This is
the isotropic version which does not allow specification of different sizing values in x and y-direction.

(3) Signature: Edge[] size (Shape[] in, CplxTrans[] trans, int d, unsigned int mode)

Description: Size the given shapes

in: The set of shapes to size

trans: A corresponding set of transformations to apply on the shapes

d: The sizing value

mode: The sizing mode (see EdgeProcessor)

See the EdgeProcessor for a description of the sizing method. This implementation takes shapes
rather than polygons for input and produces an edge set. This is isotropic version that does not allow to
specify different values in x and y direction.

(4) Signature: Edge[] size (Shape[] in, CplxTrans[] trans, int dx, int dy, unsigned int mode)

Description: Size the given shapes

in: The set of shapes to size

trans: A corresponding set of transformations to apply on the shapes

dx: The sizing value in x-direction

dy: The sizing value in y-direction

mode: The sizing mode (see EdgeProcessor)

See the EdgeProcessor for a description of the sizing method. This implementation takes shapes
rather than polygons for input and produces an edge set.

(5) Signature: Edge[] size (Shape[] in, int d, unsigned int mode)

Description: Size the given shapes

in: The set of shapes to size

d: The sizing value

mode: The sizing mode (see EdgeProcessor)

See the EdgeProcessor for a description of the sizing method. This implementation takes shapes
rather than polygons for input and produces an edge set. This is isotropic version that does not allow

For more details visit
https://www.klayout.org

Page 1266 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.72. API reference - Class ShapeProcessor

to specify different values in x and y direction. This version does not feature a transformation for each
shape (unity is assumed).

(6) Signature: Edge[] size (Shape[] in, int dx, int dy, unsigned int mode)

Description: Size the given shapes

in: The set of shapes to size

dx: The sizing value in x-direction

dy: The sizing value in y-direction

mode: The sizing mode (see EdgeProcessor)

See the EdgeProcessor for a description of the sizing method. This implementation takes shapes
rather than polygons for input and produces an edge set.

This version does not feature a transformation for each shape (unity is assumed).

(1) Signature: Polygon[] size_to_polygon (Shape[] in, CplxTrans[] trans, int d, unsigned int mode,
bool resolve_holes, bool min_coherence)

Description: Size the given shapes

in: The set of shapes to size

trans: A corresponding set of transformations to apply on the shapes

d: The sizing value

mode: The sizing mode (see EdgeProcessor)

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if minimum polygons should be created for touching
corners

See the EdgeProcessor for a description of the sizing method. This implementation takes shapes
rather than polygons for input and produces a polygon set. This is isotropic version that does not allow
to specify different values in x and y direction.

(2) Signature: Polygon[] size_to_polygon (Shape[] in, CplxTrans[] trans, int dx, int dy, unsigned int
mode, bool resolve_holes, bool min_coherence)

Description: Size the given shapes

in: The set of shapes to size

trans: A corresponding set of transformations to apply on the shapes

dx: The sizing value in x-direction

dy: The sizing value in y-direction

mode: The sizing mode (see EdgeProcessor)

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if minimum polygons should be created for touching corners

See the EdgeProcessor for a description of the sizing method. This implementation takes shapes
rather than polygons for input and produces a polygon set.

size_to_polygon

(3) Signature: Polygon[] size_to_polygon (Shape[] in, int d, unsigned int mode, bool resolve_holes,
bool min_coherence)

Description: Size the given shapes

in: The set of shapes to size

d: The sizing value

For more details visit
https://www.klayout.org

Page 1267 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.72. API reference - Class ShapeProcessor

mode: The sizing mode (see EdgeProcessor)

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if minimum polygons should be created for touching
corners

See the EdgeProcessor for a description of the sizing method. This implementation takes shapes
rather than polygons for input and produces a polygon set. This is isotropic version that does not allow
to specify different values in x and y direction. This version does not feature a transformation for each
shape (unity is assumed).

(4) Signature: Polygon[] size_to_polygon (Shape[] in, int dx, int dy, unsigned int mode, bool
resolve_holes, bool min_coherence)

Description: Size the given shapes

in: The set of shapes to size

dx: The sizing value in x-direction

dy: The sizing value in y-direction

mode: The sizing mode (see EdgeProcessor)

resolve_holes: true, if holes should be resolved into the hull

min_coherence: true, if minimum polygons should be created for touching corners

See the EdgeProcessor for a description of the sizing method. This implementation takes shapes
rather than polygons for input and produces a polygon set.

This version does not feature a transformation for each shape (unity is assumed).

For more details visit
https://www.klayout.org

Page 1268 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

4.73. API reference - Class Shapes
Notation used in Ruby API documentation

Module: db

Description: A collection of shapes

A shapes collection is a collection of geometrical objects, such as polygons, boxes, paths, edges, edge pairs or text objects.

Shapes objects are the basic containers for geometrical objects of a cell. Inside a cell, there is one Shapes object per layer.

Public constructors

new Shapes ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const Shapes other) Assigns another object to self

void clear Clears the shape container

[const] new Shapes
ptr

dup Creates a copy of self

[const,iter]Shape each (unsigned int flags) Gets all shapes

[const,iter]Shape each Gets all shapes

[const,iter]Shape each_overlapping (unsigned int flags,
const Box region)

Gets all shapes that overlap the search box
(region)

[const,iter]Shape each_overlapping (unsigned int flags,
const DBox region)

Gets all shapes that overlap the search box
(region) where the search box is given in
micrometer units

[const,iter]Shape each_overlapping (const Box region) Gets all shapes that overlap the search box
(region)

[const,iter]Shape each_overlapping (const DBox region) Gets all shapes that overlap the search box
(region) where the search box is given in
micrometer units

For more details visit
https://www.klayout.org

Page 1269 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

[const,iter]Shape each_touching (unsigned int flags,
const Box region)

Gets all shapes that touch the search box
(region)

[const,iter]Shape each_touching (unsigned int flags,
const DBox region)

Gets all shapes that touch the search box
(region) where the search box is given in
micrometer units

[const,iter]Shape each_touching (const Box region) Gets all shapes that touch the search box
(region)

[const,iter]Shape each_touching (const DBox region) Gets all shapes that touch the search box
(region) where the search box is given in
micrometer units

void erase (const Shape shape) Erases the shape pointed to by the given
Shape object

[const] Shape find (const Shape shape) Finds a shape inside this collected

Shape insert (const Shape shape) Inserts a shape from a shape reference into
the shapes list

Shape insert (const Shape shape,
const Trans trans)

Inserts a shape from a shape reference into
the shapes list with a transformation

Shape insert (const Shape shape,
const DTrans trans)

Inserts a shape from a shape reference into
the shapes list with a transformation (given in
micrometer units)

Shape insert (const Shape shape,
const ICplxTrans trans)

Inserts a shape from a shape reference
into the shapes list with a complex integer
transformation

Shape insert (const Shape shape,
const DCplxTrans trans)

Inserts a shape from a shape reference
into the shapes list with a complex integer
transformation (given in micrometer units)

void insert (const RecursiveShapeIterator
iter)

Inserts the shapes taken from a recursive
shape iterator

void insert (const RecursiveShapeIterator
iter,
const ICplxTrans trans)

Inserts the shapes taken from a recursive
shape iterator with a transformation

void insert (const Shapes shapes) Inserts the shapes taken from another shape
container

void insert (const Shapes shapes,
const ICplxTrans trans)

Inserts the shapes taken from another shape
container with a transformation

void insert (const Shapes shapes,
unsigned int flags)

Inserts the shapes taken from another shape
container

void insert (const Shapes shapes,
unsigned int flags,
const ICplxTrans trans)

Inserts the shapes taken from another shape
container with a transformation

void insert (const Region region) Inserts the polygons from the region into this
shape container

For more details visit
https://www.klayout.org

Page 1270 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

void insert (const Region region,
const ICplxTrans trans)

Inserts the polygons from the region into this
shape container with a transformation

void insert (const Region region,
const DCplxTrans trans)

Inserts the polygons from the region into this
shape container with a transformation (given
in micrometer units)

void insert (const Edges edges) Inserts the edges from the edge collection into
this shape container

void insert (const Edges edges,
const ICplxTrans trans)

Inserts the edges from the edge collection into
this shape container with a transformation

void insert (const Edges edges,
const DCplxTrans trans)

Inserts the edges from the edge collection
into this shape container with a transformation
(given in micrometer units)

void insert (const EdgePairs edge_pairs) Inserts the edges from the edge pair collection
into this shape container

void insert (const EdgePairs edge_pairs,
const ICplxTrans trans)

Inserts the edge pairs from the edge pair
collection into this shape container with a
transformation

void insert (const EdgePairs edge_pairs,
const DCplxTrans trans)

Inserts the edge pairs from the edge pair
collection into this shape container with a
transformation (given in micrometer units)

void insert (const Texts texts) Inserts the texts from the text collection into
this shape container

void insert (const Texts texts,
const ICplxTrans trans)

Inserts the texts from the text collection into
this shape container with a transformation

void insert (const Texts texts,
const DCplxTrans trans)

Inserts the texts from the text collection into
this shape container with a transformation
(given in micrometer units)

Shape insert (const Box box) Inserts a box into the shapes list

Shape insert (const DBox box) Inserts a micrometer-unit box into the shapes
list

Shape insert (const Path path) Inserts a path into the shapes list

Shape insert (const DPath path) Inserts a micrometer-unit path into the shapes
list

Shape insert (const Edge edge) Inserts an edge into the shapes list

Shape insert (const DEdge edge) Inserts a micrometer-unit edge into the shapes
list

Shape insert (const EdgePair edge_pair) Inserts an edge pair into the shapes list

Shape insert (const DEdgePair edge_pair) Inserts a micrometer-unit edge pair into the
shapes list

Shape insert (const Text text) Inserts a text into the shapes list

For more details visit
https://www.klayout.org

Page 1271 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

Shape insert (const DText text) Inserts a micrometer-unit text into the shapes
list

Shape insert (const SimplePolygon
simple_polygon)

Inserts a simple polygon into the shapes list

Shape insert (const DSimplePolygon
simple_polygon)

Inserts a micrometer-unit simple polygon into
the shapes list

Shape insert (const Polygon polygon) Inserts a polygon into the shapes list

Shape insert (const DPolygon polygon) Inserts a micrometer-unit polygon into the
shapes list

Shape insert (const Box box,
unsigned long property_id)

Inserts a box with properties into the shapes
list

Shape insert (const DBox box,
unsigned long property_id)

Inserts a micrometer-unit box with properties
into the shapes list

Shape insert (const Path path,
unsigned long property_id)

Inserts a path with properties into the shapes
list

Shape insert (const DPath path,
unsigned long property_id)

Inserts a micrometer-unit path with properties
into the shapes list

Shape insert (const Edge edge,
unsigned long property_id)

Inserts an edge with properties into the
shapes list

Shape insert (const DEdge edge,
unsigned long property_id)

Inserts a micrometer-unit edge with properties
into the shapes list

Shape insert (const EdgePair edge_pair,
unsigned long property_id)

Inserts an edge pair with properties into the
shapes list

Shape insert (const DEdgePair edge_pair,
unsigned long property_id)

Inserts a micrometer-unit edge pair with
properties into the shapes list

Shape insert (const Text text,
unsigned long property_id)

Inserts a text with properties into the shapes
list

Shape insert (const DText text,
unsigned long property_id)

Inserts a micrometer-unit text with properties
into the shapes list

Shape insert (const SimplePolygon
simple_polygon,
unsigned long property_id)

Inserts a simple polygon with properties into
the shapes list

Shape insert (const DSimplePolygon
simple_polygon,
unsigned long property_id)

Inserts a micrometer-unit simple polygon with
properties into the shapes list

Shape insert (const Polygon polygon,
unsigned long property_id)

Inserts a polygon with properties into the
shapes list

Shape insert (const DPolygon polygon,
unsigned long property_id)

Inserts a micrometer-unit polygon with
properties into the shapes list

For more details visit
https://www.klayout.org

Page 1272 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

void insert_as_edges (const EdgePairs edge_pairs) Inserts the edge pairs from the edge pair
collection as individual edges into this shape
container

void insert_as_edges (const EdgePairs edge_pairs,
const ICplxTrans trans)

Inserts the edge pairs from the edge pair
collection as individual into this shape
container with a transformation

void insert_as_edges (const EdgePairs edge_pairs,
const DCplxTrans trans)

Inserts the edge pairs from the edge pair
collection as individual into this shape
container with a transformation (given in
micrometer units)

void insert_as_polygons (const EdgePairs edge_pairs,
int e)

Inserts the edge pairs from the edge pair
collection as polygons into this shape
container

void insert_as_polygons (const EdgePairs edge_pairs,
double e)

Inserts the edge pairs from the edge pair
collection as polygons into this shape
container

void insert_as_polygons (const EdgePairs edge_pairs,
const ICplxTrans e,
int trans)

Inserts the edge pairs from the edge pair
collection as polygons into this shape
container with a transformation

void insert_as_polygons (const EdgePairs edge_pairs,
const DCplxTrans e,
double trans)

Inserts the edge pairs from the edge pair
collection as polygons into this shape
container with a transformation

[const] bool is_empty? Returns a value indicating whether the shapes
container is empty

[const] bool is_valid? (const Shape shape) Tests if the given Shape object is still pointing
to a valid object

Shape replace (const Shape shape,
const Box box)

Replaces the given shape with a box

Shape replace (const Shape shape,
const DBox box)

Replaces the given shape with a box given in
micrometer units

Shape replace (const Shape shape,
const Path path)

Replaces the given shape with a path

Shape replace (const Shape shape,
const DPath path)

Replaces the given shape with a path given in
micrometer units

Shape replace (const Shape shape,
const Edge edge)

Replaces the given shape with an edge object

Shape replace (const Shape shape,
const DEdge edge)

Replaces the given shape with an edge given
in micrometer units

Shape replace (const Shape shape,
const EdgePair edge_pair)

Replaces the given shape with an edge pair
object

Shape replace (const Shape shape,
const DEdgePair edge_pair)

Replaces the given shape with an edge pair
given in micrometer units

For more details visit
https://www.klayout.org

Page 1273 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

Shape replace (const Shape shape,
const Text text)

Replaces the given shape with a text object

Shape replace (const Shape shape,
const DText text)

Replaces the given shape with a text given in
micrometer units

Shape replace (const Shape shape,
const SimplePolygon
simple_polygon)

Replaces the given shape with a simple
polygon

Shape replace (const Shape shape,
const DSimplePolygon
simple_polygon)

Replaces the given shape with a simple
polygon given in micrometer units

Shape replace (const Shape shape,
const Polygon polygon)

Replaces the given shape with a polygon

Shape replace (const Shape shape,
const DPolygon polygon)

Replaces the given shape with a polygon
given in micrometer units

Shape replace_prop_id (const Shape shape,
unsigned long property_id)

Replaces (or install) the properties of a shape

[const] unsigned long size Gets the number of shapes in this container

void transform (const Trans trans) Transforms all shapes with the given
transformation

void transform (const DTrans trans) Transforms all shapes with the given
transformation (given in micrometer units)

void transform (const ICplxTrans trans) Transforms all shapes with the given complex
integer transformation

void transform (const DCplxTrans trans) Transforms all shapes with the given
transformation (given in micrometer units)

Shape transform (const Shape shape,
const Trans trans)

Transforms the shape given by the reference
with the given transformation

Shape transform (const Shape shape,
const DTrans trans)

Transforms the shape given by the reference
with the given transformation, where the
transformation is given in micrometer units

Shape transform (const Shape shape,
const ICplxTrans trans)

Transforms the shape given by the reference
with the given complex integer space
transformation

Shape transform (const Shape shape,
const DCplxTrans trans)

Transforms the shape given by the reference
with the given complex transformation, where
the transformation is given in micrometer units

Public static methods and constants

unsigned int SAll Indicates that all shapes shall be retrieved

unsigned int SAllWithProperties Indicates that all shapes with properties shall be
retrieved

For more details visit
https://www.klayout.org

Page 1274 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

unsigned int SBoxes Indicates that boxes shall be retrieved

unsigned int SEdgePairs Indicates that edge pairs shall be retrieved

unsigned int SEdges Indicates that edges shall be retrieved

unsigned int SPaths Indicates that paths shall be retrieved

unsigned int SPolygons Indicates that polygons shall be retrieved

unsigned int SProperties Indicates that only shapes with properties shall be
retrieved

unsigned int SRegions Indicates that objects which can be polygonized shall
be retrieved (paths, boxes, polygons etc.)

unsigned int STexts Indicates that texts be retrieved

unsigned int SUserObjects Indicates that user objects shall be retrieved

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use
_destroy instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

Shape insert_box (const Box box) Use of this method is deprecated. Use insert
instead

Shape insert_box_with_properties(const Box box,
unsigned long
property_id)

Use of this method is deprecated. Use insert
instead

Shape insert_edge (const Edge
edge)

Use of this method is deprecated. Use insert
instead

Shape insert_edge_with_properties(const Edge
edge,
unsigned long
property_id)

Use of this method is deprecated. Use insert
instead

Shape insert_path (const Path path) Use of this method is deprecated. Use insert
instead

Shape insert_path_with_properties(const Path path,
unsigned long
property_id)

Use of this method is deprecated. Use insert
instead

Shape insert_polygon (const Polygon
polygon)

Use of this method is deprecated. Use insert
instead

Shape insert_polygon_with_properties(const Polygon
polygon,

Use of this method is deprecated. Use insert
instead

For more details visit
https://www.klayout.org

Page 1275 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

unsigned long
property_id)

Shape insert_simple_polygon (const
SimplePolygon
simple_polygon)

Use of this method is deprecated. Use insert
instead

Shape insert_simple_polygon_with_properties(const
SimplePolygon
simple_polygon,
unsigned long
property_id)

Use of this method is deprecated. Use insert
instead

Shape insert_text (const Text text) Use of this method is deprecated. Use insert
instead

Shape insert_text_with_properties(const Text text,
unsigned long
property_id)

Use of this method is deprecated. Use insert
instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[static] unsigned int s_all Use of this method is deprecated. Use SAll
instead

[static] unsigned int s_all_with_properties Use of this method is deprecated. Use
SAllWithProperties instead

[static] unsigned int s_boxes Use of this method is deprecated. Use
SBoxes instead

[static] unsigned int s_edge_pairs Use of this method is deprecated. Use
SEdgePairs instead

[static] unsigned int s_edges Use of this method is deprecated. Use
SEdges instead

[static] unsigned int s_paths Use of this method is deprecated. Use SPaths
instead

[static] unsigned int s_polygons Use of this method is deprecated. Use
SPolygons instead

[static] unsigned int s_properties Use of this method is deprecated. Use
SProperties instead

[static] unsigned int s_regions Use of this method is deprecated. Use
SRegions instead

[static] unsigned int s_texts Use of this method is deprecated. Use STexts
instead

[static] unsigned int s_user_objects Use of this method is deprecated. Use
SUserObjects instead

For more details visit
https://www.klayout.org

Page 1276 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

Detailed description

SAll
Signature: [static] unsigned int SAll

Description: Indicates that all shapes shall be retrieved

SAllWithProperties
Signature: [static] unsigned int SAllWithProperties

Description: Indicates that all shapes with properties shall be retrieved

SBoxes
Signature: [static] unsigned int SBoxes

Description: Indicates that boxes shall be retrieved

SEdgePairs
Signature: [static] unsigned int SEdgePairs

Description: Indicates that edge pairs shall be retrieved

SEdges
Signature: [static] unsigned int SEdges

Description: Indicates that edges shall be retrieved

SPaths
Signature: [static] unsigned int SPaths

Description: Indicates that paths shall be retrieved

SPolygons
Signature: [static] unsigned int SPolygons

Description: Indicates that polygons shall be retrieved

SProperties
Signature: [static] unsigned int SProperties

Description: Indicates that only shapes with properties shall be retrieved

SRegions
Signature: [static] unsigned int SRegions

Description: Indicates that objects which can be polygonized shall be retrieved (paths, boxes,
polygons etc.)

This constant has been added in version 0.27.

STexts
Signature: [static] unsigned int STexts

Description: Indicates that texts be retrieved

SUserObjects
Signature: [static] unsigned int SUserObjects

Description: Indicates that user objects shall be retrieved

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

For more details visit
https://www.klayout.org

Page 1277 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of
the object. This method may be called if an object is returned from a C++ function and the object
is known not to be owned by any C++ instance. If necessary, the script side may delete the object
if the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const Shapes other)

Description: Assigns another object to self

clear
Signature: void clear

Description: Clears the shape container

This method has been introduced in version 0.16. It can only be used in editable mode.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

For more details visit
https://www.klayout.org

Page 1278 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new Shapes ptr dup

Description: Creates a copy of self

(1) Signature: [const,iter] Shape each (unsigned int flags)

Description: Gets all shapes

flags: An "or"-ed combination of the S... constants

each

(2) Signature: [const,iter] Shape each

Description: Gets all shapes

This call is equivalent to each(SAll). This convenience method has been introduced in version
0.16

(1) Signature: [const,iter] Shape each_overlapping (unsigned int flags, const Box region)

Description: Gets all shapes that overlap the search box (region)

flags: An "or"-ed combination of the S... constants

region: The rectangular search region

This method was introduced in version 0.16

(2) Signature: [const,iter] Shape each_overlapping (unsigned int flags, const DBox region)

Description: Gets all shapes that overlap the search box (region) where the search box is given in
micrometer units

flags: An "or"-ed combination of the S... constants

region: The rectangular search region as a DBox object in micrometer
units

This method was introduced in version 0.25

each_overlapping

(3) Signature: [const,iter] Shape each_overlapping (const Box region)

Description: Gets all shapes that overlap the search box (region)

region: The rectangular search region

For more details visit
https://www.klayout.org

Page 1279 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

This call is equivalent to each_overlapping(SAll,region). This convenience method has been
introduced in version 0.16

(4) Signature: [const,iter] Shape each_overlapping (const DBox region)

Description: Gets all shapes that overlap the search box (region) where the search box is given in
micrometer units

region: The rectangular search region as a DBox object in micrometer
units

This call is equivalent to each_touching(SAll,region).

This method was introduced in version 0.25

(1) Signature: [const,iter] Shape each_touching (unsigned int flags, const Box region)

Description: Gets all shapes that touch the search box (region)

flags: An "or"-ed combination of the S... constants

region: The rectangular search region

This method was introduced in version 0.16

(2) Signature: [const,iter] Shape each_touching (unsigned int flags, const DBox region)

Description: Gets all shapes that touch the search box (region) where the search box is given in
micrometer units

flags: An "or"-ed combination of the S... constants

region: The rectangular search region as a DBox object in micrometer
units

This method was introduced in version 0.25

(3) Signature: [const,iter] Shape each_touching (const Box region)

Description: Gets all shapes that touch the search box (region)

region: The rectangular search region

This call is equivalent to each_touching(SAll,region). This convenience method has been
introduced in version 0.16

each_touching

(4) Signature: [const,iter] Shape each_touching (const DBox region)

Description: Gets all shapes that touch the search box (region) where the search box is given in
micrometer units

region: The rectangular search region as a DBox object in micrometer
units

This call is equivalent to each_touching(SAll,region).

This method was introduced in version 0.25

erase
Signature: void erase (const Shape shape)

Description: Erases the shape pointed to by the given Shape object

shape: The shape which to destroy

This method has been introduced in version 0.16. It can only be used in editable mode. Erasing a
shape will invalidate the shape reference. Access to this reference may then render invalid results.

For more details visit
https://www.klayout.org

Page 1280 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

find
Signature: [const] Shape find (const Shape shape)

Description: Finds a shape inside this collected

This method has been introduced in version 0.21. This method tries to find the given shape in
this collection. The original shape may be located in another collection. If the shape is found, this
method returns a reference to the shape in this collection, otherwise a null reference is returned.

(1) Signature: Shape insert (const Shape shape)

Description: Inserts a shape from a shape reference into the shapes list

Returns: A reference (a Shape object) to the newly created shape

This method has been introduced in version 0.16.

(2) Signature: Shape insert (const Shape shape, const Trans trans)

Description: Inserts a shape from a shape reference into the shapes list with a transformation

shape: The shape to insert

trans: The transformation to apply before the shape is inserted

Returns: A reference (a Shape object) to the newly created shape

This method has been introduced in version 0.22.

(3) Signature: Shape insert (const Shape shape, const DTrans trans)

Description: Inserts a shape from a shape reference into the shapes list with a transformation
(given in micrometer units)

shape: The shape to insert

trans: The transformation to apply before the shape is inserted
(displacement in micrometers)

Returns: A reference (a Shape object) to the newly created shape

This method has been introduced in version 0.25.

(4) Signature: Shape insert (const Shape shape, const ICplxTrans trans)

Description: Inserts a shape from a shape reference into the shapes list with a complex integer
transformation

shape: The shape to insert

trans: The transformation to apply before the shape is inserted

Returns: A reference (a Shape object) to the newly created shape

This method has been introduced in version 0.22.

(5) Signature: Shape insert (const Shape shape, const DCplxTrans trans)

Description: Inserts a shape from a shape reference into the shapes list with a complex integer
transformation (given in micrometer units)

shape: The shape to insert

trans: The transformation to apply before the shape is inserted
(displacement in micrometer units)

Returns: A reference (a Shape object) to the newly created shape

This method has been introduced in version 0.25.

insert

For more details visit
https://www.klayout.org

Page 1281 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

(6) Signature: void insert (const RecursiveShapeIterator iter)

Description: Inserts the shapes taken from a recursive shape iterator

iter: The iterator from which to take the shapes from

This method iterates over all shapes from the iterator and inserts them into the container.

This method has been introduced in version 0.25.3.

(7) Signature: void insert (const RecursiveShapeIterator iter, const ICplxTrans trans)

Description: Inserts the shapes taken from a recursive shape iterator with a transformation

iter: The iterator from which to take the shapes from

trans: The transformation to apply

This method iterates over all shapes from the iterator and inserts them into the container. The
given transformation is applied before the shapes are inserted.

This method has been introduced in version 0.25.3.

(8) Signature: void insert (const Shapes shapes)

Description: Inserts the shapes taken from another shape container

shapes: The other container from which to take the shapes from

This method takes all shapes from the given container and inserts them into this one.

This method has been introduced in version 0.25.3.

(9) Signature: void insert (const Shapes shapes, const ICplxTrans trans)

Description: Inserts the shapes taken from another shape container with a transformation

shapes: The other container from which to take the shapes from

trans: The transformation to apply

This method takes all shapes from the given container and inserts them into this one after
applying the given transformation.

This method has been introduced in version 0.25.3.

(10) Signature: void insert (const Shapes shapes, unsigned int flags)

Description: Inserts the shapes taken from another shape container

shapes: The other container from which to take the shapes from

flags: The filter flags for taking the shapes from the input container (see
S... constants)

This method takes all selected shapes from the given container and inserts them into this one.

This method has been introduced in version 0.25.3.

(11) Signature: void insert (const Shapes shapes, unsigned int flags, const ICplxTrans trans)

Description: Inserts the shapes taken from another shape container with a transformation

shapes: The other container from which to take the shapes from

flags: The filter flags for taking the shapes from the input container
(see S... constants)

trans: The transformation to apply

For more details visit
https://www.klayout.org

Page 1282 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

This method takes all selected shapes from the given container and inserts them into this one
after applying the given transformation.

This method has been introduced in version 0.25.3.

(12) Signature: void insert (const Region region)

Description: Inserts the polygons from the region into this shape container

region: The region to insert

This method inserts all polygons from the region into this shape container.

This method has been introduced in version 0.23.

(13) Signature: void insert (const Region region, const ICplxTrans trans)

Description: Inserts the polygons from the region into this shape container with a transformation

region: The region to insert

trans: The transformation to apply

This method inserts all polygons from the region into this shape container. Before a polygon is
inserted, the given transformation is applied.

This method has been introduced in version 0.23.

(14) Signature: void insert (const Region region, const DCplxTrans trans)

Description: Inserts the polygons from the region into this shape container with a transformation
(given in micrometer units)

region: The region to insert

trans: The transformation to apply (displacement in micrometer
units)

This method inserts all polygons from the region into this shape container. Before a polygon is
inserted, the given transformation is applied.

This method has been introduced in version 0.25.

(15) Signature: void insert (const Edges edges)

Description: Inserts the edges from the edge collection into this shape container

edges: The edges to insert

This method inserts all edges from the edge collection into this shape container.

This method has been introduced in version 0.23.

(16) Signature: void insert (const Edges edges, const ICplxTrans trans)

Description: Inserts the edges from the edge collection into this shape container with a
transformation

edges: The edges to insert

trans: The transformation to apply

This method inserts all edges from the edge collection into this shape container. Before an edge is
inserted, the given transformation is applied.

This method has been introduced in version 0.23.

(17) Signature: void insert (const Edges edges, const DCplxTrans trans)

For more details visit
https://www.klayout.org

Page 1283 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

Description: Inserts the edges from the edge collection into this shape container with a
transformation (given in micrometer units)

edges: The edges to insert

trans: The transformation to apply (displacement in micrometer
units)

This method inserts all edges from the edge collection into this shape container. Before an edge is
inserted, the given transformation is applied.

This method has been introduced in version 0.25.

(18) Signature: void insert (const EdgePairs edge_pairs)

Description: Inserts the edges from the edge pair collection into this shape container

edges: The edge pairs to insert

This method inserts all edge pairs from the edge pair collection into this shape container.

This method has been introduced in version 0.26.

(19) Signature: void insert (const EdgePairs edge_pairs, const ICplxTrans trans)

Description: Inserts the edge pairs from the edge pair collection into this shape container with a
transformation

edges: The edge pairs to insert

trans: The transformation to apply

This method inserts all edge pairs from the edge pair collection into this shape container. Before
an edge pair is inserted, the given transformation is applied.

This method has been introduced in version 0.26.

(20) Signature: void insert (const EdgePairs edge_pairs, const DCplxTrans trans)

Description: Inserts the edge pairs from the edge pair collection into this shape container with a
transformation (given in micrometer units)

edges: The edge pairs to insert

trans: The transformation to apply (displacement in micrometer
units)

This method inserts all edge pairs from the edge pair collection into this shape container. Before
an edge pair is inserted, the given transformation is applied.

This method has been introduced in version 0.26.

(21) Signature: void insert (const Texts texts)

Description: Inserts the texts from the text collection into this shape container

texts: The texts to insert

This method inserts all texts from the text collection into this shape container.

This method has been introduced in version 0.27.

(22) Signature: void insert (const Texts texts, const ICplxTrans trans)

Description: Inserts the texts from the text collection into this shape container with a
transformation

edges: The texts to insert

trans: The transformation to apply

For more details visit
https://www.klayout.org

Page 1284 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

This method inserts all texts from the text collection into this shape container. Before an text is
inserted, the given transformation is applied.

This method has been introduced in version 0.27.

(23) Signature: void insert (const Texts texts, const DCplxTrans trans)

Description: Inserts the texts from the text collection into this shape container with a
transformation (given in micrometer units)

edges: The text to insert

trans: The transformation to apply (displacement in micrometer
units)

This method inserts all texts from the text collection into this shape container. Before an text is
inserted, the given transformation is applied.

This method has been introduced in version 0.27.

(24) Signature: Shape insert (const Box box)

Description: Inserts a box into the shapes list

Returns: A reference to the new shape (a Shape object)

Starting with version 0.16, this method returns a reference to the newly created shape

(25) Signature: Shape insert (const DBox box)

Description: Inserts a micrometer-unit box into the shapes list

Returns: A reference to the new shape (a Shape object)

This method behaves like the insert version with a Box argument, except that it will internally
translate the box from micrometer to database units.

This variant has been introduced in version 0.25.

(26) Signature: Shape insert (const Path path)

Description: Inserts a path into the shapes list

Returns: A reference to the new shape (a Shape object)

Starting with version 0.16, this method returns a reference to the newly created shape

(27) Signature: Shape insert (const DPath path)

Description: Inserts a micrometer-unit path into the shapes list

Returns: A reference to the new shape (a Shape object)

This method behaves like the insert version with a Path argument, except that it will internally
translate the path from micrometer to database units.

This variant has been introduced in version 0.25.

(28) Signature: Shape insert (const Edge edge)

Description: Inserts an edge into the shapes list

Starting with version 0.16, this method returns a reference to the newly created shape

(29) Signature: Shape insert (const DEdge edge)

For more details visit
https://www.klayout.org

Page 1285 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

Description: Inserts a micrometer-unit edge into the shapes list

Returns: A reference to the new shape (a Shape object)

This method behaves like the insert version with a Edge argument, except that it will internally
translate the edge from micrometer to database units.

This variant has been introduced in version 0.25.

(30) Signature: Shape insert (const EdgePair edge_pair)

Description: Inserts an edge pair into the shapes list

This method has been introduced in version 0.26.

(31) Signature: Shape insert (const DEdgePair edge_pair)

Description: Inserts a micrometer-unit edge pair into the shapes list

Returns: A reference to the new shape (a Shape object)

This method behaves like the insert version with a EdgePair argument, except that it will internally
translate the edge pair from micrometer to database units.

This variant has been introduced in version 0.26.

(32) Signature: Shape insert (const Text text)

Description: Inserts a text into the shapes list

Returns: A reference to the new shape (a Shape object)

Starting with version 0.16, this method returns a reference to the newly created shape

(33) Signature: Shape insert (const DText text)

Description: Inserts a micrometer-unit text into the shapes list

Returns: A reference to the new shape (a Shape object)

This method behaves like the insert version with a Text argument, except that it will internally
translate the text from micrometer to database units.

This variant has been introduced in version 0.25.

(34) Signature: Shape insert (const SimplePolygon simple_polygon)

Description: Inserts a simple polygon into the shapes list

Returns: A reference to the new shape (a Shape object)

Starting with version 0.16, this method returns a reference to the newly created shape

(35) Signature: Shape insert (const DSimplePolygon simple_polygon)

Description: Inserts a micrometer-unit simple polygon into the shapes list

Returns: A reference to the new shape (a Shape object)

This method behaves like the insert version with a SimplePolygon argument, except that it will
internally translate the polygon from micrometer to database units.

This variant has been introduced in version 0.25.

(36) Signature: Shape insert (const Polygon polygon)

Description: Inserts a polygon into the shapes list

For more details visit
https://www.klayout.org

Page 1286 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

Returns: A reference to the new shape (a Shape object)

Starting with version 0.16, this method returns a reference to the newly created shape

(37) Signature: Shape insert (const DPolygon polygon)

Description: Inserts a micrometer-unit polygon into the shapes list

Returns: A reference to the new shape (a Shape object)

This method behaves like the insert version with a Polygon argument, except that it will internally
translate the polygon from micrometer to database units.

This variant has been introduced in version 0.25.

(38) Signature: Shape insert (const Box box, unsigned long property_id)

Description: Inserts a box with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

The property Id must be obtained from the Layout object's property_id method which associates
a property set with a property Id. Starting with version 0.16, this method returns a reference to the
newly created shape

(39) Signature: Shape insert (const DBox box, unsigned long property_id)

Description: Inserts a micrometer-unit box with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

This method behaves like the insert version with a Box argument and a property ID, except that it
will internally translate the box from micrometer to database units.

This variant has been introduced in version 0.25.

(40) Signature: Shape insert (const Path path, unsigned long property_id)

Description: Inserts a path with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

The property Id must be obtained from the Layout object's property_id method which associates
a property set with a property Id. Starting with version 0.16, this method returns a reference to the
newly created shape

(41) Signature: Shape insert (const DPath path, unsigned long property_id)

Description: Inserts a micrometer-unit path with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

This method behaves like the insert version with a Path argument and a property ID, except that it
will internally translate the path from micrometer to database units.

This variant has been introduced in version 0.25.

(42) Signature: Shape insert (const Edge edge, unsigned long property_id)

Description: Inserts an edge with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

The property Id must be obtained from the Layout object's property_id method which associates
a property set with a property Id. Starting with version 0.16, this method returns a reference to the
newly created shape.

For more details visit
https://www.klayout.org

Page 1287 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

(43) Signature: Shape insert (const DEdge edge, unsigned long property_id)

Description: Inserts a micrometer-unit edge with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

This method behaves like the insert version with a Edge argument and a property ID, except that it
will internally translate the edge from micrometer to database units.

This variant has been introduced in version 0.25.

(44) Signature: Shape insert (const EdgePair edge_pair, unsigned long property_id)

Description: Inserts an edge pair with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

The property Id must be obtained from the Layout object's property_id method which associates a
property set with a property Id. This method has been introduced in version 0.26.

(45) Signature: Shape insert (const DEdgePair edge_pair, unsigned long property_id)

Description: Inserts a micrometer-unit edge pair with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

This method behaves like the insert version with a EdgePair argument and a property ID, except
that it will internally translate the edge pair from micrometer to database units.

This variant has been introduced in version 0.26.

(46) Signature: Shape insert (const Text text, unsigned long property_id)

Description: Inserts a text with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

The property Id must be obtained from the Layout object's property_id method which associates
a property set with a property Id. Starting with version 0.16, this method returns a reference to the
newly created shape

(47) Signature: Shape insert (const DText text, unsigned long property_id)

Description: Inserts a micrometer-unit text with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

This method behaves like the insert version with a Text argument and a property ID, except that it
will internally translate the text from micrometer to database units.

This variant has been introduced in version 0.25.

(48) Signature: Shape insert (const SimplePolygon simple_polygon, unsigned long property_id)

Description: Inserts a simple polygon with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

The property Id must be obtained from the Layout object's property_id method which associates
a property set with a property Id. Starting with version 0.16, this method returns a reference to the
newly created shape

(49) Signature: Shape insert (const DSimplePolygon simple_polygon, unsigned long
property_id)

Description: Inserts a micrometer-unit simple polygon with properties into the shapes list

For more details visit
https://www.klayout.org

Page 1288 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

Returns: A reference to the new shape (a Shape object)

This method behaves like the insert version with a SimplePolygon argument and a property ID,
except that it will internally translate the simple polygon from micrometer to database units.

This variant has been introduced in version 0.25.

(50) Signature: Shape insert (const Polygon polygon, unsigned long property_id)

Description: Inserts a polygon with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

The property Id must be obtained from the Layout object's property_id method which associates
a property set with a property Id. Starting with version 0.16, this method returns a reference to the
newly created shape

(51) Signature: Shape insert (const DPolygon polygon, unsigned long property_id)

Description: Inserts a micrometer-unit polygon with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

This method behaves like the insert version with a Polygon argument and a property ID, except
that it will internally translate the polygon from micrometer to database units.

This variant has been introduced in version 0.25.

(1) Signature: void insert_as_edges (const EdgePairs edge_pairs)

Description: Inserts the edge pairs from the edge pair collection as individual edges into this
shape container

edge_pairs: The edge pairs to insert

This method inserts all edge pairs from the edge pair collection into this shape container. Each
edge from the edge pair is inserted individually into the shape container.

This method has been introduced in version 0.23.

(2) Signature: void insert_as_edges (const EdgePairs edge_pairs, const ICplxTrans trans)

Description: Inserts the edge pairs from the edge pair collection as individual into this shape
container with a transformation

edges: The edge pairs to insert

trans: The transformation to apply

This method inserts all edge pairs from the edge pair collection into this shape container. Each
edge from the edge pair is inserted individually into the shape container. Before each edge is
inserted into the shape collection, the given transformation is applied.

This method has been introduced in version 0.23.

insert_as_edges

(3) Signature: void insert_as_edges (const EdgePairs edge_pairs, const DCplxTrans trans)

Description: Inserts the edge pairs from the edge pair collection as individual into this shape
container with a transformation (given in micrometer units)

edges: The edge pairs to insert

trans: The transformation to apply (displacement in micrometer
units)

For more details visit
https://www.klayout.org

Page 1289 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

This method inserts all edge pairs from the edge pair collection into this shape container. Each
edge from the edge pair is inserted individually into the shape container. Before each edge is
inserted into the shape collection, the given transformation is applied.

This method has been introduced in version 0.25.

(1) Signature: void insert_as_polygons (const EdgePairs edge_pairs, int e)

Description: Inserts the edge pairs from the edge pair collection as polygons into this shape
container

edge_pairs: The edge pairs to insert

e: The extension to apply when converting the edges to
polygons (in database units)

This method inserts all edge pairs from the edge pair collection into this shape container. The
edge pairs are converted to polygons covering the area between the edges. The extension
parameter specifies a sizing which is applied when converting the edge pairs to polygons. This
way, degenerated edge pairs (i.e. two point-like edges) do not vanish.

This method has been introduced in version 0.23.

(2) Signature: void insert_as_polygons (const EdgePairs edge_pairs, double e)

Description: Inserts the edge pairs from the edge pair collection as polygons into this shape
container

edge_pairs: The edge pairs to insert

e: The extension to apply when converting the edges to polygons
(in micrometer units)

This method is identical to the version with a integer-type e parameter, but for this version the e
parameter is given in micrometer units.

This method has been introduced in version 0.25.

(3) Signature: void insert_as_polygons (const EdgePairs edge_pairs, const ICplxTrans e, int
trans)

Description: Inserts the edge pairs from the edge pair collection as polygons into this shape
container with a transformation

edges: The edge pairs to insert

e: The extension to apply when converting the edges to polygons
(in database units)

trans: The transformation to apply

This method inserts all edge pairs from the edge pair collection into this shape container. The
edge pairs are converted to polygons covering the area between the edges. The extension
parameter specifies a sizing which is applied when converting the edge pairs to polygons. This
way, degenerated edge pairs (i.e. two point-like edges) do not vanish. Before a polygon is inserted
into the shape collection, the given transformation is applied.

This method has been introduced in version 0.23.

insert_as_polygons

(4) Signature: void insert_as_polygons (const EdgePairs edge_pairs, const DCplxTrans e,
double trans)

Description: Inserts the edge pairs from the edge pair collection as polygons into this shape
container with a transformation

edges: The edge pairs to insert

For more details visit
https://www.klayout.org

Page 1290 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

e: The extension to apply when converting the edges to polygons
(in micrometer units)

trans: The transformation to apply (displacement in micrometer units)

This method is identical to the version with a integer-type e and trans parameter, but for this
version the e parameter is given in micrometer units and the trans parameter is a micrometer-unit
transformation.

This method has been introduced in version 0.25.

insert_box
Signature: Shape insert_box (const Box box)

Description: Inserts a box into the shapes list

Returns: A reference to the new shape (a Shape object)

Use of this method is deprecated. Use insert instead

Starting with version 0.16, this method returns a reference to the newly created shape

insert_box_with_properties
Signature: Shape insert_box_with_properties (const Box box, unsigned long property_id)

Description: Inserts a box with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

Use of this method is deprecated. Use insert instead

The property Id must be obtained from the Layout object's property_id method which associates
a property set with a property Id. Starting with version 0.16, this method returns a reference to the
newly created shape

insert_edge
Signature: Shape insert_edge (const Edge edge)

Description: Inserts an edge into the shapes list

Use of this method is deprecated. Use insert instead

Starting with version 0.16, this method returns a reference to the newly created shape

insert_edge_with_properties
Signature: Shape insert_edge_with_properties (const Edge edge, unsigned long property_id)

Description: Inserts an edge with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

Use of this method is deprecated. Use insert instead

The property Id must be obtained from the Layout object's property_id method which associates
a property set with a property Id. Starting with version 0.16, this method returns a reference to the
newly created shape.

insert_path
Signature: Shape insert_path (const Path path)

Description: Inserts a path into the shapes list

Returns: A reference to the new shape (a Shape object)

Use of this method is deprecated. Use insert instead

Starting with version 0.16, this method returns a reference to the newly created shape

insert_path_with_properties
Signature: Shape insert_path_with_properties (const Path path, unsigned long property_id)

Description: Inserts a path with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

For more details visit
https://www.klayout.org

Page 1291 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

Use of this method is deprecated. Use insert instead

The property Id must be obtained from the Layout object's property_id method which associates
a property set with a property Id. Starting with version 0.16, this method returns a reference to the
newly created shape

insert_polygon
Signature: Shape insert_polygon (const Polygon polygon)

Description: Inserts a polygon into the shapes list

Returns: A reference to the new shape (a Shape object)

Use of this method is deprecated. Use insert instead

Starting with version 0.16, this method returns a reference to the newly created shape

insert_polygon_with_properties
Signature: Shape insert_polygon_with_properties (const Polygon polygon, unsigned long
property_id)

Description: Inserts a polygon with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

Use of this method is deprecated. Use insert instead

The property Id must be obtained from the Layout object's property_id method which associates
a property set with a property Id. Starting with version 0.16, this method returns a reference to the
newly created shape

insert_simple_polygon
Signature: Shape insert_simple_polygon (const SimplePolygon simple_polygon)

Description: Inserts a simple polygon into the shapes list

Returns: A reference to the new shape (a Shape object)

Use of this method is deprecated. Use insert instead

Starting with version 0.16, this method returns a reference to the newly created shape

insert_simple_polygon_with_properties
Signature: Shape insert_simple_polygon_with_properties (const SimplePolygon
simple_polygon, unsigned long property_id)

Description: Inserts a simple polygon with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

Use of this method is deprecated. Use insert instead

The property Id must be obtained from the Layout object's property_id method which associates
a property set with a property Id. Starting with version 0.16, this method returns a reference to the
newly created shape

insert_text
Signature: Shape insert_text (const Text text)

Description: Inserts a text into the shapes list

Returns: A reference to the new shape (a Shape object)

Use of this method is deprecated. Use insert instead

Starting with version 0.16, this method returns a reference to the newly created shape

insert_text_with_properties
Signature: Shape insert_text_with_properties (const Text text, unsigned long property_id)

Description: Inserts a text with properties into the shapes list

Returns: A reference to the new shape (a Shape object)

For more details visit
https://www.klayout.org

Page 1292 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

Use of this method is deprecated. Use insert instead

The property Id must be obtained from the Layout object's property_id method which associates
a property set with a property Id. Starting with version 0.16, this method returns a reference to the
newly created shape

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

is_empty?
Signature: [const] bool is_empty?

Description: Returns a value indicating whether the shapes container is empty

This method has been introduced in version 0.20.

is_valid?
Signature: [const] bool is_valid? (const Shape shape)

Description: Tests if the given Shape object is still pointing to a valid object

This method has been introduced in version 0.16. If the shape represented by the given reference
has been deleted, this method returns false. If however, another shape has been inserted already
that occupies the original shape's position, this method will return true again.

new
Signature: [static] new Shapes ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

(1) Signature: Shape replace (const Shape shape, const Box box)

Description: Replaces the given shape with a box

Returns: A reference to the new shape (a Shape object)

This method has been introduced with version 0.16. It replaces the given shape with the object
specified. It does not change the property Id. To change the property Id, use the replace_prop_id
method. To replace a shape and discard the property Id, erase the shape and insert a new shape.
This method is permitted in editable mode only.

(2) Signature: Shape replace (const Shape shape, const DBox box)

Description: Replaces the given shape with a box given in micrometer units

Returns: A reference to the new shape (a Shape object)

This method behaves like the replace version with a Box argument, except that it will internally
translate the box from micrometer to database units.

This variant has been introduced in version 0.25.

replace

(3) Signature: Shape replace (const Shape shape, const Path path)

Description: Replaces the given shape with a path

Returns: A reference to the new shape (a Shape object)

This method has been introduced with version 0.16. It replaces the given shape with the object
specified. It does not change the property Id. To change the property Id, use the replace_prop_id

For more details visit
https://www.klayout.org

Page 1293 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

method. To replace a shape and discard the property Id, erase the shape and insert a new shape.
This method is permitted in editable mode only.

(4) Signature: Shape replace (const Shape shape, const DPath path)

Description: Replaces the given shape with a path given in micrometer units

Returns: A reference to the new shape (a Shape object)

This method behaves like the replace version with a Path argument, except that it will internally
translate the path from micrometer to database units.

This variant has been introduced in version 0.25.

(5) Signature: Shape replace (const Shape shape, const Edge edge)

Description: Replaces the given shape with an edge object

This method has been introduced with version 0.16. It replaces the given shape with the object
specified. It does not change the property Id. To change the property Id, use the replace_prop_id
method. To replace a shape and discard the property Id, erase the shape and insert a new shape.
This method is permitted in editable mode only.

(6) Signature: Shape replace (const Shape shape, const DEdge edge)

Description: Replaces the given shape with an edge given in micrometer units

Returns: A reference to the new shape (a Shape object)

This method behaves like the replace version with an Edge argument, except that it will internally
translate the edge from micrometer to database units.

This variant has been introduced in version 0.25.

(7) Signature: Shape replace (const Shape shape, const EdgePair edge_pair)

Description: Replaces the given shape with an edge pair object

It replaces the given shape with the object specified. It does not change the property Id. To
change the property Id, use the replace_prop_id method. To replace a shape and discard the
property Id, erase the shape and insert a new shape. This method is permitted in editable mode
only.

This method has been introduced in version 0.26.

(8) Signature: Shape replace (const Shape shape, const DEdgePair edge_pair)

Description: Replaces the given shape with an edge pair given in micrometer units

Returns: A reference to the new shape (a Shape object)

This method behaves like the replace version with an EdgePair argument, except that it will
internally translate the edge pair from micrometer to database units.

This variant has been introduced in version 0.26.

(9) Signature: Shape replace (const Shape shape, const Text text)

Description: Replaces the given shape with a text object

Returns: A reference to the new shape (a Shape object)

This method has been introduced with version 0.16. It replaces the given shape with the object
specified. It does not change the property Id. To change the property Id, use the replace_prop_id

For more details visit
https://www.klayout.org

Page 1294 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

method. To replace a shape and discard the property Id, erase the shape and insert a new shape.
This method is permitted in editable mode only.

(10) Signature: Shape replace (const Shape shape, const DText text)

Description: Replaces the given shape with a text given in micrometer units

Returns: A reference to the new shape (a Shape object)

This method behaves like the replace version with a Text argument, except that it will internally
translate the text from micrometer to database units.

This variant has been introduced in version 0.25.

(11) Signature: Shape replace (const Shape shape, const SimplePolygon simple_polygon)

Description: Replaces the given shape with a simple polygon

Returns: A reference to the new shape (a Shape object)

This method has been introduced with version 0.16. It replaces the given shape with the object
specified. It does not change the property Id. To change the property Id, use the replace_prop_id
method. To replace a shape and discard the property Id, erase the shape and insert a new shape.
This method is permitted in editable mode only.

(12) Signature: Shape replace (const Shape shape, const DSimplePolygon simple_polygon)

Description: Replaces the given shape with a simple polygon given in micrometer units

Returns: A reference to the new shape (a Shape object)

This method behaves like the replace version with a SimplePolygon argument, except that it will
internally translate the simple polygon from micrometer to database units.

This variant has been introduced in version 0.25.

(13) Signature: Shape replace (const Shape shape, const Polygon polygon)

Description: Replaces the given shape with a polygon

Returns: A reference to the new shape (a Shape object)

This method has been introduced with version 0.16. It replaces the given shape with the object
specified. It does not change the property Id. To change the property Id, use the replace_prop_id
method. To replace a shape and discard the property Id, erase the shape and insert a new shape.
This method is permitted in editable mode only.

(14) Signature: Shape replace (const Shape shape, const DPolygon polygon)

Description: Replaces the given shape with a polygon given in micrometer units

Returns: A reference to the new shape (a Shape object)

This method behaves like the replace version with a Polygon argument, except that it will internally
translate the polygon from micrometer to database units.

This variant has been introduced in version 0.25.

replace_prop_id
Signature: Shape replace_prop_id (const Shape shape, unsigned long property_id)

Description: Replaces (or install) the properties of a shape

Returns: A Shape object representing the new shape

This method has been introduced in version 0.16. It can only be used in editable mode. Changes
the properties Id of the given shape or install a properties Id on that shape if it does not have
one yet. The property Id must be obtained from the Layout object's property_id method which

For more details visit
https://www.klayout.org

Page 1295 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

associates a property set with a property Id. This method will potentially invalidate the shape
reference passed to it. Use the reference returned for future references.

s_all
Signature: [static] unsigned int s_all

Description: Indicates that all shapes shall be retrieved

Use of this method is deprecated. Use SAll instead

s_all_with_properties
Signature: [static] unsigned int s_all_with_properties

Description: Indicates that all shapes with properties shall be retrieved

Use of this method is deprecated. Use SAllWithProperties instead

s_boxes
Signature: [static] unsigned int s_boxes

Description: Indicates that boxes shall be retrieved

Use of this method is deprecated. Use SBoxes instead

s_edge_pairs
Signature: [static] unsigned int s_edge_pairs

Description: Indicates that edge pairs shall be retrieved

Use of this method is deprecated. Use SEdgePairs instead

s_edges
Signature: [static] unsigned int s_edges

Description: Indicates that edges shall be retrieved

Use of this method is deprecated. Use SEdges instead

s_paths
Signature: [static] unsigned int s_paths

Description: Indicates that paths shall be retrieved

Use of this method is deprecated. Use SPaths instead

s_polygons
Signature: [static] unsigned int s_polygons

Description: Indicates that polygons shall be retrieved

Use of this method is deprecated. Use SPolygons instead

s_properties
Signature: [static] unsigned int s_properties

Description: Indicates that only shapes with properties shall be retrieved

Use of this method is deprecated. Use SProperties instead

s_regions
Signature: [static] unsigned int s_regions

Description: Indicates that objects which can be polygonized shall be retrieved (paths, boxes,
polygons etc.)

Use of this method is deprecated. Use SRegions instead

This constant has been added in version 0.27.

s_texts
Signature: [static] unsigned int s_texts

Description: Indicates that texts be retrieved

Use of this method is deprecated. Use STexts instead

For more details visit
https://www.klayout.org

Page 1296 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

s_user_objects
Signature: [static] unsigned int s_user_objects

Description: Indicates that user objects shall be retrieved

Use of this method is deprecated. Use SUserObjects instead

size
Signature: [const] unsigned long size

Description: Gets the number of shapes in this container

Returns: The number of shapes in this container

This method was introduced in version 0.16

Python specific notes:
This method is also available as 'len(object)'

(1) Signature: void transform (const Trans trans)

Description: Transforms all shapes with the given transformation

This method will invalidate all references to shapes inside this collection.

It has been introduced in version 0.23.

(2) Signature: void transform (const DTrans trans)

Description: Transforms all shapes with the given transformation (given in micrometer units)

This method will invalidate all references to shapes inside this collection. The displacement of the
transformation is given in micrometer units.

It has been introduced in version 0.25.

(3) Signature: void transform (const ICplxTrans trans)

Description: Transforms all shapes with the given complex integer transformation

This method will invalidate all references to shapes inside this collection.

It has been introduced in version 0.23.

(4) Signature: void transform (const DCplxTrans trans)

Description: Transforms all shapes with the given transformation (given in micrometer units)

This method will invalidate all references to shapes inside this collection. The displacement of the
transformation is given in micrometer units.

It has been introduced in version 0.25.

(5) Signature: Shape transform (const Shape shape, const Trans trans)

Description: Transforms the shape given by the reference with the given transformation

Returns: A reference (a Shape object) to the new shape

The original shape may be deleted and re-inserted by this method. Therefore, a new reference is
returned. It is permitted in editable mode only.

This method has been introduced in version 0.16.

transform

(6) Signature: Shape transform (const Shape shape, const DTrans trans)

Description: Transforms the shape given by the reference with the given transformation, where
the transformation is given in micrometer units

trans: The transformation to apply (displacement in micrometer units)

For more details visit
https://www.klayout.org

Page 1297 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.73. API reference - Class Shapes

Returns: A reference (a Shape object) to the new shape

The original shape may be deleted and re-inserted by this method. Therefore, a new reference is
returned. It is permitted in editable mode only. This method has been introduced in version 0.25.

(7) Signature: Shape transform (const Shape shape, const ICplxTrans trans)

Description: Transforms the shape given by the reference with the given complex integer space
transformation

Returns: A reference (a Shape object) to the new shape

This method has been introduced in version 0.22. The original shape may be deleted and re-
inserted by this method. Therefore, a new reference is returned. It is permitted in editable mode
only.

(8) Signature: Shape transform (const Shape shape, const DCplxTrans trans)

Description: Transforms the shape given by the reference with the given complex transformation,
where the transformation is given in micrometer units

trans: The transformation to apply (displacement in micrometer units)

Returns: A reference (a Shape object) to the new shape

The original shape may be deleted and re-inserted by this method. Therefore, a new reference is
returned. It is permitted in editable mode only. This method has been introduced in version 0.25.

For more details visit
https://www.klayout.org

Page 1298 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.74. API reference - Class TechnologyComponent

4.74. API reference - Class TechnologyComponent
Notation used in Ruby API documentation

Module: db

Description: A part of a technology definition

Technology components extend technology definitions (class Technology) by specialized subfeature definitions. For example, the net tracer
supplies it's technology-dependent specification through a technology component called NetTracerTechnology.

Components are managed within technologies and can be accessed from a technology using Technology#component.

This class has been introduced in version 0.25.

Public constructors

new TechnologyComponent ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script side.

[const] string description Gets the human-readable description string of the
technology component

[const] string name Gets the formal name of the technology component

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

For more details visit
https://www.klayout.org

Page 1299 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.74. API reference - Class TechnologyComponent

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

description
Signature: [const] string description

Description: Gets the human-readable description string of the technology component

For more details visit
https://www.klayout.org

Page 1300 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.74. API reference - Class TechnologyComponent

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

name
Signature: [const] string name

Description: Gets the formal name of the technology component

This is the name by which the component can be obtained from a technology using
Technology#component.

new
Signature: [static] new TechnologyComponent ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1301 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.75. API reference - Class Technology

4.75. API reference - Class Technology
Notation used in Ruby API documentation

Module: db

Description: Represents a technology

This class represents one technology from a set of technologies. The set of technologies available in the system can be obtained with
technology_names. Individual technology definitions are returned with technology_by_name. Use create_technology to register new
technologies and remove_technology to delete technologies.

The Technology class has been introduced in version 0.25.

Public constructors

new Technology ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void add_other_layers= (bool add) Sets the flag indicating whether to add other
layers to the layer properties

[const] bool add_other_layers? Gets the flag indicating whether to add other
layers to the layer properties

void assign (const
Technology
other)

Assigns another object to self

[const] string base_path Gets the base path of the technology

TechnologyComponent
ptr

component (string name) Gets the technology component with the
given name

[const] string[] component_names Gets the names of all components available
for component

[const] string correct_path (string path) Makes a file path relative to the base path if
one is specified

[const] double dbu Gets the default database unit

For more details visit
https://www.klayout.org

Page 1302 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.75. API reference - Class Technology

void dbu= (double dbu) Sets the default database unit

[const] string default_base_path Gets the default base path

[const] string description Gets the description

void description= (string
description)

Sets the description

[const] new Technology ptr dup Creates a copy of self

[const] string eff_layer_properties_file Gets the effective path of the layer properties
file

[const] string eff_path (string path) Makes a file path relative to the base path if
one is specified

[const] string explicit_base_path Gets the explicit base path

void explicit_base_path= (string path) Sets the explicit base path

[const] string group Gets the technology group

void group= (string group) Sets the technology group

[const] string layer_properties_file Gets the path of the layer properties file

void layer_properties_file= (string file) Sets the path of the layer properties file

void load (string file) Loads the technology definition from a file

[const] LoadLayoutOptions load_layout_options Gets the layout reader options

void load_layout_options= (const
LoadLayoutOptions
options)

Sets the layout reader options

[const] string name Gets the name of the technology

void name= (string name) Sets the name of the technology

[const] void save (string file) Saves the technology definition to a file

[const] SaveLayoutOptions save_layout_options Gets the layout writer options

void save_layout_options= (const
SaveLayoutOptions
options)

Sets the layout writer options

[const] string to_xml Returns a XML representation of this
technolog

Public static methods and constants

void clear_technologies Clears all technologies

For more details visit
https://www.klayout.org

Page 1303 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.75. API reference - Class Technology

Technology ptr create_technology (string name) Creates a new (empty) technology with the
given name

bool has_technology? (string name) Returns a value indicating whether there is a
technology with this name

void remove_technology (string name) Removes the technology with the given name

void technologies_from_xml (string xml) Loads the technologies from a XML
representation

string technologies_to_xml Returns a XML representation of all
technologies registered in the system

Technology ptr technology_by_name (string name) Gets the technology object for a given name

Technology technology_from_xml (string xml) Loads the technology from a XML
representation

string[] technology_names Gets a list of technology names defined in the
system

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

For more details visit
https://www.klayout.org

Page 1304 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.75. API reference - Class Technology

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of
the object. This method may be called if an object is returned from a C++ function and the object
is known not to be owned by any C++ instance. If necessary, the script side may delete the object
if the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

add_other_layers=
Signature: void add_other_layers= (bool add)

Description: Sets the flag indicating whether to add other layers to the layer properties

Python specific notes:
The object exposes a writable attribute 'add_other_layers'. This is the setter.

add_other_layers?
Signature: [const] bool add_other_layers?

Description: Gets the flag indicating whether to add other layers to the layer properties

Python specific notes:
The object exposes a readable attribute 'add_other_layers'. This is the getter.

assign
Signature: void assign (const Technology other)

Description: Assigns another object to self

base_path
Signature: [const] string base_path

Description: Gets the base path of the technology

The base path is the effective path where files are read from if their file path is a relative one. If
the explicit path is set (see explicit_base_path=), it is used. If not, the default path is used. The
default path is the one from which a technology file was imported. The explicit one is the one that
is specified explicitly with explicit_base_path=.

clear_technologies
Signature: [static] void clear_technologies

Description: Clears all technologies

This method has been introduced in version 0.26.

For more details visit
https://www.klayout.org

Page 1305 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.75. API reference - Class Technology

component
Signature: TechnologyComponent ptr component (string name)

Description: Gets the technology component with the given name

The names are unique system identifiers. For all names, use component_names.

component_names
Signature: [const] string[] component_names

Description: Gets the names of all components available for component

correct_path
Signature: [const] string correct_path (string path)

Description: Makes a file path relative to the base path if one is specified

This method turns an absolute path into one relative to the base path. Only files below the base
path will be made relative. Files above or beside won't be made relative.

See base_path for details about the default base path.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

create_technology
Signature: [static] Technology ptr create_technology (string name)

Description: Creates a new (empty) technology with the given name

This method returns a reference to the new technology.

dbu
Signature: [const] double dbu

Description: Gets the default database unit

The default database unit is the one used when creating a layout for example.

Python specific notes:
The object exposes a readable attribute 'dbu'. This is the getter.

dbu=
Signature: void dbu= (double dbu)

Description: Sets the default database unit

Python specific notes:
The object exposes a writable attribute 'dbu'. This is the setter.

default_base_path
Signature: [const] string default_base_path

Description: Gets the default base path

See base_path for details about the default base path.

Python specific notes:
The object exposes a readable attribute 'default_base_path'. This is the getter.

description
Signature: [const] string description

Description: Gets the description

For more details visit
https://www.klayout.org

Page 1306 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.75. API reference - Class Technology

The technology description is shown to the user in technology selection dialogs and for display
purposes.

Python specific notes:
The object exposes a readable attribute 'description'. This is the getter.

description=
Signature: void description= (string description)

Description: Sets the description

Python specific notes:
The object exposes a writable attribute 'description'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new Technology ptr dup

Description: Creates a copy of self

eff_layer_properties_file
Signature: [const] string eff_layer_properties_file

Description: Gets the effective path of the layer properties file

eff_path
Signature: [const] string eff_path (string path)

Description: Makes a file path relative to the base path if one is specified

This method will return the actual path for a file from the file's path. If the input path is a relative
one, it will be made absolute by using the base path.

See base_path for details about the default base path.

explicit_base_path
Signature: [const] string explicit_base_path

Description: Gets the explicit base path

See base_path for details about the explicit base path.

Python specific notes:
The object exposes a readable attribute 'explicit_base_path'. This is the getter.

explicit_base_path=
Signature: void explicit_base_path= (string path)

Description: Sets the explicit base path

See base_path for details about the explicit base path.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1307 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.75. API reference - Class Technology

The object exposes a writable attribute 'explicit_base_path'. This is the setter.

group
Signature: [const] string group

Description: Gets the technology group

The technology group is used to group certain technologies together in the technology selection
menu. Technologies with the same group are put under a submenu with that group title.

The 'group' attribute has been introduced in version 0.26.2.

Python specific notes:
The object exposes a readable attribute 'group'. This is the getter.

group=
Signature: void group= (string group)

Description: Sets the technology group

See group for details about this attribute.

The 'group' attribute has been introduced in version 0.26.2.

Python specific notes:
The object exposes a writable attribute 'group'. This is the setter.

has_technology?
Signature: [static] bool has_technology? (string name)

Description: Returns a value indicating whether there is a technology with this name

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

layer_properties_file
Signature: [const] string layer_properties_file

Description: Gets the path of the layer properties file

If empty, no layer properties file is associated with the technology. If non-empty, this path will
be corrected by the base path (see correct_path) and this layer properties file will be loaded for
layouts with this technology.

Python specific notes:
The object exposes a readable attribute 'layer_properties_file'. This is the getter.

layer_properties_file=
Signature: void layer_properties_file= (string file)

Description: Sets the path of the layer properties file

See layer_properties_file for details about this property.

Python specific notes:
The object exposes a writable attribute 'layer_properties_file'. This is the setter.

load
Signature: void load (string file)

Description: Loads the technology definition from a file

load_layout_options
Signature: [const] LoadLayoutOptions load_layout_options

Description: Gets the layout reader options

For more details visit
https://www.klayout.org

Page 1308 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.75. API reference - Class Technology

This method returns the layout reader options that are used when reading layouts with this
technology.

Change the reader options by modifying the object and using the setter to change it:

opt = tech.load_layout_options
opt.dxf_dbu = 2.5
tech.load_layout_options = opt

Python specific notes:
The object exposes a readable attribute 'load_layout_options'. This is the getter.

load_layout_options=
Signature: void load_layout_options= (const LoadLayoutOptions options)

Description: Sets the layout reader options

See load_layout_options for a description of this property.

Python specific notes:
The object exposes a writable attribute 'load_layout_options'. This is the setter.

name
Signature: [const] string name

Description: Gets the name of the technology

Python specific notes:
The object exposes a readable attribute 'name'. This is the getter.

name=
Signature: void name= (string name)

Description: Sets the name of the technology

Python specific notes:
The object exposes a writable attribute 'name'. This is the setter.

new
Signature: [static] new Technology ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

remove_technology
Signature: [static] void remove_technology (string name)

Description: Removes the technology with the given name

save
Signature: [const] void save (string file)

Description: Saves the technology definition to a file

save_layout_options
Signature: [const] SaveLayoutOptions save_layout_options

Description: Gets the layout writer options

This method returns the layout writer options that are used when writing layouts with this
technology.

Change the reader options by modifying the object and using the setter to change it:

opt = tech.save_layout_options
opt.dbu = 0.01

For more details visit
https://www.klayout.org

Page 1309 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.75. API reference - Class Technology

tech.save_layout_options = opt

Python specific notes:
The object exposes a readable attribute 'save_layout_options'. This is the getter.

save_layout_options=
Signature: void save_layout_options= (const SaveLayoutOptions options)

Description: Sets the layout writer options

See save_layout_options for a description of this property.

Python specific notes:
The object exposes a writable attribute 'save_layout_options'. This is the setter.

technologies_from_xml
Signature: [static] void technologies_from_xml (string xml)

Description: Loads the technologies from a XML representation

See technologies_to_xml for details. This method is the corresponding setter.

technologies_to_xml
Signature: [static] string technologies_to_xml

Description: Returns a XML representation of all technologies registered in the system

technologies_from_xml can be used to restore the technology definitions. This method is
provided mainly as a substitute for the pre-0.25 way of accessing technology data through the
'technology-data' configuration parameter. This method will return the equivalent string.

technology_by_name
Signature: [static] Technology ptr technology_by_name (string name)

Description: Gets the technology object for a given name

technology_from_xml
Signature: [static] Technology technology_from_xml (string xml)

Description: Loads the technology from a XML representation

See technology_to_xml for details.

technology_names
Signature: [static] string[] technology_names

Description: Gets a list of technology names defined in the system

to_xml
Signature: [const] string to_xml

Description: Returns a XML representation of this technolog

technology_from_xml can be used to restore the technology definition.

For more details visit
https://www.klayout.org

Page 1310 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.76. API reference - Class Text

4.76. API reference - Class Text
Notation used in Ruby API documentation

Module: db

Description: A text object

A text object has a point (location), a text, a text transformation, a text size and a font id. Text size and font id are provided to be be able to
render the text correctly. Text objects are used as labels (i.e. for pins) or to indicate a particular position.

The Text class uses integer coordinates. A class that operates with floating-point coordinates is DText.

See The Database API for more details about the database objects.

Public constructors

new Text ptr new (const DText dtext) Creates an integer coordinate text from a
floating-point coordinate text

new Text ptr new Default constructor

new Text ptr new (string string,
const Trans trans)

Constructor with string and transformation

new Text ptr new (string string,
int x,
int y)

Constructor with string and location

new Text ptr new (string string,
const Trans trans,
int height,
int font)

Constructor with string, transformation, text
height and font

Public methods

[const] bool != (const Text text) Inequality

[const] bool < (const Text t) Less operator

[const] bool == (const Text text) Equality

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const Text other) Assigns another object to self

For more details visit
https://www.klayout.org

Page 1311 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.76. API reference - Class Text

Box bbox Gets the bounding box of the text

[const] new Text ptr dup Creates a copy of self

int font Gets the font number

void font= (int f) Sets the font number

HAlign halign Gets the horizontal alignment

void halign= (HAlign a) Sets the horizontal alignment

[const] unsigned long hash Computes a hash value

Text move (const Vector
distance)

Moves the text by a certain distance (modifies
self)

Text move (int dx,
int dy)

Moves the text by a certain distance (modifies
self)

Text moved (const Vector
distance)

Returns the text moved by a certain distance
(does not modify self)

Text moved (int dx,
int dy)

Returns the text moved by a certain distance
(does not modify self)

Point position Gets the position of the text

[const] int size Gets the text height

void size= (int s) Sets the text height of this object

[const] string string Get the text string

void string= (string text) Assign a text string to this object

[const] DText to_dtype (double dbu = 1) Converts the text to a floating-point coordinate
text

[const] string to_s (double dbu = 0) Converts the object to a string.

[const] Trans trans Gets the transformation

void trans= (const Trans t) Assign a transformation (text position and
orientation) to this object

[const] Text transformed (const ICplxTrans
t)

Transform the text with the given complex
transformation

[const] Text transformed (const Trans t) Transforms the text with the given simple
transformation

[const] DText transformed (const CplxTrans
t)

Transforms the text with the given complex
transformation

VAlign valign Gets the vertical alignment

void valign= (VAlign a) Sets the vertical alignment

For more details visit
https://www.klayout.org

Page 1312 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.76. API reference - Class Text

[const] int x Gets the x location of the text

void x= (int x) Sets the x location of the text

[const] int y Gets the y location of the text

void y= (int y) Sets the y location of the text

Public static methods and constants

[static,const] HAlign HAlignCenter Centered horizontal alignment

[static,const] HAlign HAlignLeft Left horizontal alignment

[static,const] HAlign HAlignRight Right horizontal alignment

[static,const] HAlign NoHAlign Undefined horizontal alignment

[static,const] VAlign NoVAlign Undefined vertical alignment

[static,const] VAlign VAlignBottom Bottom vertical alignment

[static,const] VAlign VAlignCenter Centered vertical alignment

[static,const] VAlign VAlignTop Top vertical alignment

new Text ptr from_s (string
s)

Creates an object from a string

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

void halign= (int a) Use of this method is deprecated

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

void valign= (int a) Use of this method is deprecated

Detailed description

!=
Signature: [const] bool != (const Text text)

Description: Inequality

Return true, if this text object and the given text are not equal

For more details visit
https://www.klayout.org

Page 1313 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.76. API reference - Class Text

<
Signature: [const] bool < (const Text t)

Description: Less operator

t: The object to compare against

This operator is provided to establish some, not necessarily a certain sorting order

==
Signature: [const] bool == (const Text text)

Description: Equality

Return true, if this text object and the given text are equal

HAlignCenter
Signature: [static,const] HAlign HAlignCenter

Description: Centered horizontal alignment

HAlignLeft
Signature: [static,const] HAlign HAlignLeft

Description: Left horizontal alignment

HAlignRight
Signature: [static,const] HAlign HAlignRight

Description: Right horizontal alignment

NoHAlign
Signature: [static,const] HAlign NoHAlign

Description: Undefined horizontal alignment

NoVAlign
Signature: [static,const] VAlign NoVAlign

Description: Undefined vertical alignment

VAlignBottom
Signature: [static,const] VAlign VAlignBottom

Description: Bottom vertical alignment

VAlignCenter
Signature: [static,const] VAlign VAlignCenter

Description: Centered vertical alignment

VAlignTop
Signature: [static,const] VAlign VAlignTop

Description: Top vertical alignment

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 1314 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.76. API reference - Class Text

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const Text other)

Description: Assigns another object to self

bbox
Signature: Box bbox

Description: Gets the bounding box of the text

The bounding box of the text is a single point - the location of the text. Both points of the box are
identical.

This method has been added in version 0.28.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 1315 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.76. API reference - Class Text

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new Text ptr dup

Description: Creates a copy of self

font
Signature: int font

Description: Gets the font number

See font= for a description of this property.

Python specific notes:
The object exposes a readable attribute 'font'. This is the getter.

font=
Signature: void font= (int f)

Description: Sets the font number

The font number does not play a role for KLayout. This property is provided for compatibility with
other systems which allow using different fonts for the text objects.

Python specific notes:
The object exposes a writable attribute 'font'. This is the setter.

from_s
Signature: [static] new Text ptr from_s (string s)

Description: Creates an object from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

halign
Signature: HAlign halign

Description: Gets the horizontal alignment

See halign= for a description of this property.

Python specific notes:
The object exposes a readable attribute 'halign'. This is the getter.

halign=
(1) Signature: void halign= (int a)

Description: Sets the horizontal alignment

Use of this method is deprecated

This is the version accepting integer values. It's provided for backward compatibility.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1316 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.76. API reference - Class Text

The object exposes a writable attribute 'halign'. This is the setter.

(2) Signature: void halign= (HAlign a)

Description: Sets the horizontal alignment

This property specifies how the text is aligned relative to the anchor point. This property has been
introduced in version 0.22 and extended to enums in 0.28.

Python specific notes:
The object exposes a writable attribute 'halign'. This is the setter.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given text object. This method enables texts as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

(1) Signature: Text move (const Vector distance)

Description: Moves the text by a certain distance (modifies self)

p: The offset to move the text.

Returns: A reference to this text object

Moves the text by a given offset and returns the moved text. Does not check for coordinate
overflows.

move

(2) Signature: Text move (int dx, int dy)

Description: Moves the text by a certain distance (modifies self)

dx: The x distance to move the text.

dy: The y distance to move the text.

Returns: A reference to this text object

Moves the text by a given distance in x and y direction and returns the moved text. Does not check
for coordinate overflows.

This method was introduced in version 0.23.

moved
(1) Signature: Text moved (const Vector distance)

Description: Returns the text moved by a certain distance (does not modify self)

p: The offset to move the text.

Returns: The moved text.

Moves the text by a given offset and returns the moved text. Does not modify *this. Does not check
for coordinate overflows.

For more details visit
https://www.klayout.org

Page 1317 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.76. API reference - Class Text

(2) Signature: Text moved (int dx, int dy)

Description: Returns the text moved by a certain distance (does not modify self)

dx: The x distance to move the text.

dy: The y distance to move the text.

Returns: The moved text.

Moves the text by a given offset and returns the moved text. Does not modify *this. Does not check
for coordinate overflows.

This method was introduced in version 0.23.

(1) Signature: [static] new Text ptr new (const DText dtext)

Description: Creates an integer coordinate text from a floating-point coordinate text

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dtext'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new Text ptr new

Description: Default constructor

Creates a text with unit transformation and empty text.

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new Text ptr new (string string, const Trans trans)

Description: Constructor with string and transformation

A string and a transformation is provided to this constructor. The transformation specifies the location
and orientation of the text object.

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new Text ptr new (string string, int x, int y)

Description: Constructor with string and location

A string and a location is provided to this constructor. The location is specifies as a pair of x and y
coordinates.

This method has been introduced in version 0.23.

Python specific notes:
This method is the default initializer of the object

new

(5) Signature: [static] new Text ptr new (string string, const Trans trans, int height, int font)

Description: Constructor with string, transformation, text height and font

A string and a transformation is provided to this constructor. The transformation specifies the location
and orientation of the text object. In addition, the text height and font can be specified.

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1318 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.76. API reference - Class Text

position
Signature: Point position

Description: Gets the position of the text

This convenience method has been added in version 0.28.

size
Signature: [const] int size

Description: Gets the text height

Python specific notes:
The object exposes a readable attribute 'size'. This is the getter.

size=
Signature: void size= (int s)

Description: Sets the text height of this object

Python specific notes:
The object exposes a writable attribute 'size'. This is the setter.

string
Signature: [const] string string

Description: Get the text string

Python specific notes:
The object exposes a readable attribute 'string'. This is the getter.

string=
Signature: void string= (string text)

Description: Assign a text string to this object

Python specific notes:
The object exposes a writable attribute 'string'. This is the setter.

to_dtype
Signature: [const] DText to_dtype (double dbu = 1)

Description: Converts the text to a floating-point coordinate text

The database unit can be specified to translate the integer-coordinate text into a floating-point
coordinate text in micron units. The database unit is basically a scaling factor.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s (double dbu = 0)

Description: Converts the object to a string.

If a DBU is given, the output units will be micrometers.

The DBU argument has been added in version 0.27.6.

Python specific notes:
This method is also available as 'str(object)'

trans
Signature: [const] Trans trans

Description: Gets the transformation

Python specific notes:
The object exposes a readable attribute 'trans'. This is the getter.

trans=
Signature: void trans= (const Trans t)

Description: Assign a transformation (text position and orientation) to this object

Python specific notes:

For more details visit
https://www.klayout.org

Page 1319 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.76. API reference - Class Text

The object exposes a writable attribute 'trans'. This is the setter.

(1) Signature: [const] Text transformed (const ICplxTrans t)

Description: Transform the text with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed text (in this case an integer coordinate object now)

This method has been introduced in version 0.18.

(2) Signature: [const] Text transformed (const Trans t)

Description: Transforms the text with the given simple transformation

t: The transformation to apply

Returns: The transformed text

transformed

(3) Signature: [const] DText transformed (const CplxTrans t)

Description: Transforms the text with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed text (a DText now)

valign
Signature: VAlign valign

Description: Gets the vertical alignment

See valign= for a description of this property.

Python specific notes:
The object exposes a readable attribute 'valign'. This is the getter.

(1) Signature: void valign= (int a)

Description: Sets the vertical alignment

Use of this method is deprecated

This is the version accepting integer values. It's provided for backward compatibility.

Python specific notes:
The object exposes a writable attribute 'valign'. This is the setter.

valign=

(2) Signature: void valign= (VAlign a)

Description: Sets the vertical alignment

This property specifies how the text is aligned relative to the anchor point. This property has been
introduced in version 0.22 and extended to enums in 0.28.

Python specific notes:
The object exposes a writable attribute 'valign'. This is the setter.

x
Signature: [const] int x

Description: Gets the x location of the text

This method has been introduced in version 0.23.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1320 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.76. API reference - Class Text

The object exposes a readable attribute 'x'. This is the getter.

x=
Signature: void x= (int x)

Description: Sets the x location of the text

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'x'. This is the setter.

y
Signature: [const] int y

Description: Gets the y location of the text

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a readable attribute 'y'. This is the getter.

y=
Signature: void y= (int y)

Description: Sets the y location of the text

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'y'. This is the setter.

For more details visit
https://www.klayout.org

Page 1321 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.77. API reference - Class DText

4.77. API reference - Class DText
Notation used in Ruby API documentation

Module: db

Description: A text object

A text object has a point (location), a text, a text transformation, a text size and a font id. Text size and font id are provided to be be able to
render the text correctly. Text objects are used as labels (i.e. for pins) or to indicate a particular position.

The DText class uses floating-point coordinates. A class that operates with integer coordinates is Text.

See The Database API for more details about the database objects.

Public constructors

new DText ptr new (const Text Text) Creates a floating-point coordinate text from an
integer coordinate text

new DText ptr new Default constructor

new DText ptr new (string string,
const DTrans trans)

Constructor with string and transformation

new DText ptr new (string string,
double x,
double y)

Constructor with string and location

new DText ptr new (string string,
const DTrans trans,
double height,
int font)

Constructor with string, transformation, text
height and font

Public methods

[const] bool != (const DText text) Inequality

[const] bool < (const DText t) Less operator

[const] bool == (const DText text) Equality

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

For more details visit
https://www.klayout.org

Page 1322 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.77. API reference - Class DText

void assign (const DText
other)

Assigns another object to self

DBox bbox Gets the bounding box of the text

[const] new DText ptr dup Creates a copy of self

int font Gets the font number

void font= (int f) Sets the font number

HAlign halign Gets the horizontal alignment

void halign= (HAlign a) Sets the horizontal alignment

[const] unsigned long hash Computes a hash value

DText move (const DVector
distance)

Moves the text by a certain distance (modifies
self)

DText move (double dx,
double dy)

Moves the text by a certain distance (modifies
self)

DText moved (const DVector
distance)

Returns the text moved by a certain distance
(does not modify self)

DText moved (double dx,
double dy)

Returns the text moved by a certain distance
(does not modify self)

DPoint position Gets the position of the text

[const] double size Gets the text height

void size= (double s) Sets the text height of this object

[const] string string Get the text string

void string= (string text) Assign a text string to this object

[const] Text to_itype (double dbu = 1) Converts the text to an integer coordinate text

[const] string to_s (double dbu = 0) Converts the object to a string.

[const] DTrans trans Gets the transformation

void trans= (const DTrans t) Assign a transformation (text position and
orientation) to this object

[const] Text transformed (const VCplxTrans
t)

Transforms the text with the given complex
transformation

[const] DText transformed (const DTrans t) Transforms the text with the given simple
transformation

[const] DText transformed (const DCplxTrans
t)

Transforms the text with the given complex
transformation

VAlign valign Gets the vertical alignment

For more details visit
https://www.klayout.org

Page 1323 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.77. API reference - Class DText

void valign= (VAlign a) Sets the vertical alignment

[const] double x Gets the x location of the text

void x= (double x) Sets the x location of the text

[const] double y Gets the y location of the text

void y= (double y) Sets the y location of the text

Public static methods and constants

[static,const] HAlign HAlignCenter Centered horizontal alignment

[static,const] HAlign HAlignLeft Left horizontal alignment

[static,const] HAlign HAlignRight Right horizontal alignment

[static,const] HAlign NoHAlign Undefined horizontal alignment

[static,const] VAlign NoVAlign Undefined vertical alignment

[static,const] VAlign VAlignBottom Bottom vertical alignment

[static,const] VAlign VAlignCenter Centered vertical alignment

[static,const] VAlign VAlignTop Top vertical alignment

new DText ptr from_s (string
s)

Creates an object from a string

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

void halign= (int a) Use of this method is deprecated

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

void valign= (int a) Use of this method is deprecated

Detailed description

!=
Signature: [const] bool != (const DText text)

Description: Inequality

Return true, if this text object and the given text are not equal

For more details visit
https://www.klayout.org

Page 1324 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.77. API reference - Class DText

<
Signature: [const] bool < (const DText t)

Description: Less operator

t: The object to compare against

This operator is provided to establish some, not necessarily a certain sorting order

==
Signature: [const] bool == (const DText text)

Description: Equality

Return true, if this text object and the given text are equal

HAlignCenter
Signature: [static,const] HAlign HAlignCenter

Description: Centered horizontal alignment

HAlignLeft
Signature: [static,const] HAlign HAlignLeft

Description: Left horizontal alignment

HAlignRight
Signature: [static,const] HAlign HAlignRight

Description: Right horizontal alignment

NoHAlign
Signature: [static,const] HAlign NoHAlign

Description: Undefined horizontal alignment

NoVAlign
Signature: [static,const] VAlign NoVAlign

Description: Undefined vertical alignment

VAlignBottom
Signature: [static,const] VAlign VAlignBottom

Description: Bottom vertical alignment

VAlignCenter
Signature: [static,const] VAlign VAlignCenter

Description: Centered vertical alignment

VAlignTop
Signature: [static,const] VAlign VAlignTop

Description: Top vertical alignment

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 1325 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.77. API reference - Class DText

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const DText other)

Description: Assigns another object to self

bbox
Signature: DBox bbox

Description: Gets the bounding box of the text

The bounding box of the text is a single point - the location of the text. Both points of the box are
identical.

This method has been added in version 0.28.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 1326 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.77. API reference - Class DText

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new DText ptr dup

Description: Creates a copy of self

font
Signature: int font

Description: Gets the font number

See font= for a description of this property.

Python specific notes:
The object exposes a readable attribute 'font'. This is the getter.

font=
Signature: void font= (int f)

Description: Sets the font number

The font number does not play a role for KLayout. This property is provided for compatibility with
other systems which allow using different fonts for the text objects.

Python specific notes:
The object exposes a writable attribute 'font'. This is the setter.

from_s
Signature: [static] new DText ptr from_s (string s)

Description: Creates an object from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

halign
Signature: HAlign halign

Description: Gets the horizontal alignment

See halign= for a description of this property.

Python specific notes:
The object exposes a readable attribute 'halign'. This is the getter.

halign=
(1) Signature: void halign= (int a)

Description: Sets the horizontal alignment

Use of this method is deprecated

This is the version accepting integer values. It's provided for backward compatibility.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1327 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.77. API reference - Class DText

The object exposes a writable attribute 'halign'. This is the setter.

(2) Signature: void halign= (HAlign a)

Description: Sets the horizontal alignment

This property specifies how the text is aligned relative to the anchor point. This property has been
introduced in version 0.22 and extended to enums in 0.28.

Python specific notes:
The object exposes a writable attribute 'halign'. This is the setter.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given text object. This method enables texts as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

(1) Signature: DText move (const DVector distance)

Description: Moves the text by a certain distance (modifies self)

p: The offset to move the text.

Returns: A reference to this text object

Moves the text by a given offset and returns the moved text. Does not check for coordinate
overflows.

move

(2) Signature: DText move (double dx, double dy)

Description: Moves the text by a certain distance (modifies self)

dx: The x distance to move the text.

dy: The y distance to move the text.

Returns: A reference to this text object

Moves the text by a given distance in x and y direction and returns the moved text. Does not check
for coordinate overflows.

This method was introduced in version 0.23.

moved
(1) Signature: DText moved (const DVector distance)

Description: Returns the text moved by a certain distance (does not modify self)

p: The offset to move the text.

Returns: The moved text.

Moves the text by a given offset and returns the moved text. Does not modify *this. Does not check
for coordinate overflows.

For more details visit
https://www.klayout.org

Page 1328 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.77. API reference - Class DText

(2) Signature: DText moved (double dx, double dy)

Description: Returns the text moved by a certain distance (does not modify self)

dx: The x distance to move the text.

dy: The y distance to move the text.

Returns: The moved text.

Moves the text by a given offset and returns the moved text. Does not modify *this. Does not check
for coordinate overflows.

This method was introduced in version 0.23.

(1) Signature: [static] new DText ptr new (const Text Text)

Description: Creates a floating-point coordinate text from an integer coordinate text

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_itext'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new DText ptr new

Description: Default constructor

Creates a text with unit transformation and empty text.

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new DText ptr new (string string, const DTrans trans)

Description: Constructor with string and transformation

A string and a transformation is provided to this constructor. The transformation specifies the location
and orientation of the text object.

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new DText ptr new (string string, double x, double y)

Description: Constructor with string and location

A string and a location is provided to this constructor. The location is specifies as a pair of x and y
coordinates.

This method has been introduced in version 0.23.

Python specific notes:
This method is the default initializer of the object

new

(5) Signature: [static] new DText ptr new (string string, const DTrans trans, double height, int font)

Description: Constructor with string, transformation, text height and font

A string and a transformation is provided to this constructor. The transformation specifies the location
and orientation of the text object. In addition, the text height and font can be specified.

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1329 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.77. API reference - Class DText

position
Signature: DPoint position

Description: Gets the position of the text

This convenience method has been added in version 0.28.

size
Signature: [const] double size

Description: Gets the text height

Python specific notes:
The object exposes a readable attribute 'size'. This is the getter.

size=
Signature: void size= (double s)

Description: Sets the text height of this object

Python specific notes:
The object exposes a writable attribute 'size'. This is the setter.

string
Signature: [const] string string

Description: Get the text string

Python specific notes:
The object exposes a readable attribute 'string'. This is the getter.

string=
Signature: void string= (string text)

Description: Assign a text string to this object

Python specific notes:
The object exposes a writable attribute 'string'. This is the setter.

to_itype
Signature: [const] Text to_itype (double dbu = 1)

Description: Converts the text to an integer coordinate text

The database unit can be specified to translate the floating-point coordinate Text in micron units to an
integer-coordinate text in database units. The text's coordinates will be divided by the database unit.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s (double dbu = 0)

Description: Converts the object to a string.

If a DBU is given, the output units will be micrometers.

The DBU argument has been added in version 0.27.6.

Python specific notes:
This method is also available as 'str(object)'

trans
Signature: [const] DTrans trans

Description: Gets the transformation

Python specific notes:
The object exposes a readable attribute 'trans'. This is the getter.

trans=
Signature: void trans= (const DTrans t)

Description: Assign a transformation (text position and orientation) to this object

Python specific notes:

For more details visit
https://www.klayout.org

Page 1330 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.77. API reference - Class DText

The object exposes a writable attribute 'trans'. This is the setter.

(1) Signature: [const] Text transformed (const VCplxTrans t)

Description: Transforms the text with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed text (in this case an integer coordinate text)

This method has been introduced in version 0.25.

(2) Signature: [const] DText transformed (const DTrans t)

Description: Transforms the text with the given simple transformation

t: The transformation to apply

Returns: The transformed text

transformed

(3) Signature: [const] DText transformed (const DCplxTrans t)

Description: Transforms the text with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed text (a DText now)

valign
Signature: VAlign valign

Description: Gets the vertical alignment

See valign= for a description of this property.

Python specific notes:
The object exposes a readable attribute 'valign'. This is the getter.

(1) Signature: void valign= (int a)

Description: Sets the vertical alignment

Use of this method is deprecated

This is the version accepting integer values. It's provided for backward compatibility.

Python specific notes:
The object exposes a writable attribute 'valign'. This is the setter.

valign=

(2) Signature: void valign= (VAlign a)

Description: Sets the vertical alignment

This property specifies how the text is aligned relative to the anchor point. This property has been
introduced in version 0.22 and extended to enums in 0.28.

Python specific notes:
The object exposes a writable attribute 'valign'. This is the setter.

x
Signature: [const] double x

Description: Gets the x location of the text

This method has been introduced in version 0.23.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1331 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.77. API reference - Class DText

The object exposes a readable attribute 'x'. This is the getter.

x=
Signature: void x= (double x)

Description: Sets the x location of the text

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'x'. This is the setter.

y
Signature: [const] double y

Description: Gets the y location of the text

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a readable attribute 'y'. This is the getter.

y=
Signature: void y= (double y)

Description: Sets the y location of the text

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'y'. This is the setter.

For more details visit
https://www.klayout.org

Page 1332 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.78. API reference - Class HAlign

4.78. API reference - Class HAlign
Notation used in Ruby API documentation

Module: db

Description: This class represents the horizontal alignment modes.

This enum has been introduced in version 0.28.

Public constructors

new HAlign ptr new (int i) Creates an enum from an integer value

new HAlign ptr new (string s) Creates an enum from a string value

Public methods

[const] bool != (const
HAlign
other)

Compares two enums for inequality

[const] bool < (const
HAlign
other)

Returns true if the first enum is less (in the enum
symbol order) than the second

[const] bool == (const
HAlign
other)

Compares two enums

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
HAlign
other)

Assigns another object to self

[const] new HAlign ptr dup Creates a copy of self

[const] string inspect Converts an enum to a visual string

[const] int to_i Gets the integer value from the enum

[const] string to_s Gets the symbolic string from an enum

For more details visit
https://www.klayout.org

Page 1333 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.78. API reference - Class HAlign

Public static methods and constants

[static,const] HAlign HAlignCenter Centered horizontal alignment

[static,const] HAlign HAlignLeft Left horizontal alignment

[static,const] HAlign HAlignRight Right horizontal alignment

[static,const] HAlign NoHAlign Undefined horizontal alignment

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

!=
Signature: [const] bool != (const HAlign other)

Description: Compares two enums for inequality

<
Signature: [const] bool < (const HAlign other)

Description: Returns true if the first enum is less (in the enum symbol order) than the second

==
Signature: [const] bool == (const HAlign other)

Description: Compares two enums

HAlignCenter
Signature: [static,const] HAlign HAlignCenter

Description: Centered horizontal alignment

HAlignLeft
Signature: [static,const] HAlign HAlignLeft

Description: Left horizontal alignment

HAlignRight
Signature: [static,const] HAlign HAlignRight

Description: Right horizontal alignment

NoHAlign
Signature: [static,const] HAlign NoHAlign

Description: Undefined horizontal alignment

_create
Signature: void _create

Description: Ensures the C++ object is created

For more details visit
https://www.klayout.org

Page 1334 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.78. API reference - Class HAlign

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const HAlign other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 1335 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.78. API reference - Class HAlign

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new HAlign ptr dup

Description: Creates a copy of self

inspect
Signature: [const] string inspect

Description: Converts an enum to a visual string

Python specific notes:
This method is also available as 'repr(object)'

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

(1) Signature: [static] new HAlign ptr new (int i)

Description: Creates an enum from an integer value

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new HAlign ptr new (string s)

Description: Creates an enum from a string value

Python specific notes:
This method is the default initializer of the object

to_i
Signature: [const] int to_i

Description: Gets the integer value from the enum

to_s
Signature: [const] string to_s

Description: Gets the symbolic string from an enum

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 1336 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.79. API reference - Class VAlign

4.79. API reference - Class VAlign
Notation used in Ruby API documentation

Module: db

Description: This class represents the vertical alignment modes.

This enum has been introduced in version 0.28.

Public constructors

new VAlign ptr new (int i) Creates an enum from an integer value

new VAlign ptr new (string s) Creates an enum from a string value

Public methods

[const] bool != (const
VAlign
other)

Compares two enums for inequality

[const] bool < (const
VAlign
other)

Returns true if the first enum is less (in the enum
symbol order) than the second

[const] bool == (const
VAlign
other)

Compares two enums

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
VAlign
other)

Assigns another object to self

[const] new VAlign ptr dup Creates a copy of self

[const] string inspect Converts an enum to a visual string

[const] int to_i Gets the integer value from the enum

[const] string to_s Gets the symbolic string from an enum

For more details visit
https://www.klayout.org

Page 1337 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.79. API reference - Class VAlign

Public static methods and constants

[static,const] VAlign NoVAlign Undefined vertical alignment

[static,const] VAlign VAlignBottom Bottom vertical alignment

[static,const] VAlign VAlignCenter Centered vertical alignment

[static,const] VAlign VAlignTop Top vertical alignment

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

!=
Signature: [const] bool != (const VAlign other)

Description: Compares two enums for inequality

<
Signature: [const] bool < (const VAlign other)

Description: Returns true if the first enum is less (in the enum symbol order) than the second

==
Signature: [const] bool == (const VAlign other)

Description: Compares two enums

NoVAlign
Signature: [static,const] VAlign NoVAlign

Description: Undefined vertical alignment

VAlignBottom
Signature: [static,const] VAlign VAlignBottom

Description: Bottom vertical alignment

VAlignCenter
Signature: [static,const] VAlign VAlignCenter

Description: Centered vertical alignment

VAlignTop
Signature: [static,const] VAlign VAlignTop

Description: Top vertical alignment

_create
Signature: void _create

Description: Ensures the C++ object is created

For more details visit
https://www.klayout.org

Page 1338 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.79. API reference - Class VAlign

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const VAlign other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 1339 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.79. API reference - Class VAlign

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new VAlign ptr dup

Description: Creates a copy of self

inspect
Signature: [const] string inspect

Description: Converts an enum to a visual string

Python specific notes:
This method is also available as 'repr(object)'

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

(1) Signature: [static] new VAlign ptr new (int i)

Description: Creates an enum from an integer value

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new VAlign ptr new (string s)

Description: Creates an enum from a string value

Python specific notes:
This method is the default initializer of the object

to_i
Signature: [const] int to_i

Description: Gets the integer value from the enum

to_s
Signature: [const] string to_s

Description: Gets the symbolic string from an enum

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 1340 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.80. API reference - Class TileOutputReceiver

4.80. API reference - Class TileOutputReceiver
Notation used in Ruby API documentation

Module: db

Description: A receiver abstraction for the tiling processor.

Class hierarchy: TileOutputReceiver

The tiling processor (TilingProcessor) is a framework for executing sequences of operations on tiles of a layout or multiple layouts. The
TileOutputReceiver class is used to specify an output channel for the tiling processor. See TilingProcessor#output for more details.

This class has been introduced in version 0.23.

Public constructors

new TileOutputReceiver ptr new Creates a new object of this class

Public methods

void _assign (const
TileOutputReceiver
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] new
TileOutputReceiver
ptr

_dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by
the script side.

void assign (const
TileOutputReceiver
other)

Assigns another object to self

[virtual] void begin (unsigned long nx,
unsigned long ny,
const DPoint p0,
double dx,
double dy,
const DBox frame)

Initiates the delivery

[const] new
TileOutputReceiver
ptr

dup Creates a copy of self

For more details visit
https://www.klayout.org

Page 1341 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.80. API reference - Class TileOutputReceiver

[virtual] void finish (bool success) Indicates the end of the execution

[const] TilingProcessor ptr processor Gets the processor the receiver is
attached to

[virtual] void put (unsigned long ix,
unsigned long iy,
const Box tile,
variant obj,
double dbu,
bool clip)

Delivers data for one tile

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_assign
Signature: void _assign (const TileOutputReceiver other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new TileOutputReceiver ptr _dup

Description: Creates a copy of self

For more details visit
https://www.klayout.org

Page 1342 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.80. API reference - Class TileOutputReceiver

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const TileOutputReceiver other)

Description: Assigns another object to self

begin
Signature: [virtual] void begin (unsigned long nx, unsigned long ny, const DPoint p0, double dx,
double dy, const DBox frame)

Description: Initiates the delivery

nx: The number of tiles in x direction

ny: The number of tiles in y direction

p0: The initial point

dx: The tile's x dimension

dy: The tile's y dimension

frame: The overall frame that is the basis of the tiling

This method is called before the first tile delivers it's data.

The tile's coordinates will be p0+(ix*dx,iy*dy)..p0+((ix+1)*dx,(iy+1)*dy) where ix=0..nx-1, iy=0..ny-1.

All coordinates are given in micron. If tiles are not used, nx and ny are 0.

The frame parameter has been added in version 0.25.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 1343 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.80. API reference - Class TileOutputReceiver

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new TileOutputReceiver ptr dup

Description: Creates a copy of self

finish
Signature: [virtual] void finish (bool success)

Description: Indicates the end of the execution

This method is called when the tiling processor has finished the last tile and script item. The success
flag is set to true, if every tile has finished successfully. Otherwise, this value is false.

The success flag has been added in version 0.25.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new TileOutputReceiver ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

processor
Signature: [const] TilingProcessor ptr processor

Description: Gets the processor the receiver is attached to

This attribute is set before begin and can be nil if the receiver is not attached to a processor.

This method has been introduced in version 0.25.

put
Signature: [virtual] void put (unsigned long ix, unsigned long iy, const Box tile, variant obj, double
dbu, bool clip)

Description: Delivers data for one tile

ix: The x index of the tile

iy: The y index of the tile

tile: The tile's box

obj: The object which is delivered

For more details visit
https://www.klayout.org

Page 1344 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.80. API reference - Class TileOutputReceiver

dbu: The database unit

clip: True if clipping at the tile box is requested

When the script's "_output" function is called, the data will be delivered through this method. "obj" is
the data passed as the second argument to _output. The interpretation of the object remains subject
to the implementation.

The obj and clip parameters are taken from the _output method call inside the script. If clip is set to
true, this usually means that output shall be clipped to the tile.

For more details visit
https://www.klayout.org

Page 1345 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.81. API reference - Class TilingProcessor

4.81. API reference - Class TilingProcessor
Notation used in Ruby API documentation

Module: db

Description: A processor for layout which distributes tasks over tiles

The tiling processor executes one or several scripts on one or multiple layouts providing a tiling scheme. In that scheme, the processor
divides the original layout into rectangular tiles and executes the scripts on each tile separately. The tiling processor allows one to specify
multiple, independent scripts which are run separately on each tile. It can make use of multi-core CPU's by supporting multiple threads
running the tasks in parallel (with respect to tiles and scripts).

Tiling a optional - if no tiles are specified, the tiling processing basically operates flat and parallelization extends to the scripts only.

Tiles can be overlapping to gather input from neighboring tiles into the current tile. In order to provide that feature, a border can be
specified which gives the amount by which the search region is extended beyond the border of the tile. To specify the border, use the
TilingProcessor#tile_border method.

The basis of the tiling processor are Region objects and expressions. Expressions are a built-in simple language to form simple scripts.
Expressions allow access to the objects and methods built into KLayout. Each script can consist of multiple operations. Scripts are
specified using TilingProcessor#queue.

Input is provided to the script through variables holding a Region object each. From outside the tiling processor, input is specified with the
TilingProcessor#input method. This method is given a name and a RecursiveShapeIterator object which delivers the data for the input. On
the script side, a Region object is provided through a variable named like the first argument of the "input" method.

Inside the script the following functions are provided:

• "_dbu" delivers the database unit used for the computations

• "_tile" delivers a region containing a mask for the tile (a rectangle) or nil if no tiling is used

• "_output" is used to deliver output (see below)

Output can be obtained from the tiling processor by registering a receiver with a channel. A channel is basically a name. Inside the script,
the name describes a variable which can be used as the first argument of the "_output" function to identify the channel. A channel is
registers using the TilingProcessor#output method. Beside the name, a receiver must be specified. A receiver is either another layout (a
cell of that), a report database or a custom receiver implemented through the TileOutputReceiver class.

The "_output" function expects two or three parameters: one channel id (the variable that was defined by the name given in the output
method call) and an object to output (a Region, Edges, EdgePairs or a geometrical primitive such as Polygon or Box). In addition, a
boolean argument can be given indicating whether clipping at the tile shall be applied. If clipping is requested (the default), the shapes will
be clipped at the tile's box.

The tiling can be specified either through a tile size, a tile number or both. If a tile size is specified with the TilingProcessor#tile_size
method, the tiling processor will compute the number of tiles required. If the tile count is given (through TilingProcessor#tiles), the tile size
will be computed. If both are given, the tiling array is fixed and the array is centered around the original layout's center. If the tiling origin is
given as well, the tiling processor will use the given array without any modifications.

Once the tiling processor has been set up, the operation can be launched using TilingProcessor#execute.

This is some sample code. It performs two XOR operations between two layouts and delivers the results to a report database:

ly1 = ... # first layout
ly2 = ... # second layout

rdb = RBA::ReportDatabase::new("xor")
output_cell = rdb.create_cell(ly1.top_cell.name)
output_cat1 = rbd.create_category("XOR 1-10")
output_cat2 = rbd.create_category("XOR 2-11")

tp = RBA::TilingProcessor::new
tp.input("a1", ly1, ly1.top_cell.cell_index, RBA::LayerInfo::new(1, 0))
tp.input("a2", ly1, ly1.top_cell.cell_index, RBA::LayerInfo::new(2, 0))
tp.input("b1", ly2, ly2.top_cell.cell_index, RBA::LayerInfo::new(11, 0))
tp.input("b2", ly2, ly2.top_cell.cell_index, RBA::LayerInfo::new(12, 0))

For more details visit
https://www.klayout.org

Page 1346 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.81. API reference - Class TilingProcessor

tp.output("o1", rdb, output_cell, output_cat1)
tp.output("o2", rdb, output_cell, output_cat2)
tp.queue("_output(o1, a1 ^ b1)")
tp.queue("_output(o2, a2 ^ b2)")
tp.tile_size(50.0, 50.0)
tp.execute("Job description")

This class has been introduced in version 0.23.

Public constructors

new TilingProcessor ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the
script side.

void _unmanage Marks the object as no longer owned by
the script side.

void assign (const TilingProcessor other) Assigns another object to self

[const] double dbu Gets the database unit under which the
computations will be done

void dbu= (double u) Sets the database unit under which the
computations will be done

[const] new
TilingProcessor
ptr

dup Creates a copy of self

void execute (string desc) Runs the job

void frame= (const DBox frame) Sets the layout frame

void input (string name,
const RecursiveShapeIterator
iter)

Specifies input for the tiling processor

void input (string name,
const RecursiveShapeIterator
iter,
const ICplxTrans trans)

Specifies input for the tiling processor

void input (string name,
const Layout layout,

Specifies input for the tiling processor

For more details visit
https://www.klayout.org

Page 1347 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.81. API reference - Class TilingProcessor

unsigned int cell_index,
const LayerInfo lp)

void input (string name,
const Layout layout,
unsigned int cell_index,
unsigned int layer)

Specifies input for the tiling processor

void input (string name,
const Layout layout,
unsigned int cell_index,
const LayerInfo lp,
const ICplxTrans trans)

Specifies input for the tiling processor

void input (string name,
const Layout layout,
unsigned int cell_index,
unsigned int layer,
const ICplxTrans trans)

Specifies input for the tiling processor

void input (string name,
const Region region)

Specifies input for the tiling processor

void input (string name,
const Region region,
const ICplxTrans trans)

Specifies input for the tiling processor

void input (string name,
const Edges edges)

Specifies input for the tiling processor

void input (string name,
const Edges edges,
const ICplxTrans trans)

Specifies input for the tiling processor

void input (string name,
const EdgePairs edge_pairs)

Specifies input for the tiling processor

void input (string name,
const EdgePairs edge_pairs,
const ICplxTrans trans)

Specifies input for the tiling processor

void input (string name,
const Texts texts)

Specifies input for the tiling processor

void input (string name,
const Texts texts,
const ICplxTrans trans)

Specifies input for the tiling processor

void output (string name,
TileOutputReceiver ptr rec)

Specifies output for the tiling processor

void output (string name,
Layout layout,
unsigned int cell,
const LayerInfo lp)

Specifies output to a layout layer

void output (string name,
Layout layout,
unsigned int cell,

Specifies output to a layout layer

For more details visit
https://www.klayout.org

Page 1348 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.81. API reference - Class TilingProcessor

unsigned int layer_index)

void output (string name,
Region region)

Specifies output to a Region object

void output (string name,
Edges edges)

Specifies output to an Edges object

void output (string name,
EdgePairs edge_pairs)

Specifies output to an EdgePairs object

void output (string name,
Texts texts)

Specifies output to an Texts object

void output (string name,
double ptr sum)

Specifies output to single value

void output (string name,
ReportDatabase rdb,
unsigned long cell_id,
unsigned long category_id)

Specifies output to a report database

void output (string name,
Image ptr image)

Specifies output to an image

void queue (string script) Queues a script for parallel execution

void scale_to_dbu= (bool en) Enables or disabled automatic scaling to
database unit

[const] bool scale_to_dbu? Gets a valid indicating whether automatic
scaling to database unit is enabled

[const] unsigned long threads Gets the number of threads to use

void threads= (unsigned long n) Specifies the number of threads to use

void tile_border (double bx,
double by)

Sets the tile border

void tile_origin (double xo,
double yo)

Sets the tile origin

void tile_size (double w,
double h)

Sets the tile size

void tiles (unsigned long nw,
unsigned long nh)

Sets the tile count

void var (string name,
variant value)

Defines a variable for the tiling processor
script

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

For more details visit
https://www.klayout.org

Page 1349 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.81. API reference - Class TilingProcessor

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1350 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.81. API reference - Class TilingProcessor

assign
Signature: void assign (const TilingProcessor other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

dbu
Signature: [const] double dbu

Description: Gets the database unit under which the computations will be done

Python specific notes:
The object exposes a readable attribute 'dbu'. This is the getter.

dbu=
Signature: void dbu= (double u)

Description: Sets the database unit under which the computations will be done

All data used within the scripts will be brought to that database unit. If none is given it will be the
database unit of the first layout given or 1nm if no layout is specified.

Python specific notes:
The object exposes a writable attribute 'dbu'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new TilingProcessor ptr dup

Description: Creates a copy of self

execute
Signature: void execute (string desc)

Description: Runs the job

This method will initiate execution of the queued scripts, once for every tile. The desc is a text shown
in the progress bar for example.

frame=
Signature: void frame= (const DBox frame)

Description: Sets the layout frame

For more details visit
https://www.klayout.org

Page 1351 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.81. API reference - Class TilingProcessor

The layout frame is the box (in micron units) taken into account for computing the tiles if the tile counts
are not given. If the layout frame is not set or set to an empty box, the processor will try to derive the
frame from the given inputs.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'frame'. This is the setter.

(1) Signature: void input (string name, const RecursiveShapeIterator iter)

Description: Specifies input for the tiling processor

This method will establish an input channel for the processor. This version receives input from a
recursive shape iterator, hence from a hierarchy of shapes from a layout.

The name specifies the variable under which the input can be used in the scripts.

(2) Signature: void input (string name, const RecursiveShapeIterator iter, const ICplxTrans trans)

Description: Specifies input for the tiling processor

This method will establish an input channel for the processor. This version receives input from a
recursive shape iterator, hence from a hierarchy of shapes from a layout. In addition, a transformation
can be specified which will be applied to the shapes before they are used.

The name specifies the variable under which the input can be used in the scripts.

(3) Signature: void input (string name, const Layout layout, unsigned int cell_index, const LayerInfo
lp)

Description: Specifies input for the tiling processor

This method will establish an input channel for the processor. This version receives input from a layout
and the hierarchy below the cell with the given cell index. "lp" is a LayerInfo object specifying the input
layer.

The name specifies the variable under which the input can be used in the scripts.

(4) Signature: void input (string name, const Layout layout, unsigned int cell_index, unsigned int
layer)

Description: Specifies input for the tiling processor

This method will establish an input channel for the processor. This version receives input from a layout
and the hierarchy below the cell with the given cell index. "layer" is the layer index of the input layer.

The name specifies the variable under which the input can be used in the scripts.

(5) Signature: void input (string name, const Layout layout, unsigned int cell_index, const LayerInfo
lp, const ICplxTrans trans)

Description: Specifies input for the tiling processor

This method will establish an input channel for the processor. This version receives input from a layout
and the hierarchy below the cell with the given cell index. "lp" is a LayerInfo object specifying the input
layer. In addition, a transformation can be specified which will be applied to the shapes before they are
used.

The name specifies the variable under which the input can be used in the scripts.

input

(6) Signature: void input (string name, const Layout layout, unsigned int cell_index, unsigned int
layer, const ICplxTrans trans)

Description: Specifies input for the tiling processor

For more details visit
https://www.klayout.org

Page 1352 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.81. API reference - Class TilingProcessor

This method will establish an input channel for the processor. This version receives input from a layout
and the hierarchy below the cell with the given cell index. "layer" is the layer index of the input layer. In
addition, a transformation can be specified which will be applied to the shapes before they are used.

The name specifies the variable under which the input can be used in the scripts.

(7) Signature: void input (string name, const Region region)

Description: Specifies input for the tiling processor

This method will establish an input channel for the processor. This version receives input from a
Region object. Regions don't always come with a database unit, hence a database unit should be
specified with the dbu= method unless a layout object is specified as input too.

The name specifies the variable under which the input can be used in the scripts.

(8) Signature: void input (string name, const Region region, const ICplxTrans trans)

Description: Specifies input for the tiling processor

This method will establish an input channel for the processor. This version receives input from a
Region object. Regions don't always come with a database unit, hence a database unit should be
specified with the dbu= method unless a layout object is specified as input too.

The name specifies the variable under which the input can be used in the scripts. This variant allows
one to specify an additional transformation too. It has been introduced in version 0.23.2.

(9) Signature: void input (string name, const Edges edges)

Description: Specifies input for the tiling processor

This method will establish an input channel for the processor. This version receives input from an
Edges object. Edge collections don't always come with a database unit, hence a database unit should
be specified with the dbu= method unless a layout object is specified as input too.

The name specifies the variable under which the input can be used in the scripts.

(10) Signature: void input (string name, const Edges edges, const ICplxTrans trans)

Description: Specifies input for the tiling processor

This method will establish an input channel for the processor. This version receives input from an
Edges object. Edge collections don't always come with a database unit, hence a database unit should
be specified with the dbu= method unless a layout object is specified as input too.

The name specifies the variable under which the input can be used in the scripts. This variant allows
one to specify an additional transformation too. It has been introduced in version 0.23.2.

(11) Signature: void input (string name, const EdgePairs edge_pairs)

Description: Specifies input for the tiling processor

This method will establish an input channel for the processor. This version receives input from an
EdgePairs object. Edge pair collections don't always come with a database unit, hence a database unit
should be specified with the dbu= method unless a layout object is specified as input too.

The name specifies the variable under which the input can be used in the scripts. This variant has
been introduced in version 0.27.

(12) Signature: void input (string name, const EdgePairs edge_pairs, const ICplxTrans trans)

Description: Specifies input for the tiling processor

This method will establish an input channel for the processor. This version receives input from an
EdgePairs object. Edge pair collections don't always come with a database unit, hence a database unit
should be specified with the dbu= method unless a layout object is specified as input too.

For more details visit
https://www.klayout.org

Page 1353 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.81. API reference - Class TilingProcessor

The name specifies the variable under which the input can be used in the scripts. This variant has
been introduced in version 0.27.

(13) Signature: void input (string name, const Texts texts)

Description: Specifies input for the tiling processor

This method will establish an input channel for the processor. This version receives input from an
Texts object. Text collections don't always come with a database unit, hence a database unit should
be specified with the dbu= method unless a layout object is specified as input too.

The name specifies the variable under which the input can be used in the scripts. This variant has
been introduced in version 0.27.

(14) Signature: void input (string name, const Texts texts, const ICplxTrans trans)

Description: Specifies input for the tiling processor

This method will establish an input channel for the processor. This version receives input from an
Texts object. Text collections don't always come with a database unit, hence a database unit should
be specified with the dbu= method unless a layout object is specified as input too.

The name specifies the variable under which the input can be used in the scripts. This variant has
been introduced in version 0.27.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new TilingProcessor ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

output
(1) Signature: void output (string name, TileOutputReceiver ptr rec)

Description: Specifies output for the tiling processor

This method will establish an output channel for the processor. For that it registers an output receiver
which will receive data from the scripts. The scripts call the _output function to deliver data. "name" will
be name of the variable which must be passed to the first argument of the _output function in order to
address this channel.

Please note that the tiling processor will destroy the receiver object when it is freed itself. Hence if you
need to address the receiver object later, make sure that the processor is still alive, i.e. by assigning
the object to a variable.

The following code uses the output receiver. It takes the shapes of a layer from a layout, computes the
area of each tile and outputs the area to the custom receiver:

layout = ... # the layout
cell = ... # the top cell's index
layout = ... # the input layer

class MyReceiver < RBA::TileOutputReceiver
 def put(ix, iy, tile, obj, dbu, clip)
 puts "got area for tile #{ix+1},#{iy+1}: #{obj.to_s}"
 end
end

For more details visit
https://www.klayout.org

Page 1354 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.81. API reference - Class TilingProcessor

tp = RBA::TilingProcessor::new

register the custom receiver
tp.output("my_receiver", MyReceiver::new)
tp.input("the_input", layout.begin_shapes(cell, layer))
tp.tile_size(100, 100) # 100x100 um tile size
The script clips the input at the tile and computes the (merged) area:
tp.queue("_output(my_receiver, (the_input & _tile).area)")
tp.execute("Job description")

(2) Signature: void output (string name, Layout layout, unsigned int cell, const LayerInfo lp)

Description: Specifies output to a layout layer

name: The name of the channel

layout: The layout to which the data is sent

cell: The index of the cell to which the data is sent

lp: The layer specification where the output will be sent to

This method will establish an output channel to a layer in a layout. The output sent to that channel will
be put into the specified layer and cell. In this version, the layer is specified through a LayerInfo object,
i.e. layer and datatype number. If no such layer exists, it will be created.

The name is the name which must be used in the _output function of the scripts in order to address
that channel.

(3) Signature: void output (string name, Layout layout, unsigned int cell, unsigned int layer_index)

Description: Specifies output to a layout layer

name: The name of the channel

layout: The layout to which the data is sent

cell: The index of the cell to which the data is sent

layer_index: The layer index where the output will be sent to

This method will establish an output channel to a layer in a layout. The output sent to that channel
will be put into the specified layer and cell. In this version, the layer is specified through a layer index,
hence it must be created before.

The name is the name which must be used in the _output function of the scripts in order to address
that channel.

(4) Signature: void output (string name, Region region)

Description: Specifies output to a Region object

name: The name of the channel

region: The Region object to which the data is sent

This method will establish an output channel to a Region object. The output sent to that channel will be
put into the specified region.

The name is the name which must be used in the _output function of the scripts in order to address
that channel. Edges sent to this channel are discarded. Edge pairs are converted to polygons.

(5) Signature: void output (string name, Edges edges)

Description: Specifies output to an Edges object

name: The name of the channel

edges: The Edges object to which the data is sent

For more details visit
https://www.klayout.org

Page 1355 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.81. API reference - Class TilingProcessor

This method will establish an output channel to an Edges object. The output sent to that channel will
be put into the specified edge collection. 'Solid' objects such as polygons will be converted to edges by
resolving their hulls into edges. Edge pairs are resolved into single edges.

The name is the name which must be used in the _output function of the scripts in order to address
that channel.

(6) Signature: void output (string name, EdgePairs edge_pairs)

Description: Specifies output to an EdgePairs object

name: The name of the channel

edge_pairs: The EdgePairs object to which the data is sent

This method will establish an output channel to an EdgePairs object. The output sent to that channel
will be put into the specified edge pair collection. Only EdgePair objects are accepted. Other objects
are discarded.

The name is the name which must be used in the _output function of the scripts in order to address
that channel.

(7) Signature: void output (string name, Texts texts)

Description: Specifies output to an Texts object

name: The name of the channel

texts: The Texts object to which the data is sent

This method will establish an output channel to an Texts object. The output sent to that channel
will be put into the specified edge pair collection. Only Text objects are accepted. Other objects are
discarded.

The name is the name which must be used in the _output function of the scripts in order to address
that channel.

This variant has been introduced in version 0.27.

(8) Signature: void output (string name, double ptr sum)

Description: Specifies output to single value

This method will establish an output channel which sums up float data delivered by calling the _output
function. In order to specify the target for the data, a Value object must be provided for the "sum"
parameter.

The name is the name which must be used in the _output function of the scripts in order to address
that channel.

(9) Signature: void output (string name, ReportDatabase rdb, unsigned long cell_id, unsigned long
category_id)

Description: Specifies output to a report database

This method will establish an output channel for the processor. The output sent to that channel will be
put into the report database given by the "rdb" parameter. "cell_id" specifies the cell and "category_id"
the category to use.

The name is the name which must be used in the _output function of the scripts in order to address
that channel.

(10) Signature: void output (string name, Image ptr image)

Description: Specifies output to an image

This method will establish an output channel which delivers float data to image data. The image is a
monochrome image where each pixel corresponds to a single tile. This method for example is useful to
collect density information into an image. The image is configured such that each pixel covers one tile.

For more details visit
https://www.klayout.org

Page 1356 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.81. API reference - Class TilingProcessor

The name is the name which must be used in the _output function of the scripts in order to address
that channel.

queue
Signature: void queue (string script)

Description: Queues a script for parallel execution

With this method, scripts are registered that are executed in parallel on each tile. The scripts have
"Expressions" syntax and can make use of several predefined variables and functions. See the
TilingProcessor class description for details.

scale_to_dbu=
Signature: void scale_to_dbu= (bool en)

Description: Enables or disabled automatic scaling to database unit

If automatic scaling to database unit is enabled, the input is automatically scaled to the database unit
set inside the tile processor. This is the default.

This method has been introduced in version 0.23.2.

Python specific notes:
The object exposes a writable attribute 'scale_to_dbu'. This is the setter.

scale_to_dbu?
Signature: [const] bool scale_to_dbu?

Description: Gets a valid indicating whether automatic scaling to database unit is enabled

This method has been introduced in version 0.23.2.

Python specific notes:
The object exposes a readable attribute 'scale_to_dbu'. This is the getter.

threads
Signature: [const] unsigned long threads

Description: Gets the number of threads to use

Python specific notes:
The object exposes a readable attribute 'threads'. This is the getter.

threads=
Signature: void threads= (unsigned long n)

Description: Specifies the number of threads to use

Python specific notes:
The object exposes a writable attribute 'threads'. This is the setter.

tile_border
Signature: void tile_border (double bx, double by)

Description: Sets the tile border

Specifies the tile border. The border is a margin that is considered when fetching shapes. By
specifying a border you can fetch shapes into the tile's data which are outside the tile but still must be
considered in the computations (i.e. because they might grow into the tile).

The tile border is given in micron.

tile_origin
Signature: void tile_origin (double xo, double yo)

Description: Sets the tile origin

Specifies the origin (lower left corner) of the tile field. If no origin is specified, the tiles are centered
to the layout's bounding box. Giving the origin together with the tile count and dimensions gives full
control over the tile array.

For more details visit
https://www.klayout.org

Page 1357 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.81. API reference - Class TilingProcessor

The tile origin is given in micron.

tile_size
Signature: void tile_size (double w, double h)

Description: Sets the tile size

Specifies the size of the tiles to be used. If no tile size is specified, tiling won't be used and all
computations will be done on the whole layout.

The tile size is given in micron.

tiles
Signature: void tiles (unsigned long nw, unsigned long nh)

Description: Sets the tile count

Specifies the number of tiles to be used. If no tile number is specified, the number of tiles required is
computed from the layout's dimensions and the tile size. If a number is given, but no tile size, the tile
size will be computed from the layout's dimensions.

var
Signature: void var (string name, variant value)

Description: Defines a variable for the tiling processor script

The name specifies the variable under which the value can be used in the scripts.

For more details visit
https://www.klayout.org

Page 1358 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.82. API reference - Class Trans

4.82. API reference - Class Trans
Notation used in Ruby API documentation

Module: db

Description: A simple transformation

Simple transformations only provide rotations about angles which a multiples of 90 degree. Together with the mirror options, this results in
8 distinct orientations (fixpoint transformations). These can be combined with a displacement which is applied after the rotation/mirror. This
version acts on integer coordinates. A version for floating-point coordinates is DTrans.

Here are some examples for using the Trans class:

t = RBA::Trans::new(0, 100) # displacement by 100 DBU in y direction
the inverse: -> "r0 0,-100"
t.inverted.to_s
concatenation: -> "r90 -100,0"
(RBA::Trans::R90 * t).to_s
apply to a point: -> "0,100"
RBA::Trans::R90.trans(RBA::Point::new(100, 0))

See The Database API for more details about the database objects.

Public constructors

new Trans ptr new (const DTrans dtrans) Creates an integer coordinate transformation from a
floating-point coordinate transformation

new Trans ptr new Creates a unit transformation

new Trans ptr new (const Trans c,
const Vector u = 0,0)

Creates a transformation from another
transformation plus a displacement

new Trans ptr new (const Trans c,
int x,
int y)

Creates a transformation from another
transformation plus a displacement

new Trans ptr new (int rot,
bool mirr = false,
const Vector u = 0,0)

Creates a transformation using angle and mirror flag

new Trans ptr new (int rot,
bool mirr,
int x,
int y)

Creates a transformation using angle and mirror flag
and two coordinate values for displacement

new Trans ptr new (const Vector u) Creates a transformation using a displacement only

new Trans ptr new (int x,
int y)

Creates a transformation using a displacement given
as two coordinates

Public methods

[const] bool != (const Trans other) Tests for inequality

[const] unsigned int * (unsigned int d) Transforms a distance

For more details visit
https://www.klayout.org

Page 1359 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.82. API reference - Class Trans

[const] Point * (const Point p) Transforms a point

[const] Vector * (const Vector v) Transforms a vector

[const] Box * (const Box box) Transforms a box

[const] Edge * (const Edge edge) Transforms an edge

[const] Polygon * (const Polygon
polygon)

Transforms a polygon

[const] Path * (const Path path) Transforms a path

[const] Text * (const Text text) Transforms a text

[const] Trans * (const Trans t) Returns the concatenated transformation

[const] bool < (const Trans other) Provides a 'less' criterion for sorting

[const] bool == (const Trans other) Tests for equality

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the
script side.

void _unmanage Marks the object as no longer owned by
the script side.

[const] int angle Gets the angle in units of 90 degree

void angle= (int a) Sets the angle in units of 90 degree

void assign (const Trans other) Assigns another object to self

[const] unsigned int ctrans (unsigned int d) Transforms a distance

[const] Vector disp Gets to the displacement vector

void disp= (const Vector u) Sets the displacement

[const] new Trans ptr dup Creates a copy of self

[const] unsigned long hash Computes a hash value

Trans invert Inverts the transformation (in place)

[const] Trans inverted Returns the inverted transformation

[const] bool is_mirror? Gets the mirror flag

For more details visit
https://www.klayout.org

Page 1360 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.82. API reference - Class Trans

void mirror= (bool m) Sets the mirror flag

[const] int rot Gets the angle/mirror code

void rot= (int r) Sets the angle/mirror code

[const] DTrans to_dtype (double dbu = 1) Converts the transformation to a floating-
point coordinate transformation

[const] string to_s (double dbu = 0) String conversion

[const] Point trans (const Point p) Transforms a point

[const] Vector trans (const Vector v) Transforms a vector

[const] Box trans (const Box box) Transforms a box

[const] Edge trans (const Edge edge) Transforms an edge

[const] Polygon trans (const Polygon
polygon)

Transforms a polygon

[const] Path trans (const Path path) Transforms a path

[const] Text trans (const Text text) Transforms a text

Public static methods and constants

Trans M0 A constant giving "mirrored at the x-axis" transformation

Trans M135 A constant giving "mirrored at the 135 degree axis" transformation

Trans M45 A constant giving "mirrored at the 45 degree axis" transformation

Trans M90 A constant giving "mirrored at the y (90 degree) axis" transformation

Trans R0 A constant giving "unrotated" (unit) transformation

Trans R180 A constant giving "rotated by 180 degree counterclockwise"
transformation

Trans R270 A constant giving "rotated by 270 degree counterclockwise"
transformation

Trans R90 A constant giving "rotated by 90 degree counterclockwise"
transformation

new Trans ptr from_s (string
s)

Creates a transformation from a string

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

For more details visit
https://www.klayout.org

Page 1361 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.82. API reference - Class Trans

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[static] new Trans ptr from_dtrans (const
DTrans
dtrans)

Use of this method is deprecated. Use new instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

Detailed description

!=
Signature: [const] bool != (const Trans other)

Description: Tests for inequality

(1) Signature: [const] unsigned int * (unsigned int d)

Description: Transforms a distance

d: The distance to transform

Returns: The transformed distance

The "ctrans" method transforms the given distance. e = t(d). For the simple transformations, there is no
magnification and no modification of the distance therefore.

The product '*' has been added as a synonym in version 0.28.

Python specific notes:
This method is also available as '__mul__'

(2) Signature: [const] Point * (const Point p)

Description: Transforms a point

p: The point to transform

Returns: The transformed point

The "trans" method or the * operator transforms the given point. q = t(p)

The * operator has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(3) Signature: [const] Vector * (const Vector v)

Description: Transforms a vector

v: The vector to transform

Returns: The transformed vector

The "trans" method or the * operator transforms the given vector. w = t(v)

Vector transformation has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

*

(4) Signature: [const] Box * (const Box box)

For more details visit
https://www.klayout.org

Page 1362 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.82. API reference - Class Trans

Description: Transforms a box

box: The box to transform

Returns: The transformed box

't*box' or 't.trans(box)' is equivalent to box.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(5) Signature: [const] Edge * (const Edge edge)

Description: Transforms an edge

edge: The edge to transform

Returns: The transformed edge

't*edge' or 't.trans(edge)' is equivalent to edge.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(6) Signature: [const] Polygon * (const Polygon polygon)

Description: Transforms a polygon

polygon: The polygon to transform

Returns: The transformed polygon

't*polygon' or 't.trans(polygon)' is equivalent to polygon.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(7) Signature: [const] Path * (const Path path)

Description: Transforms a path

path: The path to transform

Returns: The transformed path

't*path' or 't.trans(path)' is equivalent to path.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(8) Signature: [const] Text * (const Text text)

Description: Transforms a text

text: The text to transform

Returns: The transformed text

't*text' or 't.trans(text)' is equivalent to text.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

For more details visit
https://www.klayout.org

Page 1363 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.82. API reference - Class Trans

(9) Signature: [const] Trans * (const Trans t)

Description: Returns the concatenated transformation

t: The transformation to apply before

Returns: The modified transformation

The * operator returns self*t ("t is applied before this transformation").

Python specific notes:
This method is also available as '__mul__'

<
Signature: [const] bool < (const Trans other)

Description: Provides a 'less' criterion for sorting

This method is provided to implement a sorting order. The definition of 'less' is opaque and might
change in future versions.

==
Signature: [const] bool == (const Trans other)

Description: Tests for equality

M0
Signature: [static] Trans M0

Description: A constant giving "mirrored at the x-axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

M135
Signature: [static] Trans M135

Description: A constant giving "mirrored at the 135 degree axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

M45
Signature: [static] Trans M45

Description: A constant giving "mirrored at the 45 degree axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

M90
Signature: [static] Trans M90

Description: A constant giving "mirrored at the y (90 degree) axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

R0
Signature: [static] Trans R0

Description: A constant giving "unrotated" (unit) transformation

The previous integer constant has been turned into a transformation in version 0.25.

R180
Signature: [static] Trans R180

Description: A constant giving "rotated by 180 degree counterclockwise" transformation

The previous integer constant has been turned into a transformation in version 0.25.

R270
Signature: [static] Trans R270

Description: A constant giving "rotated by 270 degree counterclockwise" transformation

The previous integer constant has been turned into a transformation in version 0.25.

For more details visit
https://www.klayout.org

Page 1364 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.82. API reference - Class Trans

R90
Signature: [static] Trans R90

Description: A constant giving "rotated by 90 degree counterclockwise" transformation

The previous integer constant has been turned into a transformation in version 0.25.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called on
self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it is
known that some C++ object holds and manages this object. Technically speaking, this method will
turn the script's reference into a weak reference. After the script engine decides to delete the reference,
the object itself will still exist. If the object is not managed otherwise, memory leaks will occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

angle
Signature: [const] int angle

Description: Gets the angle in units of 90 degree

This value delivers the rotation component. In addition, a mirroring at the x axis may be applied before
if the is_mirror? property is true.

For more details visit
https://www.klayout.org

Page 1365 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.82. API reference - Class Trans

Python specific notes:
The object exposes a readable attribute 'angle'. This is the getter.

angle=
Signature: void angle= (int a)

Description: Sets the angle in units of 90 degree

a: The new angle

This method was introduced in version 0.20.

Python specific notes:
The object exposes a writable attribute 'angle'. This is the setter.

assign
Signature: void assign (const Trans other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

ctrans
Signature: [const] unsigned int ctrans (unsigned int d)

Description: Transforms a distance

d: The distance to transform

Returns: The transformed distance

The "ctrans" method transforms the given distance. e = t(d). For the simple transformations, there is no
magnification and no modification of the distance therefore.

The product '*' has been added as a synonym in version 0.28.

Python specific notes:
This method is also available as '__mul__'

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

disp
Signature: [const] Vector disp

Description: Gets to the displacement vector

For more details visit
https://www.klayout.org

Page 1366 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.82. API reference - Class Trans

Staring with version 0.25 the displacement type is a vector.

Python specific notes:
The object exposes a readable attribute 'disp'. This is the getter.

disp=
Signature: void disp= (const Vector u)

Description: Sets the displacement

u: The new displacement

This method was introduced in version 0.20. Staring with version 0.25 the displacement type is a
vector.

Python specific notes:
The object exposes a writable attribute 'disp'. This is the setter.

dup
Signature: [const] new Trans ptr dup

Description: Creates a copy of self

from_dtrans
Signature: [static] new Trans ptr from_dtrans (const DTrans dtrans)

Description: Creates an integer coordinate transformation from a floating-point coordinate
transformation

Use of this method is deprecated. Use new instead

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dtrans'.

Python specific notes:
This method is the default initializer of the object

from_s
Signature: [static] new Trans ptr from_s (string s)

Description: Creates a transformation from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given transformation. This method enables transformations as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

invert
Signature: Trans invert

Description: Inverts the transformation (in place)

Returns: The inverted transformation

Inverts the transformation and replaces this object by the inverted one.

inverted
Signature: [const] Trans inverted

Description: Returns the inverted transformation

Returns: The inverted transformation

For more details visit
https://www.klayout.org

Page 1367 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.82. API reference - Class Trans

Returns the inverted transformation

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called on
self.

is_mirror?
Signature: [const] bool is_mirror?

Description: Gets the mirror flag

If this property is true, the transformation is composed of a mirroring at the x-axis followed by a rotation
by the angle given by the angle property.

mirror=
Signature: void mirror= (bool m)

Description: Sets the mirror flag

m: The new mirror flag

"mirroring" describes a reflection at the x-axis which is included in the transformation prior to rotation.

This method was introduced in version 0.20.

Python specific notes:
The object exposes a writable attribute 'mirror'. This is the setter.

(1) Signature: [static] new Trans ptr new (const DTrans dtrans)

Description: Creates an integer coordinate transformation from a floating-point coordinate
transformation

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dtrans'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new Trans ptr new

Description: Creates a unit transformation

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new Trans ptr new (const Trans c, const Vector u = 0,0)

Description: Creates a transformation from another transformation plus a displacement

c: The original transformation

u: The Additional displacement

Creates a new transformation from a existing transformation. This constructor is provided for creating
duplicates and backward compatibility since the constants are transformations now. It will copy the
original transformation and add the given displacement.

This variant has been introduced in version 0.25.

Python specific notes:
This method is the default initializer of the object

new

(4) Signature: [static] new Trans ptr new (const Trans c, int x, int y)

For more details visit
https://www.klayout.org

Page 1368 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.82. API reference - Class Trans

Description: Creates a transformation from another transformation plus a displacement

c: The original transformation

x: The Additional displacement (x)

y: The Additional displacement (y)

Creates a new transformation from a existing transformation. This constructor is provided for creating
duplicates and backward compatibility since the constants are transformations now. It will copy the
original transformation and add the given displacement.

This variant has been introduced in version 0.25.

Python specific notes:
This method is the default initializer of the object

(5) Signature: [static] new Trans ptr new (int rot, bool mirr = false, const Vector u = 0,0)

Description: Creates a transformation using angle and mirror flag

rot: The rotation in units of 90 degree

mirrx: True, if mirrored at x axis

u: The displacement

The sequence of operations is: mirroring at x axis, rotation, application of displacement.

Python specific notes:
This method is the default initializer of the object

(6) Signature: [static] new Trans ptr new (int rot, bool mirr, int x, int y)

Description: Creates a transformation using angle and mirror flag and two coordinate values for
displacement

rot: The rotation in units of 90 degree

mirrx: True, if mirrored at x axis

x: The horizontal displacement

y: The vertical displacement

The sequence of operations is: mirroring at x axis, rotation, application of displacement.

Python specific notes:
This method is the default initializer of the object

(7) Signature: [static] new Trans ptr new (const Vector u)

Description: Creates a transformation using a displacement only

u: The displacement

Python specific notes:
This method is the default initializer of the object

(8) Signature: [static] new Trans ptr new (int x, int y)

Description: Creates a transformation using a displacement given as two coordinates

x: The horizontal displacement

y: The vertical displacement

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1369 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.82. API reference - Class Trans

rot
Signature: [const] int rot

Description: Gets the angle/mirror code

The angle/mirror code is one of the constants R0, R90, R180, R270, M0, M45, M90 and M135. rx is the
rotation by an angle of x counter clockwise. mx is the mirroring at the axis given by the angle x (to the
x-axis).

Python specific notes:
The object exposes a readable attribute 'rot'. This is the getter.

rot=
Signature: void rot= (int r)

Description: Sets the angle/mirror code

r: The new angle/rotation code (see rot property)

This method was introduced in version 0.20.

Python specific notes:
The object exposes a writable attribute 'rot'. This is the setter.

to_dtype
Signature: [const] DTrans to_dtype (double dbu = 1)

Description: Converts the transformation to a floating-point coordinate transformation

The database unit can be specified to translate the integer-coordinate transformation into a floating-
point coordinate transformation in micron units. The database unit is basically a scaling factor.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s (double dbu = 0)

Description: String conversion

If a DBU is given, the output units will be micrometers.

The DBU argument has been added in version 0.27.6.

Python specific notes:
This method is also available as 'str(object)'

(1) Signature: [const] Point trans (const Point p)

Description: Transforms a point

p: The point to transform

Returns: The transformed point

The "trans" method or the * operator transforms the given point. q = t(p)

The * operator has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

trans

(2) Signature: [const] Vector trans (const Vector v)

Description: Transforms a vector

v: The vector to transform

Returns: The transformed vector

The "trans" method or the * operator transforms the given vector. w = t(v)

Vector transformation has been introduced in version 0.25.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1370 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.82. API reference - Class Trans

This method is also available as '__mul__'

(3) Signature: [const] Box trans (const Box box)

Description: Transforms a box

box: The box to transform

Returns: The transformed box

't*box' or 't.trans(box)' is equivalent to box.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(4) Signature: [const] Edge trans (const Edge edge)

Description: Transforms an edge

edge: The edge to transform

Returns: The transformed edge

't*edge' or 't.trans(edge)' is equivalent to edge.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(5) Signature: [const] Polygon trans (const Polygon polygon)

Description: Transforms a polygon

polygon: The polygon to transform

Returns: The transformed polygon

't*polygon' or 't.trans(polygon)' is equivalent to polygon.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(6) Signature: [const] Path trans (const Path path)

Description: Transforms a path

path: The path to transform

Returns: The transformed path

't*path' or 't.trans(path)' is equivalent to path.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(7) Signature: [const] Text trans (const Text text)

Description: Transforms a text

text: The text to transform

Returns: The transformed text

't*text' or 't.trans(text)' is equivalent to text.transformed(t).

For more details visit
https://www.klayout.org

Page 1371 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.82. API reference - Class Trans

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

For more details visit
https://www.klayout.org

Page 1372 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.83. API reference - Class DTrans

4.83. API reference - Class DTrans
Notation used in Ruby API documentation

Module: db

Description: A simple transformation

Simple transformations only provide rotations about angles which a multiples of 90 degree. Together with the mirror options, this results in
8 distinct orientations (fixpoint transformations). These can be combined with a displacement which is applied after the rotation/mirror. This
version acts on floating-point coordinates. A version for integer coordinates is Trans.

Here are some examples for using the DTrans class:

t = RBA::DTrans::new(0, 100) # displacement by 100 DBU in y direction
the inverse: -> "r0 0,-100"
t.inverted.to_s
concatenation: -> "r90 -100,0"
(RBA::DTrans::new(RBA::DTrans::R90) * t).to_s
apply to a point: -> "0,100"
RBA::DTrans::new(RBA::DTrans::R90).trans(RBA::DPoint::new(100, 0))

See The Database API for more details about the database objects.

Public constructors

new DTrans ptr new (const Trans trans) Creates a floating-point coordinate transformation
from an integer coordinate transformation

new DTrans ptr new Creates a unit transformation

new DTrans ptr new (const DTrans c,
const DVector u = 0,0)

Creates a transformation from another
transformation plus a displacement

new DTrans ptr new (const DTrans c,
double x,
double y)

Creates a transformation from another
transformation plus a displacement

new DTrans ptr new (int rot,
bool mirr = false,
const DVector u = 0,0)

Creates a transformation using angle and mirror
flag

new DTrans ptr new (int rot,
bool mirr,
double x,
double y)

Creates a transformation using angle and mirror
flag and two coordinate values for displacement

new DTrans ptr new (const DVector u) Creates a transformation using a displacement only

new DTrans ptr new (double x,
double y)

Creates a transformation using a displacement
given as two coordinates

Public methods

[const] bool != (const DTrans other) Tests for inequality

[const] double * (double d) Transforms a distance

For more details visit
https://www.klayout.org

Page 1373 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.83. API reference - Class DTrans

[const] DPoint * (const DPoint p) Transforms a point

[const] DVector * (const DVector v) Transforms a vector

[const] DBox * (const DBox box) Transforms a box

[const] DEdge * (const DEdge edge) Transforms an edge

[const] DPolygon * (const DPolygon
polygon)

Transforms a polygon

[const] DPath * (const DPath path) Transforms a path

[const] DText * (const DText text) Transforms a text

[const] DTrans * (const DTrans t) Returns the concatenated transformation

[const] bool < (const DTrans other) Provides a 'less' criterion for sorting

[const] bool == (const DTrans other) Tests for equality

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the
script side.

void _unmanage Marks the object as no longer owned by
the script side.

[const] int angle Gets the angle in units of 90 degree

void angle= (int a) Sets the angle in units of 90 degree

void assign (const DTrans other) Assigns another object to self

[const] double ctrans (double d) Transforms a distance

[const] DVector disp Gets to the displacement vector

void disp= (const DVector u) Sets the displacement

[const] new DTrans ptr dup Creates a copy of self

[const] unsigned long hash Computes a hash value

DTrans invert Inverts the transformation (in place)

[const] DTrans inverted Returns the inverted transformation

[const] bool is_mirror? Gets the mirror flag

For more details visit
https://www.klayout.org

Page 1374 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.83. API reference - Class DTrans

void mirror= (bool m) Sets the mirror flag

[const] int rot Gets the angle/mirror code

void rot= (int r) Sets the angle/mirror code

[const] Trans to_itype (double dbu = 1) Converts the transformation to an integer
coordinate transformation

[const] string to_s (double dbu = 0) String conversion

[const] DPoint trans (const DPoint p) Transforms a point

[const] DVector trans (const DVector v) Transforms a vector

[const] DBox trans (const DBox box) Transforms a box

[const] DEdge trans (const DEdge edge) Transforms an edge

[const] DPolygon trans (const DPolygon
polygon)

Transforms a polygon

[const] DPath trans (const DPath path) Transforms a path

[const] DText trans (const DText text) Transforms a text

Public static methods and constants

DTrans M0 A constant giving "mirrored at the x-axis" transformation

DTrans M135 A constant giving "mirrored at the 135 degree axis" transformation

DTrans M45 A constant giving "mirrored at the 45 degree axis" transformation

DTrans M90 A constant giving "mirrored at the y (90 degree) axis" transformation

DTrans R0 A constant giving "unrotated" (unit) transformation

DTrans R180 A constant giving "rotated by 180 degree counterclockwise"
transformation

DTrans R270 A constant giving "rotated by 270 degree counterclockwise"
transformation

DTrans R90 A constant giving "rotated by 90 degree counterclockwise"
transformation

new DTrans ptr from_s (string
s)

Creates a transformation from a string

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

For more details visit
https://www.klayout.org

Page 1375 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.83. API reference - Class DTrans

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[static] new DTrans ptr from_itrans (const
Trans
trans)

Use of this method is deprecated. Use new instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

Detailed description

!=
Signature: [const] bool != (const DTrans other)

Description: Tests for inequality

(1) Signature: [const] double * (double d)

Description: Transforms a distance

d: The distance to transform

Returns: The transformed distance

The "ctrans" method transforms the given distance. e = t(d). For the simple transformations, there is no
magnification and no modification of the distance therefore.

The product '*' has been added as a synonym in version 0.28.

Python specific notes:
This method is also available as '__mul__'

(2) Signature: [const] DPoint * (const DPoint p)

Description: Transforms a point

p: The point to transform

Returns: The transformed point

The "trans" method or the * operator transforms the given point. q = t(p)

The * operator has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(3) Signature: [const] DVector * (const DVector v)

Description: Transforms a vector

v: The vector to transform

Returns: The transformed vector

The "trans" method or the * operator transforms the given vector. w = t(v)

Vector transformation has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

*

(4) Signature: [const] DBox * (const DBox box)

For more details visit
https://www.klayout.org

Page 1376 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.83. API reference - Class DTrans

Description: Transforms a box

box: The box to transform

Returns: The transformed box

't*box' or 't.trans(box)' is equivalent to box.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(5) Signature: [const] DEdge * (const DEdge edge)

Description: Transforms an edge

edge: The edge to transform

Returns: The transformed edge

't*edge' or 't.trans(edge)' is equivalent to edge.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(6) Signature: [const] DPolygon * (const DPolygon polygon)

Description: Transforms a polygon

polygon: The polygon to transform

Returns: The transformed polygon

't*polygon' or 't.trans(polygon)' is equivalent to polygon.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(7) Signature: [const] DPath * (const DPath path)

Description: Transforms a path

path: The path to transform

Returns: The transformed path

't*path' or 't.trans(path)' is equivalent to path.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(8) Signature: [const] DText * (const DText text)

Description: Transforms a text

text: The text to transform

Returns: The transformed text

't*text' or 't.trans(text)' is equivalent to text.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

For more details visit
https://www.klayout.org

Page 1377 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.83. API reference - Class DTrans

(9) Signature: [const] DTrans * (const DTrans t)

Description: Returns the concatenated transformation

t: The transformation to apply before

Returns: The modified transformation

The * operator returns self*t ("t is applied before this transformation").

Python specific notes:
This method is also available as '__mul__'

<
Signature: [const] bool < (const DTrans other)

Description: Provides a 'less' criterion for sorting

This method is provided to implement a sorting order. The definition of 'less' is opaque and might
change in future versions.

==
Signature: [const] bool == (const DTrans other)

Description: Tests for equality

M0
Signature: [static] DTrans M0

Description: A constant giving "mirrored at the x-axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

M135
Signature: [static] DTrans M135

Description: A constant giving "mirrored at the 135 degree axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

M45
Signature: [static] DTrans M45

Description: A constant giving "mirrored at the 45 degree axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

M90
Signature: [static] DTrans M90

Description: A constant giving "mirrored at the y (90 degree) axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

R0
Signature: [static] DTrans R0

Description: A constant giving "unrotated" (unit) transformation

The previous integer constant has been turned into a transformation in version 0.25.

R180
Signature: [static] DTrans R180

Description: A constant giving "rotated by 180 degree counterclockwise" transformation

The previous integer constant has been turned into a transformation in version 0.25.

R270
Signature: [static] DTrans R270

Description: A constant giving "rotated by 270 degree counterclockwise" transformation

The previous integer constant has been turned into a transformation in version 0.25.

For more details visit
https://www.klayout.org

Page 1378 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.83. API reference - Class DTrans

R90
Signature: [static] DTrans R90

Description: A constant giving "rotated by 90 degree counterclockwise" transformation

The previous integer constant has been turned into a transformation in version 0.25.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called on
self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it is
known that some C++ object holds and manages this object. Technically speaking, this method will
turn the script's reference into a weak reference. After the script engine decides to delete the reference,
the object itself will still exist. If the object is not managed otherwise, memory leaks will occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

angle
Signature: [const] int angle

Description: Gets the angle in units of 90 degree

This value delivers the rotation component. In addition, a mirroring at the x axis may be applied before
if the is_mirror? property is true.

For more details visit
https://www.klayout.org

Page 1379 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.83. API reference - Class DTrans

Python specific notes:
The object exposes a readable attribute 'angle'. This is the getter.

angle=
Signature: void angle= (int a)

Description: Sets the angle in units of 90 degree

a: The new angle

This method was introduced in version 0.20.

Python specific notes:
The object exposes a writable attribute 'angle'. This is the setter.

assign
Signature: void assign (const DTrans other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

ctrans
Signature: [const] double ctrans (double d)

Description: Transforms a distance

d: The distance to transform

Returns: The transformed distance

The "ctrans" method transforms the given distance. e = t(d). For the simple transformations, there is no
magnification and no modification of the distance therefore.

The product '*' has been added as a synonym in version 0.28.

Python specific notes:
This method is also available as '__mul__'

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

disp
Signature: [const] DVector disp

Description: Gets to the displacement vector

For more details visit
https://www.klayout.org

Page 1380 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.83. API reference - Class DTrans

Staring with version 0.25 the displacement type is a vector.

Python specific notes:
The object exposes a readable attribute 'disp'. This is the getter.

disp=
Signature: void disp= (const DVector u)

Description: Sets the displacement

u: The new displacement

This method was introduced in version 0.20. Staring with version 0.25 the displacement type is a
vector.

Python specific notes:
The object exposes a writable attribute 'disp'. This is the setter.

dup
Signature: [const] new DTrans ptr dup

Description: Creates a copy of self

from_itrans
Signature: [static] new DTrans ptr from_itrans (const Trans trans)

Description: Creates a floating-point coordinate transformation from an integer coordinate
transformation

Use of this method is deprecated. Use new instead

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_itrans'.

Python specific notes:
This method is the default initializer of the object

from_s
Signature: [static] new DTrans ptr from_s (string s)

Description: Creates a transformation from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given transformation. This method enables transformations as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

invert
Signature: DTrans invert

Description: Inverts the transformation (in place)

Returns: The inverted transformation

Inverts the transformation and replaces this object by the inverted one.

inverted
Signature: [const] DTrans inverted

Description: Returns the inverted transformation

Returns: The inverted transformation

For more details visit
https://www.klayout.org

Page 1381 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.83. API reference - Class DTrans

Returns the inverted transformation

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called on
self.

is_mirror?
Signature: [const] bool is_mirror?

Description: Gets the mirror flag

If this property is true, the transformation is composed of a mirroring at the x-axis followed by a rotation
by the angle given by the angle property.

mirror=
Signature: void mirror= (bool m)

Description: Sets the mirror flag

m: The new mirror flag

"mirroring" describes a reflection at the x-axis which is included in the transformation prior to rotation.

This method was introduced in version 0.20.

Python specific notes:
The object exposes a writable attribute 'mirror'. This is the setter.

(1) Signature: [static] new DTrans ptr new (const Trans trans)

Description: Creates a floating-point coordinate transformation from an integer coordinate
transformation

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_itrans'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new DTrans ptr new

Description: Creates a unit transformation

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new DTrans ptr new (const DTrans c, const DVector u = 0,0)

Description: Creates a transformation from another transformation plus a displacement

c: The original transformation

u: The Additional displacement

Creates a new transformation from a existing transformation. This constructor is provided for creating
duplicates and backward compatibility since the constants are transformations now. It will copy the
original transformation and add the given displacement.

This variant has been introduced in version 0.25.

Python specific notes:
This method is the default initializer of the object

new

(4) Signature: [static] new DTrans ptr new (const DTrans c, double x, double y)

For more details visit
https://www.klayout.org

Page 1382 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.83. API reference - Class DTrans

Description: Creates a transformation from another transformation plus a displacement

c: The original transformation

x: The Additional displacement (x)

y: The Additional displacement (y)

Creates a new transformation from a existing transformation. This constructor is provided for creating
duplicates and backward compatibility since the constants are transformations now. It will copy the
original transformation and add the given displacement.

This variant has been introduced in version 0.25.

Python specific notes:
This method is the default initializer of the object

(5) Signature: [static] new DTrans ptr new (int rot, bool mirr = false, const DVector u = 0,0)

Description: Creates a transformation using angle and mirror flag

rot: The rotation in units of 90 degree

mirrx: True, if mirrored at x axis

u: The displacement

The sequence of operations is: mirroring at x axis, rotation, application of displacement.

Python specific notes:
This method is the default initializer of the object

(6) Signature: [static] new DTrans ptr new (int rot, bool mirr, double x, double y)

Description: Creates a transformation using angle and mirror flag and two coordinate values for
displacement

rot: The rotation in units of 90 degree

mirrx: True, if mirrored at x axis

x: The horizontal displacement

y: The vertical displacement

The sequence of operations is: mirroring at x axis, rotation, application of displacement.

Python specific notes:
This method is the default initializer of the object

(7) Signature: [static] new DTrans ptr new (const DVector u)

Description: Creates a transformation using a displacement only

u: The displacement

Python specific notes:
This method is the default initializer of the object

(8) Signature: [static] new DTrans ptr new (double x, double y)

Description: Creates a transformation using a displacement given as two coordinates

x: The horizontal displacement

y: The vertical displacement

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1383 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.83. API reference - Class DTrans

rot
Signature: [const] int rot

Description: Gets the angle/mirror code

The angle/mirror code is one of the constants R0, R90, R180, R270, M0, M45, M90 and M135. rx is the
rotation by an angle of x counter clockwise. mx is the mirroring at the axis given by the angle x (to the
x-axis).

Python specific notes:
The object exposes a readable attribute 'rot'. This is the getter.

rot=
Signature: void rot= (int r)

Description: Sets the angle/mirror code

r: The new angle/rotation code (see rot property)

This method was introduced in version 0.20.

Python specific notes:
The object exposes a writable attribute 'rot'. This is the setter.

to_itype
Signature: [const] Trans to_itype (double dbu = 1)

Description: Converts the transformation to an integer coordinate transformation

The database unit can be specified to translate the floating-point coordinate transformation in micron
units to an integer-coordinate transformation in database units. The transformation's' coordinates will
be divided by the database unit.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s (double dbu = 0)

Description: String conversion

If a DBU is given, the output units will be micrometers.

The DBU argument has been added in version 0.27.6.

Python specific notes:
This method is also available as 'str(object)'

(1) Signature: [const] DPoint trans (const DPoint p)

Description: Transforms a point

p: The point to transform

Returns: The transformed point

The "trans" method or the * operator transforms the given point. q = t(p)

The * operator has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

trans

(2) Signature: [const] DVector trans (const DVector v)

Description: Transforms a vector

v: The vector to transform

Returns: The transformed vector

The "trans" method or the * operator transforms the given vector. w = t(v)

Vector transformation has been introduced in version 0.25.

For more details visit
https://www.klayout.org

Page 1384 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.83. API reference - Class DTrans

Python specific notes:
This method is also available as '__mul__'

(3) Signature: [const] DBox trans (const DBox box)

Description: Transforms a box

box: The box to transform

Returns: The transformed box

't*box' or 't.trans(box)' is equivalent to box.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(4) Signature: [const] DEdge trans (const DEdge edge)

Description: Transforms an edge

edge: The edge to transform

Returns: The transformed edge

't*edge' or 't.trans(edge)' is equivalent to edge.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(5) Signature: [const] DPolygon trans (const DPolygon polygon)

Description: Transforms a polygon

polygon: The polygon to transform

Returns: The transformed polygon

't*polygon' or 't.trans(polygon)' is equivalent to polygon.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(6) Signature: [const] DPath trans (const DPath path)

Description: Transforms a path

path: The path to transform

Returns: The transformed path

't*path' or 't.trans(path)' is equivalent to path.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(7) Signature: [const] DText trans (const DText text)

Description: Transforms a text

text: The text to transform

Returns: The transformed text

For more details visit
https://www.klayout.org

Page 1385 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.83. API reference - Class DTrans

't*text' or 't.trans(text)' is equivalent to text.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

For more details visit
https://www.klayout.org

Page 1386 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.84. API reference - Class DCplxTrans

4.84. API reference - Class DCplxTrans
Notation used in Ruby API documentation

Module: db

Description: A complex transformation

A complex transformation provides magnification, mirroring at the x-axis, rotation by an arbitrary angle and a displacement. This is also the
order, the operations are applied.

A complex transformation provides a superset of the simple transformation. In many applications, a complex transformation computes
floating-point coordinates to minimize rounding effects. This version can transform floating-point coordinate objects.

Complex transformations are extensions of the simple transformation classes (DTrans in that case) and behave similar.

Transformations can be used to transform points or other objects. Transformations can be combined with the '*' operator to form the
transformation which is equivalent to applying the second and then the first. Here is some code:

Create a transformation that applies a magnification of 1.5, a rotation by 90 degree
and displacement of 10 in x and 20 units in y direction:
t = RBA::CplxTrans::new(1.5, 90, false, 10.0, 20.0)
t.to_s # r90 *1.5 10,20
compute the inverse:
t.inverted.to_s # r270 *0.666666667 -13,7
Combine with another displacement (applied after that):
(RBA::CplxTrans::new(5, 5) * t).to_s # r90 *1.5 15,25
Transform a point:
t.trans(RBA::Point::new(100, 200)).to_s # -290,170

See The Database API for more details about the database objects.

Public constructors

new DCplxTrans ptr new (const CplxTrans trans) Creates a floating-point coordinate transformation
from another coordinate flavour

new DCplxTrans ptr new (const ICplxTrans trans) Creates a floating-point coordinate transformation
from another coordinate flavour

new DCplxTrans ptr new (const VCplxTrans trans) Creates a floating-point coordinate transformation
from another coordinate flavour

new DCplxTrans ptr new Creates a unit transformation

new DCplxTrans ptr new (const DCplxTrans c,
double m = 1,
const DVector u = 0,0)

Creates a transformation from another
transformation plus a magnification and
displacement

new DCplxTrans ptr new (const DCplxTrans c,
double m,
double x,
double y)

Creates a transformation from another
transformation plus a magnification and
displacement

new DCplxTrans ptr new (double x,
double y)

Creates a transformation from a x and y
displacement

new DCplxTrans ptr new (double m) Creates a transformation from a magnification

For more details visit
https://www.klayout.org

Page 1387 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.84. API reference - Class DCplxTrans

new DCplxTrans ptr new (const DTrans t,
double m)

Creates a transformation from a simple
transformation and a magnification

new DCplxTrans ptr new (const DTrans t) Creates a transformation from a simple
transformation alone

new DCplxTrans ptr new (const DVector u) Creates a transformation from a displacement

new DCplxTrans ptr new (double mag,
double rot,
bool mirrx,
const DVector u)

Creates a transformation using magnification,
angle, mirror flag and displacement

new DCplxTrans ptr new (double mag,
double rot,
bool mirrx,
double x,
double y)

Creates a transformation using magnification,
angle, mirror flag and displacement

Public methods

[const] bool != (const DCplxTrans
other)

Tests for inequality

[const] CplxTrans * (const CplxTrans t) Multiplication (concatenation) of
transformations

[const] double * (double d) Transforms a distance

[const] DPoint * (const DPoint p) Transforms a point

[const] DVector * (const DVector p) Transforms a vector

[const] DBox * (const DBox box) Transforms a box

[const] DEdge * (const DEdge edge) Transforms an edge

[const] DPolygon * (const DPolygon
polygon)

Transforms a polygon

[const] DPath * (const DPath path) Transforms a path

[const] DText * (const DText text) Transforms a text

[const] DCplxTrans * (const DCplxTrans
t)

Returns the concatenated transformation

[const] bool < (const DCplxTrans
other)

Provides a 'less' criterion for sorting

[const] bool == (const DCplxTrans
other)

Tests for equality

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 1388 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.84. API reference - Class DCplxTrans

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the
script side.

void _unmanage Marks the object as no longer owned by
the script side.

[const] double angle Gets the angle

void angle= (double a) Sets the angle

void assign (const DCplxTrans
other)

Assigns another object to self

[const] double ctrans (double d) Transforms a distance

[const] DVector disp Gets the displacement

void disp= (const DVector u) Sets the displacement

[const] new DCplxTrans ptr dup Creates a copy of self

[const] unsigned long hash Computes a hash value

DCplxTrans invert Inverts the transformation (in place)

[const] DCplxTrans inverted Returns the inverted transformation

[const] bool is_complex? Returns true if the transformation is a
complex one

[const] bool is_mag? Tests, if the transformation is a
magnifying one

[const] bool is_mirror? Gets the mirror flag

[const] bool is_ortho? Tests, if the transformation is an
orthogonal transformation

[const] bool is_unity? Tests, whether this is a unit
transformation

[const] double mag Gets the magnification

void mag= (double m) Sets the magnification

void mirror= (bool m) Sets the mirror flag

[const] int rot Returns the respective simple
transformation equivalent rotation code if
possible

[const] DTrans s_trans Extracts the simple transformation part

For more details visit
https://www.klayout.org

Page 1389 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.84. API reference - Class DCplxTrans

[const] ICplxTrans to_itrans (double dbu = 1) Converts the transformation to another
transformation with integer input and
output coordinates

[const] string to_s (bool lazy = false,
double dbu = 0)

String conversion

[const] CplxTrans to_trans Converts the transformation to another
transformation with integer input
coordinates

[const] VCplxTrans to_vtrans (double dbu = 1) Converts the transformation to another
transformation with integer output
coordinates

[const] DPoint trans (const DPoint p) Transforms a point

[const] DVector trans (const DVector p) Transforms a vector

[const] DBox trans (const DBox box) Transforms a box

[const] DEdge trans (const DEdge edge) Transforms an edge

[const] DPolygon trans (const DPolygon
polygon)

Transforms a polygon

[const] DPath trans (const DPath path) Transforms a path

[const] DText trans (const DText text) Transforms a text

Public static methods and constants

DCplxTrans M0 A constant giving "mirrored at the x-axis" transformation

DCplxTrans M135 A constant giving "mirrored at the 135 degree axis"
transformation

DCplxTrans M45 A constant giving "mirrored at the 45 degree axis"
transformation

DCplxTrans M90 A constant giving "mirrored at the y (90 degree) axis"
transformation

DCplxTrans R0 A constant giving "unrotated" (unit) transformation

DCplxTrans R180 A constant giving "rotated by 180 degree counterclockwise"
transformation

DCplxTrans R270 A constant giving "rotated by 270 degree counterclockwise"
transformation

DCplxTrans R90 A constant giving "rotated by 90 degree counterclockwise"
transformation

new DCplxTrans ptr from_s (string
s)

Creates an object from a string

For more details visit
https://www.klayout.org

Page 1390 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.84. API reference - Class DCplxTrans

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[static] new DCplxTrans ptr from_itrans (const
CplxTrans
trans)

Use of this method is deprecated. Use new instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

Detailed description

!=
Signature: [const] bool != (const DCplxTrans other)

Description: Tests for inequality

(1) Signature: [const] CplxTrans * (const CplxTrans t)

Description: Multiplication (concatenation) of transformations

t: The transformation to apply before

Returns: The modified transformation

The * operator returns self*t ("t is applied before this transformation").

Python specific notes:
This method is also available as '__mul__'

(2) Signature: [const] double * (double d)

Description: Transforms a distance

d: The distance to transform

Returns: The transformed distance

The "ctrans" method transforms the given distance. e = t(d). For the simple transformations, there is no
magnification and no modification of the distance therefore.

The product '*' has been added as a synonym in version 0.28.

Python specific notes:
This method is also available as '__mul__'

*

(3) Signature: [const] DPoint * (const DPoint p)

Description: Transforms a point

p: The point to transform

Returns: The transformed point

The "trans" method or the * operator transforms the given point. q = t(p)

The * operator has been introduced in version 0.25.

For more details visit
https://www.klayout.org

Page 1391 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.84. API reference - Class DCplxTrans

Python specific notes:
This method is also available as '__mul__'

(4) Signature: [const] DVector * (const DVector p)

Description: Transforms a vector

v: The vector to transform

Returns: The transformed vector

The "trans" method or the * operator transforms the given vector. w = t(v)

Vector transformation has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(5) Signature: [const] DBox * (const DBox box)

Description: Transforms a box

box: The box to transform

Returns: The transformed box

't*box' or 't.trans(box)' is equivalent to box.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(6) Signature: [const] DEdge * (const DEdge edge)

Description: Transforms an edge

edge: The edge to transform

Returns: The transformed edge

't*edge' or 't.trans(edge)' is equivalent to edge.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(7) Signature: [const] DPolygon * (const DPolygon polygon)

Description: Transforms a polygon

polygon: The polygon to transform

Returns: The transformed polygon

't*polygon' or 't.trans(polygon)' is equivalent to polygon.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(8) Signature: [const] DPath * (const DPath path)

Description: Transforms a path

path: The path to transform

Returns: The transformed path

For more details visit
https://www.klayout.org

Page 1392 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.84. API reference - Class DCplxTrans

't*path' or 't.trans(path)' is equivalent to path.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(9) Signature: [const] DText * (const DText text)

Description: Transforms a text

text: The text to transform

Returns: The transformed text

't*text' or 't.trans(text)' is equivalent to text.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(10) Signature: [const] DCplxTrans * (const DCplxTrans t)

Description: Returns the concatenated transformation

t: The transformation to apply before

Returns: The modified transformation

The * operator returns self*t ("t is applied before this transformation").

Python specific notes:
This method is also available as '__mul__'

<
Signature: [const] bool < (const DCplxTrans other)

Description: Provides a 'less' criterion for sorting

This method is provided to implement a sorting order. The definition of 'less' is opaque and might
change in future versions.

==
Signature: [const] bool == (const DCplxTrans other)

Description: Tests for equality

M0
Signature: [static] DCplxTrans M0

Description: A constant giving "mirrored at the x-axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

M135
Signature: [static] DCplxTrans M135

Description: A constant giving "mirrored at the 135 degree axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

M45
Signature: [static] DCplxTrans M45

Description: A constant giving "mirrored at the 45 degree axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

M90
Signature: [static] DCplxTrans M90

Description: A constant giving "mirrored at the y (90 degree) axis" transformation

For more details visit
https://www.klayout.org

Page 1393 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.84. API reference - Class DCplxTrans

The previous integer constant has been turned into a transformation in version 0.25.

R0
Signature: [static] DCplxTrans R0

Description: A constant giving "unrotated" (unit) transformation

The previous integer constant has been turned into a transformation in version 0.25.

R180
Signature: [static] DCplxTrans R180

Description: A constant giving "rotated by 180 degree counterclockwise" transformation

The previous integer constant has been turned into a transformation in version 0.25.

R270
Signature: [static] DCplxTrans R270

Description: A constant giving "rotated by 270 degree counterclockwise" transformation

The previous integer constant has been turned into a transformation in version 0.25.

R90
Signature: [static] DCplxTrans R90

Description: A constant giving "rotated by 90 degree counterclockwise" transformation

The previous integer constant has been turned into a transformation in version 0.25.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

For more details visit
https://www.klayout.org

Page 1394 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.84. API reference - Class DCplxTrans

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

angle
Signature: [const] double angle

Description: Gets the angle

Returns: The rotation angle this transformation provides in degree units
(0..360 deg).

Note that the simple transformation returns the angle in units of 90 degree. Hence for a simple trans
(i.e. Trans), a rotation angle of 180 degree delivers a value of 2 for the angle attribute. The complex
transformation, supporting any rotation angle returns the angle in degree.

Python specific notes:
The object exposes a readable attribute 'angle'. This is the getter.

angle=
Signature: void angle= (double a)

Description: Sets the angle

a: The new angle

See angle for a description of that attribute.

Python specific notes:
The object exposes a writable attribute 'angle'. This is the setter.

assign
Signature: void assign (const DCplxTrans other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

ctrans
Signature: [const] double ctrans (double d)

Description: Transforms a distance

d: The distance to transform

Returns: The transformed distance

The "ctrans" method transforms the given distance. e = t(d). For the simple transformations, there is no
magnification and no modification of the distance therefore.

The product '*' has been added as a synonym in version 0.28.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1395 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.84. API reference - Class DCplxTrans

This method is also available as '__mul__'

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

disp
Signature: [const] DVector disp

Description: Gets the displacement

Python specific notes:
The object exposes a readable attribute 'disp'. This is the getter.

disp=
Signature: void disp= (const DVector u)

Description: Sets the displacement

u: The new displacement

Python specific notes:
The object exposes a writable attribute 'disp'. This is the setter.

dup
Signature: [const] new DCplxTrans ptr dup

Description: Creates a copy of self

from_itrans
Signature: [static] new DCplxTrans ptr from_itrans (const CplxTrans trans)

Description: Creates a floating-point coordinate transformation from another coordinate flavour

Use of this method is deprecated. Use new instead

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_itrans'.

Python specific notes:
This method is the default initializer of the object

from_s
Signature: [static] new DCplxTrans ptr from_s (string s)

Description: Creates an object from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given transformation. This method enables transformations as hash keys.

For more details visit
https://www.klayout.org

Page 1396 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.84. API reference - Class DCplxTrans

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

invert
Signature: DCplxTrans invert

Description: Inverts the transformation (in place)

Returns: The inverted transformation

Inverts the transformation and replaces this transformation by it's inverted one.

inverted
Signature: [const] DCplxTrans inverted

Description: Returns the inverted transformation

Returns: The inverted transformation

Returns the inverted transformation. This method does not modify the transformation.

is_complex?
Signature: [const] bool is_complex?

Description: Returns true if the transformation is a complex one

If this predicate is false, the transformation can safely be converted to a simple transformation.
Otherwise, this conversion will be lossy. The predicate value is equivalent to 'is_mag || !is_ortho'.

This method has been introduced in version 0.27.5.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_mag?
Signature: [const] bool is_mag?

Description: Tests, if the transformation is a magnifying one

This is the recommended test for checking if the transformation represents a magnification.

is_mirror?
Signature: [const] bool is_mirror?

Description: Gets the mirror flag

If this property is true, the transformation is composed of a mirroring at the x-axis followed by a rotation
by the angle given by the angle property.

is_ortho?
Signature: [const] bool is_ortho?

Description: Tests, if the transformation is an orthogonal transformation

If the rotation is by a multiple of 90 degree, this method will return true.

is_unity?
Signature: [const] bool is_unity?

Description: Tests, whether this is a unit transformation

For more details visit
https://www.klayout.org

Page 1397 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.84. API reference - Class DCplxTrans

mag
Signature: [const] double mag

Description: Gets the magnification

Python specific notes:
The object exposes a readable attribute 'mag'. This is the getter.

mag=
Signature: void mag= (double m)

Description: Sets the magnification

m: The new magnification

Python specific notes:
The object exposes a writable attribute 'mag'. This is the setter.

mirror=
Signature: void mirror= (bool m)

Description: Sets the mirror flag

m: The new mirror flag

"mirroring" describes a reflection at the x-axis which is included in the transformation prior to rotation.

Python specific notes:
The object exposes a writable attribute 'mirror'. This is the setter.

(1) Signature: [static] new DCplxTrans ptr new (const CplxTrans trans)

Description: Creates a floating-point coordinate transformation from another coordinate flavour

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_itrans'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new DCplxTrans ptr new (const ICplxTrans trans)

Description: Creates a floating-point coordinate transformation from another coordinate flavour

This constructor has been introduced in version 0.25.

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new DCplxTrans ptr new (const VCplxTrans trans)

Description: Creates a floating-point coordinate transformation from another coordinate flavour

This constructor has been introduced in version 0.25.

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new DCplxTrans ptr new

Description: Creates a unit transformation

Python specific notes:
This method is the default initializer of the object

new

(5) Signature: [static] new DCplxTrans ptr new (const DCplxTrans c, double m = 1, const DVector u
= 0,0)

For more details visit
https://www.klayout.org

Page 1398 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.84. API reference - Class DCplxTrans

Description: Creates a transformation from another transformation plus a magnification and
displacement

c: The original transformation

u: The Additional displacement

Creates a new transformation from a existing transformation. This constructor is provided for creating
duplicates and backward compatibility since the constants are transformations now. It will copy the
original transformation and add the given displacement.

This variant has been introduced in version 0.25.

Python specific notes:
This method is the default initializer of the object

(6) Signature: [static] new DCplxTrans ptr new (const DCplxTrans c, double m, double x, double y)

Description: Creates a transformation from another transformation plus a magnification and
displacement

c: The original transformation

x: The Additional displacement (x)

y: The Additional displacement (y)

Creates a new transformation from a existing transformation. This constructor is provided for creating
duplicates and backward compatibility since the constants are transformations now. It will copy the
original transformation and add the given displacement.

This variant has been introduced in version 0.25.

Python specific notes:
This method is the default initializer of the object

(7) Signature: [static] new DCplxTrans ptr new (double x, double y)

Description: Creates a transformation from a x and y displacement

x: The x displacement

y: The y displacement

This constructor will create a transformation with the specified displacement but no rotation.

Python specific notes:
This method is the default initializer of the object

(8) Signature: [static] new DCplxTrans ptr new (double m)

Description: Creates a transformation from a magnification

Creates a magnifying transformation without displacement and rotation given the magnification m.

Python specific notes:
This method is the default initializer of the object

(9) Signature: [static] new DCplxTrans ptr new (const DTrans t, double m)

Description: Creates a transformation from a simple transformation and a magnification

Creates a magnifying transformation from a simple transformation and a magnification.

Python specific notes:
This method is the default initializer of the object

(10) Signature: [static] new DCplxTrans ptr new (const DTrans t)

For more details visit
https://www.klayout.org

Page 1399 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.84. API reference - Class DCplxTrans

Description: Creates a transformation from a simple transformation alone

Creates a magnifying transformation from a simple transformation and a magnification of 1.0.

Python specific notes:
This method is the default initializer of the object

(11) Signature: [static] new DCplxTrans ptr new (const DVector u)

Description: Creates a transformation from a displacement

Creates a transformation with a displacement only.

This method has been added in version 0.25.

Python specific notes:
This method is the default initializer of the object

(12) Signature: [static] new DCplxTrans ptr new (double mag, double rot, bool mirrx, const DVector
u)

Description: Creates a transformation using magnification, angle, mirror flag and displacement

mag: The magnification

rot: The rotation angle in units of degree

mirrx: True, if mirrored at x axis

u: The displacement

The sequence of operations is: magnification, mirroring at x axis, rotation, application of displacement.

Python specific notes:
This method is the default initializer of the object

(13) Signature: [static] new DCplxTrans ptr new (double mag, double rot, bool mirrx, double x,
double y)

Description: Creates a transformation using magnification, angle, mirror flag and displacement

mag: The magnification

rot: The rotation angle in units of degree

mirrx: True, if mirrored at x axis

x: The x displacement

y: The y displacement

The sequence of operations is: magnification, mirroring at x axis, rotation, application of displacement.

Python specific notes:
This method is the default initializer of the object

rot
Signature: [const] int rot

Description: Returns the respective simple transformation equivalent rotation code if possible

If this transformation is orthogonal (is_ortho () == true), then this method will return the corresponding
fixpoint transformation, not taking into account magnification and displacement. If the transformation is
not orthogonal, the result reflects the quadrant the rotation goes into.

s_trans
Signature: [const] DTrans s_trans

Description: Extracts the simple transformation part

For more details visit
https://www.klayout.org

Page 1400 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.84. API reference - Class DCplxTrans

The simple transformation part does not reflect magnification or arbitrary angles. Rotation angles are
rounded down to multiples of 90 degree. Magnification is fixed to 1.0.

to_itrans
Signature: [const] ICplxTrans to_itrans (double dbu = 1)

Description: Converts the transformation to another transformation with integer input and output
coordinates

The database unit can be specified to translate the floating-point coordinate displacement in micron
units to an integer-coordinate displacement in database units. The displacement's' coordinates will be
divided by the database unit.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s (bool lazy = false, double dbu = 0)

Description: String conversion

If 'lazy' is true, some parts are omitted when not required. If a DBU is given, the output units will be
micrometers.

The lazy and DBU arguments have been added in version 0.27.6.

Python specific notes:
This method is also available as 'str(object)'

to_trans
Signature: [const] CplxTrans to_trans

Description: Converts the transformation to another transformation with integer input coordinates

This method has been introduced in version 0.25.

to_vtrans
Signature: [const] VCplxTrans to_vtrans (double dbu = 1)

Description: Converts the transformation to another transformation with integer output coordinates

The database unit can be specified to translate the floating-point coordinate displacement in micron
units to an integer-coordinate displacement in database units. The displacement's' coordinates will be
divided by the database unit.

This method has been introduced in version 0.25.

(1) Signature: [const] DPoint trans (const DPoint p)

Description: Transforms a point

p: The point to transform

Returns: The transformed point

The "trans" method or the * operator transforms the given point. q = t(p)

The * operator has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

trans

(2) Signature: [const] DVector trans (const DVector p)

Description: Transforms a vector

v: The vector to transform

Returns: The transformed vector

The "trans" method or the * operator transforms the given vector. w = t(v)

Vector transformation has been introduced in version 0.25.

For more details visit
https://www.klayout.org

Page 1401 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.84. API reference - Class DCplxTrans

Python specific notes:
This method is also available as '__mul__'

(3) Signature: [const] DBox trans (const DBox box)

Description: Transforms a box

box: The box to transform

Returns: The transformed box

't*box' or 't.trans(box)' is equivalent to box.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(4) Signature: [const] DEdge trans (const DEdge edge)

Description: Transforms an edge

edge: The edge to transform

Returns: The transformed edge

't*edge' or 't.trans(edge)' is equivalent to edge.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(5) Signature: [const] DPolygon trans (const DPolygon polygon)

Description: Transforms a polygon

polygon: The polygon to transform

Returns: The transformed polygon

't*polygon' or 't.trans(polygon)' is equivalent to polygon.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(6) Signature: [const] DPath trans (const DPath path)

Description: Transforms a path

path: The path to transform

Returns: The transformed path

't*path' or 't.trans(path)' is equivalent to path.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(7) Signature: [const] DText trans (const DText text)

Description: Transforms a text

text: The text to transform

Returns: The transformed text

For more details visit
https://www.klayout.org

Page 1402 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.84. API reference - Class DCplxTrans

't*text' or 't.trans(text)' is equivalent to text.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

For more details visit
https://www.klayout.org

Page 1403 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.85. API reference - Class CplxTrans

4.85. API reference - Class CplxTrans
Notation used in Ruby API documentation

Module: db

Description: A complex transformation

A complex transformation provides magnification, mirroring at the x-axis, rotation by an arbitrary angle and a displacement. This is also the
order, the operations are applied. This version can transform integer-coordinate objects into floating-point coordinate objects. This is the
generic and exact case, for example for non-integer magnifications.

Complex transformations are extensions of the simple transformation classes (Trans or DTrans in that case) and behave similar.

Transformations can be used to transform points or other objects. Transformations can be combined with the '*' operator to form the
transformation which is equivalent to applying the second and then the first. Here is some code:

Create a transformation that applies a magnification of 1.5, a rotation by 90 degree
and displacement of 10 in x and 20 units in y direction:
t = RBA::DCplxTrans::new(1.5, 90, false, 10.0, 20.0)
t.to_s # r90 *1.5 10,20
compute the inverse:
t.inverted.to_s # r270 *0.666666667 -13,7
Combine with another displacement (applied after that):
(RBA::DCplxTrans::new(5, 5) * t).to_s # r90 *1.5 15,25
Transform a point:
t.trans(RBA::DPoint::new(100, 200)).to_s # -290,170

The inverse type of the CplxTrans type is VCplxTrans which will transform floating-point to integer coordinate objects. Transformations
of CplxTrans type can be concatenated (operator *) with either itself or with transformations of compatible input or output type. This
means, the operator CplxTrans * ICplxTrans is allowed (output types of ICplxTrans and input of CplxTrans are identical) while CplxTrans *
DCplxTrans is not. See The Database API for more details about the database objects.

Public constructors

new CplxTrans ptr new (const DCplxTrans trans) Creates a floating-point coordinate transformation
from another coordinate flavour

new CplxTrans ptr new (const ICplxTrans trans) Creates a floating-point coordinate transformation
from another coordinate flavour

new CplxTrans ptr new (const VCplxTrans trans) Creates a floating-point coordinate transformation
from another coordinate flavour

new CplxTrans ptr new Creates a unit transformation

new CplxTrans ptr new (const CplxTrans c,
double m = 1,
const DVector u = 0,0)

Creates a transformation from another
transformation plus a magnification and
displacement

new CplxTrans ptr new (const CplxTrans c,
double m,
int x,
int y)

Creates a transformation from another
transformation plus a magnification and
displacement

new CplxTrans ptr new (double x,
double y)

Creates a transformation from a x and y
displacement

new CplxTrans ptr new (double m) Creates a transformation from a magnification

For more details visit
https://www.klayout.org

Page 1404 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.85. API reference - Class CplxTrans

new CplxTrans ptr new (const Trans t,
double m)

Creates a transformation from a simple
transformation and a magnification

new CplxTrans ptr new (const Trans t) Creates a transformation from a simple
transformation alone

new CplxTrans ptr new (const DVector u) Creates a transformation from a displacement

new CplxTrans ptr new (double mag,
double rot,
bool mirrx,
const DVector u)

Creates a transformation using magnification,
angle, mirror flag and displacement

new CplxTrans ptr new (double mag,
double rot,
bool mirrx,
double x,
double y)

Creates a transformation using magnification,
angle, mirror flag and displacement

Public methods

[const] bool != (const CplxTrans
other)

Tests for inequality

[const] DCplxTrans * (const VCplxTrans
t)

Multiplication (concatenation) of
transformations

[const] CplxTrans * (const ICplxTrans t) Multiplication (concatenation) of
transformations

[const] double * (unsigned int d) Transforms a distance

[const] DPoint * (const Point p) Transforms a point

[const] DVector * (const Vector p) Transforms a vector

[const] DBox * (const Box box) Transforms a box

[const] DEdge * (const Edge edge) Transforms an edge

[const] DPolygon * (const Polygon
polygon)

Transforms a polygon

[const] DPath * (const Path path) Transforms a path

[const] DText * (const Text text) Transforms a text

[const] CplxTrans * (const CplxTrans t) Returns the concatenated transformation

[const] bool < (const CplxTrans
other)

Provides a 'less' criterion for sorting

[const] bool == (const CplxTrans
other)

Tests for equality

void _create Ensures the C++ object is created

For more details visit
https://www.klayout.org

Page 1405 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.85. API reference - Class CplxTrans

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the
script side.

void _unmanage Marks the object as no longer owned by
the script side.

[const] double angle Gets the angle

void angle= (double a) Sets the angle

void assign (const CplxTrans
other)

Assigns another object to self

[const] double ctrans (unsigned int d) Transforms a distance

[const] DVector disp Gets the displacement

void disp= (const DVector u) Sets the displacement

[const] new CplxTrans ptr dup Creates a copy of self

[const] unsigned long hash Computes a hash value

CplxTrans invert Inverts the transformation (in place)

[const] VCplxTrans inverted Returns the inverted transformation

[const] bool is_complex? Returns true if the transformation is a
complex one

[const] bool is_mag? Tests, if the transformation is a
magnifying one

[const] bool is_mirror? Gets the mirror flag

[const] bool is_ortho? Tests, if the transformation is an
orthogonal transformation

[const] bool is_unity? Tests, whether this is a unit
transformation

[const] double mag Gets the magnification

void mag= (double m) Sets the magnification

void mirror= (bool m) Sets the mirror flag

[const] int rot Returns the respective simple
transformation equivalent rotation code if
possible

For more details visit
https://www.klayout.org

Page 1406 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.85. API reference - Class CplxTrans

[const] Trans s_trans Extracts the simple transformation part

[const] ICplxTrans to_itrans (double dbu = 1) Converts the transformation to another
transformation with integer input and
output coordinates

[const] string to_s (bool lazy = false,
double dbu = 0)

String conversion

[const] DCplxTrans to_trans Converts the transformation to another
transformation with floating-point input
coordinates

[const] VCplxTrans to_vtrans (double dbu = 1) Converts the transformation to another
transformation with integer output and
floating-point input coordinates

[const] DPoint trans (const Point p) Transforms a point

[const] DVector trans (const Vector p) Transforms a vector

[const] DBox trans (const Box box) Transforms a box

[const] DEdge trans (const Edge edge) Transforms an edge

[const] DPolygon trans (const Polygon
polygon)

Transforms a polygon

[const] DPath trans (const Path path) Transforms a path

[const] DText trans (const Text text) Transforms a text

Public static methods and constants

CplxTrans M0 A constant giving "mirrored at the x-axis" transformation

CplxTrans M135 A constant giving "mirrored at the 135 degree axis"
transformation

CplxTrans M45 A constant giving "mirrored at the 45 degree axis"
transformation

CplxTrans M90 A constant giving "mirrored at the y (90 degree) axis"
transformation

CplxTrans R0 A constant giving "unrotated" (unit) transformation

CplxTrans R180 A constant giving "rotated by 180 degree counterclockwise"
transformation

CplxTrans R270 A constant giving "rotated by 270 degree counterclockwise"
transformation

CplxTrans R90 A constant giving "rotated by 90 degree counterclockwise"
transformation

For more details visit
https://www.klayout.org

Page 1407 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.85. API reference - Class CplxTrans

new CplxTrans ptr from_s (string
s)

Creates an object from a string

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[static] new CplxTrans ptr from_dtrans (const
DCplxTrans
trans)

Use of this method is deprecated. Use new instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

Detailed description

!=
Signature: [const] bool != (const CplxTrans other)

Description: Tests for inequality

(1) Signature: [const] DCplxTrans * (const VCplxTrans t)

Description: Multiplication (concatenation) of transformations

t: The transformation to apply before

Returns: The modified transformation

The * operator returns self*t ("t is applied before this transformation").

Python specific notes:
This method is also available as '__mul__'

(2) Signature: [const] CplxTrans * (const ICplxTrans t)

Description: Multiplication (concatenation) of transformations

t: The transformation to apply before

Returns: The modified transformation

The * operator returns self*t ("t is applied before this transformation").

Python specific notes:
This method is also available as '__mul__'

*

(3) Signature: [const] double * (unsigned int d)

Description: Transforms a distance

d: The distance to transform

Returns: The transformed distance

The "ctrans" method transforms the given distance. e = t(d). For the simple transformations, there is no
magnification and no modification of the distance therefore.

For more details visit
https://www.klayout.org

Page 1408 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.85. API reference - Class CplxTrans

The product '*' has been added as a synonym in version 0.28.

Python specific notes:
This method is also available as '__mul__'

(4) Signature: [const] DPoint * (const Point p)

Description: Transforms a point

p: The point to transform

Returns: The transformed point

The "trans" method or the * operator transforms the given point. q = t(p)

The * operator has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(5) Signature: [const] DVector * (const Vector p)

Description: Transforms a vector

v: The vector to transform

Returns: The transformed vector

The "trans" method or the * operator transforms the given vector. w = t(v)

Vector transformation has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(6) Signature: [const] DBox * (const Box box)

Description: Transforms a box

box: The box to transform

Returns: The transformed box

't*box' or 't.trans(box)' is equivalent to box.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(7) Signature: [const] DEdge * (const Edge edge)

Description: Transforms an edge

edge: The edge to transform

Returns: The transformed edge

't*edge' or 't.trans(edge)' is equivalent to edge.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(8) Signature: [const] DPolygon * (const Polygon polygon)

Description: Transforms a polygon

polygon: The polygon to transform

Returns: The transformed polygon

For more details visit
https://www.klayout.org

Page 1409 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.85. API reference - Class CplxTrans

't*polygon' or 't.trans(polygon)' is equivalent to polygon.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(9) Signature: [const] DPath * (const Path path)

Description: Transforms a path

path: The path to transform

Returns: The transformed path

't*path' or 't.trans(path)' is equivalent to path.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(10) Signature: [const] DText * (const Text text)

Description: Transforms a text

text: The text to transform

Returns: The transformed text

't*text' or 't.trans(text)' is equivalent to text.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(11) Signature: [const] CplxTrans * (const CplxTrans t)

Description: Returns the concatenated transformation

t: The transformation to apply before

Returns: The modified transformation

The * operator returns self*t ("t is applied before this transformation").

Python specific notes:
This method is also available as '__mul__'

<
Signature: [const] bool < (const CplxTrans other)

Description: Provides a 'less' criterion for sorting

This method is provided to implement a sorting order. The definition of 'less' is opaque and might
change in future versions.

==
Signature: [const] bool == (const CplxTrans other)

Description: Tests for equality

M0
Signature: [static] CplxTrans M0

Description: A constant giving "mirrored at the x-axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

For more details visit
https://www.klayout.org

Page 1410 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.85. API reference - Class CplxTrans

M135
Signature: [static] CplxTrans M135

Description: A constant giving "mirrored at the 135 degree axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

M45
Signature: [static] CplxTrans M45

Description: A constant giving "mirrored at the 45 degree axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

M90
Signature: [static] CplxTrans M90

Description: A constant giving "mirrored at the y (90 degree) axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

R0
Signature: [static] CplxTrans R0

Description: A constant giving "unrotated" (unit) transformation

The previous integer constant has been turned into a transformation in version 0.25.

R180
Signature: [static] CplxTrans R180

Description: A constant giving "rotated by 180 degree counterclockwise" transformation

The previous integer constant has been turned into a transformation in version 0.25.

R270
Signature: [static] CplxTrans R270

Description: A constant giving "rotated by 270 degree counterclockwise" transformation

The previous integer constant has been turned into a transformation in version 0.25.

R90
Signature: [static] CplxTrans R90

Description: A constant giving "rotated by 90 degree counterclockwise" transformation

The previous integer constant has been turned into a transformation in version 0.25.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

For more details visit
https://www.klayout.org

Page 1411 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.85. API reference - Class CplxTrans

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

angle
Signature: [const] double angle

Description: Gets the angle

Returns: The rotation angle this transformation provides in degree units
(0..360 deg).

Note that the simple transformation returns the angle in units of 90 degree. Hence for a simple trans
(i.e. Trans), a rotation angle of 180 degree delivers a value of 2 for the angle attribute. The complex
transformation, supporting any rotation angle returns the angle in degree.

Python specific notes:
The object exposes a readable attribute 'angle'. This is the getter.

angle=
Signature: void angle= (double a)

Description: Sets the angle

a: The new angle

See angle for a description of that attribute.

Python specific notes:
The object exposes a writable attribute 'angle'. This is the setter.

assign
Signature: void assign (const CplxTrans other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

For more details visit
https://www.klayout.org

Page 1412 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.85. API reference - Class CplxTrans

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

ctrans
Signature: [const] double ctrans (unsigned int d)

Description: Transforms a distance

d: The distance to transform

Returns: The transformed distance

The "ctrans" method transforms the given distance. e = t(d). For the simple transformations, there is no
magnification and no modification of the distance therefore.

The product '*' has been added as a synonym in version 0.28.

Python specific notes:
This method is also available as '__mul__'

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

disp
Signature: [const] DVector disp

Description: Gets the displacement

Python specific notes:
The object exposes a readable attribute 'disp'. This is the getter.

disp=
Signature: void disp= (const DVector u)

Description: Sets the displacement

u: The new displacement

Python specific notes:
The object exposes a writable attribute 'disp'. This is the setter.

dup
Signature: [const] new CplxTrans ptr dup

Description: Creates a copy of self

from_dtrans
Signature: [static] new CplxTrans ptr from_dtrans (const DCplxTrans trans)

Description: Creates a floating-point coordinate transformation from another coordinate flavour

Use of this method is deprecated. Use new instead

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dtrans'.

For more details visit
https://www.klayout.org

Page 1413 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.85. API reference - Class CplxTrans

Python specific notes:
This method is the default initializer of the object

from_s
Signature: [static] new CplxTrans ptr from_s (string s)

Description: Creates an object from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given transformation. This method enables transformations as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

invert
Signature: CplxTrans invert

Description: Inverts the transformation (in place)

Returns: The inverted transformation

Inverts the transformation and replaces this transformation by it's inverted one.

inverted
Signature: [const] VCplxTrans inverted

Description: Returns the inverted transformation

Returns: The inverted transformation

Returns the inverted transformation. This method does not modify the transformation.

is_complex?
Signature: [const] bool is_complex?

Description: Returns true if the transformation is a complex one

If this predicate is false, the transformation can safely be converted to a simple transformation.
Otherwise, this conversion will be lossy. The predicate value is equivalent to 'is_mag || !is_ortho'.

This method has been introduced in version 0.27.5.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_mag?
Signature: [const] bool is_mag?

Description: Tests, if the transformation is a magnifying one

This is the recommended test for checking if the transformation represents a magnification.

is_mirror?
Signature: [const] bool is_mirror?

Description: Gets the mirror flag

For more details visit
https://www.klayout.org

Page 1414 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.85. API reference - Class CplxTrans

If this property is true, the transformation is composed of a mirroring at the x-axis followed by a rotation
by the angle given by the angle property.

is_ortho?
Signature: [const] bool is_ortho?

Description: Tests, if the transformation is an orthogonal transformation

If the rotation is by a multiple of 90 degree, this method will return true.

is_unity?
Signature: [const] bool is_unity?

Description: Tests, whether this is a unit transformation

mag
Signature: [const] double mag

Description: Gets the magnification

Python specific notes:
The object exposes a readable attribute 'mag'. This is the getter.

mag=
Signature: void mag= (double m)

Description: Sets the magnification

m: The new magnification

Python specific notes:
The object exposes a writable attribute 'mag'. This is the setter.

mirror=
Signature: void mirror= (bool m)

Description: Sets the mirror flag

m: The new mirror flag

"mirroring" describes a reflection at the x-axis which is included in the transformation prior to rotation.

Python specific notes:
The object exposes a writable attribute 'mirror'. This is the setter.

(1) Signature: [static] new CplxTrans ptr new (const DCplxTrans trans)

Description: Creates a floating-point coordinate transformation from another coordinate flavour

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dtrans'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new CplxTrans ptr new (const ICplxTrans trans)

Description: Creates a floating-point coordinate transformation from another coordinate flavour

This constructor has been introduced in version 0.25.

Python specific notes:
This method is the default initializer of the object

new

(3) Signature: [static] new CplxTrans ptr new (const VCplxTrans trans)

Description: Creates a floating-point coordinate transformation from another coordinate flavour

This constructor has been introduced in version 0.25.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1415 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.85. API reference - Class CplxTrans

This method is the default initializer of the object

(4) Signature: [static] new CplxTrans ptr new

Description: Creates a unit transformation

Python specific notes:
This method is the default initializer of the object

(5) Signature: [static] new CplxTrans ptr new (const CplxTrans c, double m = 1, const DVector u =
0,0)

Description: Creates a transformation from another transformation plus a magnification and
displacement

c: The original transformation

u: The Additional displacement

Creates a new transformation from a existing transformation. This constructor is provided for creating
duplicates and backward compatibility since the constants are transformations now. It will copy the
original transformation and add the given displacement.

This variant has been introduced in version 0.25.

Python specific notes:
This method is the default initializer of the object

(6) Signature: [static] new CplxTrans ptr new (const CplxTrans c, double m, int x, int y)

Description: Creates a transformation from another transformation plus a magnification and
displacement

c: The original transformation

x: The Additional displacement (x)

y: The Additional displacement (y)

Creates a new transformation from a existing transformation. This constructor is provided for creating
duplicates and backward compatibility since the constants are transformations now. It will copy the
original transformation and add the given displacement.

This variant has been introduced in version 0.25.

Python specific notes:
This method is the default initializer of the object

(7) Signature: [static] new CplxTrans ptr new (double x, double y)

Description: Creates a transformation from a x and y displacement

x: The x displacement

y: The y displacement

This constructor will create a transformation with the specified displacement but no rotation.

Python specific notes:
This method is the default initializer of the object

(8) Signature: [static] new CplxTrans ptr new (double m)

Description: Creates a transformation from a magnification

Creates a magnifying transformation without displacement and rotation given the magnification m.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1416 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.85. API reference - Class CplxTrans

This method is the default initializer of the object

(9) Signature: [static] new CplxTrans ptr new (const Trans t, double m)

Description: Creates a transformation from a simple transformation and a magnification

Creates a magnifying transformation from a simple transformation and a magnification.

Python specific notes:
This method is the default initializer of the object

(10) Signature: [static] new CplxTrans ptr new (const Trans t)

Description: Creates a transformation from a simple transformation alone

Creates a magnifying transformation from a simple transformation and a magnification of 1.0.

Python specific notes:
This method is the default initializer of the object

(11) Signature: [static] new CplxTrans ptr new (const DVector u)

Description: Creates a transformation from a displacement

Creates a transformation with a displacement only.

This method has been added in version 0.25.

Python specific notes:
This method is the default initializer of the object

(12) Signature: [static] new CplxTrans ptr new (double mag, double rot, bool mirrx, const DVector u)

Description: Creates a transformation using magnification, angle, mirror flag and displacement

mag: The magnification

rot: The rotation angle in units of degree

mirrx: True, if mirrored at x axis

u: The displacement

The sequence of operations is: magnification, mirroring at x axis, rotation, application of displacement.

Python specific notes:
This method is the default initializer of the object

(13) Signature: [static] new CplxTrans ptr new (double mag, double rot, bool mirrx, double x, double
y)

Description: Creates a transformation using magnification, angle, mirror flag and displacement

mag: The magnification

rot: The rotation angle in units of degree

mirrx: True, if mirrored at x axis

x: The x displacement

y: The y displacement

The sequence of operations is: magnification, mirroring at x axis, rotation, application of displacement.

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1417 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.85. API reference - Class CplxTrans

rot
Signature: [const] int rot

Description: Returns the respective simple transformation equivalent rotation code if possible

If this transformation is orthogonal (is_ortho () == true), then this method will return the corresponding
fixpoint transformation, not taking into account magnification and displacement. If the transformation is
not orthogonal, the result reflects the quadrant the rotation goes into.

s_trans
Signature: [const] Trans s_trans

Description: Extracts the simple transformation part

The simple transformation part does not reflect magnification or arbitrary angles. Rotation angles are
rounded down to multiples of 90 degree. Magnification is fixed to 1.0.

to_itrans
Signature: [const] ICplxTrans to_itrans (double dbu = 1)

Description: Converts the transformation to another transformation with integer input and output
coordinates

The database unit can be specified to translate the floating-point coordinate displacement in micron
units to an integer-coordinate displacement in database units. The displacement's' coordinates will be
divided by the database unit.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s (bool lazy = false, double dbu = 0)

Description: String conversion

If 'lazy' is true, some parts are omitted when not required. If a DBU is given, the output units will be
micrometers.

The lazy and DBU arguments have been added in version 0.27.6.

Python specific notes:
This method is also available as 'str(object)'

to_trans
Signature: [const] DCplxTrans to_trans

Description: Converts the transformation to another transformation with floating-point input
coordinates

This method has been introduced in version 0.25.

to_vtrans
Signature: [const] VCplxTrans to_vtrans (double dbu = 1)

Description: Converts the transformation to another transformation with integer output and floating-
point input coordinates

The database unit can be specified to translate the floating-point coordinate displacement in micron
units to an integer-coordinate displacement in database units. The displacement's' coordinates will be
divided by the database unit.

This method has been introduced in version 0.25.

trans
(1) Signature: [const] DPoint trans (const Point p)

Description: Transforms a point

p: The point to transform

Returns: The transformed point

The "trans" method or the * operator transforms the given point. q = t(p)

For more details visit
https://www.klayout.org

Page 1418 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.85. API reference - Class CplxTrans

The * operator has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(2) Signature: [const] DVector trans (const Vector p)

Description: Transforms a vector

v: The vector to transform

Returns: The transformed vector

The "trans" method or the * operator transforms the given vector. w = t(v)

Vector transformation has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(3) Signature: [const] DBox trans (const Box box)

Description: Transforms a box

box: The box to transform

Returns: The transformed box

't*box' or 't.trans(box)' is equivalent to box.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(4) Signature: [const] DEdge trans (const Edge edge)

Description: Transforms an edge

edge: The edge to transform

Returns: The transformed edge

't*edge' or 't.trans(edge)' is equivalent to edge.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(5) Signature: [const] DPolygon trans (const Polygon polygon)

Description: Transforms a polygon

polygon: The polygon to transform

Returns: The transformed polygon

't*polygon' or 't.trans(polygon)' is equivalent to polygon.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(6) Signature: [const] DPath trans (const Path path)

Description: Transforms a path

path: The path to transform

Returns: The transformed path

For more details visit
https://www.klayout.org

Page 1419 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.85. API reference - Class CplxTrans

't*path' or 't.trans(path)' is equivalent to path.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(7) Signature: [const] DText trans (const Text text)

Description: Transforms a text

text: The text to transform

Returns: The transformed text

't*text' or 't.trans(text)' is equivalent to text.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

For more details visit
https://www.klayout.org

Page 1420 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.86. API reference - Class ICplxTrans

4.86. API reference - Class ICplxTrans
Notation used in Ruby API documentation

Module: db

Description: A complex transformation

A complex transformation provides magnification, mirroring at the x-axis, rotation by an arbitrary angle and a displacement. This is also the
order, the operations are applied. This version can transform integer-coordinate objects into the same, which may involve rounding and can
be inexact.

Complex transformations are extensions of the simple transformation classes (Trans in that case) and behave similar.

Transformations can be used to transform points or other objects. Transformations can be combined with the '*' operator to form the
transformation which is equivalent to applying the second and then the first. Here is some code:

Create a transformation that applies a magnification of 1.5, a rotation by 90 degree
and displacement of 10 in x and 20 units in y direction:
t = RBA::ICplxTrans::new(1.5, 90, false, 10.0, 20.0)
t.to_s # r90 *1.5 10,20
compute the inverse:
t.inverted.to_s # r270 *0.666666667 -13,7
Combine with another displacement (applied after that):
(RBA::ICplxTrans::new(5, 5) * t).to_s # r90 *1.5 15,25
Transform a point:
t.trans(RBA::Point::new(100, 200)).to_s # -290,170

This class has been introduced in version 0.18.

See The Database API for more details about the database objects.

Public constructors

new ICplxTrans ptr new (const DCplxTrans trans) Creates a floating-point coordinate transformation
from another coordinate flavour

new ICplxTrans ptr new (const CplxTrans trans) Creates a floating-point coordinate transformation
from another coordinate flavour

new ICplxTrans ptr new (const VCplxTrans trans) Creates a floating-point coordinate transformation
from another coordinate flavour

new ICplxTrans ptr new Creates a unit transformation

new ICplxTrans ptr new (const ICplxTrans c,
double m = 1,
const Vector u = 0,0)

Creates a transformation from another
transformation plus a magnification and
displacement

new ICplxTrans ptr new (const ICplxTrans c,
double m,
int x,
int y)

Creates a transformation from another
transformation plus a magnification and
displacement

new ICplxTrans ptr new (int x,
int y)

Creates a transformation from a x and y
displacement

new ICplxTrans ptr new (double m) Creates a transformation from a magnification

For more details visit
https://www.klayout.org

Page 1421 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.86. API reference - Class ICplxTrans

new ICplxTrans ptr new (const Trans t,
double m)

Creates a transformation from a simple
transformation and a magnification

new ICplxTrans ptr new (const Trans t) Creates a transformation from a simple
transformation alone

new ICplxTrans ptr new (const Vector u) Creates a transformation from a displacement

new ICplxTrans ptr new (double mag,
double rot,
bool mirrx,
const Vector u)

Creates a transformation using magnification,
angle, mirror flag and displacement

new ICplxTrans ptr new (double mag,
double rot,
bool mirrx,
int x,
int y)

Creates a transformation using magnification,
angle, mirror flag and displacement

Public methods

[const] bool != (const ICplxTrans
other)

Tests for inequality

[const] VCplxTrans * (const VCplxTrans
t)

Multiplication (concatenation) of
transformations

[const] unsigned int * (unsigned int d) Transforms a distance

[const] Point * (const Point p) Transforms a point

[const] Vector * (const Vector p) Transforms a vector

[const] Box * (const Box box) Transforms a box

[const] Edge * (const Edge edge) Transforms an edge

[const] Polygon * (const Polygon
polygon)

Transforms a polygon

[const] Path * (const Path path) Transforms a path

[const] Text * (const Text text) Transforms a text

[const] ICplxTrans * (const ICplxTrans t) Returns the concatenated transformation

[const] bool < (const ICplxTrans
other)

Provides a 'less' criterion for sorting

[const] bool == (const ICplxTrans
other)

Tests for equality

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 1422 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.86. API reference - Class ICplxTrans

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the
script side.

void _unmanage Marks the object as no longer owned by
the script side.

[const] double angle Gets the angle

void angle= (double a) Sets the angle

void assign (const ICplxTrans
other)

Assigns another object to self

[const] unsigned int ctrans (unsigned int d) Transforms a distance

[const] Vector disp Gets the displacement

void disp= (const Vector u) Sets the displacement

[const] new ICplxTrans ptr dup Creates a copy of self

[const] unsigned long hash Computes a hash value

ICplxTrans invert Inverts the transformation (in place)

[const] ICplxTrans inverted Returns the inverted transformation

[const] bool is_complex? Returns true if the transformation is a
complex one

[const] bool is_mag? Tests, if the transformation is a
magnifying one

[const] bool is_mirror? Gets the mirror flag

[const] bool is_ortho? Tests, if the transformation is an
orthogonal transformation

[const] bool is_unity? Tests, whether this is a unit
transformation

[const] double mag Gets the magnification

void mag= (double m) Sets the magnification

void mirror= (bool m) Sets the mirror flag

[const] int rot Returns the respective simple
transformation equivalent rotation code if
possible

[const] Trans s_trans Extracts the simple transformation part

For more details visit
https://www.klayout.org

Page 1423 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.86. API reference - Class ICplxTrans

[const] DCplxTrans to_itrans (double dbu = 1) Converts the transformation to another
transformation with floating-point input
and output coordinates

[const] string to_s (bool lazy = false,
double dbu = 0)

String conversion

[const] VCplxTrans to_trans Converts the transformation to another
transformation with floating-point input
coordinates

[const] CplxTrans to_vtrans (double dbu = 1) Converts the transformation to another
transformation with floating-point output
coordinates

[const] Point trans (const Point p) Transforms a point

[const] Vector trans (const Vector p) Transforms a vector

[const] Box trans (const Box box) Transforms a box

[const] Edge trans (const Edge edge) Transforms an edge

[const] Polygon trans (const Polygon
polygon)

Transforms a polygon

[const] Path trans (const Path path) Transforms a path

[const] Text trans (const Text text) Transforms a text

Public static methods and constants

ICplxTrans M0 A constant giving "mirrored at the x-axis" transformation

ICplxTrans M135 A constant giving "mirrored at the 135 degree axis"
transformation

ICplxTrans M45 A constant giving "mirrored at the 45 degree axis"
transformation

ICplxTrans M90 A constant giving "mirrored at the y (90 degree) axis"
transformation

ICplxTrans R0 A constant giving "unrotated" (unit) transformation

ICplxTrans R180 A constant giving "rotated by 180 degree counterclockwise"
transformation

ICplxTrans R270 A constant giving "rotated by 270 degree counterclockwise"
transformation

ICplxTrans R90 A constant giving "rotated by 90 degree counterclockwise"
transformation

new ICplxTrans ptr from_s (string
s)

Creates an object from a string

For more details visit
https://www.klayout.org

Page 1424 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.86. API reference - Class ICplxTrans

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

[static] new ICplxTrans ptr from_dtrans (const
DCplxTrans
trans)

Use of this method is deprecated. Use new
instead

[static] new ICplxTrans ptr from_trans (const
CplxTrans
trans)

Use of this method is deprecated. Use new
instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

Detailed description

!=
Signature: [const] bool != (const ICplxTrans other)

Description: Tests for inequality

(1) Signature: [const] VCplxTrans * (const VCplxTrans t)

Description: Multiplication (concatenation) of transformations

t: The transformation to apply before

Returns: The modified transformation

The * operator returns self*t ("t is applied before this transformation").

Python specific notes:
This method is also available as '__mul__'

(2) Signature: [const] unsigned int * (unsigned int d)

Description: Transforms a distance

d: The distance to transform

Returns: The transformed distance

The "ctrans" method transforms the given distance. e = t(d). For the simple transformations, there is no
magnification and no modification of the distance therefore.

The product '*' has been added as a synonym in version 0.28.

Python specific notes:
This method is also available as '__mul__'

*

(3) Signature: [const] Point * (const Point p)

Description: Transforms a point

p: The point to transform

For more details visit
https://www.klayout.org

Page 1425 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.86. API reference - Class ICplxTrans

Returns: The transformed point

The "trans" method or the * operator transforms the given point. q = t(p)

The * operator has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(4) Signature: [const] Vector * (const Vector p)

Description: Transforms a vector

v: The vector to transform

Returns: The transformed vector

The "trans" method or the * operator transforms the given vector. w = t(v)

Vector transformation has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(5) Signature: [const] Box * (const Box box)

Description: Transforms a box

box: The box to transform

Returns: The transformed box

't*box' or 't.trans(box)' is equivalent to box.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(6) Signature: [const] Edge * (const Edge edge)

Description: Transforms an edge

edge: The edge to transform

Returns: The transformed edge

't*edge' or 't.trans(edge)' is equivalent to edge.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(7) Signature: [const] Polygon * (const Polygon polygon)

Description: Transforms a polygon

polygon: The polygon to transform

Returns: The transformed polygon

't*polygon' or 't.trans(polygon)' is equivalent to polygon.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(8) Signature: [const] Path * (const Path path)

For more details visit
https://www.klayout.org

Page 1426 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.86. API reference - Class ICplxTrans

Description: Transforms a path

path: The path to transform

Returns: The transformed path

't*path' or 't.trans(path)' is equivalent to path.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(9) Signature: [const] Text * (const Text text)

Description: Transforms a text

text: The text to transform

Returns: The transformed text

't*text' or 't.trans(text)' is equivalent to text.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(10) Signature: [const] ICplxTrans * (const ICplxTrans t)

Description: Returns the concatenated transformation

t: The transformation to apply before

Returns: The modified transformation

The * operator returns self*t ("t is applied before this transformation").

Python specific notes:
This method is also available as '__mul__'

<
Signature: [const] bool < (const ICplxTrans other)

Description: Provides a 'less' criterion for sorting

This method is provided to implement a sorting order. The definition of 'less' is opaque and might
change in future versions.

==
Signature: [const] bool == (const ICplxTrans other)

Description: Tests for equality

M0
Signature: [static] ICplxTrans M0

Description: A constant giving "mirrored at the x-axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

M135
Signature: [static] ICplxTrans M135

Description: A constant giving "mirrored at the 135 degree axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

M45
Signature: [static] ICplxTrans M45

Description: A constant giving "mirrored at the 45 degree axis" transformation

For more details visit
https://www.klayout.org

Page 1427 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.86. API reference - Class ICplxTrans

The previous integer constant has been turned into a transformation in version 0.25.

M90
Signature: [static] ICplxTrans M90

Description: A constant giving "mirrored at the y (90 degree) axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

R0
Signature: [static] ICplxTrans R0

Description: A constant giving "unrotated" (unit) transformation

The previous integer constant has been turned into a transformation in version 0.25.

R180
Signature: [static] ICplxTrans R180

Description: A constant giving "rotated by 180 degree counterclockwise" transformation

The previous integer constant has been turned into a transformation in version 0.25.

R270
Signature: [static] ICplxTrans R270

Description: A constant giving "rotated by 270 degree counterclockwise" transformation

The previous integer constant has been turned into a transformation in version 0.25.

R90
Signature: [static] ICplxTrans R90

Description: A constant giving "rotated by 90 degree counterclockwise" transformation

The previous integer constant has been turned into a transformation in version 0.25.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

For more details visit
https://www.klayout.org

Page 1428 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.86. API reference - Class ICplxTrans

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

angle
Signature: [const] double angle

Description: Gets the angle

Returns: The rotation angle this transformation provides in degree units
(0..360 deg).

Note that the simple transformation returns the angle in units of 90 degree. Hence for a simple trans
(i.e. Trans), a rotation angle of 180 degree delivers a value of 2 for the angle attribute. The complex
transformation, supporting any rotation angle returns the angle in degree.

Python specific notes:
The object exposes a readable attribute 'angle'. This is the getter.

angle=
Signature: void angle= (double a)

Description: Sets the angle

a: The new angle

See angle for a description of that attribute.

Python specific notes:
The object exposes a writable attribute 'angle'. This is the setter.

assign
Signature: void assign (const ICplxTrans other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

ctrans
Signature: [const] unsigned int ctrans (unsigned int d)

Description: Transforms a distance

d: The distance to transform

For more details visit
https://www.klayout.org

Page 1429 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.86. API reference - Class ICplxTrans

Returns: The transformed distance

The "ctrans" method transforms the given distance. e = t(d). For the simple transformations, there is no
magnification and no modification of the distance therefore.

The product '*' has been added as a synonym in version 0.28.

Python specific notes:
This method is also available as '__mul__'

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

disp
Signature: [const] Vector disp

Description: Gets the displacement

Python specific notes:
The object exposes a readable attribute 'disp'. This is the getter.

disp=
Signature: void disp= (const Vector u)

Description: Sets the displacement

u: The new displacement

Python specific notes:
The object exposes a writable attribute 'disp'. This is the setter.

dup
Signature: [const] new ICplxTrans ptr dup

Description: Creates a copy of self

from_dtrans
Signature: [static] new ICplxTrans ptr from_dtrans (const DCplxTrans trans)

Description: Creates a floating-point coordinate transformation from another coordinate flavour

Use of this method is deprecated. Use new instead

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dtrans'.

Python specific notes:
This method is the default initializer of the object

from_s
Signature: [static] new ICplxTrans ptr from_s (string s)

Description: Creates an object from a string

Creates the object from a string representation (as returned by to_s)

For more details visit
https://www.klayout.org

Page 1430 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.86. API reference - Class ICplxTrans

This method has been added in version 0.23.

from_trans
Signature: [static] new ICplxTrans ptr from_trans (const CplxTrans trans)

Description: Creates a floating-point coordinate transformation from another coordinate flavour

Use of this method is deprecated. Use new instead

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_trans'.

Python specific notes:
This method is the default initializer of the object

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given transformation. This method enables transformations as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

invert
Signature: ICplxTrans invert

Description: Inverts the transformation (in place)

Returns: The inverted transformation

Inverts the transformation and replaces this transformation by it's inverted one.

inverted
Signature: [const] ICplxTrans inverted

Description: Returns the inverted transformation

Returns: The inverted transformation

Returns the inverted transformation. This method does not modify the transformation.

is_complex?
Signature: [const] bool is_complex?

Description: Returns true if the transformation is a complex one

If this predicate is false, the transformation can safely be converted to a simple transformation.
Otherwise, this conversion will be lossy. The predicate value is equivalent to 'is_mag || !is_ortho'.

This method has been introduced in version 0.27.5.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_mag?
Signature: [const] bool is_mag?

Description: Tests, if the transformation is a magnifying one

This is the recommended test for checking if the transformation represents a magnification.

For more details visit
https://www.klayout.org

Page 1431 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.86. API reference - Class ICplxTrans

is_mirror?
Signature: [const] bool is_mirror?

Description: Gets the mirror flag

If this property is true, the transformation is composed of a mirroring at the x-axis followed by a rotation
by the angle given by the angle property.

is_ortho?
Signature: [const] bool is_ortho?

Description: Tests, if the transformation is an orthogonal transformation

If the rotation is by a multiple of 90 degree, this method will return true.

is_unity?
Signature: [const] bool is_unity?

Description: Tests, whether this is a unit transformation

mag
Signature: [const] double mag

Description: Gets the magnification

Python specific notes:
The object exposes a readable attribute 'mag'. This is the getter.

mag=
Signature: void mag= (double m)

Description: Sets the magnification

m: The new magnification

Python specific notes:
The object exposes a writable attribute 'mag'. This is the setter.

mirror=
Signature: void mirror= (bool m)

Description: Sets the mirror flag

m: The new mirror flag

"mirroring" describes a reflection at the x-axis which is included in the transformation prior to rotation.

Python specific notes:
The object exposes a writable attribute 'mirror'. This is the setter.

(1) Signature: [static] new ICplxTrans ptr new (const DCplxTrans trans)

Description: Creates a floating-point coordinate transformation from another coordinate flavour

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_dtrans'.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new ICplxTrans ptr new (const CplxTrans trans)

Description: Creates a floating-point coordinate transformation from another coordinate flavour

This constructor has been introduced in version 0.25 and replaces the previous static method
'from_trans'.

Python specific notes:
This method is the default initializer of the object

new

For more details visit
https://www.klayout.org

Page 1432 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.86. API reference - Class ICplxTrans

(3) Signature: [static] new ICplxTrans ptr new (const VCplxTrans trans)

Description: Creates a floating-point coordinate transformation from another coordinate flavour

This constructor has been introduced in version 0.25.

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new ICplxTrans ptr new

Description: Creates a unit transformation

Python specific notes:
This method is the default initializer of the object

(5) Signature: [static] new ICplxTrans ptr new (const ICplxTrans c, double m = 1, const Vector u =
0,0)

Description: Creates a transformation from another transformation plus a magnification and
displacement

c: The original transformation

u: The Additional displacement

Creates a new transformation from a existing transformation. This constructor is provided for creating
duplicates and backward compatibility since the constants are transformations now. It will copy the
original transformation and add the given displacement.

This variant has been introduced in version 0.25.

Python specific notes:
This method is the default initializer of the object

(6) Signature: [static] new ICplxTrans ptr new (const ICplxTrans c, double m, int x, int y)

Description: Creates a transformation from another transformation plus a magnification and
displacement

c: The original transformation

x: The Additional displacement (x)

y: The Additional displacement (y)

Creates a new transformation from a existing transformation. This constructor is provided for creating
duplicates and backward compatibility since the constants are transformations now. It will copy the
original transformation and add the given displacement.

This variant has been introduced in version 0.25.

Python specific notes:
This method is the default initializer of the object

(7) Signature: [static] new ICplxTrans ptr new (int x, int y)

Description: Creates a transformation from a x and y displacement

x: The x displacement

y: The y displacement

This constructor will create a transformation with the specified displacement but no rotation.

Python specific notes:
This method is the default initializer of the object

(8) Signature: [static] new ICplxTrans ptr new (double m)

For more details visit
https://www.klayout.org

Page 1433 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.86. API reference - Class ICplxTrans

Description: Creates a transformation from a magnification

Creates a magnifying transformation without displacement and rotation given the magnification m.

Python specific notes:
This method is the default initializer of the object

(9) Signature: [static] new ICplxTrans ptr new (const Trans t, double m)

Description: Creates a transformation from a simple transformation and a magnification

Creates a magnifying transformation from a simple transformation and a magnification.

Python specific notes:
This method is the default initializer of the object

(10) Signature: [static] new ICplxTrans ptr new (const Trans t)

Description: Creates a transformation from a simple transformation alone

Creates a magnifying transformation from a simple transformation and a magnification of 1.0.

Python specific notes:
This method is the default initializer of the object

(11) Signature: [static] new ICplxTrans ptr new (const Vector u)

Description: Creates a transformation from a displacement

Creates a transformation with a displacement only.

This method has been added in version 0.25.

Python specific notes:
This method is the default initializer of the object

(12) Signature: [static] new ICplxTrans ptr new (double mag, double rot, bool mirrx, const Vector u)

Description: Creates a transformation using magnification, angle, mirror flag and displacement

mag: The magnification

rot: The rotation angle in units of degree

mirrx: True, if mirrored at x axis

u: The displacement

The sequence of operations is: magnification, mirroring at x axis, rotation, application of displacement.

Python specific notes:
This method is the default initializer of the object

(13) Signature: [static] new ICplxTrans ptr new (double mag, double rot, bool mirrx, int x, int y)

Description: Creates a transformation using magnification, angle, mirror flag and displacement

mag: The magnification

rot: The rotation angle in units of degree

mirrx: True, if mirrored at x axis

x: The x displacement

y: The y displacement

The sequence of operations is: magnification, mirroring at x axis, rotation, application of displacement.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1434 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.86. API reference - Class ICplxTrans

This method is the default initializer of the object

rot
Signature: [const] int rot

Description: Returns the respective simple transformation equivalent rotation code if possible

If this transformation is orthogonal (is_ortho () == true), then this method will return the corresponding
fixpoint transformation, not taking into account magnification and displacement. If the transformation is
not orthogonal, the result reflects the quadrant the rotation goes into.

s_trans
Signature: [const] Trans s_trans

Description: Extracts the simple transformation part

The simple transformation part does not reflect magnification or arbitrary angles. Rotation angles are
rounded down to multiples of 90 degree. Magnification is fixed to 1.0.

to_itrans
Signature: [const] DCplxTrans to_itrans (double dbu = 1)

Description: Converts the transformation to another transformation with floating-point input and output
coordinates

The database unit can be specified to translate the integer coordinate displacement in database units
to a floating-point displacement in micron units. The displacement's' coordinates will be multiplied with
the database unit.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s (bool lazy = false, double dbu = 0)

Description: String conversion

If 'lazy' is true, some parts are omitted when not required. If a DBU is given, the output units will be
micrometers.

The lazy and DBU arguments have been added in version 0.27.6.

Python specific notes:
This method is also available as 'str(object)'

to_trans
Signature: [const] VCplxTrans to_trans

Description: Converts the transformation to another transformation with floating-point input
coordinates

This method has been introduced in version 0.25.

to_vtrans
Signature: [const] CplxTrans to_vtrans (double dbu = 1)

Description: Converts the transformation to another transformation with floating-point output
coordinates

The database unit can be specified to translate the integer coordinate displacement in database units
to a floating-point displacement in micron units. The displacement's' coordinates will be multiplied with
the database unit.

This method has been introduced in version 0.25.

trans
(1) Signature: [const] Point trans (const Point p)

Description: Transforms a point

p: The point to transform

Returns: The transformed point

For more details visit
https://www.klayout.org

Page 1435 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.86. API reference - Class ICplxTrans

The "trans" method or the * operator transforms the given point. q = t(p)

The * operator has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(2) Signature: [const] Vector trans (const Vector p)

Description: Transforms a vector

v: The vector to transform

Returns: The transformed vector

The "trans" method or the * operator transforms the given vector. w = t(v)

Vector transformation has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(3) Signature: [const] Box trans (const Box box)

Description: Transforms a box

box: The box to transform

Returns: The transformed box

't*box' or 't.trans(box)' is equivalent to box.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(4) Signature: [const] Edge trans (const Edge edge)

Description: Transforms an edge

edge: The edge to transform

Returns: The transformed edge

't*edge' or 't.trans(edge)' is equivalent to edge.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(5) Signature: [const] Polygon trans (const Polygon polygon)

Description: Transforms a polygon

polygon: The polygon to transform

Returns: The transformed polygon

't*polygon' or 't.trans(polygon)' is equivalent to polygon.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(6) Signature: [const] Path trans (const Path path)

Description: Transforms a path

For more details visit
https://www.klayout.org

Page 1436 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.86. API reference - Class ICplxTrans

path: The path to transform

Returns: The transformed path

't*path' or 't.trans(path)' is equivalent to path.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(7) Signature: [const] Text trans (const Text text)

Description: Transforms a text

text: The text to transform

Returns: The transformed text

't*text' or 't.trans(text)' is equivalent to text.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

For more details visit
https://www.klayout.org

Page 1437 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.87. API reference - Class VCplxTrans

4.87. API reference - Class VCplxTrans
Notation used in Ruby API documentation

Module: db

Description: A complex transformation

A complex transformation provides magnification, mirroring at the x-axis, rotation by an arbitrary angle and a displacement. This is also the
order, the operations are applied. This version can transform floating point coordinate objects into integer coordinate objects, which may
involve rounding and can be inexact.

Complex transformations are extensions of the simple transformation classes (Trans in that case) and behave similar.

Transformations can be used to transform points or other objects. Transformations can be combined with the '*' operator to form the
transformation which is equivalent to applying the second and then the first. Here is some code:

Create a transformation that applies a magnification of 1.5, a rotation by 90 degree
and displacement of 10 in x and 20 units in y direction:
t = RBA::VCplxTrans::new(1.5, 90, false, 10, 20)
t.to_s # r90 *1.5 10,20
compute the inverse:
t.inverted.to_s # r270 *0.666666667 -13,7
Combine with another displacement (applied after that):
(RBA::VCplxTrans::new(5, 5) * t).to_s # r90 *1.5 15,25
Transform a point:
t.trans(RBA::DPoint::new(100, 200)).to_s # -290,170

The VCplxTrans type is the inverse transformation of the CplxTrans transformation and vice versa.Transformations of VCplxTrans type
can be concatenated (operator *) with either itself or with transformations of compatible input or output type. This means, the operator
VCplxTrans * CplxTrans is allowed (output types of CplxTrans and input of VCplxTrans are identical) while VCplxTrans * ICplxTrans is not.

This class has been introduced in version 0.25.

See The Database API for more details about the database objects.

Public constructors

new VCplxTrans ptr new (const DCplxTrans trans) Creates a floating-point coordinate transformation
from another coordinate flavour

new VCplxTrans ptr new (const CplxTrans trans) Creates a floating-point coordinate transformation
from another coordinate flavour

new VCplxTrans ptr new (const ICplxTrans trans) Creates a floating-point coordinate transformation
from another coordinate flavour

new VCplxTrans ptr new Creates a unit transformation

new VCplxTrans ptr new (const VCplxTrans c,
double m = 1,
const Vector u = 0,0)

Creates a transformation from another
transformation plus a magnification and
displacement

new VCplxTrans ptr new (const VCplxTrans c,
double m,
double x,
double y)

Creates a transformation from another
transformation plus a magnification and
displacement

new VCplxTrans ptr new (int x,
int y)

Creates a transformation from a x and y
displacement

For more details visit
https://www.klayout.org

Page 1438 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.87. API reference - Class VCplxTrans

new VCplxTrans ptr new (double m) Creates a transformation from a magnification

new VCplxTrans ptr new (const DTrans t,
double m)

Creates a transformation from a simple
transformation and a magnification

new VCplxTrans ptr new (const DTrans t) Creates a transformation from a simple
transformation alone

new VCplxTrans ptr new (const Vector u) Creates a transformation from a displacement

new VCplxTrans ptr new (double mag,
double rot,
bool mirrx,
const Vector u)

Creates a transformation using magnification,
angle, mirror flag and displacement

new VCplxTrans ptr new (double mag,
double rot,
bool mirrx,
int x,
int y)

Creates a transformation using magnification,
angle, mirror flag and displacement

Public methods

[const] bool != (const VCplxTrans
other)

Tests for inequality

[const] VCplxTrans * (const DCplxTrans
t)

Multiplication (concatenation) of
transformations

[const] ICplxTrans * (const CplxTrans t) Multiplication (concatenation) of
transformations

[const] unsigned int * (double d) Transforms a distance

[const] Point * (const DPoint p) Transforms a point

[const] Vector * (const DVector p) Transforms a vector

[const] Box * (const DBox box) Transforms a box

[const] Edge * (const DEdge edge) Transforms an edge

[const] Polygon * (const DPolygon
polygon)

Transforms a polygon

[const] Path * (const DPath path) Transforms a path

[const] Text * (const DText text) Transforms a text

[const] VCplxTrans * (const VCplxTrans t) Returns the concatenated transformation

[const] bool < (const VCplxTrans
other)

Provides a 'less' criterion for sorting

[const] bool == (const VCplxTrans
other)

Tests for equality

For more details visit
https://www.klayout.org

Page 1439 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.87. API reference - Class VCplxTrans

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the
script side.

void _unmanage Marks the object as no longer owned by
the script side.

[const] double angle Gets the angle

void angle= (double a) Sets the angle

void assign (const VCplxTrans
other)

Assigns another object to self

[const] unsigned int ctrans (double d) Transforms a distance

[const] Vector disp Gets the displacement

void disp= (const Vector u) Sets the displacement

[const] new VCplxTrans ptr dup Creates a copy of self

[const] unsigned long hash Computes a hash value

VCplxTrans invert Inverts the transformation (in place)

[const] CplxTrans inverted Returns the inverted transformation

[const] bool is_complex? Returns true if the transformation is a
complex one

[const] bool is_mag? Tests, if the transformation is a
magnifying one

[const] bool is_mirror? Gets the mirror flag

[const] bool is_ortho? Tests, if the transformation is an
orthogonal transformation

[const] bool is_unity? Tests, whether this is a unit
transformation

[const] double mag Gets the magnification

void mag= (double m) Sets the magnification

void mirror= (bool m) Sets the mirror flag

For more details visit
https://www.klayout.org

Page 1440 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.87. API reference - Class VCplxTrans

[const] int rot Returns the respective simple
transformation equivalent rotation code if
possible

[const] DTrans s_trans Extracts the simple transformation part

[const] DCplxTrans to_itrans (double dbu = 1) Converts the transformation to another
transformation with floating-point output
coordinates

[const] string to_s (bool lazy = false,
double dbu = 0)

String conversion

[const] ICplxTrans to_trans Converts the transformation to another
transformation with integer input
coordinates

[const] CplxTrans to_vtrans (double dbu = 1) Converts the transformation to another
transformation with integer input and
floating-point output coordinates

[const] Point trans (const DPoint p) Transforms a point

[const] Vector trans (const DVector p) Transforms a vector

[const] Box trans (const DBox box) Transforms a box

[const] Edge trans (const DEdge edge) Transforms an edge

[const] Polygon trans (const DPolygon
polygon)

Transforms a polygon

[const] Path trans (const DPath path) Transforms a path

[const] Text trans (const DText text) Transforms a text

Public static methods and constants

VCplxTrans M0 A constant giving "mirrored at the x-axis" transformation

VCplxTrans M135 A constant giving "mirrored at the 135 degree axis"
transformation

VCplxTrans M45 A constant giving "mirrored at the 45 degree axis"
transformation

VCplxTrans M90 A constant giving "mirrored at the y (90 degree) axis"
transformation

VCplxTrans R0 A constant giving "unrotated" (unit) transformation

VCplxTrans R180 A constant giving "rotated by 180 degree counterclockwise"
transformation

VCplxTrans R270 A constant giving "rotated by 270 degree counterclockwise"
transformation

For more details visit
https://www.klayout.org

Page 1441 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.87. API reference - Class VCplxTrans

VCplxTrans R90 A constant giving "rotated by 90 degree counterclockwise"
transformation

new VCplxTrans ptr from_s (string
s)

Creates an object from a string

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

!=
Signature: [const] bool != (const VCplxTrans other)

Description: Tests for inequality

(1) Signature: [const] VCplxTrans * (const DCplxTrans t)

Description: Multiplication (concatenation) of transformations

t: The transformation to apply before

Returns: The modified transformation

The * operator returns self*t ("t is applied before this transformation").

Python specific notes:
This method is also available as '__mul__'

(2) Signature: [const] ICplxTrans * (const CplxTrans t)

Description: Multiplication (concatenation) of transformations

t: The transformation to apply before

Returns: The modified transformation

The * operator returns self*t ("t is applied before this transformation").

Python specific notes:
This method is also available as '__mul__'

*

(3) Signature: [const] unsigned int * (double d)

Description: Transforms a distance

d: The distance to transform

Returns: The transformed distance

The "ctrans" method transforms the given distance. e = t(d). For the simple transformations, there is no
magnification and no modification of the distance therefore.

The product '*' has been added as a synonym in version 0.28.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1442 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.87. API reference - Class VCplxTrans

This method is also available as '__mul__'

(4) Signature: [const] Point * (const DPoint p)

Description: Transforms a point

p: The point to transform

Returns: The transformed point

The "trans" method or the * operator transforms the given point. q = t(p)

The * operator has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(5) Signature: [const] Vector * (const DVector p)

Description: Transforms a vector

v: The vector to transform

Returns: The transformed vector

The "trans" method or the * operator transforms the given vector. w = t(v)

Vector transformation has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(6) Signature: [const] Box * (const DBox box)

Description: Transforms a box

box: The box to transform

Returns: The transformed box

't*box' or 't.trans(box)' is equivalent to box.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(7) Signature: [const] Edge * (const DEdge edge)

Description: Transforms an edge

edge: The edge to transform

Returns: The transformed edge

't*edge' or 't.trans(edge)' is equivalent to edge.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(8) Signature: [const] Polygon * (const DPolygon polygon)

Description: Transforms a polygon

polygon: The polygon to transform

Returns: The transformed polygon

't*polygon' or 't.trans(polygon)' is equivalent to polygon.transformed(t).

For more details visit
https://www.klayout.org

Page 1443 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.87. API reference - Class VCplxTrans

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(9) Signature: [const] Path * (const DPath path)

Description: Transforms a path

path: The path to transform

Returns: The transformed path

't*path' or 't.trans(path)' is equivalent to path.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(10) Signature: [const] Text * (const DText text)

Description: Transforms a text

text: The text to transform

Returns: The transformed text

't*text' or 't.trans(text)' is equivalent to text.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(11) Signature: [const] VCplxTrans * (const VCplxTrans t)

Description: Returns the concatenated transformation

t: The transformation to apply before

Returns: The modified transformation

The * operator returns self*t ("t is applied before this transformation").

Python specific notes:
This method is also available as '__mul__'

<
Signature: [const] bool < (const VCplxTrans other)

Description: Provides a 'less' criterion for sorting

This method is provided to implement a sorting order. The definition of 'less' is opaque and might
change in future versions.

==
Signature: [const] bool == (const VCplxTrans other)

Description: Tests for equality

M0
Signature: [static] VCplxTrans M0

Description: A constant giving "mirrored at the x-axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

M135
Signature: [static] VCplxTrans M135

Description: A constant giving "mirrored at the 135 degree axis" transformation

For more details visit
https://www.klayout.org

Page 1444 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.87. API reference - Class VCplxTrans

The previous integer constant has been turned into a transformation in version 0.25.

M45
Signature: [static] VCplxTrans M45

Description: A constant giving "mirrored at the 45 degree axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

M90
Signature: [static] VCplxTrans M90

Description: A constant giving "mirrored at the y (90 degree) axis" transformation

The previous integer constant has been turned into a transformation in version 0.25.

R0
Signature: [static] VCplxTrans R0

Description: A constant giving "unrotated" (unit) transformation

The previous integer constant has been turned into a transformation in version 0.25.

R180
Signature: [static] VCplxTrans R180

Description: A constant giving "rotated by 180 degree counterclockwise" transformation

The previous integer constant has been turned into a transformation in version 0.25.

R270
Signature: [static] VCplxTrans R270

Description: A constant giving "rotated by 270 degree counterclockwise" transformation

The previous integer constant has been turned into a transformation in version 0.25.

R90
Signature: [static] VCplxTrans R90

Description: A constant giving "rotated by 90 degree counterclockwise" transformation

The previous integer constant has been turned into a transformation in version 0.25.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

For more details visit
https://www.klayout.org

Page 1445 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.87. API reference - Class VCplxTrans

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

angle
Signature: [const] double angle

Description: Gets the angle

Returns: The rotation angle this transformation provides in degree units
(0..360 deg).

Note that the simple transformation returns the angle in units of 90 degree. Hence for a simple trans
(i.e. Trans), a rotation angle of 180 degree delivers a value of 2 for the angle attribute. The complex
transformation, supporting any rotation angle returns the angle in degree.

Python specific notes:
The object exposes a readable attribute 'angle'. This is the getter.

angle=
Signature: void angle= (double a)

Description: Sets the angle

a: The new angle

See angle for a description of that attribute.

Python specific notes:
The object exposes a writable attribute 'angle'. This is the setter.

assign
Signature: void assign (const VCplxTrans other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 1446 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.87. API reference - Class VCplxTrans

ctrans
Signature: [const] unsigned int ctrans (double d)

Description: Transforms a distance

d: The distance to transform

Returns: The transformed distance

The "ctrans" method transforms the given distance. e = t(d). For the simple transformations, there is no
magnification and no modification of the distance therefore.

The product '*' has been added as a synonym in version 0.28.

Python specific notes:
This method is also available as '__mul__'

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

disp
Signature: [const] Vector disp

Description: Gets the displacement

Python specific notes:
The object exposes a readable attribute 'disp'. This is the getter.

disp=
Signature: void disp= (const Vector u)

Description: Sets the displacement

u: The new displacement

Python specific notes:
The object exposes a writable attribute 'disp'. This is the setter.

dup
Signature: [const] new VCplxTrans ptr dup

Description: Creates a copy of self

from_s
Signature: [static] new VCplxTrans ptr from_s (string s)

Description: Creates an object from a string

Creates the object from a string representation (as returned by to_s)

This method has been added in version 0.23.

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given transformation. This method enables transformations as hash keys.

For more details visit
https://www.klayout.org

Page 1447 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.87. API reference - Class VCplxTrans

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

invert
Signature: VCplxTrans invert

Description: Inverts the transformation (in place)

Returns: The inverted transformation

Inverts the transformation and replaces this transformation by it's inverted one.

inverted
Signature: [const] CplxTrans inverted

Description: Returns the inverted transformation

Returns: The inverted transformation

Returns the inverted transformation. This method does not modify the transformation.

is_complex?
Signature: [const] bool is_complex?

Description: Returns true if the transformation is a complex one

If this predicate is false, the transformation can safely be converted to a simple transformation.
Otherwise, this conversion will be lossy. The predicate value is equivalent to 'is_mag || !is_ortho'.

This method has been introduced in version 0.27.5.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_mag?
Signature: [const] bool is_mag?

Description: Tests, if the transformation is a magnifying one

This is the recommended test for checking if the transformation represents a magnification.

is_mirror?
Signature: [const] bool is_mirror?

Description: Gets the mirror flag

If this property is true, the transformation is composed of a mirroring at the x-axis followed by a rotation
by the angle given by the angle property.

is_ortho?
Signature: [const] bool is_ortho?

Description: Tests, if the transformation is an orthogonal transformation

If the rotation is by a multiple of 90 degree, this method will return true.

is_unity?
Signature: [const] bool is_unity?

Description: Tests, whether this is a unit transformation

For more details visit
https://www.klayout.org

Page 1448 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.87. API reference - Class VCplxTrans

mag
Signature: [const] double mag

Description: Gets the magnification

Python specific notes:
The object exposes a readable attribute 'mag'. This is the getter.

mag=
Signature: void mag= (double m)

Description: Sets the magnification

m: The new magnification

Python specific notes:
The object exposes a writable attribute 'mag'. This is the setter.

mirror=
Signature: void mirror= (bool m)

Description: Sets the mirror flag

m: The new mirror flag

"mirroring" describes a reflection at the x-axis which is included in the transformation prior to rotation.

Python specific notes:
The object exposes a writable attribute 'mirror'. This is the setter.

(1) Signature: [static] new VCplxTrans ptr new (const DCplxTrans trans)

Description: Creates a floating-point coordinate transformation from another coordinate flavour

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new VCplxTrans ptr new (const CplxTrans trans)

Description: Creates a floating-point coordinate transformation from another coordinate flavour

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new VCplxTrans ptr new (const ICplxTrans trans)

Description: Creates a floating-point coordinate transformation from another coordinate flavour

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new VCplxTrans ptr new

Description: Creates a unit transformation

Python specific notes:
This method is the default initializer of the object

new

(5) Signature: [static] new VCplxTrans ptr new (const VCplxTrans c, double m = 1, const Vector u =
0,0)

Description: Creates a transformation from another transformation plus a magnification and
displacement

c: The original transformation

u: The Additional displacement

For more details visit
https://www.klayout.org

Page 1449 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.87. API reference - Class VCplxTrans

Creates a new transformation from a existing transformation. This constructor is provided for creating
duplicates and backward compatibility since the constants are transformations now. It will copy the
original transformation and add the given displacement.

This variant has been introduced in version 0.25.

Python specific notes:
This method is the default initializer of the object

(6) Signature: [static] new VCplxTrans ptr new (const VCplxTrans c, double m, double x, double y)

Description: Creates a transformation from another transformation plus a magnification and
displacement

c: The original transformation

x: The Additional displacement (x)

y: The Additional displacement (y)

Creates a new transformation from a existing transformation. This constructor is provided for creating
duplicates and backward compatibility since the constants are transformations now. It will copy the
original transformation and add the given displacement.

This variant has been introduced in version 0.25.

Python specific notes:
This method is the default initializer of the object

(7) Signature: [static] new VCplxTrans ptr new (int x, int y)

Description: Creates a transformation from a x and y displacement

x: The x displacement

y: The y displacement

This constructor will create a transformation with the specified displacement but no rotation.

Python specific notes:
This method is the default initializer of the object

(8) Signature: [static] new VCplxTrans ptr new (double m)

Description: Creates a transformation from a magnification

Creates a magnifying transformation without displacement and rotation given the magnification m.

Python specific notes:
This method is the default initializer of the object

(9) Signature: [static] new VCplxTrans ptr new (const DTrans t, double m)

Description: Creates a transformation from a simple transformation and a magnification

Creates a magnifying transformation from a simple transformation and a magnification.

Python specific notes:
This method is the default initializer of the object

(10) Signature: [static] new VCplxTrans ptr new (const DTrans t)

Description: Creates a transformation from a simple transformation alone

Creates a magnifying transformation from a simple transformation and a magnification of 1.0.

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1450 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.87. API reference - Class VCplxTrans

(11) Signature: [static] new VCplxTrans ptr new (const Vector u)

Description: Creates a transformation from a displacement

Creates a transformation with a displacement only.

This method has been added in version 0.25.

Python specific notes:
This method is the default initializer of the object

(12) Signature: [static] new VCplxTrans ptr new (double mag, double rot, bool mirrx, const Vector u)

Description: Creates a transformation using magnification, angle, mirror flag and displacement

mag: The magnification

rot: The rotation angle in units of degree

mirrx: True, if mirrored at x axis

u: The displacement

The sequence of operations is: magnification, mirroring at x axis, rotation, application of displacement.

Python specific notes:
This method is the default initializer of the object

(13) Signature: [static] new VCplxTrans ptr new (double mag, double rot, bool mirrx, int x, int y)

Description: Creates a transformation using magnification, angle, mirror flag and displacement

mag: The magnification

rot: The rotation angle in units of degree

mirrx: True, if mirrored at x axis

x: The x displacement

y: The y displacement

The sequence of operations is: magnification, mirroring at x axis, rotation, application of displacement.

Python specific notes:
This method is the default initializer of the object

rot
Signature: [const] int rot

Description: Returns the respective simple transformation equivalent rotation code if possible

If this transformation is orthogonal (is_ortho () == true), then this method will return the corresponding
fixpoint transformation, not taking into account magnification and displacement. If the transformation is
not orthogonal, the result reflects the quadrant the rotation goes into.

s_trans
Signature: [const] DTrans s_trans

Description: Extracts the simple transformation part

The simple transformation part does not reflect magnification or arbitrary angles. Rotation angles are
rounded down to multiples of 90 degree. Magnification is fixed to 1.0.

to_itrans
Signature: [const] DCplxTrans to_itrans (double dbu = 1)

Description: Converts the transformation to another transformation with floating-point output
coordinates

For more details visit
https://www.klayout.org

Page 1451 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.87. API reference - Class VCplxTrans

The database unit can be specified to translate the integer coordinate displacement in database units
to a floating-point displacement in micron units. The displacement's' coordinates will be multiplied with
the database unit.

This method has been introduced in version 0.25.

to_s
Signature: [const] string to_s (bool lazy = false, double dbu = 0)

Description: String conversion

If 'lazy' is true, some parts are omitted when not required. If a DBU is given, the output units will be
micrometers.

The lazy and DBU arguments have been added in version 0.27.6.

Python specific notes:
This method is also available as 'str(object)'

to_trans
Signature: [const] ICplxTrans to_trans

Description: Converts the transformation to another transformation with integer input coordinates

This method has been introduced in version 0.25.

to_vtrans
Signature: [const] CplxTrans to_vtrans (double dbu = 1)

Description: Converts the transformation to another transformation with integer input and floating-
point output coordinates

The database unit can be specified to translate the integer coordinate displacement in database units
to an floating-point displacement in micron units. The displacement's' coordinates will be multiplied
with the database unit.

This method has been introduced in version 0.25.

(1) Signature: [const] Point trans (const DPoint p)

Description: Transforms a point

p: The point to transform

Returns: The transformed point

The "trans" method or the * operator transforms the given point. q = t(p)

The * operator has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(2) Signature: [const] Vector trans (const DVector p)

Description: Transforms a vector

v: The vector to transform

Returns: The transformed vector

The "trans" method or the * operator transforms the given vector. w = t(v)

Vector transformation has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

trans

(3) Signature: [const] Box trans (const DBox box)

Description: Transforms a box

For more details visit
https://www.klayout.org

Page 1452 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.87. API reference - Class VCplxTrans

box: The box to transform

Returns: The transformed box

't*box' or 't.trans(box)' is equivalent to box.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(4) Signature: [const] Edge trans (const DEdge edge)

Description: Transforms an edge

edge: The edge to transform

Returns: The transformed edge

't*edge' or 't.trans(edge)' is equivalent to edge.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(5) Signature: [const] Polygon trans (const DPolygon polygon)

Description: Transforms a polygon

polygon: The polygon to transform

Returns: The transformed polygon

't*polygon' or 't.trans(polygon)' is equivalent to polygon.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(6) Signature: [const] Path trans (const DPath path)

Description: Transforms a path

path: The path to transform

Returns: The transformed path

't*path' or 't.trans(path)' is equivalent to path.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

(7) Signature: [const] Text trans (const DText text)

Description: Transforms a text

text: The text to transform

Returns: The transformed text

't*text' or 't.trans(text)' is equivalent to text.transformed(t).

This convenience method has been introduced in version 0.25.

Python specific notes:
This method is also available as '__mul__'

For more details visit
https://www.klayout.org

Page 1453 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.88. API reference - Class Utils

4.88. API reference - Class Utils
Notation used in Ruby API documentation

Module: db

Description: This namespace provides a collection of utility functions

This class has been introduced in version 0.27.

Public constructors

new Utils ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
Utils
other)

Assigns another object to self

[const] new Utils ptr dup Creates a copy of self

Public static methods and constants

DPoint[] spline_interpolation (DPoint[] control_points,
double[] weights,
int degree,
double[] knots,
double relative_accuracy,
double absolute_accuracy)

This function computes the Spline curve
for a given set of control points (point,
weight), degree and knots.

Point[] spline_interpolation (Point[] control_points,
double[] weights,
int degree,
double[] knots,
double relative_accuracy,
double absolute_accuracy)

This function computes the Spline curve
for a given set of control points (point,
weight), degree and knots.

DPoint[] spline_interpolation (DPoint[] control_points,
int degree,
double[] knots,
double relative_accuracy,

This function computes the Spline curve
for a given set of control points (point,
weight), degree and knots.

For more details visit
https://www.klayout.org

Page 1454 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.88. API reference - Class Utils

double absolute_accuracy)

Point[] spline_interpolation (Point[] control_points,
int degree,
double[] knots,
double relative_accuracy,
double absolute_accuracy)

This function computes the Spline curve
for a given set of control points (point,
weight), degree and knots.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

For more details visit
https://www.klayout.org

Page 1455 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.88. API reference - Class Utils

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const Utils other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new Utils ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new Utils ptr new

Description: Creates a new object of this class

Python specific notes:

For more details visit
https://www.klayout.org

Page 1456 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.88. API reference - Class Utils

This method is the default initializer of the object

(1) Signature: [static] DPoint[] spline_interpolation (DPoint[] control_points, double[] weights, int
degree, double[] knots, double relative_accuracy, double absolute_accuracy)

Description: This function computes the Spline curve for a given set of control points (point, weight),
degree and knots.

The knot vector needs to be padded and it's size must fulfill the condition:

 knots.size == control_points.size + degree + 1

The accuracy parameters allow tuning the resolution of the curve to target a specific approximation
quality. "relative_accuracy" gives the accuracy relative to the local curvature radius, "absolute"
accuracy gives the absolute accuracy. "accuracy" is the allowed deviation of polygon approximation
from the ideal curve. The computed curve should meet at least one of the accuracy criteria. Setting
both limits to a very small value will result in long run times and a large number of points returned.

This function supports both rational splines (NURBS) and non-rational splines. The latter use weights
of 1.0 for each point.

The return value is a list of points forming a path which approximates the spline curve.

(2) Signature: [static] Point[] spline_interpolation (Point[] control_points, double[] weights, int
degree, double[] knots, double relative_accuracy, double absolute_accuracy)

Description: This function computes the Spline curve for a given set of control points (point, weight),
degree and knots.

This is the version for integer-coordinate points.

(3) Signature: [static] DPoint[] spline_interpolation (DPoint[] control_points, int degree, double[]
knots, double relative_accuracy, double absolute_accuracy)

Description: This function computes the Spline curve for a given set of control points (point, weight),
degree and knots.

This is the version for non-rational splines. It lacks the weight vector.

spline_interpolation

(4) Signature: [static] Point[] spline_interpolation (Point[] control_points, int degree, double[]
knots, double relative_accuracy, double absolute_accuracy)

Description: This function computes the Spline curve for a given set of control points (point, weight),
degree and knots.

This is the version for integer-coordinate points for non-rational splines.

For more details visit
https://www.klayout.org

Page 1457 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.89. API reference - Class DVector

4.89. API reference - Class DVector
Notation used in Ruby API documentation

Module: db

Description: A vector class with double (floating-point) coordinates

A vector is a distance in cartesian, 2 dimensional space. A vector is given by two coordinates (x and y) and represents the distance
between two points. Being the distance, transformations act differently on vectors: the displacement is not applied. Vectors are not
geometrical objects by itself. But they are frequently used in the database API for various purposes. Other than the integer variant (Vector),
points with floating-point coordinates can represent fractions of a database unit or vectors in physical (micron) units.

This class has been introduced in version 0.25.

See The Database API for more details about the database objects.

Public constructors

new DVector ptr new (const Vector vector) Creates a floating-point coordinate vector from an
integer coordinate vector

new DVector ptr new Default constructor: creates a null vector with
coordinates (0,0)

new DVector ptr new (const DPoint p) Default constructor: creates a vector from a point

new DVector ptr new (double x,
double y)

Constructor for a vector from two coordinate values

Public methods

[const] bool != (const DVector v) Inequality test operator

[const] DVector * (double f) Scaling by some factor

[const] DVector + (const DVector v) Adds two vectors

[const] DPoint + (const DPoint p) Adds a vector and a point

[const] DVector - (const DVector v) Subtract two vectors

[const] DVector -@ Compute the negative of a vector

[const] DVector / (double d) Division by some divisor

DVector /= (double d) Division by some divisor

[const] bool < (const DVector v) "less" comparison operator

[const] bool == (const DVector v) Equality test operator

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

For more details visit
https://www.klayout.org

Page 1458 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.89. API reference - Class DVector

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] double abs Returns the length of the vector

void assign (const DVector
other)

Assigns another object to self

[const] new DVector ptr dup Creates a copy of self

[const] unsigned long hash Computes a hash value

[const] double length Returns the length of the vector

[const] double sprod (const DVector v) Computes the scalar product between self
and the given vector

[const] int sprod_sign (const DVector v) Computes the scalar product between self
and the given vector and returns a value
indicating the sign of the product

[const] double sq_abs The square length of the vector

[const] double sq_length The square length of the vector

[const] Vector to_itype (double dbu = 1) Converts the point to an integer coordinate
point

[const] DPoint to_p Turns the vector into a point

[const] string to_s (double dbu = 0) String conversion

[const] double vprod (const DVector v) Computes the vector product between self
and the given vector

[const] int vprod_sign (const DVector v) Computes the vector product between self
and the given vector and returns a value
indicating the sign of the product

[const] double x Accessor to the x coordinate

void x= (double coord) Write accessor to the x coordinate

[const] double y Accessor to the y coordinate

void y= (double coord) Write accessor to the y coordinate

Public static methods and constants

new DVector ptr from_s (string s) Creates an object from a string

For more details visit
https://www.klayout.org

Page 1459 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.89. API reference - Class DVector

Protected methods (static, non-static and constructors)

DVector = (double f)

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

!=
Signature: [const] bool != (const DVector v)

Description: Inequality test operator

*
Signature: [const] DVector * (double f)

Description: Scaling by some factor

Returns the scaled object. All coordinates are multiplied with the given factor and if necessary
rounded.

Python specific notes:
This method is also available as '__mul__'

(1) Signature: [const] DVector + (const DVector v)

Description: Adds two vectors

Adds vector v to self by adding the coordinates.

+

(2) Signature: [const] DPoint + (const DPoint p)

Description: Adds a vector and a point

Returns the point p shifted by the vector.

-
Signature: [const] DVector - (const DVector v)

Description: Subtract two vectors

Subtract vector v from self by subtracting the coordinates.

-@
Signature: [const] DVector -@

Description: Compute the negative of a vector

Returns a new vector with -x,-y.

For more details visit
https://www.klayout.org

Page 1460 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.89. API reference - Class DVector

/
Signature: [const] DVector / (double d)

Description: Division by some divisor

Returns the scaled object. All coordinates are divided with the given divisor and if necessary rounded.

/=
Signature: DVector /= (double d)

Description: Division by some divisor

Divides the object in place. All coordinates are divided with the given divisor and if necessary rounded.

<
Signature: [const] bool < (const DVector v)

Description: "less" comparison operator

This operator is provided to establish a sorting order

=
Signature: DVector = (double f)

Description: Scaling by some factor

Scales object in place. All coordinates are multiplied with the given factor and if necessary rounded.

Python specific notes:
This method is not available for Python

==
Signature: [const] bool == (const DVector v)

Description: Equality test operator

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

For more details visit
https://www.klayout.org

Page 1461 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.89. API reference - Class DVector

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

abs
Signature: [const] double abs

Description: Returns the length of the vector

'abs' is an alias provided for compatibility with the former point type.

assign
Signature: void assign (const DVector other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new DVector ptr dup

For more details visit
https://www.klayout.org

Page 1462 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.89. API reference - Class DVector

Description: Creates a copy of self

from_s
Signature: [static] new DVector ptr from_s (string s)

Description: Creates an object from a string

Creates the object from a string representation (as returned by to_s)

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given vector. This method enables vectors as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

length
Signature: [const] double length

Description: Returns the length of the vector

'abs' is an alias provided for compatibility with the former point type.

(1) Signature: [static] new DVector ptr new (const Vector vector)

Description: Creates a floating-point coordinate vector from an integer coordinate vector

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new DVector ptr new

Description: Default constructor: creates a null vector with coordinates (0,0)

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new DVector ptr new (const DPoint p)

Description: Default constructor: creates a vector from a point

This constructor is equivalent to computing p-point(0,0). This method has been introduced in version
0.25.

Python specific notes:
This method is the default initializer of the object

new

(4) Signature: [static] new DVector ptr new (double x, double y)

Description: Constructor for a vector from two coordinate values

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1463 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.89. API reference - Class DVector

sprod
Signature: [const] double sprod (const DVector v)

Description: Computes the scalar product between self and the given vector

The scalar product of a and b is defined as: vp = ax*bx+ay*by.

sprod_sign
Signature: [const] int sprod_sign (const DVector v)

Description: Computes the scalar product between self and the given vector and returns a value
indicating the sign of the product

Returns: 1 if the scalar product is positive, 0 if it is zero and -1 if it is negative.

sq_abs
Signature: [const] double sq_abs

Description: The square length of the vector

'sq_abs' is an alias provided for compatibility with the former point type.

sq_length
Signature: [const] double sq_length

Description: The square length of the vector

'sq_abs' is an alias provided for compatibility with the former point type.

to_itype
Signature: [const] Vector to_itype (double dbu = 1)

Description: Converts the point to an integer coordinate point

The database unit can be specified to translate the floating-point coordinate vector in micron units
to an integer-coordinate vector in database units. The vector's' coordinates will be divided by the
database unit.

to_p
Signature: [const] DPoint to_p

Description: Turns the vector into a point

This method returns the point resulting from adding the vector to (0,0). This method has been
introduced in version 0.25.

to_s
Signature: [const] string to_s (double dbu = 0)

Description: String conversion

If a DBU is given, the output units will be micrometers.

The DBU argument has been added in version 0.27.6.

Python specific notes:
This method is also available as 'str(object)'

vprod
Signature: [const] double vprod (const DVector v)

Description: Computes the vector product between self and the given vector

The vector product of a and b is defined as: vp = ax*by-ay*bx.

vprod_sign
Signature: [const] int vprod_sign (const DVector v)

Description: Computes the vector product between self and the given vector and returns a value
indicating the sign of the product

Returns: 1 if the vector product is positive, 0 if it is zero and -1 if it is negative.

For more details visit
https://www.klayout.org

Page 1464 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.89. API reference - Class DVector

x
Signature: [const] double x

Description: Accessor to the x coordinate

Python specific notes:
The object exposes a readable attribute 'x'. This is the getter.

x=
Signature: void x= (double coord)

Description: Write accessor to the x coordinate

Python specific notes:
The object exposes a writable attribute 'x'. This is the setter.

y
Signature: [const] double y

Description: Accessor to the y coordinate

Python specific notes:
The object exposes a readable attribute 'y'. This is the getter.

y=
Signature: void y= (double coord)

Description: Write accessor to the y coordinate

Python specific notes:
The object exposes a writable attribute 'y'. This is the setter.

For more details visit
https://www.klayout.org

Page 1465 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.90. API reference - Class Vector

4.90. API reference - Class Vector
Notation used in Ruby API documentation

Module: db

Description: A integer vector class

A vector is a distance in cartesian, 2 dimensional space. A vector is given by two coordinates (x and y) and represents the distance
between two points. Being the distance, transformations act differently on vectors: the displacement is not applied. Vectors are not
geometrical objects by itself. But they are frequently used in the database API for various purposes.

This class has been introduced in version 0.25.

See The Database API for more details about the database objects.

Public constructors

new Vector ptr new (const DVector
dvector)

Creates an integer coordinate vector from a floating-point
coordinate vector

new Vector ptr new Default constructor: creates a null vector with coordinates
(0,0)

new Vector ptr new (const Point p) Default constructor: creates a vector from a point

new Vector ptr new (int x,
int y)

Constructor for a vector from two coordinate values

Public methods

[const] bool != (const Vector v) Inequality test operator

[const] Vector * (double f) Scaling by some factor

[const] Vector + (const Vector v) Adds two vectors

[const] Point + (const Point p) Adds a vector and a point

[const] Vector - (const Vector v) Subtract two vectors

[const] Vector -@ Compute the negative of a vector

[const] Vector / (double d) Division by some divisor

Vector /= (double d) Division by some divisor

[const] bool < (const Vector v) "less" comparison operator

[const] bool == (const Vector v) Equality test operator

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

For more details visit
https://www.klayout.org

Page 1466 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.90. API reference - Class Vector

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] double abs Returns the length of the vector

void assign (const Vector
other)

Assigns another object to self

[const] new Vector ptr dup Creates a copy of self

[const] unsigned long hash Computes a hash value

[const] double length Returns the length of the vector

[const] long sprod (const Vector v) Computes the scalar product between self
and the given vector

[const] int sprod_sign (const Vector v) Computes the scalar product between self
and the given vector and returns a value
indicating the sign of the product

[const] double sq_abs The square length of the vector

[const] double sq_length The square length of the vector

[const] DVector to_dtype (double dbu = 1) Converts the vector to a floating-point
coordinate vector

[const] Point to_p Turns the vector into a point

[const] string to_s (double dbu = 0) String conversion

[const] long vprod (const Vector v) Computes the vector product between self
and the given vector

[const] int vprod_sign (const Vector v) Computes the vector product between self
and the given vector and returns a value
indicating the sign of the product

[const] int x Accessor to the x coordinate

void x= (int coord) Write accessor to the x coordinate

[const] int y Accessor to the y coordinate

void y= (int coord) Write accessor to the y coordinate

Public static methods and constants

new Vector ptr from_s (string s) Creates an object from a string

For more details visit
https://www.klayout.org

Page 1467 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.90. API reference - Class Vector

Protected methods (static, non-static and constructors)

Vector = (double f)

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

!=
Signature: [const] bool != (const Vector v)

Description: Inequality test operator

*
Signature: [const] Vector * (double f)

Description: Scaling by some factor

Returns the scaled object. All coordinates are multiplied with the given factor and if necessary
rounded.

Python specific notes:
This method is also available as '__mul__'

(1) Signature: [const] Vector + (const Vector v)

Description: Adds two vectors

Adds vector v to self by adding the coordinates.

+

(2) Signature: [const] Point + (const Point p)

Description: Adds a vector and a point

Returns the point p shifted by the vector.

-
Signature: [const] Vector - (const Vector v)

Description: Subtract two vectors

Subtract vector v from self by subtracting the coordinates.

-@
Signature: [const] Vector -@

Description: Compute the negative of a vector

Returns a new vector with -x,-y.

For more details visit
https://www.klayout.org

Page 1468 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.90. API reference - Class Vector

/
Signature: [const] Vector / (double d)

Description: Division by some divisor

Returns the scaled object. All coordinates are divided with the given divisor and if necessary rounded.

/=
Signature: Vector /= (double d)

Description: Division by some divisor

Divides the object in place. All coordinates are divided with the given divisor and if necessary rounded.

<
Signature: [const] bool < (const Vector v)

Description: "less" comparison operator

This operator is provided to establish a sorting order

=
Signature: Vector = (double f)

Description: Scaling by some factor

Scales object in place. All coordinates are multiplied with the given factor and if necessary rounded.

Python specific notes:
This method is not available for Python

==
Signature: [const] bool == (const Vector v)

Description: Equality test operator

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

For more details visit
https://www.klayout.org

Page 1469 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.90. API reference - Class Vector

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

abs
Signature: [const] double abs

Description: Returns the length of the vector

'abs' is an alias provided for compatibility with the former point type.

assign
Signature: void assign (const Vector other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new Vector ptr dup

For more details visit
https://www.klayout.org

Page 1470 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.90. API reference - Class Vector

Description: Creates a copy of self

from_s
Signature: [static] new Vector ptr from_s (string s)

Description: Creates an object from a string

Creates the object from a string representation (as returned by to_s)

hash
Signature: [const] unsigned long hash

Description: Computes a hash value

Returns a hash value for the given vector. This method enables vectors as hash keys.

This method has been introduced in version 0.25.

Python specific notes:
This method is also available as 'hash(object)'

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

length
Signature: [const] double length

Description: Returns the length of the vector

'abs' is an alias provided for compatibility with the former point type.

(1) Signature: [static] new Vector ptr new (const DVector dvector)

Description: Creates an integer coordinate vector from a floating-point coordinate vector

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new Vector ptr new

Description: Default constructor: creates a null vector with coordinates (0,0)

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new Vector ptr new (const Point p)

Description: Default constructor: creates a vector from a point

This constructor is equivalent to computing p-point(0,0). This method has been introduced in version
0.25.

Python specific notes:
This method is the default initializer of the object

new

(4) Signature: [static] new Vector ptr new (int x, int y)

Description: Constructor for a vector from two coordinate values

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1471 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.90. API reference - Class Vector

sprod
Signature: [const] long sprod (const Vector v)

Description: Computes the scalar product between self and the given vector

The scalar product of a and b is defined as: vp = ax*bx+ay*by.

sprod_sign
Signature: [const] int sprod_sign (const Vector v)

Description: Computes the scalar product between self and the given vector and returns a value
indicating the sign of the product

Returns: 1 if the scalar product is positive, 0 if it is zero and -1 if it is negative.

sq_abs
Signature: [const] double sq_abs

Description: The square length of the vector

'sq_abs' is an alias provided for compatibility with the former point type.

sq_length
Signature: [const] double sq_length

Description: The square length of the vector

'sq_abs' is an alias provided for compatibility with the former point type.

to_dtype
Signature: [const] DVector to_dtype (double dbu = 1)

Description: Converts the vector to a floating-point coordinate vector

The database unit can be specified to translate the integer-coordinate vector into a floating-point
coordinate vector in micron units. The database unit is basically a scaling factor.

to_p
Signature: [const] Point to_p

Description: Turns the vector into a point

This method returns the point resulting from adding the vector to (0,0). This method has been
introduced in version 0.25.

to_s
Signature: [const] string to_s (double dbu = 0)

Description: String conversion

If a DBU is given, the output units will be micrometers.

The DBU argument has been added in version 0.27.6.

Python specific notes:
This method is also available as 'str(object)'

vprod
Signature: [const] long vprod (const Vector v)

Description: Computes the vector product between self and the given vector

The vector product of a and b is defined as: vp = ax*by-ay*bx.

vprod_sign
Signature: [const] int vprod_sign (const Vector v)

Description: Computes the vector product between self and the given vector and returns a value
indicating the sign of the product

Returns: 1 if the vector product is positive, 0 if it is zero and -1 if it is negative.

For more details visit
https://www.klayout.org

Page 1472 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.90. API reference - Class Vector

x
Signature: [const] int x

Description: Accessor to the x coordinate

Python specific notes:
The object exposes a readable attribute 'x'. This is the getter.

x=
Signature: void x= (int coord)

Description: Write accessor to the x coordinate

Python specific notes:
The object exposes a writable attribute 'x'. This is the setter.

y
Signature: [const] int y

Description: Accessor to the y coordinate

Python specific notes:
The object exposes a readable attribute 'y'. This is the getter.

y=
Signature: void y= (int coord)

Description: Write accessor to the y coordinate

Python specific notes:
The object exposes a writable attribute 'y'. This is the setter.

For more details visit
https://www.klayout.org

Page 1473 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.91. API reference - Class LayoutDiff

4.91. API reference - Class LayoutDiff
Notation used in Ruby API documentation

Module: db

Description: The layout compare tool

The layout compare tool is a facility to quickly compare layouts and derive events that give details about the differences. The events are
basically emitted following a certain order:

• General configuration events (database units, layers ...)

• on_begin_cell

• on_begin_inst_differences (if the instances differ)

• details about instance differences (if Verbose flag is given)

• on_end_inst_differences (if the instances differ)

• on_begin_layer

• on_begin_polygon_differences (if the polygons differ)

• details about polygon differences (if Verbose flag is given)

• on_end_polygon_differences (if the polygons differ)

• other shape difference events (paths, boxes, ...)

• on_end_layer

• repeated layer event groups

• on_end_cell

• repeated cell event groups

To use the diff facility, create a LayoutDiff object and call the compare_layout or compare_cell method:

lya = ... # layout A
lyb = ... # layout B

diff = RBA::LayoutDiff::new
diff.on_polygon_in_a_only do |poly|
 puts "Polygon in A: #{diff.cell_a.name}@#{diff.layer_info_a.to_s}: #{poly.to_s}"
end
diff.on_polygon_in_b_only do |poly|
 puts "Polygon in A: #{diff.cell_b.name}@#{diff.layer_info_b.to_s}: #{poly.to_s}"
end
diff.compare(lya, lyb, RBA::LayoutDiff::Verbose + RBA::LayoutDiff::NoLayerNames)

Public constructors

new LayoutDiff ptr new Creates a new object of this class

For more details visit
https://www.klayout.org

Page 1474 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.91. API reference - Class LayoutDiff

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const LayoutDiff
other)

Assigns another object to self

[const] const Cell ptr cell_a Gets the current cell for the first layout

[const] const Cell ptr cell_b Gets the current cell for the second layout

bool compare (const Layout ptr
a,
const Layout ptr b,
unsigned int flags
= 0,
int tolerance = 0)

Compares two layouts

bool compare (const Cell ptr a,
const Cell ptr b,
unsigned int flags
= 0,
int tolerance = 0)

Compares two cells

[const] new LayoutDiff
ptr

dup Creates a copy of self

[const] int layer_index_a Gets the current layer for the first layout

[const] int layer_index_b Gets the current layer for the second layout

[const] LayerInfo layer_info_a Gets the current layer properties for the first
layout

[const] LayerInfo layer_info_b Gets the current layer properties for the
second layout

[const] const Layout
ptr

layout_a Gets the first layout the difference detector
runs on

[const] const Layout
ptr

layout_b Gets the second layout the difference
detector runs on

For more details visit
https://www.klayout.org

Page 1475 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.91. API reference - Class LayoutDiff

[signal] void on_bbox_differs (const Box ba,
const Box bb)

This signal indicates a difference in the
bounding boxes of two cells

[signal] void on_begin_box_differences This signal indicates differences in the
boxes on the current layer

[signal] void on_begin_cell (const Cell ptr ca,
const Cell ptr cb)

This signal initiates the sequence of events
for a cell pair

[signal] void on_begin_edge_differences This signal indicates differences in the
edges on the current layer

[signal] void on_begin_inst_differences This signal indicates differences in the cell
instances

[signal] void on_begin_layer (const LayerInfo
layer,
int layer_index_a,
int layer_index_b)

This signal indicates differences on the
given layer

[signal] void on_begin_path_differences This signal indicates differences in the paths
on the current layer

[signal] void on_begin_polygon_differences This signal indicates differences in the
polygons on the current layer

[signal] void on_begin_text_differences This signal indicates differences in the texts
on the current layer

[signal] void on_box_in_a_only (const Box anotb,
unsigned long
prop_id)

This signal indicates a box that is present in
the first layout only

[signal] void on_box_in_b_only (const Box bnota,
unsigned long
prop_id)

This signal indicates a box that is present in
the second layout only

[signal] void on_cell_in_a_only (const Cell ptr c) This signal indicates that the given cell is
only present in the first layout

[signal] void on_cell_in_b_only (const Cell ptr c) This signal indicates that the given cell is
only present in the second layout

[signal] void on_cell_name_differs (const Cell ptr ca,
const Cell ptr cb)

This signal indicates a difference in the cell
names

[signal] void on_dbu_differs (double dbu_a,
double dbu_b)

This signal indicates a difference in the
database units of the layouts

[signal] void on_edge_in_a_only (const Edge anotb,
unsigned long
prop_id)

This signal indicates an edge that is present
in the first layout only

[signal] void on_edge_in_b_only (const Edge bnota,
unsigned long
prop_id)

This signal indicates an edge that is present
in the second layout only

[signal] void on_end_box_differences This signal indicates the end of sequence of
box differences

For more details visit
https://www.klayout.org

Page 1476 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.91. API reference - Class LayoutDiff

[signal] void on_end_cell This signal indicates the end of a sequence
of signals for a specific cell

[signal] void on_end_edge_differences This signal indicates the end of sequence of
edge differences

[signal] void on_end_inst_differences This signal finishes a sequence of detailed
instance difference events

[signal] void on_end_layer This signal indicates the end of a sequence
of signals for a specific layer

[signal] void on_end_path_differences This signal indicates the end of sequence of
path differences

[signal] void on_end_polygon_differences This signal indicates the end of sequence of
polygon differences

[signal] void on_end_text_differences This signal indicates the end of sequence of
text differences

[signal] void on_instance_in_a_only (const
CellInstArray
anotb,
unsigned long
prop_id)

This signal indicates an instance that is
present only in the first layout

[signal] void on_instance_in_b_only (const
CellInstArray
bnota,
unsigned long
prop_id)

This signal indicates an instance that is
present only in the second layout

[signal] void on_layer_in_a_only (const LayerInfo a) This signal indicates a layer that is present
only in the first layout

[signal] void on_layer_in_b_only (const LayerInfo b) This signal indicates a layer that is present
only in the second layout

[signal] void on_layer_name_differs (const LayerInfo a,
const LayerInfo b)

This signal indicates a difference in the
layer names

[signal] void on_path_in_a_only (const Path anotb,
unsigned long
prop_id)

This signal indicates a path that is present
in the first layout only

[signal] void on_path_in_b_only (const Path bnota,
unsigned long
prop_id)

This signal indicates a path that is present
in the second layout only

[signal] void on_per_layer_bbox_differs(const Box ba,
const Box bb)

This signal indicates differences in the per-
layer bounding boxes of the current cell

[signal] void on_polygon_in_a_only (const Polygon
anotb,
unsigned long
prop_id)

This signal indicates a polygon that is
present in the first layout only

For more details visit
https://www.klayout.org

Page 1477 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.91. API reference - Class LayoutDiff

[signal] void on_polygon_in_b_only (const Polygon
bnota,
unsigned long
prop_id)

This signal indicates a polygon that is
present in the second layout only

[signal] void on_text_in_a_only (const Text anotb,
unsigned long
prop_id)

This signal indicates a text that is present in
the first layout only

[signal] void on_text_in_b_only (const Text bnota,
unsigned long
prop_id)

This signal indicates a text that is present in
the second layout only

Public static methods and constants

[static,const] unsigned int BoxesAsPolygons Compare boxes to polygons

[static,const] unsigned int DontSummarizeMissingLayers Don't summarize missing layers

[static,const] unsigned int FlattenArrayInsts Compare array instances instance by
instance

[static,const] unsigned int NoLayerNames Do not compare layer names

[static,const] unsigned int NoProperties Ignore properties

[static,const] unsigned int NoTextDetails Ignore text details (font, size,
presentation)

[static,const] unsigned int NoTextOrientation Ignore text orientation

[static,const] unsigned int PathsAsPolygons Compare paths to polygons

[static,const] unsigned int Silent Silent compare - just report whether the
layouts are identical

[static,const] unsigned int SmartCellMapping Derive smart cell mapping instead of
name mapping (available only if top cells
are specified)

[static,const] unsigned int Verbose Enables verbose mode (gives details
about the differences)

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

For more details visit
https://www.klayout.org

Page 1478 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.91. API reference - Class LayoutDiff

Detailed description

BoxesAsPolygons
Signature: [static,const] unsigned int BoxesAsPolygons

Description: Compare boxes to polygons

This constant can be used for the flags parameter of compare_layouts and compare_cells. It can
be compared with other constants to form a flag set.

DontSummarizeMissingLayers
Signature: [static,const] unsigned int DontSummarizeMissingLayers

Description: Don't summarize missing layers

If this mode is present, missing layers are treated as empty ones and every shape on the other
layer will be reported as difference.

This constant can be used for the flags parameter of compare_layouts and compare_cells. It can
be compared with other constants to form a flag set.

FlattenArrayInsts
Signature: [static,const] unsigned int FlattenArrayInsts

Description: Compare array instances instance by instance

This constant can be used for the flags parameter of compare_layouts and compare_cells. It can
be compared with other constants to form a flag set.

NoLayerNames
Signature: [static,const] unsigned int NoLayerNames

Description: Do not compare layer names

This constant can be used for the flags parameter of compare_layouts and compare_cells. It can
be compared with other constants to form a flag set.

NoProperties
Signature: [static,const] unsigned int NoProperties

Description: Ignore properties

This constant can be used for the flags parameter of compare_layouts and compare_cells. It can
be compared with other constants to form a flag set.

NoTextDetails
Signature: [static,const] unsigned int NoTextDetails

Description: Ignore text details (font, size, presentation)

This constant can be used for the flags parameter of compare_layouts and compare_cells. It can
be compared with other constants to form a flag set.

NoTextOrientation
Signature: [static,const] unsigned int NoTextOrientation

Description: Ignore text orientation

This constant can be used for the flags parameter of compare_layouts and compare_cells. It can
be compared with other constants to form a flag set.

PathsAsPolygons
Signature: [static,const] unsigned int PathsAsPolygons

Description: Compare paths to polygons

This constant can be used for the flags parameter of compare_layouts and compare_cells. It can
be compared with other constants to form a flag set.

Silent
Signature: [static,const] unsigned int Silent

Description: Silent compare - just report whether the layouts are identical

For more details visit
https://www.klayout.org

Page 1479 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.91. API reference - Class LayoutDiff

Silent mode will not issue any signals, but instead the return value of the LayoutDiff#compare
method will indicate whether the layouts are identical. In silent mode, the compare method will
return immediately once a difference has been encountered so that mode may be much faster
than the full compare.

This constant can be used for the flags parameter of compare_layouts and compare_cells. It can
be compared with other constants to form a flag set.

SmartCellMapping
Signature: [static,const] unsigned int SmartCellMapping

Description: Derive smart cell mapping instead of name mapping (available only if top cells are
specified)

Smart cell mapping is only effective currently when cells are compared (with LayoutDiff#compare
with cells instead of layout objects).

This constant can be used for the flags parameter of compare_layouts and compare_cells. It can
be compared with other constants to form a flag set.

Verbose
Signature: [static,const] unsigned int Verbose

Description: Enables verbose mode (gives details about the differences)

See the event descriptions for details about the differences in verbose and non-verbose mode.

This constant can be used for the flags parameter of compare_layouts and compare_cells. It can
be compared with other constants to form a flag set.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of
the object. This method may be called if an object is returned from a C++ function and the object

For more details visit
https://www.klayout.org

Page 1480 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.91. API reference - Class LayoutDiff

is known not to be owned by any C++ instance. If necessary, the script side may delete the object
if the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const LayoutDiff other)

Description: Assigns another object to self

cell_a
Signature: [const] const Cell ptr cell_a

Description: Gets the current cell for the first layout

This attribute is the current cell and is set after on_begin_cell and reset after on_end_cell.

cell_b
Signature: [const] const Cell ptr cell_b

Description: Gets the current cell for the second layout

This attribute is the current cell and is set after on_begin_cell and reset after on_end_cell.

(1) Signature: bool compare (const Layout ptr a, const Layout ptr b, unsigned int flags = 0, int
tolerance = 0)

Description: Compares two layouts

a: The first input layout

b: The second input layout

flags: Flags to use for the comparison

tolerance: A coordinate tolerance to apply (0: exact match, 1: one DBU
tolerance is allowed ...)

Returns: True, if the layouts are identical

Compares layer definitions, cells, instances and shapes and properties. Cells are identified by
name. Only layers with valid layer and datatype are compared. Several flags can be specified as a
bitwise or combination of the constants.

compare

(2) Signature: bool compare (const Cell ptr a, const Cell ptr b, unsigned int flags = 0, int
tolerance = 0)

Description: Compares two cells

a: The first top cell

b: The second top cell

flags: Flags to use for the comparison

tolerance: A coordinate tolerance to apply (0: exact match, 1: one DBU
tolerance is allowed ...)

Returns: True, if the cells are identical

For more details visit
https://www.klayout.org

Page 1481 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.91. API reference - Class LayoutDiff

Compares layer definitions, cells, instances and shapes and properties of two layout hierarchies
starting from the given cells. Cells are identified by name. Only layers with valid layer and
datatype are compared. Several flags can be specified as a bitwise or combination of the
constants.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new LayoutDiff ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

layer_index_a
Signature: [const] int layer_index_a

Description: Gets the current layer for the first layout

This attribute is the current cell and is set after on_begin_layer and reset after on_end_layer.

layer_index_b
Signature: [const] int layer_index_b

Description: Gets the current layer for the second layout

This attribute is the current cell and is set after on_begin_layer and reset after on_end_layer.

layer_info_a
Signature: [const] LayerInfo layer_info_a

Description: Gets the current layer properties for the first layout

This attribute is the current cell and is set after on_begin_layer and reset after on_end_layer.

For more details visit
https://www.klayout.org

Page 1482 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.91. API reference - Class LayoutDiff

layer_info_b
Signature: [const] LayerInfo layer_info_b

Description: Gets the current layer properties for the second layout

This attribute is the current cell and is set after on_begin_layer and reset after on_end_layer.

layout_a
Signature: [const] const Layout ptr layout_a

Description: Gets the first layout the difference detector runs on

layout_b
Signature: [const] const Layout ptr layout_b

Description: Gets the second layout the difference detector runs on

new
Signature: [static] new LayoutDiff ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

on_bbox_differs
Signature: [signal] void on_bbox_differs (const Box ba, const Box bb)

Description: This signal indicates a difference in the bounding boxes of two cells

This signal is only emitted in non-verbose mode (without Verbose flag) as a summarizing cell
property. In verbose mode detailed events will be issued indicating the differences.

Python specific notes:
The object exposes a readable attribute 'on_bbox_differs'. This is the getter. The object exposes a
writable attribute 'on_bbox_differs'. This is the setter.

on_begin_box_differences
Signature: [signal] void on_begin_box_differences

Description: This signal indicates differences in the boxes on the current layer

The current layer is indicated by the begin_layer_event signal or can be obtained from the diff
object through LayoutDiff#layer_info_a, LayoutDiff#layer_index_a, LayoutDiff#layer_info_b and
LayoutDiff#layer_index_b. In verbose mode (see Verbose flag) more signals will be emitted for
boxes that are different between the two layouts.

Python specific notes:
The object exposes a readable attribute 'on_begin_box_differences'. This is the getter. The object
exposes a writable attribute 'on_begin_box_differences'. This is the setter.

on_begin_cell
Signature: [signal] void on_begin_cell (const Cell ptr ca, const Cell ptr cb)

Description: This signal initiates the sequence of events for a cell pair

All cell specific events happen between begin_cell_event and end_cell_event signals.

Python specific notes:
The object exposes a readable attribute 'on_begin_cell'. This is the getter. The object exposes a
writable attribute 'on_begin_cell'. This is the setter.

on_begin_edge_differences
Signature: [signal] void on_begin_edge_differences

Description: This signal indicates differences in the edges on the current layer

The current layer is indicated by the begin_layer_event signal or can be obtained from the diff
object through LayoutDiff#layer_info_a, LayoutDiff#layer_index_a, LayoutDiff#layer_info_b and
LayoutDiff#layer_index_b. In verbose mode (see Verbose flag) more signals will be emitted for
edges that are different between the two layouts.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1483 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.91. API reference - Class LayoutDiff

The object exposes a readable attribute 'on_begin_edge_differences'. This is the getter. The
object exposes a writable attribute 'on_begin_edge_differences'. This is the setter.

on_begin_inst_differences
Signature: [signal] void on_begin_inst_differences

Description: This signal indicates differences in the cell instances

In verbose mode (see Verbose) more events will follow that indicate the instances that are present
only in the first and second layout (instance_in_a_only_event and instance_in_b_only_event).

Python specific notes:
The object exposes a readable attribute 'on_begin_inst_differences'. This is the getter. The object
exposes a writable attribute 'on_begin_inst_differences'. This is the setter.

on_begin_layer
Signature: [signal] void on_begin_layer (const LayerInfo layer, int layer_index_a, int
layer_index_b)

Description: This signal indicates differences on the given layer

In verbose mode (see Verbose) more events will follow that indicate the instances that are present
only in the first and second layout (polygon_in_a_only_event, polygon_in_b_only_event and
similar).

Python specific notes:
The object exposes a readable attribute 'on_begin_layer'. This is the getter. The object exposes a
writable attribute 'on_begin_layer'. This is the setter.

on_begin_path_differences
Signature: [signal] void on_begin_path_differences

Description: This signal indicates differences in the paths on the current layer

The current layer is indicated by the begin_layer_event signal or can be obtained from the diff
object through LayoutDiff#layer_info_a, LayoutDiff#layer_index_a, LayoutDiff#layer_info_b and
LayoutDiff#layer_index_b. In verbose mode (see Verbose flag) more signals will be emitted for
paths that are different between the two layouts.

Python specific notes:
The object exposes a readable attribute 'on_begin_path_differences'. This is the getter. The object
exposes a writable attribute 'on_begin_path_differences'. This is the setter.

on_begin_polygon_differences
Signature: [signal] void on_begin_polygon_differences

Description: This signal indicates differences in the polygons on the current layer

The current layer is indicated by the begin_layer_event signal or can be obtained from the diff
object through LayoutDiff#layer_info_a, LayoutDiff#layer_index_a, LayoutDiff#layer_info_b and
LayoutDiff#layer_index_b. In verbose mode (see Verbose flag) more signals will be emitted for
polygons that are different between the two layouts.

Python specific notes:
The object exposes a readable attribute 'on_begin_polygon_differences'. This is the getter. The
object exposes a writable attribute 'on_begin_polygon_differences'. This is the setter.

on_begin_text_differences
Signature: [signal] void on_begin_text_differences

Description: This signal indicates differences in the texts on the current layer

The current layer is indicated by the begin_layer_event signal or can be obtained from the diff
object through LayoutDiff#layer_info_a, LayoutDiff#layer_index_a, LayoutDiff#layer_info_b and
LayoutDiff#layer_index_b. In verbose mode (see Verbose flag) more signals will be emitted for
texts that are different between the two layouts.

Python specific notes:
The object exposes a readable attribute 'on_begin_text_differences'. This is the getter. The object
exposes a writable attribute 'on_begin_text_differences'. This is the setter.

For more details visit
https://www.klayout.org

Page 1484 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.91. API reference - Class LayoutDiff

on_box_in_a_only
Signature: [signal] void on_box_in_a_only (const Box anotb, unsigned long prop_id)

Description: This signal indicates a box that is present in the first layout only

Python specific notes:
The object exposes a readable attribute 'on_box_in_a_only'. This is the getter. The object
exposes a writable attribute 'on_box_in_a_only'. This is the setter.

on_box_in_b_only
Signature: [signal] void on_box_in_b_only (const Box bnota, unsigned long prop_id)

Description: This signal indicates a box that is present in the second layout only

Python specific notes:
The object exposes a readable attribute 'on_box_in_b_only'. This is the getter. The object
exposes a writable attribute 'on_box_in_b_only'. This is the setter.

on_cell_in_a_only
Signature: [signal] void on_cell_in_a_only (const Cell ptr c)

Description: This signal indicates that the given cell is only present in the first layout

Python specific notes:
The object exposes a readable attribute 'on_cell_in_a_only'. This is the getter. The object exposes
a writable attribute 'on_cell_in_a_only'. This is the setter.

on_cell_in_b_only
Signature: [signal] void on_cell_in_b_only (const Cell ptr c)

Description: This signal indicates that the given cell is only present in the second layout

Python specific notes:
The object exposes a readable attribute 'on_cell_in_b_only'. This is the getter. The object exposes
a writable attribute 'on_cell_in_b_only'. This is the setter.

on_cell_name_differs
Signature: [signal] void on_cell_name_differs (const Cell ptr ca, const Cell ptr cb)

Description: This signal indicates a difference in the cell names

This signal is emitted in 'smart cell mapping' mode (see SmartCellMapping) if two cells are
considered identical, but have different names.

Python specific notes:
The object exposes a readable attribute 'on_cell_name_differs'. This is the getter. The object
exposes a writable attribute 'on_cell_name_differs'. This is the setter.

on_dbu_differs
Signature: [signal] void on_dbu_differs (double dbu_a, double dbu_b)

Description: This signal indicates a difference in the database units of the layouts

Python specific notes:
The object exposes a readable attribute 'on_dbu_differs'. This is the getter. The object exposes a
writable attribute 'on_dbu_differs'. This is the setter.

on_edge_in_a_only
Signature: [signal] void on_edge_in_a_only (const Edge anotb, unsigned long prop_id)

Description: This signal indicates an edge that is present in the first layout only

Python specific notes:
The object exposes a readable attribute 'on_edge_in_a_only'. This is the getter. The object
exposes a writable attribute 'on_edge_in_a_only'. This is the setter.

on_edge_in_b_only
Signature: [signal] void on_edge_in_b_only (const Edge bnota, unsigned long prop_id)

Description: This signal indicates an edge that is present in the second layout only

Python specific notes:

For more details visit
https://www.klayout.org

Page 1485 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.91. API reference - Class LayoutDiff

The object exposes a readable attribute 'on_edge_in_b_only'. This is the getter. The object
exposes a writable attribute 'on_edge_in_b_only'. This is the setter.

on_end_box_differences
Signature: [signal] void on_end_box_differences

Description: This signal indicates the end of sequence of box differences

Python specific notes:
The object exposes a readable attribute 'on_end_box_differences'. This is the getter. The object
exposes a writable attribute 'on_end_box_differences'. This is the setter.

on_end_cell
Signature: [signal] void on_end_cell

Description: This signal indicates the end of a sequence of signals for a specific cell

Python specific notes:
The object exposes a readable attribute 'on_end_cell'. This is the getter. The object exposes a
writable attribute 'on_end_cell'. This is the setter.

on_end_edge_differences
Signature: [signal] void on_end_edge_differences

Description: This signal indicates the end of sequence of edge differences

Python specific notes:
The object exposes a readable attribute 'on_end_edge_differences'. This is the getter. The object
exposes a writable attribute 'on_end_edge_differences'. This is the setter.

on_end_inst_differences
Signature: [signal] void on_end_inst_differences

Description: This signal finishes a sequence of detailed instance difference events

Python specific notes:
The object exposes a readable attribute 'on_end_inst_differences'. This is the getter. The object
exposes a writable attribute 'on_end_inst_differences'. This is the setter.

on_end_layer
Signature: [signal] void on_end_layer

Description: This signal indicates the end of a sequence of signals for a specific layer

Python specific notes:
The object exposes a readable attribute 'on_end_layer'. This is the getter. The object exposes a
writable attribute 'on_end_layer'. This is the setter.

on_end_path_differences
Signature: [signal] void on_end_path_differences

Description: This signal indicates the end of sequence of path differences

Python specific notes:
The object exposes a readable attribute 'on_end_path_differences'. This is the getter. The object
exposes a writable attribute 'on_end_path_differences'. This is the setter.

on_end_polygon_differences
Signature: [signal] void on_end_polygon_differences

Description: This signal indicates the end of sequence of polygon differences

Python specific notes:
The object exposes a readable attribute 'on_end_polygon_differences'. This is the getter. The
object exposes a writable attribute 'on_end_polygon_differences'. This is the setter.

on_end_text_differences
Signature: [signal] void on_end_text_differences

Description: This signal indicates the end of sequence of text differences

Python specific notes:

For more details visit
https://www.klayout.org

Page 1486 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.91. API reference - Class LayoutDiff

The object exposes a readable attribute 'on_end_text_differences'. This is the getter. The object
exposes a writable attribute 'on_end_text_differences'. This is the setter.

on_instance_in_a_only
Signature: [signal] void on_instance_in_a_only (const CellInstArray anotb, unsigned long
prop_id)

Description: This signal indicates an instance that is present only in the first layout

This event is only emitted in verbose mode (Verbose flag).

Python specific notes:
The object exposes a readable attribute 'on_instance_in_a_only'. This is the getter. The object
exposes a writable attribute 'on_instance_in_a_only'. This is the setter.

on_instance_in_b_only
Signature: [signal] void on_instance_in_b_only (const CellInstArray bnota, unsigned long
prop_id)

Description: This signal indicates an instance that is present only in the second layout

This event is only emitted in verbose mode (Verbose flag).

Python specific notes:
The object exposes a readable attribute 'on_instance_in_b_only'. This is the getter. The object
exposes a writable attribute 'on_instance_in_b_only'. This is the setter.

on_layer_in_a_only
Signature: [signal] void on_layer_in_a_only (const LayerInfo a)

Description: This signal indicates a layer that is present only in the first layout

Python specific notes:
The object exposes a readable attribute 'on_layer_in_a_only'. This is the getter. The object
exposes a writable attribute 'on_layer_in_a_only'. This is the setter.

on_layer_in_b_only
Signature: [signal] void on_layer_in_b_only (const LayerInfo b)

Description: This signal indicates a layer that is present only in the second layout

Python specific notes:
The object exposes a readable attribute 'on_layer_in_b_only'. This is the getter. The object
exposes a writable attribute 'on_layer_in_b_only'. This is the setter.

on_layer_name_differs
Signature: [signal] void on_layer_name_differs (const LayerInfo a, const LayerInfo b)

Description: This signal indicates a difference in the layer names

Python specific notes:
The object exposes a readable attribute 'on_layer_name_differs'. This is the getter. The object
exposes a writable attribute 'on_layer_name_differs'. This is the setter.

on_path_in_a_only
Signature: [signal] void on_path_in_a_only (const Path anotb, unsigned long prop_id)

Description: This signal indicates a path that is present in the first layout only

Python specific notes:
The object exposes a readable attribute 'on_path_in_a_only'. This is the getter. The object
exposes a writable attribute 'on_path_in_a_only'. This is the setter.

on_path_in_b_only
Signature: [signal] void on_path_in_b_only (const Path bnota, unsigned long prop_id)

Description: This signal indicates a path that is present in the second layout only

Python specific notes:
The object exposes a readable attribute 'on_path_in_b_only'. This is the getter. The object
exposes a writable attribute 'on_path_in_b_only'. This is the setter.

For more details visit
https://www.klayout.org

Page 1487 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.91. API reference - Class LayoutDiff

on_per_layer_bbox_differs
Signature: [signal] void on_per_layer_bbox_differs (const Box ba, const Box bb)

Description: This signal indicates differences in the per-layer bounding boxes of the current cell

Python specific notes:
The object exposes a readable attribute 'on_per_layer_bbox_differs'. This is the getter. The object
exposes a writable attribute 'on_per_layer_bbox_differs'. This is the setter.

on_polygon_in_a_only
Signature: [signal] void on_polygon_in_a_only (const Polygon anotb, unsigned long prop_id)

Description: This signal indicates a polygon that is present in the first layout only

Python specific notes:
The object exposes a readable attribute 'on_polygon_in_a_only'. This is the getter. The object
exposes a writable attribute 'on_polygon_in_a_only'. This is the setter.

on_polygon_in_b_only
Signature: [signal] void on_polygon_in_b_only (const Polygon bnota, unsigned long prop_id)

Description: This signal indicates a polygon that is present in the second layout only

Python specific notes:
The object exposes a readable attribute 'on_polygon_in_b_only'. This is the getter. The object
exposes a writable attribute 'on_polygon_in_b_only'. This is the setter.

on_text_in_a_only
Signature: [signal] void on_text_in_a_only (const Text anotb, unsigned long prop_id)

Description: This signal indicates a text that is present in the first layout only

Python specific notes:
The object exposes a readable attribute 'on_text_in_a_only'. This is the getter. The object
exposes a writable attribute 'on_text_in_a_only'. This is the setter.

on_text_in_b_only
Signature: [signal] void on_text_in_b_only (const Text bnota, unsigned long prop_id)

Description: This signal indicates a text that is present in the second layout only

Python specific notes:
The object exposes a readable attribute 'on_text_in_b_only'. This is the getter. The object
exposes a writable attribute 'on_text_in_b_only'. This is the setter.

For more details visit
https://www.klayout.org

Page 1488 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.92. API reference - Class TextGenerator

4.92. API reference - Class TextGenerator
Notation used in Ruby API documentation

Module: db

Description: A text generator class

A text generator is basically a way to produce human-readable text for labelling layouts. It's similar to the Basic.TEXT PCell, but more
convenient to use in a scripting context.

Generators can be constructed from font files (or resources) or one of the registered generators can be used.

To create a generator from a font file proceed this way:

gen = RBA::TextGenerator::new
gen.load_from_file("myfont.gds")
region = gen.text("A TEXT", 0.001)

This code produces a RBA::Region with a database unit of 0.001 micron. This region can be fed into a Shapes container to place it into a
cell for example.

By convention the font files must have two to three layers:

• 1/0 for the actual data

• 2/0 for the borders

• 3/0 for an optional additional background

Currently, all glyphs must be bottom-left aligned at 0, 0. The border must be drawn in at least one glyph cell. The border is taken as the
overall bbox of all borders.

The glyph cells must be named with a single character or "nnn" where "d" is the ASCII code of the character (i.e. "032" for space). Allowed
ASCII codes are 32 through 127. If a lower-case "a" character is defined, lower-case letters are supported. Otherwise, lowercase letters are
mapped to uppercase letters.

Undefined characters are left blank in the output.

A comment cell can be defined ("COMMENT") which must hold one text in layer 1 stating the comment, and additional descriptions such as
line width:

• "line_width=<x>": Specifies the intended line width in micron units

• "design_grid=<x>": Specifies the intended design grid in micron units

• any other text: The description string

Generators can be picked form a list of predefined generator. See generators, default_generator and generator_by_name for picking a
generator from the list.

This class has been introduced in version 0.25.

Public constructors

new TextGenerator ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 1489 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.92. API reference - Class TextGenerator

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
TextGenerator
other)

Assigns another object to self

[const] Box background Gets the background rectangle of each glyph in the
generator's database units

[const] DBox dbackground Gets the background rectangle in micron units

[const] double dbu Gets the basic database unit the design of the
glyphs was made

[const] double ddesign_grid Gets the design grid of the glyphs in micron units

[const] string description Gets the description text of the generator

[const] int design_grid Gets the design grid of the glyphs in the generator's
database units

[const] double dheight Gets the design height of the glyphs in micron units

[const] double dline_width Gets the line width of the glyphs in micron units

[const] new
TextGenerator
ptr

dup Creates a copy of self

[const] double dwidth Gets the design width of the glyphs in micron units

[const] Region glyph (char char) Gets the glyph of the given character as a region

[const] int height Gets the design height of the glyphs in the
generator's database units

[const] int line_width Gets the line width of the glyphs in the generator's
database units

void load_from_file (string
path)

Loads the given file into the generator

void load_from_resource (string
resource_path)

Loads the given resource data (as layout data) into
the generator

[const] string name Gets the name of the generator

[const] Region text (string text,
double
target_dbu,

Gets the rendered text as a region

For more details visit
https://www.klayout.org

Page 1490 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.92. API reference - Class TextGenerator

double
mag = 1,
bool inv =
false,
double
bias = 0,
double
char_spacing
= 0,
double
line_spacing
= 0)

[const] int width Gets the design height of the glyphs in the
generator's database units

Public static methods and constants

const TextGenerator ptr default_generator Gets the default text generator (a standard
font)

string[] font_paths Gets the paths where to look for font files

const TextGenerator ptr generator_by_name (string
name)

Gets the text generator for a given name

const TextGenerator ptr[] generators Gets the generators registered in the system

void set_font_paths (string[]
arg1)

Sets the paths where to look for font files

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 1491 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.92. API reference - Class TextGenerator

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const TextGenerator other)

Description: Assigns another object to self

background
Signature: [const] Box background

Description: Gets the background rectangle of each glyph in the generator's database units

The background rectangle is the one that is used as background for inverted rendering. A version
that delivers this value in micrometer units is dbackground.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 1492 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.92. API reference - Class TextGenerator

dbackground
Signature: [const] DBox dbackground

Description: Gets the background rectangle in micron units

The background rectangle is the one that is used as background for inverted rendering.

dbu
Signature: [const] double dbu

Description: Gets the basic database unit the design of the glyphs was made

This database unit the basic resolution of the glyphs.

ddesign_grid
Signature: [const] double ddesign_grid

Description: Gets the design grid of the glyphs in micron units

The design grid is the basic grid used when designing the glyphs. In most cases this grid is bigger
than the database unit.

default_generator
Signature: [static] const TextGenerator ptr default_generator

Description: Gets the default text generator (a standard font)

This method delivers the default generator or nil if no such generator is installed.

description
Signature: [const] string description

Description: Gets the description text of the generator

The generator's description text is a human-readable text that is used to identify the generator (aka
'font') in user interfaces.

design_grid
Signature: [const] int design_grid

Description: Gets the design grid of the glyphs in the generator's database units

The design grid is the basic grid used when designing the glyphs. In most cases this grid is bigger
than the database unit. A version that delivers this value in micrometer units is ddesign_grid.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dheight
Signature: [const] double dheight

Description: Gets the design height of the glyphs in micron units

The height is the height of the rectangle occupied by each character.

For more details visit
https://www.klayout.org

Page 1493 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.92. API reference - Class TextGenerator

dline_width
Signature: [const] double dline_width

Description: Gets the line width of the glyphs in micron units

The line width is the intended (not necessarily precisely) line width of typical character lines (such as
the bar of an 'I').

dup
Signature: [const] new TextGenerator ptr dup

Description: Creates a copy of self

dwidth
Signature: [const] double dwidth

Description: Gets the design width of the glyphs in micron units

The width is the width of the rectangle occupied by each character.

font_paths
Signature: [static] string[] font_paths

Description: Gets the paths where to look for font files

See set_font_paths for a description of this function.

This method has been introduced in version 0.27.4.

generator_by_name
Signature: [static] const TextGenerator ptr generator_by_name (string name)

Description: Gets the text generator for a given name

This method delivers the generator with the given name or nil if no such generator is registered.

generators
Signature: [static] const TextGenerator ptr[] generators

Description: Gets the generators registered in the system

This method delivers a list of generator objects that can be used to create texts.

glyph
Signature: [const] Region glyph (char char)

Description: Gets the glyph of the given character as a region

The region represents the glyph's outline and is delivered in the generator's database units .A more
elaborate way to getting the text's outline is text.

height
Signature: [const] int height

Description: Gets the design height of the glyphs in the generator's database units

The height is the height of the rectangle occupied by each character. A version that delivers this
value in micrometer units is dheight.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

line_width
Signature: [const] int line_width

Description: Gets the line width of the glyphs in the generator's database units

For more details visit
https://www.klayout.org

Page 1494 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.92. API reference - Class TextGenerator

The line width is the intended (not necessarily precisely) line width of typical character lines (such as
the bar of an 'I'). A version that delivers this value in micrometer units is dline_width.

load_from_file
Signature: void load_from_file (string path)

Description: Loads the given file into the generator

See the description of the class how the layout data is read.

load_from_resource
Signature: void load_from_resource (string resource_path)

Description: Loads the given resource data (as layout data) into the generator

See the description of the class how the layout data is read.

name
Signature: [const] string name

Description: Gets the name of the generator

The generator's name is the basic key by which the generator is identified.

new
Signature: [static] new TextGenerator ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

set_font_paths
Signature: [static] void set_font_paths (string[] arg1)

Description: Sets the paths where to look for font files

This function sets the paths where to look for font files. After setting such a path, each font found
will render a specific generator. The generator can be found under the font file's name. As the text
generator is also the basis for the Basic.TEXT PCell, using this function also allows configuring
custom fonts for this library cell.

This method has been introduced in version 0.27.4.

text
Signature: [const] Region text (string text, double target_dbu, double mag = 1, bool inv = false,
double bias = 0, double char_spacing = 0, double line_spacing = 0)

Description: Gets the rendered text as a region

text: The text string

target_dbu: The database unit for which to produce the text

mag: The magnification (1.0 for original size)

inv: inverted rendering: if true, the glyphs are rendered inverse
with the background box as the outer bounding box

bias: An additional bias to be applied (happens before inversion,
can be negative)

char_spacing: Additional space between characters (in micron units)

line_spacing: Additional space between lines (in micron units)

Various options can be specified to control the appearance of the text. See the description of
the parameters. It's important to specify the target database unit in target_dbu to indicate what
database unit shall be used to create the output for.

width
Signature: [const] int width

Description: Gets the design height of the glyphs in the generator's database units

For more details visit
https://www.klayout.org

Page 1495 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.92. API reference - Class TextGenerator

The width is the width of the rectangle occupied by each character. A version that delivers this value
in micrometer units is dwidth.

For more details visit
https://www.klayout.org

Page 1496 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.93. API reference - Class NetlistObject

4.93. API reference - Class NetlistObject
Notation used in Ruby API documentation

Module: db

Description: The base class for some netlist objects.

The main purpose of this class is to supply user properties for netlist objects.

This class has been introduced in version 0.26.2

Public constructors

new NetlistObject ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
NetlistObject
other)

Assigns another object to self

[const] new NetlistObject
ptr

dup Creates a copy of self

[const] variant property (variant key) Gets the property value for the given key or nil if
there is no value with this key.

[const] variant[] property_keys Gets the keys for the properties stored in this
object.

void set_property (variant key,
variant
value)

Sets the property value for the given key.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

For more details visit
https://www.klayout.org

Page 1497 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.93. API reference - Class NetlistObject

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const NetlistObject other)

Description: Assigns another object to self

For more details visit
https://www.klayout.org

Page 1498 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.93. API reference - Class NetlistObject

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new NetlistObject ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new NetlistObject ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

property
Signature: [const] variant property (variant key)

Description: Gets the property value for the given key or nil if there is no value with this key.

property_keys
Signature: [const] variant[] property_keys

Description: Gets the keys for the properties stored in this object.

set_property
Signature: void set_property (variant key, variant value)

Description: Sets the property value for the given key.

Use a nil value to erase the property with this key.

For more details visit
https://www.klayout.org

Page 1499 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.94. API reference - Class Pin

4.94. API reference - Class Pin
Notation used in Ruby API documentation

Module: db

Description: A pin of a circuit.

Class hierarchy: Pin » NetlistObject

Pin objects are used to describe the outgoing pins of a circuit. To create a new pin of a circuit, use Circuit#create_pin.

This class has been added in version 0.26.

Public methods

void _assign (const
Pin
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] new Pin ptr _dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

[const] string expanded_name Gets the expanded name of the pin.

[const] unsigned long id Gets the ID of the pin.

[const] string name Gets the name of the pin.

Detailed description

_assign
Signature: void _assign (const Pin other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 1500 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.94. API reference - Class Pin

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new Pin ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

expanded_name
Signature: [const] string expanded_name

Description: Gets the expanded name of the pin.

The expanded name is the name or a generic identifier made from the ID if the name is empty.

id
Signature: [const] unsigned long id

Description: Gets the ID of the pin.

name
Signature: [const] string name

Description: Gets the name of the pin.

For more details visit
https://www.klayout.org

Page 1501 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.95. API reference - Class DeviceReconnectedTerminal

4.95. API reference - Class DeviceReconnectedTerminal
Notation used in Ruby API documentation

Module: db

Description: Describes a terminal rerouting in combined devices.

Combined devices are implemented as a generalization of the device abstract concept in Device. For combined devices, multiple
DeviceAbstract references are present. To support different combination schemes, device-to-abstract routing is supported. Parallel
combinations will route all outer terminals to corresponding terminals of all device abstracts (because of terminal swapping these may be
different ones).

This object describes one route to an abstract's terminal. The device index is 0 for the main device abstract and 1 for the first combined
device abstract.

This class has been introduced in version 0.26.

Public constructors

new DeviceReconnectedTerminal ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
DeviceReconnectedTerminal
other)

Assigns another object to self

[const] unsigned long device_index The device abstract index getter.

void device_index= (unsigned
long
device_index)

The device abstract index setter.

[const] new
DeviceReconnectedTerminal
ptr

dup Creates a copy of self

[const] unsigned long other_terminal_id The getter for the abstract's connected
terminal.

void other_terminal_id= (unsigned int
other_terminal_id)

The setter for the abstract's connected
terminal.

For more details visit
https://www.klayout.org

Page 1502 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.95. API reference - Class DeviceReconnectedTerminal

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method

For more details visit
https://www.klayout.org

Page 1503 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.95. API reference - Class DeviceReconnectedTerminal

will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const DeviceReconnectedTerminal other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

device_index
Signature: [const] unsigned long device_index

Description: The device abstract index getter.

See the class description for details.

Python specific notes:
The object exposes a readable attribute 'device_index'. This is the getter.

device_index=
Signature: void device_index= (unsigned long device_index)

Description: The device abstract index setter.

See the class description for details.

Python specific notes:
The object exposes a writable attribute 'device_index'. This is the setter.

dup
Signature: [const] new DeviceReconnectedTerminal ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

For more details visit
https://www.klayout.org

Page 1504 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.95. API reference - Class DeviceReconnectedTerminal

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new DeviceReconnectedTerminal ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

other_terminal_id
Signature: [const] unsigned long other_terminal_id

Description: The getter for the abstract's connected terminal.

See the class description for details.

Python specific notes:
The object exposes a readable attribute 'other_terminal_id'. This is the getter.

other_terminal_id=
Signature: void other_terminal_id= (unsigned int other_terminal_id)

Description: The setter for the abstract's connected terminal.

See the class description for details.

Python specific notes:
The object exposes a writable attribute 'other_terminal_id'. This is the setter.

For more details visit
https://www.klayout.org

Page 1505 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.96. API reference - Class DeviceAbstractRef

4.96. API reference - Class DeviceAbstractRef
Notation used in Ruby API documentation

Module: db

Description: Describes an additional device abstract reference for combined devices.

Combined devices are implemented as a generalization of the device abstract concept in Device. For combined devices, multiple
DeviceAbstract references are present. This class describes such an additional reference. A reference is a pointer to an abstract plus a
transformation by which the abstract is transformed geometrically as compared to the first (initial) abstract.

This class has been introduced in version 0.26.

Public constructors

new DeviceAbstractRef ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
DeviceAbstractRef
other)

Assigns another object to self

[const] const DeviceAbstract
ptr

device_abstract The getter for the device abstract reference.

void device_abstract= (const
DeviceAbstract
ptr
device_abstract)

The setter for the device abstract reference.

[const] new
DeviceAbstractRef ptr

dup Creates a copy of self

[const] DCplxTrans trans The getter for the relative transformation of the
instance.

void trans= (const
DCplxTrans
tr)

The setter for the relative transformation of the
instance.

For more details visit
https://www.klayout.org

Page 1506 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.96. API reference - Class DeviceAbstractRef

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method

For more details visit
https://www.klayout.org

Page 1507 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.96. API reference - Class DeviceAbstractRef

will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const DeviceAbstractRef other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

device_abstract
Signature: [const] const DeviceAbstract ptr device_abstract

Description: The getter for the device abstract reference.

See the class description for details.

Python specific notes:
The object exposes a readable attribute 'device_abstract'. This is the getter.

device_abstract=
Signature: void device_abstract= (const DeviceAbstract ptr device_abstract)

Description: The setter for the device abstract reference.

See the class description for details.

Python specific notes:
The object exposes a writable attribute 'device_abstract'. This is the setter.

dup
Signature: [const] new DeviceAbstractRef ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

For more details visit
https://www.klayout.org

Page 1508 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.96. API reference - Class DeviceAbstractRef

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new DeviceAbstractRef ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

trans
Signature: [const] DCplxTrans trans

Description: The getter for the relative transformation of the instance.

See the class description for details.

Python specific notes:
The object exposes a readable attribute 'trans'. This is the getter.

trans=
Signature: void trans= (const DCplxTrans tr)

Description: The setter for the relative transformation of the instance.

See the class description for details.

Python specific notes:
The object exposes a writable attribute 'trans'. This is the setter.

For more details visit
https://www.klayout.org

Page 1509 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.97. API reference - Class Device

4.97. API reference - Class Device
Notation used in Ruby API documentation

Module: db

Description: A device inside a circuit.

Class hierarchy: Device » NetlistObject

Device object represent atomic devices such as resistors, diodes or transistors. The Device class represents a particular device with
specific parameters. The type of device is represented by a DeviceClass object. Device objects live in Circuit objects, the device class
objects live in the Netlist object.

Devices connect to nets through terminals. Terminals are described by a terminal ID which is essentially the zero-based index of the
terminal. Terminal definitions can be obtained from the device class using the DeviceClass#terminal_definitions method.

Devices connect to nets through the Device#connect_terminal method. Device terminals can be disconnected using
Device#disconnect_terminal.

Device objects are created inside a circuit with Circuit#create_device.

This class has been added in version 0.26.

Public methods

void _assign (const Device
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] new Device ptr _dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] const Circuit ptr circuit Gets the circuit the device lives in.

Circuit ptr circuit Gets the circuit the device lives in (non-
const version).

void connect_terminal (unsigned long
terminal_id,
Net ptr net)

Connects the given terminal to the specified
net.

void connect_terminal (string
terminal_name,
Net ptr net)

Connects the given terminal to the specified
net.

[const] const
DeviceAbstract ptr

device_abstract Gets the device abstract for this device
instance.

For more details visit
https://www.klayout.org

Page 1510 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.97. API reference - Class Device

[const] const DeviceClass
ptr

device_class Gets the device class the device belongs to.

void disconnect_terminal (unsigned long
terminal_id)

Disconnects the given terminal from any net.

void disconnect_terminal (string
terminal_name)

Disconnects the given terminal from any net.

[const,iter] DeviceAbstractRef each_combined_abstract Iterates over the combined device
specifications.

[const,iter] DeviceReconnectedTerminaleach_reconnected_terminal_for(unsigned long
terminal_id)

Iterates over the reconnected terminal
specifications for a given outer terminal.

[const] string expanded_name Gets the expanded name of the device.

[const] unsigned long id Gets the device ID.

[const] bool is_combined_device? Returns true, if the device is a combined
device.

[const] string name Gets the name of the device.

void name= (string name) Sets the name of the device.

[const] const Net ptr net_for_terminal (unsigned long
terminal_id)

Gets the net connected to the specified
terminal.

Net ptr net_for_terminal (unsigned long
terminal_id)

Gets the net connected to the specified
terminal (non-const version).

[const] const Net ptr net_for_terminal (string
terminal_name)

Gets the net connected to the specified
terminal.

const Net ptr net_for_terminal (string
terminal_name)

Gets the net connected to the specified
terminal (non-const version).

[const] double parameter (unsigned long
param_id)

Gets the parameter value for the given
parameter ID.

[const] double parameter (string
param_name)

Gets the parameter value for the given
parameter name.

void set_parameter (unsigned long
param_id,
double value)

Sets the parameter value for the given
parameter ID.

void set_parameter (string
param_name,
double value)

Sets the parameter value for the given
parameter name.

[const] DCplxTrans trans Gets the location of the device.

void trans= (const
DCplxTrans t)

Sets the location of the device.

For more details visit
https://www.klayout.org

Page 1511 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.97. API reference - Class Device

Detailed description

_assign
Signature: void _assign (const Device other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new Device ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of
the object. This method may be called if an object is returned from a C++ function and the object
is known not to be owned by any C++ instance. If necessary, the script side may delete the object
if the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1512 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.97. API reference - Class Device

(1) Signature: [const] const Circuit ptr circuit

Description: Gets the circuit the device lives in.circuit

(2) Signature: Circuit ptr circuit

Description: Gets the circuit the device lives in (non-const version).

This constness variant has been introduced in version 0.26.8

(1) Signature: void connect_terminal (unsigned long terminal_id, Net ptr net)

Description: Connects the given terminal to the specified net.connect_terminal

(2) Signature: void connect_terminal (string terminal_name, Net ptr net)

Description: Connects the given terminal to the specified net.

This version accepts a terminal name. If the name is not a valid terminal name, an exception is
raised. If the terminal has been connected to a global net, it will be disconnected from there.

device_abstract
Signature: [const] const DeviceAbstract ptr device_abstract

Description: Gets the device abstract for this device instance.

See DeviceAbstract for more details.

Python specific notes:
The object exposes a readable attribute 'device_abstract'. This is the getter.

device_class
Signature: [const] const DeviceClass ptr device_class

Description: Gets the device class the device belongs to.

(1) Signature: void disconnect_terminal (unsigned long terminal_id)

Description: Disconnects the given terminal from any net.

If the terminal has been connected to a global, this connection will be disconnected too.

disconnect_terminal

(2) Signature: void disconnect_terminal (string terminal_name)

Description: Disconnects the given terminal from any net.

This version accepts a terminal name. If the name is not a valid terminal name, an exception is
raised.

each_combined_abstract
Signature: [const,iter] DeviceAbstractRef each_combined_abstract

Description: Iterates over the combined device specifications.

This feature applies to combined devices. This iterator will deliver all device abstracts present in
addition to the default device abstract.

each_reconnected_terminal_for
Signature: [const,iter] DeviceReconnectedTerminal each_reconnected_terminal_for
(unsigned long terminal_id)

Description: Iterates over the reconnected terminal specifications for a given outer terminal.

This feature applies to combined devices. This iterator will deliver all device-to-abstract terminal
reroutings.

For more details visit
https://www.klayout.org

Page 1513 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.97. API reference - Class Device

expanded_name
Signature: [const] string expanded_name

Description: Gets the expanded name of the device.

The expanded name takes the name of the device. If the name is empty, the numeric ID will be
used to build a name.

id
Signature: [const] unsigned long id

Description: Gets the device ID.

The ID is a unique integer which identifies the device. It can be used to retrieve the device from
the circuit using Circuit#device_by_id. When assigned, the device ID is not 0.

is_combined_device?
Signature: [const] bool is_combined_device?

Description: Returns true, if the device is a combined device.

Combined devices feature multiple device abstracts and device-to-abstract terminal connections.
See each_reconnected_terminal and each_combined_abstract for more details.

name
Signature: [const] string name

Description: Gets the name of the device.

Python specific notes:
The object exposes a readable attribute 'name'. This is the getter.

name=
Signature: void name= (string name)

Description: Sets the name of the device.

Device names are used to name a device inside a netlist file. Device names should be unique
within a circuit.

Python specific notes:
The object exposes a writable attribute 'name'. This is the setter.

(1) Signature: [const] const Net ptr net_for_terminal (unsigned long terminal_id)

Description: Gets the net connected to the specified terminal.

If the terminal is not connected, nil is returned for the net.

(2) Signature: Net ptr net_for_terminal (unsigned long terminal_id)

Description: Gets the net connected to the specified terminal (non-const version).

If the terminal is not connected, nil is returned for the net.

This constness variant has been introduced in version 0.26.8

(3) Signature: [const] const Net ptr net_for_terminal (string terminal_name)

Description: Gets the net connected to the specified terminal.

If the terminal is not connected, nil is returned for the net.

This convenience method has been introduced in version 0.27.3.

net_for_terminal

(4) Signature: const Net ptr net_for_terminal (string terminal_name)

Description: Gets the net connected to the specified terminal (non-const version).

If the terminal is not connected, nil is returned for the net.

For more details visit
https://www.klayout.org

Page 1514 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.97. API reference - Class Device

This convenience method has been introduced in version 0.27.3.

(1) Signature: [const] double parameter (unsigned long param_id)

Description: Gets the parameter value for the given parameter ID.parameter

(2) Signature: [const] double parameter (string param_name)

Description: Gets the parameter value for the given parameter name.

If the parameter name is not valid, an exception is thrown.

(1) Signature: void set_parameter (unsigned long param_id, double value)

Description: Sets the parameter value for the given parameter ID.set_parameter

(2) Signature: void set_parameter (string param_name, double value)

Description: Sets the parameter value for the given parameter name.

If the parameter name is not valid, an exception is thrown.

trans
Signature: [const] DCplxTrans trans

Description: Gets the location of the device.

See trans= for details about this method.

Python specific notes:
The object exposes a readable attribute 'trans'. This is the getter.

trans=
Signature: void trans= (const DCplxTrans t)

Description: Sets the location of the device.

The device location is essentially describing the position of the device. The position is typically the
center of some recognition shape. In this case the transformation is a plain displacement to the
center of this shape.

Python specific notes:
The object exposes a writable attribute 'trans'. This is the setter.

For more details visit
https://www.klayout.org

Page 1515 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.98. API reference - Class DeviceAbstract

4.98. API reference - Class DeviceAbstract
Notation used in Ruby API documentation

Module: db

Description: A geometrical device abstract

This class represents the geometrical model for the device. It links into the extracted layout to a cell which holds the terminal shapes for the
device.

This class has been added in version 0.26.

Public constructors

new DeviceAbstract ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
DeviceAbstract
other)

Assigns another object to self

[const] unsigned int cell_index Gets the cell index of the device abstract.

[const] unsigned long cluster_id_for_terminal (unsigned
long
terminal_id)

Gets the cluster ID for the given terminal.

[const] const DeviceClass ptr device_class Gets the device class of the device.

[const] new DeviceAbstract
ptr

dup Creates a copy of self

[const] string name Gets the name of the device abstract.

void name= (string
name)

Sets the name of the device abstract.

[const] const Netlist ptr netlist Gets the netlist the device abstract lives in.

Netlist ptr netlist Gets the netlist the device abstract lives in (non-
const version).

For more details visit
https://www.klayout.org

Page 1516 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.98. API reference - Class DeviceAbstract

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method

For more details visit
https://www.klayout.org

Page 1517 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.98. API reference - Class DeviceAbstract

will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const DeviceAbstract other)

Description: Assigns another object to self

cell_index
Signature: [const] unsigned int cell_index

Description: Gets the cell index of the device abstract.

This is the cell that represents the device.

cluster_id_for_terminal
Signature: [const] unsigned long cluster_id_for_terminal (unsigned long terminal_id)

Description: Gets the cluster ID for the given terminal.

The cluster ID links the terminal to geometrical shapes within the clusters of the cell (see cell_index)

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

device_class
Signature: [const] const DeviceClass ptr device_class

Description: Gets the device class of the device.

dup
Signature: [const] new DeviceAbstract ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

For more details visit
https://www.klayout.org

Page 1518 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.98. API reference - Class DeviceAbstract

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

name
Signature: [const] string name

Description: Gets the name of the device abstract.

Python specific notes:
The object exposes a readable attribute 'name'. This is the getter.

name=
Signature: void name= (string name)

Description: Sets the name of the device abstract.

Device names are used to name a device abstract inside a netlist file. Device names should be
unique within a netlist.

Python specific notes:
The object exposes a writable attribute 'name'. This is the setter.

(1) Signature: [const] const Netlist ptr netlist

Description: Gets the netlist the device abstract lives in.netlist

(2) Signature: Netlist ptr netlist

Description: Gets the netlist the device abstract lives in (non-const version).

This constness variant has been introduced in version 0.26.8

new
Signature: [static] new DeviceAbstract ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1519 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.99. API reference - Class SubCircuit

4.99. API reference - Class SubCircuit
Notation used in Ruby API documentation

Module: db

Description: A subcircuit inside a circuit.

Class hierarchy: SubCircuit » NetlistObject

Circuits may instantiate other circuits as subcircuits similar to cells in layouts. Such an instance is a subcircuit. A subcircuit refers to a circuit
implementation (a Circuit object), and presents connections through pins. The pins of a subcircuit can be connected to nets. The subcircuit
pins are identical to the outgoing pins of the circuit the subcircuit refers to.

Subcircuits connect to nets through the SubCircuit#connect_pin method. SubCircuit pins can be disconnected using
SubCircuit#disconnect_pin.

Subcircuit objects are created inside a circuit with Circuit#create_subcircuit.

This class has been added in version 0.26.

Public methods

void _assign (const
SubCircuit
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] new SubCircuit ptr _dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] const Circuit ptr circuit Gets the circuit the subcircuit lives in.

Circuit ptr circuit Gets the circuit the subcircuit lives in (non-const
version).

[const] const Circuit ptr circuit_ref Gets the circuit referenced by the subcircuit.

Circuit ptr circuit_ref Gets the circuit referenced by the subcircuit
(non-const version).

void connect_pin (unsigned long
pin_id,
Net ptr net)

Connects the given pin to the specified net.

void connect_pin (const Pin ptr
pin,
Net ptr net)

Connects the given pin to the specified net.

For more details visit
https://www.klayout.org

Page 1520 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.99. API reference - Class SubCircuit

void disconnect_pin (unsigned long
pin_id)

Disconnects the given pin from any net.

void disconnect_pin (const Pin ptr
pin)

Disconnects the given pin from any net.

[const] string expanded_name Gets the expanded name of the subcircuit.

[const] unsigned long id Gets the subcircuit ID.

[const] string name Gets the name of the subcircuit.

void name= (string name) Sets the name of the subcircuit.

[const] const Net ptr net_for_pin (unsigned long
pin_id)

Gets the net connected to the specified pin of
the subcircuit.

Net ptr net_for_pin (unsigned long
pin_id)

Gets the net connected to the specified pin of
the subcircuit (non-const version).

[const] DCplxTrans trans Gets the physical transformation for the
subcircuit.

void trans= (const
DCplxTrans
trans)

Sets the physical transformation for the
subcircuit.

Detailed description

_assign
Signature: void _assign (const SubCircuit other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new SubCircuit ptr _dup

Description: Creates a copy of self

For more details visit
https://www.klayout.org

Page 1521 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.99. API reference - Class SubCircuit

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

(1) Signature: [const] const Circuit ptr circuit

Description: Gets the circuit the subcircuit lives in.

This is NOT the circuit which is referenced. For getting the circuit that the subcircuit references, use
circuit_ref.

circuit

(2) Signature: Circuit ptr circuit

Description: Gets the circuit the subcircuit lives in (non-const version).

This is NOT the circuit which is referenced. For getting the circuit that the subcircuit references, use
circuit_ref.

This constness variant has been introduced in version 0.26.8

(1) Signature: [const] const Circuit ptr circuit_ref

Description: Gets the circuit referenced by the subcircuit.circuit_ref

(2) Signature: Circuit ptr circuit_ref

Description: Gets the circuit referenced by the subcircuit (non-const version).

This constness variant has been introduced in version 0.26.8

(1) Signature: void connect_pin (unsigned long pin_id, Net ptr net)

Description: Connects the given pin to the specified net.connect_pin

(2) Signature: void connect_pin (const Pin ptr pin, Net ptr net)

Description: Connects the given pin to the specified net.

For more details visit
https://www.klayout.org

Page 1522 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.99. API reference - Class SubCircuit

This version takes a Pin reference instead of a pin ID.

(1) Signature: void disconnect_pin (unsigned long pin_id)

Description: Disconnects the given pin from any net.disconnect_pin

(2) Signature: void disconnect_pin (const Pin ptr pin)

Description: Disconnects the given pin from any net.

This version takes a Pin reference instead of a pin ID.

expanded_name
Signature: [const] string expanded_name

Description: Gets the expanded name of the subcircuit.

The expanded name takes the name of the subcircuit. If the name is empty, the numeric ID will be
used to build a name.

id
Signature: [const] unsigned long id

Description: Gets the subcircuit ID.

The ID is a unique integer which identifies the subcircuit. It can be used to retrieve the subcircuit
from the circuit using Circuit#subcircuit_by_id. When assigned, the subcircuit ID is not 0.

name
Signature: [const] string name

Description: Gets the name of the subcircuit.

Python specific notes:
The object exposes a readable attribute 'name'. This is the getter.

name=
Signature: void name= (string name)

Description: Sets the name of the subcircuit.

SubCircuit names are used to name a subcircuits inside a netlist file. SubCircuit names should be
unique within a circuit.

Python specific notes:
The object exposes a writable attribute 'name'. This is the setter.

(1) Signature: [const] const Net ptr net_for_pin (unsigned long pin_id)

Description: Gets the net connected to the specified pin of the subcircuit.

If the pin is not connected, nil is returned for the net.

net_for_pin

(2) Signature: Net ptr net_for_pin (unsigned long pin_id)

Description: Gets the net connected to the specified pin of the subcircuit (non-const version).

If the pin is not connected, nil is returned for the net.

This constness variant has been introduced in version 0.26.8

trans
Signature: [const] DCplxTrans trans

Description: Gets the physical transformation for the subcircuit.

This property applies to subcircuits derived from a layout. It specifies the placement of the
respective cell.

This property has been introduced in version 0.27.

For more details visit
https://www.klayout.org

Page 1523 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.99. API reference - Class SubCircuit

Python specific notes:
The object exposes a readable attribute 'trans'. This is the getter.

trans=
Signature: void trans= (const DCplxTrans trans)

Description: Sets the physical transformation for the subcircuit.

See trans for details about this property.

This property has been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'trans'. This is the setter.

For more details visit
https://www.klayout.org

Page 1524 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.100. API reference - Class NetTerminalRef

4.100. API reference - Class NetTerminalRef
Notation used in Ruby API documentation

Module: db

Description: A connection to a terminal of a device.

This object is used inside a net (see Net) to describe the connections a net makes.

This class has been added in version 0.26.

Public constructors

new NetTerminalRef ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
NetTerminalRef
other)

Assigns another object to self

[const] const Device ptr device Gets the device reference.

Device ptr device Gets the device reference (non-const version).

[const] const DeviceClass ptr device_class Gets the class of the device which is addressed.

[const] new NetTerminalRef ptr dup Creates a copy of self

[const] const Net ptr net Gets the net this terminal reference is attached to.

Net ptr net Gets the net this terminal reference is attached to
(non-const version).

[const] const
DeviceTerminalDefinition
ptr

terminal_def Gets the terminal definition of the terminal that is
connected

[const] unsigned long terminal_id Gets the ID of the terminal of the device the
connection is made to.

For more details visit
https://www.klayout.org

Page 1525 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.100. API reference - Class NetTerminalRef

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method

For more details visit
https://www.klayout.org

Page 1526 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.100. API reference - Class NetTerminalRef

will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const NetTerminalRef other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

(1) Signature: [const] const Device ptr device

Description: Gets the device reference.

Gets the device object that this connection is made to.

device

(2) Signature: Device ptr device

Description: Gets the device reference (non-const version).

Gets the device object that this connection is made to.

This constness variant has been introduced in version 0.26.8

device_class
Signature: [const] const DeviceClass ptr device_class

Description: Gets the class of the device which is addressed.

dup
Signature: [const] new NetTerminalRef ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

For more details visit
https://www.klayout.org

Page 1527 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.100. API reference - Class NetTerminalRef

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

(1) Signature: [const] const Net ptr net

Description: Gets the net this terminal reference is attached to.net

(2) Signature: Net ptr net

Description: Gets the net this terminal reference is attached to (non-const version).

This constness variant has been introduced in version 0.26.8

new
Signature: [static] new NetTerminalRef ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

terminal_def
Signature: [const] const DeviceTerminalDefinition ptr terminal_def

Description: Gets the terminal definition of the terminal that is connected

terminal_id
Signature: [const] unsigned long terminal_id

Description: Gets the ID of the terminal of the device the connection is made to.

For more details visit
https://www.klayout.org

Page 1528 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.101. API reference - Class NetPinRef

4.101. API reference - Class NetPinRef
Notation used in Ruby API documentation

Module: db

Description: A connection to an outgoing pin of the circuit.

This object is used inside a net (see Net) to describe the connections a net makes.

This class has been added in version 0.26.

Public constructors

new NetPinRef ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
NetPinRef
other)

Assigns another object to self

[const] new NetPinRef ptr dup Creates a copy of self

[const] const Net ptr net Gets the net this pin reference is attached to.

Net ptr net Gets the net this pin reference is attached to (non-
const version).

[const] const Pin ptr pin Gets the Pin object of the pin the connection is made
to.

[const] unsigned long pin_id Gets the ID of the pin the connection is made to.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

For more details visit
https://www.klayout.org

Page 1529 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.101. API reference - Class NetPinRef

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const NetPinRef other)

Description: Assigns another object to self

For more details visit
https://www.klayout.org

Page 1530 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.101. API reference - Class NetPinRef

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new NetPinRef ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

(1) Signature: [const] const Net ptr net

Description: Gets the net this pin reference is attached to.net

(2) Signature: Net ptr net

Description: Gets the net this pin reference is attached to (non-const version).

This constness variant has been introduced in version 0.26.8

new
Signature: [static] new NetPinRef ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

pin
Signature: [const] const Pin ptr pin

Description: Gets the Pin object of the pin the connection is made to.

For more details visit
https://www.klayout.org

Page 1531 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.101. API reference - Class NetPinRef

pin_id
Signature: [const] unsigned long pin_id

Description: Gets the ID of the pin the connection is made to.

For more details visit
https://www.klayout.org

Page 1532 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.102. API reference - Class NetSubcircuitPinRef

4.102. API reference - Class NetSubcircuitPinRef
Notation used in Ruby API documentation

Module: db

Description: A connection to a pin of a subcircuit.

This object is used inside a net (see Net) to describe the connections a net makes.

This class has been added in version 0.26.

Public constructors

new NetSubcircuitPinRef ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
NetSubcircuitPinRef
other)

Assigns another object to self

[const] new
NetSubcircuitPinRef ptr

dup Creates a copy of self

[const] const Net ptr net Gets the net this pin reference is attached to.

Net ptr net Gets the net this pin reference is attached to (non-
const version).

[const] const Pin ptr pin Gets the Pin object of the pin the connection is made
to.

[const] unsigned long pin_id Gets the ID of the pin the connection is made to.

[const] const SubCircuit ptr subcircuit Gets the subcircuit reference.

SubCircuit ptr subcircuit Gets the subcircuit reference (non-const version).

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

For more details visit
https://www.klayout.org

Page 1533 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.102. API reference - Class NetSubcircuitPinRef

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1534 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.102. API reference - Class NetSubcircuitPinRef

assign
Signature: void assign (const NetSubcircuitPinRef other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new NetSubcircuitPinRef ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

(1) Signature: [const] const Net ptr net

Description: Gets the net this pin reference is attached to.net

(2) Signature: Net ptr net

Description: Gets the net this pin reference is attached to (non-const version).

This constness variant has been introduced in version 0.26.8

new
Signature: [static] new NetSubcircuitPinRef ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1535 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.102. API reference - Class NetSubcircuitPinRef

pin
Signature: [const] const Pin ptr pin

Description: Gets the Pin object of the pin the connection is made to.

pin_id
Signature: [const] unsigned long pin_id

Description: Gets the ID of the pin the connection is made to.

(1) Signature: [const] const SubCircuit ptr subcircuit

Description: Gets the subcircuit reference.

This attribute indicates the subcircuit the net attaches to. The subcircuit lives in the same circuit than
the net.

subcircuit

(2) Signature: SubCircuit ptr subcircuit

Description: Gets the subcircuit reference (non-const version).

This attribute indicates the subcircuit the net attaches to. The subcircuit lives in the same circuit than
the net.

This constness variant has been introduced in version 0.26.8

For more details visit
https://www.klayout.org

Page 1536 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.103. API reference - Class Net

4.103. API reference - Class Net
Notation used in Ruby API documentation

Module: db

Description: A single net.

Class hierarchy: Net » NetlistObject

A net connects multiple pins or terminals together. Pins are either pin or subcircuits of outgoing pins of the circuit the net lives in. Terminals
are connections made to specific terminals of devices.

Net objects are created inside a circuit with Circuit#create_net.

To connect a net to an outgoing pin of a circuit, use Circuit#connect_pin, to disconnect a net from an outgoing pin use
Circuit#disconnect_pin. To connect a net to a pin of a subcircuit, use SubCircuit#connect_pin, to disconnect a net from a pin of a subcircuit,
use SubCircuit#disconnect_pin. To connect a net to a terminal of a device, use Device#connect_terminal, to disconnect a net from a
terminal of a device, use Device#disconnect_terminal.

This class has been added in version 0.26.

Public methods

void _assign (const
Net
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] new Net ptr _dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

Circuit ptr circuit Gets the circuit the net lives in.

void clear Clears the net.

[const] unsigned long cluster_id Gets the cluster ID of the net.

void cluster_id= (unsigned
long
id)

Sets the cluster ID of the net.

[const,iter] NetPinRef each_pin Iterates over all outgoing pins the net connects.

[iter] NetPinRef each_pin Iterates over all outgoing pins the net connects
(non-const version).

[const,iter] NetSubcircuitPinRef each_subcircuit_pin Iterates over all subcircuit pins the net connects.

For more details visit
https://www.klayout.org

Page 1537 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.103. API reference - Class Net

[iter] NetSubcircuitPinRef each_subcircuit_pin Iterates over all subcircuit pins the net connects
(non-const version).

[const,iter] NetTerminalRef each_terminal Iterates over all terminals the net connects.

[iter] NetTerminalRef each_terminal Iterates over all terminals the net connects (non-
const version).

[const] string expanded_name Gets the expanded name of the net.

[const] bool is_floating? Returns true, if the net is floating.

[const] bool is_internal? Returns true, if the net is an internal net.

[const] bool is_passive? Returns true, if the net is passive.

[const] string name Gets the name of the net.

void name= (string
name)

Sets the name of the net.

[const] unsigned long pin_count Returns the number of outgoing pins connected
by this net.

[const] string qname Gets the qualified name.

[const] unsigned long subcircuit_pin_count Returns the number of subcircuit pins
connected by this net.

[const] unsigned long terminal_count Returns the number of terminals connected by
this net.

[const] string to_s Gets the qualified name.

Detailed description

_assign
Signature: void _assign (const Net other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

For more details visit
https://www.klayout.org

Page 1538 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.103. API reference - Class Net

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new Net ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

circuit
Signature: Circuit ptr circuit

Description: Gets the circuit the net lives in.

clear
Signature: void clear

Description: Clears the net.

cluster_id
Signature: [const] unsigned long cluster_id

Description: Gets the cluster ID of the net.

See cluster_id= for details about the cluster ID.

Python specific notes:
The object exposes a readable attribute 'cluster_id'. This is the getter.

cluster_id=
Signature: void cluster_id= (unsigned long id)

Description: Sets the cluster ID of the net.

The cluster ID connects the net with a layout cluster. It is set when the net is extracted from a
layout.

Python specific notes:
The object exposes a writable attribute 'cluster_id'. This is the setter.

For more details visit
https://www.klayout.org

Page 1539 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.103. API reference - Class Net

(1) Signature: [const,iter] NetPinRef each_pin

Description: Iterates over all outgoing pins the net connects.

Pin connections are described by NetPinRef objects. Pin connections are connections to outgoing
pins of the circuit the net lives in.

each_pin

(2) Signature: [iter] NetPinRef each_pin

Description: Iterates over all outgoing pins the net connects (non-const version).

Pin connections are described by NetPinRef objects. Pin connections are connections to outgoing
pins of the circuit the net lives in.

This constness variant has been introduced in version 0.26.8

(1) Signature: [const,iter] NetSubcircuitPinRef each_subcircuit_pin

Description: Iterates over all subcircuit pins the net connects.

Subcircuit pin connections are described by NetSubcircuitPinRef objects. These are connections
to specific pins of subcircuits.

each_subcircuit_pin

(2) Signature: [iter] NetSubcircuitPinRef each_subcircuit_pin

Description: Iterates over all subcircuit pins the net connects (non-const version).

Subcircuit pin connections are described by NetSubcircuitPinRef objects. These are connections
to specific pins of subcircuits.

This constness variant has been introduced in version 0.26.8

(1) Signature: [const,iter] NetTerminalRef each_terminal

Description: Iterates over all terminals the net connects.

Terminals connect devices. Terminal connections are described by NetTerminalRef objects.

each_terminal

(2) Signature: [iter] NetTerminalRef each_terminal

Description: Iterates over all terminals the net connects (non-const version).

Terminals connect devices. Terminal connections are described by NetTerminalRef objects.

This constness variant has been introduced in version 0.26.8

expanded_name
Signature: [const] string expanded_name

Description: Gets the expanded name of the net.

The expanded name takes the name of the net. If the name is empty, the cluster ID will be used to
build a name.

is_floating?
Signature: [const] bool is_floating?

Description: Returns true, if the net is floating.

Floating nets are those which don't have any device or subcircuit on it and are not connected
through a pin.

is_internal?
Signature: [const] bool is_internal?

Description: Returns true, if the net is an internal net.

Internal nets are those which connect exactly two terminals and nothing else (pin_count = 0 and
terminal_count == 2).

For more details visit
https://www.klayout.org

Page 1540 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.103. API reference - Class Net

is_passive?
Signature: [const] bool is_passive?

Description: Returns true, if the net is passive.

Passive nets don't have devices or subcircuits on it. They can be exposed through a pin.
is_floating? implies is_passive?.

This method has been introduced in version 0.26.1.

name
Signature: [const] string name

Description: Gets the name of the net.

See name= for details about the name.

Python specific notes:
The object exposes a readable attribute 'name'. This is the getter.

name=
Signature: void name= (string name)

Description: Sets the name of the net.

The name of the net is used for naming the net in schematic files for example. The name of the net
has to be unique.

Python specific notes:
The object exposes a writable attribute 'name'. This is the setter.

pin_count
Signature: [const] unsigned long pin_count

Description: Returns the number of outgoing pins connected by this net.

qname
Signature: [const] string qname

Description: Gets the qualified name.

The qualified name is like the expanded name, but the circuit's name is preceded (i.e.
'CIRCUIT:NET') if available.

Python specific notes:
This method is also available as 'str(object)'

subcircuit_pin_count
Signature: [const] unsigned long subcircuit_pin_count

Description: Returns the number of subcircuit pins connected by this net.

terminal_count
Signature: [const] unsigned long terminal_count

Description: Returns the number of terminals connected by this net.

to_s
Signature: [const] string to_s

Description: Gets the qualified name.

The qualified name is like the expanded name, but the circuit's name is preceded (i.e.
'CIRCUIT:NET') if available.

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 1541 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.104. API reference - Class DeviceTerminalDefinition

4.104. API reference - Class DeviceTerminalDefinition
Notation used in Ruby API documentation

Module: db

Description: A terminal descriptor

This class is used inside the DeviceClass class to describe a terminal of the device.

This class has been added in version 0.26.

Public constructors

new DeviceTerminalDefinition ptr new (string name,
string description =)

Creates a new terminal definition.

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
DeviceTerminalDefinition
other)

Assigns another object to self

[const] string description Gets the description of the terminal.

void description= (string
description)

Sets the description of the terminal.

[const] new
DeviceTerminalDefinition
ptr

dup Creates a copy of self

[const] unsigned long id Gets the ID of the terminal.

[const] string name Gets the name of the terminal.

void name= (string
name)

Sets the name of the terminal.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

For more details visit
https://www.klayout.org

Page 1542 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.104. API reference - Class DeviceTerminalDefinition

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1543 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.104. API reference - Class DeviceTerminalDefinition

assign
Signature: void assign (const DeviceTerminalDefinition other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

description
Signature: [const] string description

Description: Gets the description of the terminal.

Python specific notes:
The object exposes a readable attribute 'description'. This is the getter.

description=
Signature: void description= (string description)

Description: Sets the description of the terminal.

Python specific notes:
The object exposes a writable attribute 'description'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new DeviceTerminalDefinition ptr dup

Description: Creates a copy of self

id
Signature: [const] unsigned long id

Description: Gets the ID of the terminal.

The ID of the terminal is used in some places to refer to a specific terminal (e.g. in the
NetTerminalRef object).

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

For more details visit
https://www.klayout.org

Page 1544 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.104. API reference - Class DeviceTerminalDefinition

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

name
Signature: [const] string name

Description: Gets the name of the terminal.

Python specific notes:
The object exposes a readable attribute 'name'. This is the getter.

name=
Signature: void name= (string name)

Description: Sets the name of the terminal.

Python specific notes:
The object exposes a writable attribute 'name'. This is the setter.

new
Signature: [static] new DeviceTerminalDefinition ptr new (string name, string description =)

Description: Creates a new terminal definition.

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1545 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.105. API reference - Class DeviceParameterDefinition

4.105. API reference - Class DeviceParameterDefinition
Notation used in Ruby API documentation

Module: db

Description: A parameter descriptor

This class is used inside the DeviceClass class to describe a parameter of the device.

This class has been added in version 0.26.

Public constructors

new
DeviceParameterDefinition
ptr

new (string name,
string description = ,
double default_value = 0,
bool is_primary = true,
double si_scaling = 1)

Creates a new parameter
definition.@param name The name of
the parameter

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
DeviceParameterDefinition
other)

Assigns another object to self

[const] double default_value Gets the default value of the parameter.

void default_value= (double
default_value)

Sets the default value of the parameter.

[const] string description Gets the description of the parameter.

void description= (string
description)

Sets the description of the parameter.

[const] new
DeviceParameterDefinition
ptr

dup Creates a copy of self

[const] unsigned long id Gets the ID of the parameter.

void is_primary= (bool
primary)

Sets a value indicating whether the parameter is
a primary parameter

For more details visit
https://www.klayout.org

Page 1546 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.105. API reference - Class DeviceParameterDefinition

[const] bool is_primary? Gets a value indicating whether the parameter is
a primary parameter

[const] string name Gets the name of the parameter.

void name= (string
name)

Sets the name of the parameter.

[const] double si_scaling Gets the scaling factor to SI units.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is

For more details visit
https://www.klayout.org

Page 1547 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.105. API reference - Class DeviceParameterDefinition

known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const DeviceParameterDefinition other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

default_value
Signature: [const] double default_value

Description: Gets the default value of the parameter.

Python specific notes:
The object exposes a readable attribute 'default_value'. This is the getter.

default_value=
Signature: void default_value= (double default_value)

Description: Sets the default value of the parameter.

The default value is used to initialize parameters of Device objects.

Python specific notes:
The object exposes a writable attribute 'default_value'. This is the setter.

description
Signature: [const] string description

Description: Gets the description of the parameter.

Python specific notes:
The object exposes a readable attribute 'description'. This is the getter.

description=
Signature: void description= (string description)

Description: Sets the description of the parameter.

Python specific notes:
The object exposes a writable attribute 'description'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 1548 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.105. API reference - Class DeviceParameterDefinition

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new DeviceParameterDefinition ptr dup

Description: Creates a copy of self

id
Signature: [const] unsigned long id

Description: Gets the ID of the parameter.

The ID of the parameter is used in some places to refer to a specific parameter (e.g. in the
NetParameterRef object).

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_primary=
Signature: void is_primary= (bool primary)

Description: Sets a value indicating whether the parameter is a primary parameter

If this flag is set to true (the default), the parameter is considered a primary parameter. Only primary
parameters are compared by default.

Python specific notes:
The object exposes a writable attribute 'is_primary'. This is the setter.

is_primary?
Signature: [const] bool is_primary?

Description: Gets a value indicating whether the parameter is a primary parameter

See is_primary= for details about this predicate.

Python specific notes:
The object exposes a readable attribute 'is_primary'. This is the getter.

name
Signature: [const] string name

Description: Gets the name of the parameter.

Python specific notes:
The object exposes a readable attribute 'name'. This is the getter.

name=
Signature: void name= (string name)

Description: Sets the name of the parameter.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1549 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.105. API reference - Class DeviceParameterDefinition

The object exposes a writable attribute 'name'. This is the setter.

new
Signature: [static] new DeviceParameterDefinition ptr new (string name, string description = ,
double default_value = 0, bool is_primary = true, double si_scaling = 1)

Description: Creates a new parameter definition.@param name The name of the parameter

description: The human-readable description

default_value: The initial value

is_primary: True, if the parameter is a primary parameter (see
is_primary=)

si_scaling: The scaling factor to SI units

Python specific notes:
This method is the default initializer of the object

si_scaling
Signature: [const] double si_scaling

Description: Gets the scaling factor to SI units.

For parameters in micrometers for example, this factor will be 1e-6.

For more details visit
https://www.klayout.org

Page 1550 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.106. API reference - Class EqualDeviceParameters

4.106. API reference - Class EqualDeviceParameters
Notation used in Ruby API documentation

Module: db

Description: A device parameter equality comparer.

Attach this object to a device class with DeviceClass#equal_parameters= to make the device class use this comparer:

20nm tolerance for length:
equal_device_parameters = RBA::EqualDeviceParameters::new(RBA::DeviceClassMOS4Transistor::PARAM_L, 0.02, 0.0)
one percent tolerance for width:
equal_device_parameters += RBA::EqualDeviceParameters::new(RBA::DeviceClassMOS4Transistor::PARAM_W, 0.0,
 0.01)
applies the compare delegate:
netlist.device_class_by_name("NMOS").equal_parameters = equal_device_parameters

You can use this class to specify fuzzy equality criteria for the comparison of device parameters in netlist verification or to confine the
equality of devices to certain parameters only.

This class has been added in version 0.26.

Public constructors

new EqualDeviceParameters
ptr

new (unsigned long param_id,
double absolute = 0,
double relative = 0)

Creates a device parameter comparer
for a single parameter.

Public methods

[const] EqualDeviceParameters + (const
EqualDeviceParameters
other)

Combines two parameters for comparison.

[const] EqualDeviceParameters += (const
EqualDeviceParameters
other)

Combines two parameters for comparison (in-
place).

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
EqualDeviceParameters
other)

Assigns another object to self

For more details visit
https://www.klayout.org

Page 1551 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.106. API reference - Class EqualDeviceParameters

[const] new
EqualDeviceParameters
ptr

dup Creates a copy of self

Public static methods and constants

new EqualDeviceParameters
ptr

ignore (unsigned long
param_id)

Creates a device parameter comparer which
ignores the parameter.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

+
Signature: [const] EqualDeviceParameters + (const EqualDeviceParameters other)

Description: Combines two parameters for comparison.

The '+' operator will join the parameter comparers and produce one that checks the combined
parameters.

+=
Signature: [const] EqualDeviceParameters += (const EqualDeviceParameters other)

Description: Combines two parameters for comparison (in-place).

The '+=' operator will join the parameter comparers and produce one that checks the combined
parameters.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

For more details visit
https://www.klayout.org

Page 1552 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.106. API reference - Class EqualDeviceParameters

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called on
self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it is
known that some C++ object holds and manages this object. Technically speaking, this method will
turn the script's reference into a weak reference. After the script engine decides to delete the reference,
the object itself will still exist. If the object is not managed otherwise, memory leaks will occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const EqualDeviceParameters other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new EqualDeviceParameters ptr dup

For more details visit
https://www.klayout.org

Page 1553 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.106. API reference - Class EqualDeviceParameters

Description: Creates a copy of self

ignore
Signature: [static] new EqualDeviceParameters ptr ignore (unsigned long param_id)

Description: Creates a device parameter comparer which ignores the parameter.

This specification can be used to make a parameter ignored. Starting with version 0.27.4, all primary
parameters are compared. Before 0.27.4, giving a tolerance meant only those parameters are
compared. To exclude a primary parameter from the compare, use the 'ignore' specification for that
parameter.

This constructor has been introduced in version 0.27.4.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called on
self.

new
Signature: [static] new EqualDeviceParameters ptr new (unsigned long param_id, double absolute =
0, double relative = 0)

Description: Creates a device parameter comparer for a single parameter.

'absolute' is the absolute deviation allowed for the parameter values. 'relative' is the relative deviation
allowed for the parameter values (a value between 0 and 1).

A value of 0 for both absolute and relative deviation means the parameters have to match exactly.

If 'absolute' and 'relative' are both given, their deviations will add to the allowed difference between two
parameter values. The relative deviation will be applied to the mean value of both parameter values.
For example, when comparing parameter values of 40 and 60, a relative deviation of 0.35 means an
absolute deviation of 17.5 (= 0.35 * average of 40 and 60) which does not make both values match.

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1554 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.107. API reference - Class GenericDeviceParameterCompare

4.107. API reference - Class GenericDeviceParameterCompare
Notation used in Ruby API documentation

Module: db

Description: A class implementing the comparison of device parameters.

Class hierarchy: GenericDeviceParameterCompare » EqualDeviceParameters

Reimplement this class to provide a custom device parameter compare scheme. Attach this object to a device class with
DeviceClass#equal_parameters= to make the device class use this comparer.

This class is intended for special cases. In most scenarios it is easier to use EqualDeviceParameters instead of implementing a custom
comparer class.

This class has been added in version 0.26. The 'equal' method has been dropped in 0.27.1 as it can be expressed as !less(a,b) && !
less(b,a).

Public methods

void _assign (const
GenericDeviceParameterCompare
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] new
GenericDeviceParameterCompare
ptr

_dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

[virtual,const] bool less (const
Device
device_a,
const
Device
device_b)

Compares the parameters of two devices for a begin
less than b. Returns true, if the parameters of device
a are considered less than those of device b.The
'less' implementation needs to ensure strict weak
ordering. Specifically, less(a,b) == false and less(b,a)
implies that a is equal to b and less(a,b) == true
implies that less(b,a) is false and vice versa. If not, an
internal error will be encountered on netlist compare.

Detailed description

_assign
Signature: void _assign (const GenericDeviceParameterCompare other)

Description: Assigns another object to self

For more details visit
https://www.klayout.org

Page 1555 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.107. API reference - Class GenericDeviceParameterCompare

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new GenericDeviceParameterCompare ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

less
Signature: [virtual,const] bool less (const Device device_a, const Device device_b)

Description: Compares the parameters of two devices for a begin less than b. Returns true, if the
parameters of device a are considered less than those of device b.The 'less' implementation needs
to ensure strict weak ordering. Specifically, less(a,b) == false and less(b,a) implies that a is equal to

For more details visit
https://www.klayout.org

Page 1556 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.107. API reference - Class GenericDeviceParameterCompare

b and less(a,b) == true implies that less(b,a) is false and vice versa. If not, an internal error will be
encountered on netlist compare.

For more details visit
https://www.klayout.org

Page 1557 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.108. API reference - Class GenericDeviceCombiner

4.108. API reference - Class GenericDeviceCombiner
Notation used in Ruby API documentation

Module: db

Description: A class implementing the combination of two devices (parallel or serial mode).

Reimplement this class to provide a custom device combiner. Device combination requires 'supports_paralell_combination' or
'supports_serial_combination' to be set to true for the device class. In the netlist device combination step, the algorithm will try to identify
devices which can be combined into single devices and use the combiner object to implement the actual joining of such devices.

Attach this object to a device class with DeviceClass#combiner= to make the device class use this combiner.

This class has been added in version 0.27.3.

Public constructors

new GenericDeviceCombiner ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
GenericDeviceCombiner
other)

Assigns another object to self

[virtual,const] bool combine_devices (Device ptr
device_a,
Device ptr
device_b)

Combines two devices if possible.

[const] new
GenericDeviceCombiner
ptr

dup Creates a copy of self

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

For more details visit
https://www.klayout.org

Page 1558 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.108. API reference - Class GenericDeviceCombiner

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const GenericDeviceCombiner other)

Description: Assigns another object to self

For more details visit
https://www.klayout.org

Page 1559 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.108. API reference - Class GenericDeviceCombiner

combine_devices
Signature: [virtual,const] bool combine_devices (Device ptr device_a, Device ptr device_b)

Description: Combines two devices if possible.

This method needs to test, whether the two devices can be combined. Both devices are guaranteed
to share the same device class. If they cannot be combined, this method shall do nothing and return
false. If they can be combined, this method shall reconnect the nets of the first device and entirely
disconnect the nets of the second device. The second device will be deleted afterwards.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new GenericDeviceCombiner ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new GenericDeviceCombiner ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1560 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.109. API reference - Class DeviceClass

4.109. API reference - Class DeviceClass
Notation used in Ruby API documentation

Module: db

Description: A class describing a specific type of device.

Device class objects live in the context of a Netlist object. After a device class is created, it must be added to the netlist using Netlist#add.
The netlist will own the device class object. When the netlist is destroyed, the device class object will become invalid.

The DeviceClass class is the base class for other device classes.

This class has been added in version 0.26. In version 0.27.3, the 'GenericDeviceClass' has been integrated with DeviceClass and the
device class was made writeable in most respects. This enables manipulating built-in device classes.

Public constructors

new DeviceClass ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void add_parameter (DeviceParameterDefinition
ptr
parameter_def)

Adds the given parameter definition to the
device class

void add_terminal (DeviceTerminalDefinition
ptr terminal_def)

Adds the given terminal definition to the
device class

void assign (const
DeviceClass
other)

Assigns another object to self

void clear_equivalent_terminal_ids Clears all equivalent terminal ids

void clear_parameters Clears the list of parameters

void clear_terminals Clears the list of terminals

GenericDeviceCombiner
ptr

combiner Gets a device combiner or nil if none is
registered.

For more details visit
https://www.klayout.org

Page 1561 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.109. API reference - Class DeviceClass

void combiner= (GenericDeviceCombiner
ptr combiner)

Specifies a device combiner (parallel or serial
device combination).

[const] string description Gets the description text of the device class.

void description= (string
description)

Sets the description of the device class.

[const] new DeviceClass ptr dup Creates a copy of self

void enable_parameter (unsigned long
parameter_id,
bool enable)

Enables or disables a parameter.

void enable_parameter (string
parameter_name,
bool enable)

Enables or disables a parameter.

EqualDeviceParameters
ptr

equal_parameters Gets the device parameter comparer for
netlist verification or nil if no comparer is
registered.

void equal_parameters= (EqualDeviceParameters
ptr comparer)

Specifies a device parameter comparer for
netlist verification.

void equivalent_terminal_id (unsigned long
original_id,
unsigned long
equivalent_id)

Specifies a terminal to be equivalent to
another.

[const] bool has_parameter? (string name) Returns true, if the device class has a
parameter with the given name.

[const] bool has_terminal? (string name) Returns true, if the device class has a
terminal with the given name.

[const] unsigned long id Gets the unique ID of the device class

[const] string name Gets the name of the device class.

void name= (string name) Sets the name of the device class.

Netlist ptr netlist Gets the netlist the device class lives in.

[const] const
DeviceParameterDefinition
ptr

parameter_definition (unsigned long
parameter_id)

Gets the parameter definition object for a
given ID.

[const] const
DeviceParameterDefinition
ptr

parameter_definition (string
parameter_name)

Gets the parameter definition object for a
given ID.

[const] DeviceParameterDefinition[]parameter_definitions Gets the list of parameter definitions of the
device.

[const] unsigned long parameter_id (string name) Returns the parameter ID of the parameter
with the given name.

For more details visit
https://www.klayout.org

Page 1562 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.109. API reference - Class DeviceClass

void strict= (bool s) Sets a value indicating whether this class
performs strict terminal mapping

[const] bool strict? Gets a value indicating whether this class
performs strict terminal mapping

void supports_parallel_combination=(bool f) Specifies whether the device supports
parallel device combination.

void supports_serial_combination=(bool f) Specifies whether the device supports serial
device combination.

[const] const
DeviceTerminalDefinition
ptr

terminal_definition (unsigned long
terminal_id)

Gets the terminal definition object for a given
ID.

[const] DeviceTerminalDefinition[]terminal_definitions Gets the list of terminal definitions of the
device.

[const] unsigned long terminal_id (string name) Returns the terminal ID of the terminal with
the given name.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

For more details visit
https://www.klayout.org

Page 1563 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.109. API reference - Class DeviceClass

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

add_parameter
Signature: void add_parameter (DeviceParameterDefinition ptr parameter_def)

Description: Adds the given parameter definition to the device class

This method will define a new parameter. The new parameter is added at the end of existing
parameters. The parameter definition object passed as the argument is modified to contain the new
ID of the parameter. The parameter is copied into the device class. Modifying the parameter object
later does not have the effect of changing the parameter definition.

This method has been moved from 'GenericDeviceClass' to 'DeviceClass' in version 0.27.3.

add_terminal
Signature: void add_terminal (DeviceTerminalDefinition ptr terminal_def)

Description: Adds the given terminal definition to the device class

This method will define a new terminal. The new terminal is added at the end of existing terminals.
The terminal definition object passed as the argument is modified to contain the new ID of the
terminal.

The terminal is copied into the device class. Modifying the terminal object later does not have the
effect of changing the terminal definition.

This method has been moved from 'GenericDeviceClass' to 'DeviceClass' in version 0.27.3.

assign
Signature: void assign (const DeviceClass other)

Description: Assigns another object to self

clear_equivalent_terminal_ids
Signature: void clear_equivalent_terminal_ids

Description: Clears all equivalent terminal ids

This method has been added in version 0.27.3.

For more details visit
https://www.klayout.org

Page 1564 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.109. API reference - Class DeviceClass

clear_parameters
Signature: void clear_parameters

Description: Clears the list of parameters

This method has been added in version 0.27.3.

clear_terminals
Signature: void clear_terminals

Description: Clears the list of terminals

This method has been moved from 'GenericDeviceClass' to 'DeviceClass' in version 0.27.3.

combiner
Signature: GenericDeviceCombiner ptr combiner

Description: Gets a device combiner or nil if none is registered.

This method has been added in version 0.27.3.

Python specific notes:
The object exposes a readable attribute 'combiner'. This is the getter.

combiner=
Signature: void combiner= (GenericDeviceCombiner ptr combiner)

Description: Specifies a device combiner (parallel or serial device combination).

You can assign nil for the combiner to remove it.

In special cases, you can even implement a custom combiner by deriving your own comparer from
the GenericDeviceCombiner class.

This method has been added in version 0.27.3.

Python specific notes:
The object exposes a writable attribute 'combiner'. This is the setter.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

description
Signature: [const] string description

Description: Gets the description text of the device class.

Python specific notes:
The object exposes a readable attribute 'description'. This is the getter.

description=
Signature: void description= (string description)

Description: Sets the description of the device class.

Python specific notes:
The object exposes a writable attribute 'description'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

For more details visit
https://www.klayout.org

Page 1565 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.109. API reference - Class DeviceClass

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new DeviceClass ptr dup

Description: Creates a copy of self

(1) Signature: void enable_parameter (unsigned long parameter_id, bool enable)

Description: Enables or disables a parameter.

Some parameters are 'secondary' parameters which are extracted but not handled in device
compare and are not shown in the netlist browser. For example, the 'W' parameter of the resistor is
such a secondary parameter. This method allows turning a parameter in a primary one ('enable') or
into a secondary one ('disable').

This method has been introduced in version 0.27.3.

enable_parameter

(2) Signature: void enable_parameter (string parameter_name, bool enable)

Description: Enables or disables a parameter.

Some parameters are 'secondary' parameters which are extracted but not handled in device
compare and are not shown in the netlist browser. For example, the 'W' parameter of the resistor is
such a secondary parameter. This method allows turning a parameter in a primary one ('enable') or
into a secondary one ('disable').

This version accepts a parameter name.

This method has been introduced in version 0.27.3.

equal_parameters
Signature: EqualDeviceParameters ptr equal_parameters

Description: Gets the device parameter comparer for netlist verification or nil if no comparer is
registered.

See equal_parameters= for the setter.

This method has been moved from 'GenericDeviceClass' to 'DeviceClass' in version 0.27.3.

Python specific notes:
The object exposes a readable attribute 'equal_parameters'. This is the getter.

equal_parameters=
Signature: void equal_parameters= (EqualDeviceParameters ptr comparer)

Description: Specifies a device parameter comparer for netlist verification.

By default, all devices are compared with all parameters. If you want to select only certain
parameters for comparison or use a fuzzy compare criterion, use an EqualDeviceParameters
object and assign it to the device class of one netlist. You can also chain multiple
EqualDeviceParameters objects with the '+' operator for specifying multiple parameters in the
equality check.

You can assign nil for the parameter comparer to remove it.

In special cases, you can even implement a custom compare scheme by deriving your own
comparer from the GenericDeviceParameterCompare class.

For more details visit
https://www.klayout.org

Page 1566 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.109. API reference - Class DeviceClass

This method has been moved from 'GenericDeviceClass' to 'DeviceClass' in version 0.27.3.

Python specific notes:
The object exposes a writable attribute 'equal_parameters'. This is the setter.

equivalent_terminal_id
Signature: void equivalent_terminal_id (unsigned long original_id, unsigned long equivalent_id)

Description: Specifies a terminal to be equivalent to another.

Use this method to specify two terminals to be exchangeable. For example to make S and D of a
MOS transistor equivalent, call this method with S and D terminal IDs. In netlist matching, S will be
translated to D and thus made equivalent to D.

Note that terminal equivalence is not effective if the device class operates in strict mode (see
DeviceClass#strict=).

This method has been moved from 'GenericDeviceClass' to 'DeviceClass' in version 0.27.3.

has_parameter?
Signature: [const] bool has_parameter? (string name)

Description: Returns true, if the device class has a parameter with the given name.

has_terminal?
Signature: [const] bool has_terminal? (string name)

Description: Returns true, if the device class has a terminal with the given name.

id
Signature: [const] unsigned long id

Description: Gets the unique ID of the device class

The ID is a unique integer that identifies the device class. Use the ID to check for object identity -
i.e. to determine whether two devices share the same device class.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

name
Signature: [const] string name

Description: Gets the name of the device class.

Python specific notes:
The object exposes a readable attribute 'name'. This is the getter.

name=
Signature: void name= (string name)

Description: Sets the name of the device class.

Python specific notes:
The object exposes a writable attribute 'name'. This is the setter.

netlist
Signature: Netlist ptr netlist

Description: Gets the netlist the device class lives in.

new
Signature: [static] new DeviceClass ptr new

Description: Creates a new object of this class

Python specific notes:

For more details visit
https://www.klayout.org

Page 1567 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.109. API reference - Class DeviceClass

This method is the default initializer of the object

(1) Signature: [const] const DeviceParameterDefinition ptr parameter_definition (unsigned long
parameter_id)

Description: Gets the parameter definition object for a given ID.

Parameter definition IDs are used in some places to reference a specific parameter of a device.
This method obtains the corresponding definition object.

parameter_definition

(2) Signature: [const] const DeviceParameterDefinition ptr parameter_definition (string
parameter_name)

Description: Gets the parameter definition object for a given ID.

Parameter definition IDs are used in some places to reference a specific parameter of a device.
This method obtains the corresponding definition object. This version accepts a parameter name.

This method has been introduced in version 0.27.3.

parameter_definitions
Signature: [const] DeviceParameterDefinition[] parameter_definitions

Description: Gets the list of parameter definitions of the device.

See the DeviceParameterDefinition class description for details.

parameter_id
Signature: [const] unsigned long parameter_id (string name)

Description: Returns the parameter ID of the parameter with the given name.

An exception is thrown if there is no parameter with the given name. Use has_parameter to check
whether the name is a valid parameter name.

strict=
Signature: void strict= (bool s)

Description: Sets a value indicating whether this class performs strict terminal mapping

Classes with this flag set never allow terminal swapping, even if the device symmetry supports that.
If two classes are involved in a netlist compare, terminal swapping will be disabled if one of the
classes is in strict mode.

By default, device classes are not strict and terminal swapping is allowed as far as the device
symmetry supports that.

Python specific notes:
The object exposes a writable attribute 'strict'. This is the setter.

strict?
Signature: [const] bool strict?

Description: Gets a value indicating whether this class performs strict terminal mapping

See strict= for details about this attribute.

Python specific notes:
The object exposes a readable attribute 'strict'. This is the getter.

supports_parallel_combination=
Signature: void supports_parallel_combination= (bool f)

Description: Specifies whether the device supports parallel device combination.

Parallel device combination means that all terminals of two combination candidates are connected
to the same nets. If the device does not support this combination mode, this predicate can be set
to false. This will make the device extractor skip the combination test in parallel mode and improve
performance somewhat.

This method has been moved from 'GenericDeviceClass' to 'DeviceClass' in version 0.27.3.

For more details visit
https://www.klayout.org

Page 1568 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.109. API reference - Class DeviceClass

Python specific notes:
The object exposes a writable attribute 'supports_parallel_combination'. This is the setter.

supports_serial_combination=
Signature: void supports_serial_combination= (bool f)

Description: Specifies whether the device supports serial device combination.

Serial device combination means that the devices are connected by internal nodes. If the device
does not support this combination mode, this predicate can be set to false. This will make the
device extractor skip the combination test in serial mode and improve performance somewhat.

This method has been moved from 'GenericDeviceClass' to 'DeviceClass' in version 0.27.3.

Python specific notes:
The object exposes a writable attribute 'supports_serial_combination'. This is the setter.

terminal_definition
Signature: [const] const DeviceTerminalDefinition ptr terminal_definition (unsigned long
terminal_id)

Description: Gets the terminal definition object for a given ID.

Terminal definition IDs are used in some places to reference a specific terminal of a device. This
method obtains the corresponding definition object.

terminal_definitions
Signature: [const] DeviceTerminalDefinition[] terminal_definitions

Description: Gets the list of terminal definitions of the device.

See the DeviceTerminalDefinition class description for details.

terminal_id
Signature: [const] unsigned long terminal_id (string name)

Description: Returns the terminal ID of the terminal with the given name.

An exception is thrown if there is no terminal with the given name. Use has_terminal to check
whether the name is a valid terminal name.

For more details visit
https://www.klayout.org

Page 1569 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.110. API reference - Class Circuit

4.110. API reference - Class Circuit
Notation used in Ruby API documentation

Module: db

Description: Circuits are the basic building blocks of the netlist

Class hierarchy: Circuit » NetlistObject

A circuit has pins by which it can connect to the outside. Pins are created using create_pin and are represented by the Pin class.

Furthermore, a circuit manages the components of the netlist. Components are devices (class Device) and subcircuits (class SubCircuit).
Devices are basic devices such as resistors or transistors. Subcircuits are other circuits to which nets from this circuit connect. Devices are
created using the create_device method. Subcircuits are created using the create_subcircuit method.

Devices are connected through 'terminals', subcircuits are connected through their pins. Terminals and pins are described by integer ID's in
the context of most methods.

Finally, the circuit consists of the nets. Nets connect terminals of devices and pins of subcircuits or the circuit itself. Nets are created using
create_net and are represented by objects of the Net class. See there for more about nets.

The Circuit object is only valid if the netlist object is alive. Circuits must be added to a netlist using Netlist#add to become part of the netlist.

The Circuit class has been introduced in version 0.26.

Public methods

void _assign (const Circuit
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] new Circuit ptr _dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void blank Blanks out the circuit

[const] DPolygon boundary Gets the boundary of the circuit

void boundary= (const DPolygon
boundary)

Sets the boundary of the circuit

[const] unsigned int cell_index Gets the cell index of the circuit

void cell_index= (unsigned int
cell_index)

Sets the cell index

void clear Clears the circuit

For more details visit
https://www.klayout.org

Page 1570 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.110. API reference - Class Circuit

void combine_devices Combines devices where possible

void connect_pin (unsigned long
pin_id,
Net ptr net)

Connects the given pin with the given net.

void connect_pin (const Pin ptr pin,
Net ptr net)

Connects the given pin with the given net.

Device ptr create_device (DeviceClass ptr
device_class,
string name =)

Creates a new bound Device object inside
the circuit

Net ptr create_net (string name =) Creates a new Net object inside the circuit

Pin ptr create_pin (string name) Creates a new Pin object inside the circuit

SubCircuit ptr create_subcircuit (Circuit ptr circuit,
string name =)

Creates a new bound SubCircuit object
inside the circuit

Device ptr device_by_id (unsigned long id) Gets the device object for a given ID.

[const] const Device ptr device_by_id (unsigned long id) Gets the device object for a given ID (const
version).

Device ptr device_by_name (string name) Gets the device object for a given name.

[const] const Device ptr device_by_name (string name) Gets the device object for a given name
(const version).

void disconnect_pin (unsigned long
pin_id)

Disconnects the given pin from any net.

void disconnect_pin (const Pin ptr pin) Disconnects the given pin from any net.

[const] bool dont_purge Gets a value indicating whether the circuit
can be purged on Netlist#purge.

void dont_purge= (bool f) Sets a value indicating whether the circuit
can be purged on Netlist#purge.

[iter] Circuit each_child Iterates over the child circuits of this circuit

[const,iter] Circuit each_child Iterates over the child circuits of this circuit
(const version)

[iter] Device each_device Iterates over the devices of the circuit

[const,iter] Device each_device Iterates over the devices of the circuit (const
version)

[iter] Net each_net Iterates over the nets of the circuit

[const,iter] Net each_net Iterates over the nets of the circuit (const
version)

[iter] Circuit each_parent Iterates over the parent circuits of this circuit

For more details visit
https://www.klayout.org

Page 1571 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.110. API reference - Class Circuit

[const,iter] Circuit each_parent Iterates over the parent circuits of this circuit
(const version)

[iter] Pin each_pin Iterates over the pins of the circuit

[const,iter] Pin each_pin Iterates over the pins of the circuit (const
version)

[iter] SubCircuit each_ref Iterates over the subcircuit objects
referencing this circuit

[const,iter] SubCircuit each_ref Iterates over the subcircuit objects
referencing this circuit (const version)

[iter] SubCircuit each_subcircuit Iterates over the subcircuits of the circuit

[const,iter] SubCircuit each_subcircuit Iterates over the subcircuits of the circuit
(const version)

void flatten_subcircuit (SubCircuit ptr
subcircuit)

Flattens a subcircuit

[const] bool has_refs? Returns a value indicating whether the circuit
has references

void join_nets (Net ptr net,
Net ptr with)

Joins (connects) two nets into one

[const] string name Gets the name of the circuit

void name= (string name) Sets the name of the circuit

Net ptr net_by_cluster_id (unsigned long
cluster_id)

Gets the net object corresponding to a
specific cluster ID

Net ptr net_by_name (string name) Gets the net object for a given name.

[const] const Net ptr net_by_name (string name) Gets the net object for a given name (const
version).

Net ptr net_for_pin (unsigned long
pin_id)

Gets the net object attached to a specific pin.

[const] const Net ptr net_for_pin (unsigned long
pin_id)

Gets the net object attached to a specific pin
(const version).

Net ptr net_for_pin (const Pin ptr pin) Gets the net object attached to a specific pin.

[const] const Net ptr net_for_pin (const Pin ptr pin) Gets the net object attached to a specific pin
(const version).

Netlist ptr netlist Gets the netlist object the circuit lives in

[const] const Netlist ptr netlist Gets the netlist object the circuit lives in
(const version)

Net ptr[] nets_by_name (string
name_pattern)

Gets the net objects for a given name filter.

For more details visit
https://www.klayout.org

Page 1572 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.110. API reference - Class Circuit

[const] const Net ptr[] nets_by_name (string
name_pattern)

Gets the net objects for a given name filter
(const version).

Pin ptr pin_by_id (unsigned long id) Gets the Pin object corresponding to a
specific ID

[const] const Pin ptr pin_by_id (unsigned long id) Gets the Pin object corresponding to a
specific ID (const version)

Pin ptr pin_by_name (string name) Gets the Pin object corresponding to a
specific name

[const] const Pin ptr pin_by_name (string name) Gets the Pin object corresponding to a
specific name (const version)

[const] unsigned long pin_count Gets the number of pins in the circuit

void purge_nets Purges floating nets.

void purge_nets_keep_pins Purges floating nets but keep pins.

void remove_device (Device ptr
device)

Removes the given device from the circuit

void remove_net (Net ptr net) Removes the given net from the circuit

void remove_pin (unsigned long id) Removes the pin with the given ID from the
circuit

void remove_subcircuit (SubCircuit ptr
subcircuit)

Removes the given subcircuit from the circuit

void rename_pin (unsigned long id,
string new_name)

Renames the pin with the given ID to
'new_name'

SubCircuit ptr subcircuit_by_id (unsigned long id) Gets the subcircuit object for a given ID.

[const] const SubCircuit
ptr

subcircuit_by_id (unsigned long id) Gets the subcircuit object for a given ID
(const version).

SubCircuit ptr subcircuit_by_name (string name) Gets the subcircuit object for a given name.

[const] const SubCircuit
ptr

subcircuit_by_name (string name) Gets the subcircuit object for a given name
(const version).

Detailed description

_assign
Signature: void _assign (const Circuit other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

For more details visit
https://www.klayout.org

Page 1573 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.110. API reference - Class Circuit

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new Circuit ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management
of the object. This method may be called if an object is returned from a C++ function and the
object is known not to be owned by any C++ instance. If necessary, the script side may delete
the object if the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called
if it is known that some C++ object holds and manages this object. Technically speaking, this
method will turn the script's reference into a weak reference. After the script engine decides
to delete the reference, the object itself will still exist. If the object is not managed otherwise,
memory leaks will occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

blank
Signature: void blank

Description: Blanks out the circuit

This method will remove all the innards of the circuit and just leave the pins. The pins won't be
connected to inside nets anymore, but the circuit can still be called by subcircuit references. This
method will eventually create a 'circuit abstract' (or black box). It will set the dont_purge flag to
mark this circuit as 'intentionally empty'.

boundary
Signature: [const] DPolygon boundary

Description: Gets the boundary of the circuit

Python specific notes:

For more details visit
https://www.klayout.org

Page 1574 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.110. API reference - Class Circuit

The object exposes a readable attribute 'boundary'. This is the getter.

boundary=
Signature: void boundary= (const DPolygon boundary)

Description: Sets the boundary of the circuit

Python specific notes:
The object exposes a writable attribute 'boundary'. This is the setter.

cell_index
Signature: [const] unsigned int cell_index

Description: Gets the cell index of the circuit

See cell_index= for details.

Python specific notes:
The object exposes a readable attribute 'cell_index'. This is the getter.

cell_index=
Signature: void cell_index= (unsigned int cell_index)

Description: Sets the cell index

The cell index relates a circuit with a cell from a layout. It's intended to hold a cell index number if
the netlist was extracted from a layout.

Python specific notes:
The object exposes a writable attribute 'cell_index'. This is the setter.

clear
Signature: void clear

Description: Clears the circuit

This method removes all objects and clears the other attributes.

combine_devices
Signature: void combine_devices

Description: Combines devices where possible

This method will combine devices that can be combined according to their device classes
'combine_devices' method. For example, serial or parallel resistors can be combined into a
single resistor.

(1) Signature: void connect_pin (unsigned long pin_id, Net ptr net)

Description: Connects the given pin with the given net.

The net must be one inside the circuit. Any previous connected is resolved before this
connection is made. A pin can only be connected to one net at a time.

connect_pin

(2) Signature: void connect_pin (const Pin ptr pin, Net ptr net)

Description: Connects the given pin with the given net.

The net and the pin must be objects from inside the circuit. Any previous connected is resolved
before this connection is made. A pin can only be connected to one net at a time.

create_device
Signature: Device ptr create_device (DeviceClass ptr device_class, string name =)

Description: Creates a new bound Device object inside the circuit

This object describes a device of the circuit. The device is already attached to the device class.
The name is optional and is used to identify the device in a netlist file.

For more details see the Device class.

For more details visit
https://www.klayout.org

Page 1575 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.110. API reference - Class Circuit

create_net
Signature: Net ptr create_net (string name =)

Description: Creates a new Net object inside the circuit

This object will describe a net of the circuit. The nets are basically connections between the
different components of the circuit (subcircuits, devices and pins).

A net needs to be filled with references to connect to specific objects. See the Net class for more
details.

create_pin
Signature: Pin ptr create_pin (string name)

Description: Creates a new Pin object inside the circuit

This object will describe a pin of the circuit. A circuit connects to the outside through such a pin.
The pin is added after all existing pins. For more details see the Pin class.

Starting with version 0.26.8, this method returns a reference to a Pin object rather than a copy.

create_subcircuit
Signature: SubCircuit ptr create_subcircuit (Circuit ptr circuit, string name =)

Description: Creates a new bound SubCircuit object inside the circuit

This object describes an instance of another circuit inside the circuit. The subcircuit is already
attached to the other circuit. The name is optional and is used to identify the subcircuit in a netlist
file.

For more details see the SubCircuit class.

(1) Signature: Device ptr device_by_id (unsigned long id)

Description: Gets the device object for a given ID.

If the ID is not a valid device ID, nil is returned.

device_by_id

(2) Signature: [const] const Device ptr device_by_id (unsigned long id)

Description: Gets the device object for a given ID (const version).

If the ID is not a valid device ID, nil is returned.

This constness variant has been introduced in version 0.26.8

(1) Signature: Device ptr device_by_name (string name)

Description: Gets the device object for a given name.

If the ID is not a valid device name, nil is returned.

device_by_name

(2) Signature: [const] const Device ptr device_by_name (string name)

Description: Gets the device object for a given name (const version).

If the ID is not a valid device name, nil is returned.

This constness variant has been introduced in version 0.26.8

(1) Signature: void disconnect_pin (unsigned long pin_id)

Description: Disconnects the given pin from any net.disconnect_pin

(2) Signature: void disconnect_pin (const Pin ptr pin)

Description: Disconnects the given pin from any net.

For more details visit
https://www.klayout.org

Page 1576 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.110. API reference - Class Circuit

dont_purge
Signature: [const] bool dont_purge

Description: Gets a value indicating whether the circuit can be purged on Netlist#purge.

Python specific notes:
The object exposes a readable attribute 'dont_purge'. This is the getter.

dont_purge=
Signature: void dont_purge= (bool f)

Description: Sets a value indicating whether the circuit can be purged on Netlist#purge.

If this attribute is set to true, Netlist#purge will never delete this circuit. This flag therefore marks
this circuit as 'precious'.

Python specific notes:
The object exposes a writable attribute 'dont_purge'. This is the setter.

(1) Signature: [iter] Circuit each_child

Description: Iterates over the child circuits of this circuit

Child circuits are the ones that are referenced from this circuit via subcircuits.

each_child

(2) Signature: [const,iter] Circuit each_child

Description: Iterates over the child circuits of this circuit (const version)

Child circuits are the ones that are referenced from this circuit via subcircuits.

This constness variant has been introduced in version 0.26.8

(1) Signature: [iter] Device each_device

Description: Iterates over the devices of the circuiteach_device

(2) Signature: [const,iter] Device each_device

Description: Iterates over the devices of the circuit (const version)

This constness variant has been introduced in version 0.26.8

(1) Signature: [iter] Net each_net

Description: Iterates over the nets of the circuiteach_net

(2) Signature: [const,iter] Net each_net

Description: Iterates over the nets of the circuit (const version)

This constness variant has been introduced in version 0.26.8

(1) Signature: [iter] Circuit each_parent

Description: Iterates over the parent circuits of this circuit

Child circuits are the ones that are referencing this circuit via subcircuits.

each_parent

(2) Signature: [const,iter] Circuit each_parent

Description: Iterates over the parent circuits of this circuit (const version)

Child circuits are the ones that are referencing this circuit via subcircuits.

This constness variant has been introduced in version 0.26.8

For more details visit
https://www.klayout.org

Page 1577 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.110. API reference - Class Circuit

(1) Signature: [iter] Pin each_pin

Description: Iterates over the pins of the circuiteach_pin

(2) Signature: [const,iter] Pin each_pin

Description: Iterates over the pins of the circuit (const version)

This constness variant has been introduced in version 0.26.8

(1) Signature: [iter] SubCircuit each_ref

Description: Iterates over the subcircuit objects referencing this circuiteach_ref

(2) Signature: [const,iter] SubCircuit each_ref

Description: Iterates over the subcircuit objects referencing this circuit (const version)

This constness variant has been introduced in version 0.26.8

(1) Signature: [iter] SubCircuit each_subcircuit

Description: Iterates over the subcircuits of the circuiteach_subcircuit

(2) Signature: [const,iter] SubCircuit each_subcircuit

Description: Iterates over the subcircuits of the circuit (const version)

This constness variant has been introduced in version 0.26.8

flatten_subcircuit
Signature: void flatten_subcircuit (SubCircuit ptr subcircuit)

Description: Flattens a subcircuit

This method will substitute the given subcircuit by it's contents. The subcircuit is removed after
this.

has_refs?
Signature: [const] bool has_refs?

Description: Returns a value indicating whether the circuit has references

A circuit has references if there is at least one subcircuit referring to it.

join_nets
Signature: void join_nets (Net ptr net, Net ptr with)

Description: Joins (connects) two nets into one

This method will connect the 'with' net with 'net' and remove 'with'.

This method has been introduced in version 0.26.4.

name
Signature: [const] string name

Description: Gets the name of the circuit

Python specific notes:
The object exposes a readable attribute 'name'. This is the getter.

name=
Signature: void name= (string name)

Description: Sets the name of the circuit

Python specific notes:

For more details visit
https://www.klayout.org

Page 1578 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.110. API reference - Class Circuit

The object exposes a writable attribute 'name'. This is the setter.

net_by_cluster_id
Signature: Net ptr net_by_cluster_id (unsigned long cluster_id)

Description: Gets the net object corresponding to a specific cluster ID

If the ID is not a valid pin cluster ID, nil is returned.

(1) Signature: Net ptr net_by_name (string name)

Description: Gets the net object for a given name.

If the ID is not a valid net name, nil is returned.

net_by_name

(2) Signature: [const] const Net ptr net_by_name (string name)

Description: Gets the net object for a given name (const version).

If the ID is not a valid net name, nil is returned.

This constness variant has been introduced in version 0.26.8

(1) Signature: Net ptr net_for_pin (unsigned long pin_id)

Description: Gets the net object attached to a specific pin.

This is the net object inside the circuit which attaches to the given outward-bound pin. This
method returns nil if the pin is not connected or the pin ID is invalid.

(2) Signature: [const] const Net ptr net_for_pin (unsigned long pin_id)

Description: Gets the net object attached to a specific pin (const version).

This is the net object inside the circuit which attaches to the given outward-bound pin. This
method returns nil if the pin is not connected or the pin ID is invalid.

This constness variant has been introduced in version 0.26.8

(3) Signature: Net ptr net_for_pin (const Pin ptr pin)

Description: Gets the net object attached to a specific pin.

This is the net object inside the circuit which attaches to the given outward-bound pin. This
method returns nil if the pin is not connected or the pin object is nil.

net_for_pin

(4) Signature: [const] const Net ptr net_for_pin (const Pin ptr pin)

Description: Gets the net object attached to a specific pin (const version).

This is the net object inside the circuit which attaches to the given outward-bound pin. This
method returns nil if the pin is not connected or the pin object is nil.

This constness variant has been introduced in version 0.26.8

(1) Signature: Netlist ptr netlist

Description: Gets the netlist object the circuit lives innetlist

(2) Signature: [const] const Netlist ptr netlist

Description: Gets the netlist object the circuit lives in (const version)

This constness variant has been introduced in version 0.26.8

For more details visit
https://www.klayout.org

Page 1579 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.110. API reference - Class Circuit

(1) Signature: Net ptr[] nets_by_name (string name_pattern)

Description: Gets the net objects for a given name filter.

The name filter is a glob pattern. This method will return all Net objects matching the glob
pattern.

This method has been introduced in version 0.27.3.

nets_by_name

(2) Signature: [const] const Net ptr[] nets_by_name (string name_pattern)

Description: Gets the net objects for a given name filter (const version).

The name filter is a glob pattern. This method will return all Net objects matching the glob
pattern.

This constness variant has been introduced in version 0.27.3

(1) Signature: Pin ptr pin_by_id (unsigned long id)

Description: Gets the Pin object corresponding to a specific ID

If the ID is not a valid pin ID, nil is returned.

pin_by_id

(2) Signature: [const] const Pin ptr pin_by_id (unsigned long id)

Description: Gets the Pin object corresponding to a specific ID (const version)

If the ID is not a valid pin ID, nil is returned.

This constness variant has been introduced in version 0.26.8

(1) Signature: Pin ptr pin_by_name (string name)

Description: Gets the Pin object corresponding to a specific name

If the ID is not a valid pin name, nil is returned.

pin_by_name

(2) Signature: [const] const Pin ptr pin_by_name (string name)

Description: Gets the Pin object corresponding to a specific name (const version)

If the ID is not a valid pin name, nil is returned.

This constness variant has been introduced in version 0.26.8

pin_count
Signature: [const] unsigned long pin_count

Description: Gets the number of pins in the circuit

purge_nets
Signature: void purge_nets

Description: Purges floating nets.

Floating nets are nets with no device or subcircuit attached to. Such floating nets are removed in
this step. If these nets are connected outward to a circuit pin, this circuit pin is also removed.

purge_nets_keep_pins
Signature: void purge_nets_keep_pins

Description: Purges floating nets but keep pins.

This method will remove floating nets like purge_nets, but if these nets are attached to a pin, the
pin will be left disconnected from any net.

This method has been introduced in version 0.26.2.

For more details visit
https://www.klayout.org

Page 1580 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.110. API reference - Class Circuit

remove_device
Signature: void remove_device (Device ptr device)

Description: Removes the given device from the circuit

remove_net
Signature: void remove_net (Net ptr net)

Description: Removes the given net from the circuit

remove_pin
Signature: void remove_pin (unsigned long id)

Description: Removes the pin with the given ID from the circuit

This method has been introduced in version 0.26.2.

remove_subcircuit
Signature: void remove_subcircuit (SubCircuit ptr subcircuit)

Description: Removes the given subcircuit from the circuit

rename_pin
Signature: void rename_pin (unsigned long id, string new_name)

Description: Renames the pin with the given ID to 'new_name'

This method has been introduced in version 0.26.8.

(1) Signature: SubCircuit ptr subcircuit_by_id (unsigned long id)

Description: Gets the subcircuit object for a given ID.

If the ID is not a valid subcircuit ID, nil is returned.

subcircuit_by_id

(2) Signature: [const] const SubCircuit ptr subcircuit_by_id (unsigned long id)

Description: Gets the subcircuit object for a given ID (const version).

If the ID is not a valid subcircuit ID, nil is returned.

This constness variant has been introduced in version 0.26.8

(1) Signature: SubCircuit ptr subcircuit_by_name (string name)

Description: Gets the subcircuit object for a given name.

If the ID is not a valid subcircuit name, nil is returned.

subcircuit_by_name

(2) Signature: [const] const SubCircuit ptr subcircuit_by_name (string name)

Description: Gets the subcircuit object for a given name (const version).

If the ID is not a valid subcircuit name, nil is returned.

This constness variant has been introduced in version 0.26.8

For more details visit
https://www.klayout.org

Page 1581 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.111. API reference - Class Netlist

4.111. API reference - Class Netlist
Notation used in Ruby API documentation

Module: db

Description: The netlist top-level class

A netlist is a hierarchical structure of circuits. At least one circuit is the top-level circuit, other circuits may be referenced as subcircuits.
Circuits are created with create_circuit and are represented by objects of the Circuit class.

Beside circuits, the netlist manages device classes. Device classes describe specific types of devices. Device classes are represented by
objects of the DeviceClass class and are created using create_device_class.

The netlist class has been introduced with version 0.26.

Public constructors

new Netlist ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void add (Circuit ptr
circuit)

Adds the circuit to the netlist

void add (DeviceClass ptr
device_class)

Adds the device class to the netlist

void assign (const Netlist
other)

Assigns another object to self

void blank_circuit (string pattern) Blanks circuits matching a certain pattern

void case_sensitive= (bool cs) Sets a value indicating whether the netlist
names are case sensitive

Circuit ptr circuit_by_cell_index (unsigned int
cell_index)

Gets the circuit object for a given cell index.

[const] const Circuit ptr circuit_by_cell_index (unsigned int
cell_index)

Gets the circuit object for a given cell index
(const version).

Circuit ptr circuit_by_name (string name) Gets the circuit object for a given name.

For more details visit
https://www.klayout.org

Page 1582 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.111. API reference - Class Netlist

[const] const Circuit ptr circuit_by_name (string name) Gets the circuit object for a given name (const
version).

Circuit ptr[] circuits_by_name (string
name_pattern)

Gets the circuit objects for a given name filter.

[const] const Circuit ptr[] circuits_by_name (string
name_pattern)

Gets the circuit objects for a given name filter
(const version).

void combine_devices Combines devices where possible

DeviceClass ptr device_class_by_name (string name) Gets the device class for a given name.

[const] const DeviceClass
ptr

device_class_by_name (string name) Gets the device class for a given name (const
version).

[const] new Netlist ptr dup Creates a copy of self

[iter] Circuit each_circuit Iterates over the circuits of the netlist

[const,iter] Circuit each_circuit Iterates over the circuits of the netlist (const
version)

[iter] Circuit each_circuit_bottom_up Iterates over the circuits bottom-up

[const,iter] Circuit each_circuit_bottom_up Iterates over the circuits bottom-up (const
version)

[iter] Circuit each_circuit_top_down Iterates over the circuits top-down

[const,iter] Circuit each_circuit_top_down Iterates over the circuits top-down (const
version)

[iter] DeviceClass each_device_class Iterates over the device classes of the netlist

[const,iter] DeviceClass each_device_class Iterates over the device classes of the netlist
(const version)

void flatten Flattens all circuits of the netlist

void flatten_circuit (Circuit ptr
circuit)

Flattens a subcircuit

void flatten_circuit (string pattern) Flattens circuits matching a certain pattern

void flatten_circuits (Circuit ptr[]
arg1)

Flattens all given circuits of the netlist

void from_s (string str) Reads the netlist from a string representation.

[const] bool is_case_sensitive? Returns a value indicating whether the netlist
names are case sensitive

void make_top_level_pins Creates pins for top-level circuits.

void purge Purge unused nets, circuits and subcircuits.

For more details visit
https://www.klayout.org

Page 1583 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.111. API reference - Class Netlist

void purge_circuit (Circuit ptr
circuit)

Removes the given circuit object and all child
circuits which are not used otherwise from the
netlist

void purge_nets Purges floating nets.

void read (string file,
NetlistReader ptr
reader)

Writes the netlist to the given file using the
given reader object to parse the file

void remove (Circuit ptr
circuit)

Removes the given circuit object from the
netlist

void remove (DeviceClass ptr
device_class)

Removes the given device class object from
the netlist

void simplify Convenience method that combines the
simplification.

[const] string to_s Converts the netlist to a string representation.

[const] unsigned long top_circuit_count Gets the number of top circuits.

[const] void write (string file,
NetlistWriter ptr
writer,
string description
=)

Writes the netlist to the given file using the
given writer object to format the file

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

For more details visit
https://www.klayout.org

Page 1584 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.111. API reference - Class Netlist

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

(1) Signature: void add (Circuit ptr circuit)

Description: Adds the circuit to the netlist

This method will add the given circuit object to the netlist. After the circuit has been added, it will be
owned by the netlist.

add

(2) Signature: void add (DeviceClass ptr device_class)

Description: Adds the device class to the netlist

This method will add the given device class object to the netlist. After the device class has been
added, it will be owned by the netlist.

assign
Signature: void assign (const Netlist other)

Description: Assigns another object to self

blank_circuit
Signature: void blank_circuit (string pattern)

Description: Blanks circuits matching a certain pattern

This method will erase everything from inside the circuits matching the given pattern. It will only
leave pins which are not connected to any net. Hence, this method forms 'abstract' or black-box
circuits which can be instantiated through subcircuits like the former ones, but are empty shells.
The name pattern is a glob expression. For example, 'blank_circuit("np*")' will blank out all circuits
with names starting with 'np'.

For more details visit
https://www.klayout.org

Page 1585 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.111. API reference - Class Netlist

For more details see Circuit#blank which is the corresponding method on the actual object.

case_sensitive=
Signature: void case_sensitive= (bool cs)

Description: Sets a value indicating whether the netlist names are case sensitive

This method has been added in version 0.27.3.

Python specific notes:
The object exposes a writable attribute 'case_sensitive'. This is the setter.

(1) Signature: Circuit ptr circuit_by_cell_index (unsigned int cell_index)

Description: Gets the circuit object for a given cell index.

If the cell index is not valid or no circuit is registered with this index, nil is returned.

circuit_by_cell_index

(2) Signature: [const] const Circuit ptr circuit_by_cell_index (unsigned int cell_index)

Description: Gets the circuit object for a given cell index (const version).

If the cell index is not valid or no circuit is registered with this index, nil is returned.

This constness variant has been introduced in version 0.26.8

(1) Signature: Circuit ptr circuit_by_name (string name)

Description: Gets the circuit object for a given name.

If the name is not a valid circuit name, nil is returned.

circuit_by_name

(2) Signature: [const] const Circuit ptr circuit_by_name (string name)

Description: Gets the circuit object for a given name (const version).

If the name is not a valid circuit name, nil is returned.

This constness variant has been introduced in version 0.26.8

(1) Signature: Circuit ptr[] circuits_by_name (string name_pattern)

Description: Gets the circuit objects for a given name filter.

The name filter is a glob pattern. This method will return all Circuit objects matching the glob
pattern.

This method has been introduced in version 0.26.4.

circuits_by_name

(2) Signature: [const] const Circuit ptr[] circuits_by_name (string name_pattern)

Description: Gets the circuit objects for a given name filter (const version).

The name filter is a glob pattern. This method will return all Circuit objects matching the glob
pattern.

This constness variant has been introduced in version 0.26.8

combine_devices
Signature: void combine_devices

Description: Combines devices where possible

This method will combine devices that can be combined according to their device classes
'combine_devices' method. For example, serial or parallel resistors can be combined into a single
resistor.

For more details visit
https://www.klayout.org

Page 1586 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.111. API reference - Class Netlist

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

(1) Signature: DeviceClass ptr device_class_by_name (string name)

Description: Gets the device class for a given name.

If the name is not a valid device class name, nil is returned.

device_class_by_name

(2) Signature: [const] const DeviceClass ptr device_class_by_name (string name)

Description: Gets the device class for a given name (const version).

If the name is not a valid device class name, nil is returned.

This constness variant has been introduced in version 0.26.8

dup
Signature: [const] new Netlist ptr dup

Description: Creates a copy of self

(1) Signature: [iter] Circuit each_circuit

Description: Iterates over the circuits of the netlisteach_circuit

(2) Signature: [const,iter] Circuit each_circuit

Description: Iterates over the circuits of the netlist (const version)

This constness variant has been introduced in version 0.26.8

(1) Signature: [iter] Circuit each_circuit_bottom_up

Description: Iterates over the circuits bottom-up

Iterating bottom-up means the parent circuits come after the child circuits. This is the basically the
reverse order as delivered by each_circuit_top_down.

each_circuit_bottom_up

(2) Signature: [const,iter] Circuit each_circuit_bottom_up

For more details visit
https://www.klayout.org

Page 1587 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.111. API reference - Class Netlist

Description: Iterates over the circuits bottom-up (const version)

Iterating bottom-up means the parent circuits come after the child circuits. This is the basically the
reverse order as delivered by each_circuit_top_down.

This constness variant has been introduced in version 0.26.8

(1) Signature: [iter] Circuit each_circuit_top_down

Description: Iterates over the circuits top-down

Iterating top-down means the parent circuits come before the child circuits. The first
top_circuit_count circuits are top circuits - i.e. those which are not referenced by other circuits.

each_circuit_top_down

(2) Signature: [const,iter] Circuit each_circuit_top_down

Description: Iterates over the circuits top-down (const version)

Iterating top-down means the parent circuits come before the child circuits. The first
top_circuit_count circuits are top circuits - i.e. those which are not referenced by other circuits.

This constness variant has been introduced in version 0.26.8

(1) Signature: [iter] DeviceClass each_device_class

Description: Iterates over the device classes of the netlisteach_device_class

(2) Signature: [const,iter] DeviceClass each_device_class

Description: Iterates over the device classes of the netlist (const version)

This constness variant has been introduced in version 0.26.8

flatten
Signature: void flatten

Description: Flattens all circuits of the netlist

After calling this method, only the top circuits will remain.

(1) Signature: void flatten_circuit (Circuit ptr circuit)

Description: Flattens a subcircuit

This method will substitute all instances (subcircuits) of the given circuit by it's contents. After this,
the circuit is removed.

flatten_circuit

(2) Signature: void flatten_circuit (string pattern)

Description: Flattens circuits matching a certain pattern

This method will substitute all instances (subcircuits) of all circuits with names matching the given
name pattern. The name pattern is a glob expression. For example, 'flatten_circuit("np*")' will
flatten all circuits with names starting with 'np'.

flatten_circuits
Signature: void flatten_circuits (Circuit ptr[] arg1)

Description: Flattens all given circuits of the netlist

This method is equivalent to calling flatten_circuit for all given circuits, but more efficient.

This method has been introduced in version 0.26.1

from_s
Signature: void from_s (string str)

Description: Reads the netlist from a string representation.

For more details visit
https://www.klayout.org

Page 1588 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.111. API reference - Class Netlist

This method is intended for test purposes mainly. It turns a string returned by to_s back into a
netlist. Note that the device classes must be created before as they are not persisted inside the
string.

is_case_sensitive?
Signature: [const] bool is_case_sensitive?

Description: Returns a value indicating whether the netlist names are case sensitive

This method has been added in version 0.27.3.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

make_top_level_pins
Signature: void make_top_level_pins

Description: Creates pins for top-level circuits.

This method will turn all named nets of top-level circuits (such that are not referenced by
subcircuits) into pins. This method can be used before purge to avoid that purge will remove nets
which are directly connecting to subcircuits.

new
Signature: [static] new Netlist ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

purge
Signature: void purge

Description: Purge unused nets, circuits and subcircuits.

This method will purge all nets which return floating == true. Circuits which don't have any nets
(or only floating ones) and removed. Their subcircuits are disconnected. This method respects the
Circuit#dont_purge attribute and will never delete circuits with this flag set.

purge_circuit
Signature: void purge_circuit (Circuit ptr circuit)

Description: Removes the given circuit object and all child circuits which are not used otherwise
from the netlist

After the circuit has been removed, the object becomes invalid and cannot be used further. A
circuit with references (see has_refs?) should not be removed as the subcircuits calling it would
afterwards point to nothing.

purge_nets
Signature: void purge_nets

Description: Purges floating nets.

Floating nets can be created as effect of reconnections of devices or pins. This method will
eliminate all nets that make less than two connections.

read
Signature: void read (string file, NetlistReader ptr reader)

Description: Writes the netlist to the given file using the given reader object to parse the file

See NetlistSpiceReader for an example for a parser.

For more details visit
https://www.klayout.org

Page 1589 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.111. API reference - Class Netlist

(1) Signature: void remove (Circuit ptr circuit)

Description: Removes the given circuit object from the netlist

After the circuit has been removed, the object becomes invalid and cannot be used further. A
circuit with references (see has_refs?) should not be removed as the subcircuits calling it would
afterwards point to nothing.

remove

(2) Signature: void remove (DeviceClass ptr device_class)

Description: Removes the given device class object from the netlist

After the object has been removed, it becomes invalid and cannot be used further. Use this method
with care as it may corrupt the internal structure of the netlist. Only use this method when device
refers to this device class.

simplify
Signature: void simplify

Description: Convenience method that combines the simplification.

This method is a convenience method that runs make_top_level_pins, purge, combine_devices
and purge_nets.

to_s
Signature: [const] string to_s

Description: Converts the netlist to a string representation.

This method is intended for test purposes mainly.

Python specific notes:
This method is also available as 'str(object)'

top_circuit_count
Signature: [const] unsigned long top_circuit_count

Description: Gets the number of top circuits.

Top circuits are those which are not referenced by other circuits via subcircuits. A well-formed
netlist has a single top circuit.

write
Signature: [const] void write (string file, NetlistWriter ptr writer, string description =)

Description: Writes the netlist to the given file using the given writer object to format the file

See NetlistSpiceWriter for an example for a formatter. The description is an arbitrary text which will
be put into the file somewhere at the beginning.

For more details visit
https://www.klayout.org

Page 1590 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.112. API reference - Class NetlistSpiceWriterDelegate

4.112. API reference - Class NetlistSpiceWriterDelegate
Notation used in Ruby API documentation

Module: db

Description: Provides a delegate for the SPICE writer for doing special formatting for devices

Supply a customized class to provide a specialized writing scheme for devices. You need a customized class if you want to implement
special devices or you want to use subcircuits rather than the built-in devices.

See NetlistSpiceWriter for more details.

This class has been introduced in version 0.26.

Public constructors

new NetlistSpiceWriterDelegate ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
NetlistSpiceWriterDelegate
other)

Assigns another object to self

[const] new
NetlistSpiceWriterDelegate
ptr

dup Creates a copy of self

[const] void emit_comment (string
comment)

Writes the given comment into the file

[const] void emit_line (string line) Writes the given line into the file

[const] string format_name (string name) Formats the given name in a SPICE-
compatible way

[const] string net_to_string (const Net ptr
net)

Gets the node ID for the given net

[virtual,const] void write_device (Device device) Inserts a text for the given device

For more details visit
https://www.klayout.org

Page 1591 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.112. API reference - Class NetlistSpiceWriterDelegate

[virtual,const] void write_device_intro (DeviceClass
device_class)

Inserts a text for the given device class

[virtual,const] void write_header Writes the text at the beginning of the
SPICE netlist

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1592 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.112. API reference - Class NetlistSpiceWriterDelegate

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const NetlistSpiceWriterDelegate other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new NetlistSpiceWriterDelegate ptr dup

Description: Creates a copy of self

emit_comment
Signature: [const] void emit_comment (string comment)

Description: Writes the given comment into the file

emit_line
Signature: [const] void emit_line (string line)

Description: Writes the given line into the file

format_name
Signature: [const] string format_name (string name)

Description: Formats the given name in a SPICE-compatible way

For more details visit
https://www.klayout.org

Page 1593 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.112. API reference - Class NetlistSpiceWriterDelegate

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

net_to_string
Signature: [const] string net_to_string (const Net ptr net)

Description: Gets the node ID for the given net

The node ID is a numeric string instead of the full name of the net. Numeric IDs are used within
SPICE netlist because they are usually shorter.

new
Signature: [static] new NetlistSpiceWriterDelegate ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

write_device
Signature: [virtual,const] void write_device (Device device)

Description: Inserts a text for the given device

Reimplement this method to write the given device in the desired way. The default implementation
will utilize the device class information to write native SPICE elements for the devices.

write_device_intro
Signature: [virtual,const] void write_device_intro (DeviceClass device_class)

Description: Inserts a text for the given device class

Reimplement this method to insert your own text at the beginning of the file for the given device
class

write_header
Signature: [virtual,const] void write_header

Description: Writes the text at the beginning of the SPICE netlist

Reimplement this method to insert your own text at the beginning of the file

For more details visit
https://www.klayout.org

Page 1594 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.113. API reference - Class NetlistWriter

4.113. API reference - Class NetlistWriter
Notation used in Ruby API documentation

Module: db

Description: Base class for netlist writers

This class is provided as a base class for netlist writers. It is not intended for reimplementation on script level, but used internally as an
interface.

This class has been introduced in version 0.26.

Public constructors

new NetlistWriter ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script side.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 1595 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.113. API reference - Class NetlistWriter

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

For more details visit
https://www.klayout.org

Page 1596 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.113. API reference - Class NetlistWriter

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new NetlistWriter ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1597 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.114. API reference - Class NetlistSpiceWriter

4.114. API reference - Class NetlistSpiceWriter
Notation used in Ruby API documentation

Module: db

Description: Implements a netlist writer for the SPICE format.

Class hierarchy: NetlistSpiceWriter » NetlistWriter

Provide a delegate for customizing the way devices are written.

Use the SPICE writer like this:

writer = RBA::NetlistSpiceWriter::new
netlist.write(path, writer)

You can give a custom description for the headline:

writer = RBA::NetlistSpiceWriter::new
netlist.write(path, writer, "A custom description")

To customize the output, you can use a device writer delegate. The delegate is an object of a class derived from
NetlistSpiceWriterDelegate which reimplements several methods to customize the following parts:

• A global header (NetlistSpiceWriterDelegate#write_header): this method is called to print the part right after the headline

• A per-device class header (NetlistSpiceWriterDelegate#write_device_intro): this method is called for every device class and may print
device-class specific headers (e.g. model definitions)

• Per-device output: this method (NetlistSpiceWriterDelegate#write_device): this method is called for every device and may print the
device statement(s) in a specific way.

The delegate must use NetlistSpiceWriterDelegate#emit_line to print a line, NetlistSpiceWriterDelegate#emit_comment to print a comment
etc. For more method see NetlistSpiceWriterDelegate.

A sample with a delegate is this:

class MyDelegate < RBA::NetlistSpiceWriterDelegate

 def write_header
 emit_line("*** My special header")
 end

 def write_device_intro(cls)
 emit_comment("My intro for class " + cls.name)
 end

 def write_device(dev)
 if dev.device_class.name != "MYDEVICE"
 emit_comment("Terminal #1: " + net_to_string(dev.net_for_terminal(0)))
 emit_comment("Terminal #2: " + net_to_string(dev.net_for_terminal(1)))
 super(dev)
 emit_comment("After device " + dev.expanded_name)
 else
 super(dev)
 end
 end

end

For more details visit
https://www.klayout.org

Page 1598 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.114. API reference - Class NetlistSpiceWriter

write the netlist with delegate:
writer = RBA::NetlistSpiceWriter::new(MyDelegate::new)
netlist.write(path, writer)

This class has been introduced in version 0.26.

Public constructors

new NetlistSpiceWriter ptr new Creates a new writer without delegate.

new NetlistSpiceWriter ptr new (NetlistSpiceWriterDelegate
ptr arg1)

Creates a new writer with a delegate.

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
NetlistSpiceWriter
other)

Assigns another object to self

[const] new
NetlistSpiceWriter
ptr

dup Creates a copy of self

void use_net_names= (bool f) Sets a value indicating whether to use net names
(true) or net numbers (false).

[const] bool use_net_names? Gets a value indicating whether to use net names
(true) or net numbers (false).

void with_comments= (bool f) Sets a value indicating whether to embed comments
for position etc. (true) or not (false).

[const] bool with_comments? Gets a value indicating whether to embed comments
for position etc. (true) or not (false).

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

For more details visit
https://www.klayout.org

Page 1599 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.114. API reference - Class NetlistSpiceWriter

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const NetlistSpiceWriter other)

Description: Assigns another object to self

dup
Signature: [const] new NetlistSpiceWriter ptr dup

Description: Creates a copy of self

new
(1) Signature: [static] new NetlistSpiceWriter ptr new

Description: Creates a new writer without delegate.

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1600 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.114. API reference - Class NetlistSpiceWriter

(2) Signature: [static] new NetlistSpiceWriter ptr new (NetlistSpiceWriterDelegate ptr arg1)

Description: Creates a new writer with a delegate.

Python specific notes:
This method is the default initializer of the object

use_net_names=
Signature: void use_net_names= (bool f)

Description: Sets a value indicating whether to use net names (true) or net numbers (false).

The default is to use net numbers.

Python specific notes:
The object exposes a writable attribute 'use_net_names'. This is the setter.

use_net_names?
Signature: [const] bool use_net_names?

Description: Gets a value indicating whether to use net names (true) or net numbers (false).

Python specific notes:
The object exposes a readable attribute 'use_net_names'. This is the getter.

with_comments=
Signature: void with_comments= (bool f)

Description: Sets a value indicating whether to embed comments for position etc. (true) or not
(false).

The default is to embed comments.

Python specific notes:
The object exposes a writable attribute 'with_comments'. This is the setter.

with_comments?
Signature: [const] bool with_comments?

Description: Gets a value indicating whether to embed comments for position etc. (true) or not
(false).

Python specific notes:
The object exposes a readable attribute 'with_comments'. This is the getter.

For more details visit
https://www.klayout.org

Page 1601 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.115. API reference - Class NetlistReader

4.115. API reference - Class NetlistReader
Notation used in Ruby API documentation

Module: db

Description: Base class for netlist readers

This class is provided as a base class for netlist readers. It is not intended for reimplementation on script level, but used internally as an
interface.

This class has been introduced in version 0.26.

Public constructors

new NetlistReader ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script side.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 1602 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.115. API reference - Class NetlistReader

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

For more details visit
https://www.klayout.org

Page 1603 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.115. API reference - Class NetlistReader

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new NetlistReader ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1604 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.116. API reference - Class ParseElementComponentsData

4.116. API reference - Class ParseElementComponentsData
Notation used in Ruby API documentation

Module: db

Description: Supplies the return value for \NetlistSpiceReaderDelegate#parse_element_components.

This is a structure with two members: 'strings' for the string arguments and 'parameters' for the named numerical arguments.

This helper class has been introduced in version 0.27.1.

Public constructors

new ParseElementComponentsData ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
ParseElementComponentsData
other)

Assigns another object to self

[const] new
ParseElementComponentsData
ptr

dup Creates a copy of self

[const] map<string,double> parameters Gets the (named) numerical parameters

void parameters= (map<string,double>
dict)

Sets the (named) numerical parameters

[const] string[] strings Gets the string parameters

void strings= (string[] list) Sets the string parameters

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

For more details visit
https://www.klayout.org

Page 1605 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.116. API reference - Class ParseElementComponentsData

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const ParseElementComponentsData other)

Description: Assigns another object to self

For more details visit
https://www.klayout.org

Page 1606 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.116. API reference - Class ParseElementComponentsData

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new ParseElementComponentsData ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new ParseElementComponentsData ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

parameters
Signature: [const] map<string,double> parameters

Description: Gets the (named) numerical parameters

Python specific notes:
The object exposes a readable attribute 'parameters'. This is the getter.

parameters=
Signature: void parameters= (map<string,double> dict)

Description: Sets the (named) numerical parameters

Python specific notes:
The object exposes a writable attribute 'parameters'. This is the setter.

strings
Signature: [const] string[] strings

Description: Gets the string parameters

For more details visit
https://www.klayout.org

Page 1607 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.116. API reference - Class ParseElementComponentsData

Python specific notes:
The object exposes a readable attribute 'strings'. This is the getter.

strings=
Signature: void strings= (string[] list)

Description: Sets the string parameters

Python specific notes:
The object exposes a writable attribute 'strings'. This is the setter.

For more details visit
https://www.klayout.org

Page 1608 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.117. API reference - Class ParseElementData

4.117. API reference - Class ParseElementData
Notation used in Ruby API documentation

Module: db

Description: Supplies the return value for \NetlistSpiceReaderDelegate#parse_element.

This is a structure with four members: 'model_name' for the model name, 'value' for the default numerical value, 'net_names' for the net
names and 'parameters' for the named numerical parameters.

This helper class has been introduced in version 0.27.1.

Public constructors

new ParseElementData ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
ParseElementData
other)

Assigns another object to self

[const] new
ParseElementData
ptr

dup Creates a copy of self

[const] string model_name Gets the model name

void model_name= (string m) Sets the model name

[const] string[] net_names Gets the net names

void net_names= (string[] list) Sets the net names

[const] map<string,double> parameters Gets the (named) numerical parameters

void parameters= (map<string,double>
dict)

Sets the (named) numerical parameters

[const] double value Gets the value

void value= (double v) Sets the value

For more details visit
https://www.klayout.org

Page 1609 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.117. API reference - Class ParseElementData

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method

For more details visit
https://www.klayout.org

Page 1610 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.117. API reference - Class ParseElementData

will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const ParseElementData other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new ParseElementData ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

model_name
Signature: [const] string model_name

Description: Gets the model name

Python specific notes:
The object exposes a readable attribute 'model_name'. This is the getter.

model_name=
Signature: void model_name= (string m)

Description: Sets the model name

Python specific notes:
The object exposes a writable attribute 'model_name'. This is the setter.

For more details visit
https://www.klayout.org

Page 1611 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.117. API reference - Class ParseElementData

net_names
Signature: [const] string[] net_names

Description: Gets the net names

Python specific notes:
The object exposes a readable attribute 'net_names'. This is the getter.

net_names=
Signature: void net_names= (string[] list)

Description: Sets the net names

Python specific notes:
The object exposes a writable attribute 'net_names'. This is the setter.

new
Signature: [static] new ParseElementData ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

parameters
Signature: [const] map<string,double> parameters

Description: Gets the (named) numerical parameters

Python specific notes:
The object exposes a readable attribute 'parameters'. This is the getter.

parameters=
Signature: void parameters= (map<string,double> dict)

Description: Sets the (named) numerical parameters

Python specific notes:
The object exposes a writable attribute 'parameters'. This is the setter.

value
Signature: [const] double value

Description: Gets the value

Python specific notes:
The object exposes a readable attribute 'value'. This is the getter.

value=
Signature: void value= (double v)

Description: Sets the value

Python specific notes:
The object exposes a writable attribute 'value'. This is the setter.

For more details visit
https://www.klayout.org

Page 1612 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.118. API reference - Class NetlistSpiceReaderDelegate

4.118. API reference - Class NetlistSpiceReaderDelegate
Notation used in Ruby API documentation

Module: db

Description: Provides a delegate for the SPICE reader for translating device statements

Supply a customized class to provide a specialized reading scheme for devices. You need a customized class if you want to implement
device reading from model subcircuits or to translate device parameters.

See NetlistSpiceReader for more details.

This class has been introduced in version 0.26.

Public constructors

new NetlistSpiceReaderDelegate ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by
the script side.

void assign (const
NetlistSpiceReaderDelegate
other)

Assigns another object to self

[virtual] bool control_statement (string line) Receives control statements not
understood by the standard reader

[const] new
NetlistSpiceReaderDelegate
ptr

dup Creates a copy of self

[virtual] bool element (Circuit ptr circuit,
string element,
string name,
string model,
double value,
Net ptr[] nets,
map<string,double>
parameters)

Makes a device from an element line

void error (string msg) Issues an error with the given message.

For more details visit
https://www.klayout.org

Page 1613 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.118. API reference - Class NetlistSpiceReaderDelegate

[virtual] void finish (Netlist ptr netlist) This method is called when the reader is
done reading a netlist successfully

[virtual] ParseElementData parse_element (string s,
string element)

Parses an element card

ParseElementComponentsDataparse_element_components(string s) Parses a string into string and parameter
components.

[virtual] void start (Netlist ptr netlist) This method is called when the reader
starts reading a netlist

[virtual] string translate_net_name (string net_name) Translates a net name from the raw net
name to the true net name

variant value_from_string (string s) Translates a string into a value

[virtual] bool wants_subcircuit (string circuit_name) Returns true, if the delegate wants
subcircuit elements with this name

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

For more details visit
https://www.klayout.org

Page 1614 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.118. API reference - Class NetlistSpiceReaderDelegate

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const NetlistSpiceReaderDelegate other)

Description: Assigns another object to self

control_statement
Signature: [virtual] bool control_statement (string line)

Description: Receives control statements not understood by the standard reader

When the reader encounters a control statement not understood by the parser, it will pass the line to
the delegate using this method. The delegate can decide if it wants to read this statement. It should
return true in this case.

This method has been introduced in version 0.27.1

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

For more details visit
https://www.klayout.org

Page 1615 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.118. API reference - Class NetlistSpiceReaderDelegate

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new NetlistSpiceReaderDelegate ptr dup

Description: Creates a copy of self

element
Signature: [virtual] bool element (Circuit ptr circuit, string element, string name, string model,
double value, Net ptr[] nets, map<string,double> parameters)

Description: Makes a device from an element line

circuit: The circuit that is currently read.

element: The upper-case element code ("M", "R", ...).

name: The element's name.

model: The upper-case model name (may be empty).

value: The default value (e.g. resistance for resistors) and may be
zero.

nets: The nets given in the element line.

parameters: The parameters of the element statement (parameter names
are upper case).

The default implementation will create corresponding devices for some known elements using the
Spice writer's parameter conventions.

The method must return true, if the element was was understood and false otherwise.

error
Signature: void error (string msg)

Description: Issues an error with the given message.

Use this method to generate an error.

finish
Signature: [virtual] void finish (Netlist ptr netlist)

Description: This method is called when the reader is done reading a netlist successfully

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new NetlistSpiceReaderDelegate ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

parse_element
Signature: [virtual] ParseElementData parse_element (string s, string element)

Description: Parses an element card

For more details visit
https://www.klayout.org

Page 1616 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.118. API reference - Class NetlistSpiceReaderDelegate

s: The specification part of the element line (the part after element
code and name).

element: The upper-case element code ("M", "R", ...).

Returns: A ParseElementData object with the parts of the element.

This method receives a string with the element specification and the element code. It is supposed to
parse the element line and return a model name, a value, a list of net names and a parameter value
dictionary.

'parse_element' is called on every element card. The results of this call go into the element method
to actually create the device. This method can be reimplemented to support other flavors of SPICE.

This method has been introduced in version 0.27.1

parse_element_components
Signature: ParseElementComponentsData parse_element_components (string s)

Description: Parses a string into string and parameter components.

This method is provided to simplify the implementation of 'parse_element'. It takes a string and splits
it into string arguments and parameter values. For example, 'a b c=6' renders two string arguments
in 'nn' and one parameter ('C'->6.0). It returns data ParseElementComponentsData object with the
strings and parameters. The parameter names are already translated to upper case.

This method has been introduced in version 0.27.1

start
Signature: [virtual] void start (Netlist ptr netlist)

Description: This method is called when the reader starts reading a netlist

translate_net_name
Signature: [virtual] string translate_net_name (string net_name)

Description: Translates a net name from the raw net name to the true net name

The default implementation will replace backslash sequences by the corresponding character.
'translate_net_name' is called before a net name is turned into a net object. The method can be
reimplemented to supply a different translation scheme for net names. For example, to translate
special characters.

This method has been introduced in version 0.27.1

value_from_string
Signature: variant value_from_string (string s)

Description: Translates a string into a value

This function simplifies the implementation of SPICE readers by providing a translation of a unit-
annotated string into double values. For example, '1k' is translated to 1000.0. In addition, simple
formula evaluation is supported, e.g '(1+3)*2' is translated into 8.0.

This method has been introduced in version 0.27.1

wants_subcircuit
Signature: [virtual] bool wants_subcircuit (string circuit_name)

Description: Returns true, if the delegate wants subcircuit elements with this name

The name is always upper case.

For more details visit
https://www.klayout.org

Page 1617 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.119. API reference - Class NetlistSpiceReader

4.119. API reference - Class NetlistSpiceReader
Notation used in Ruby API documentation

Module: db

Description: Implements a netlist Reader for the SPICE format.

Class hierarchy: NetlistSpiceReader » NetlistReader

Use the SPICE reader like this:

writer = RBA::NetlistSpiceReader::new
netlist = RBA::Netlist::new
netlist.read(path, reader)

The translation of SPICE elements can be tailored by providing a NetlistSpiceReaderDelegate class. This allows translating of device
parameters and mapping of some subcircuits to devices.

The following example is a delegate that turns subcircuits called HVNMOS and HVPMOS into MOS4 devices with the parameters scaled
by 1.5:

class MyDelegate < RBA::NetlistSpiceReaderDelegate

 # says we want to catch these subcircuits as devices
 def wants_subcircuit(name)
 name == "HVNMOS" || name == "HVPMOS"
 end

 # translate the element
 def element(circuit, el, name, model, value, nets, params)

 if el != "X"
 # all other elements are left to the standard implementation
 return super
 end

 if nets.size != 4
 error("Subcircuit #{model} needs four nodes")
 end

 # provide a device class
 cls = circuit.netlist.device_class_by_name(model)
 if ! cls
 cls = RBA::DeviceClassMOS4Transistor::new
 cls.name = model
 circuit.netlist.add(cls)
 end

 # create a device
 device = circuit.create_device(cls, name)

 # and configure the device
 ["S", "G", "D", "B"].each_with_index do |t,index|
 device.connect_terminal(t, nets[index])
 end
 params.each do |p,value|
 device.set_parameter(p, value * 1.5)
 end

 end

end

For more details visit
https://www.klayout.org

Page 1618 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.119. API reference - Class NetlistSpiceReader

usage:

mydelegate = MyDelegate::new
reader = RBA::NetlistSpiceReader::new(mydelegate)

nl = RBA::Netlist::new
nl.read(input_file, reader)

A somewhat contrived example for using the delegate to translate net names is this:

class MyDelegate < RBA::NetlistSpiceReaderDelegate

 # translates 'VDD' to 'VXX' and leave all other net names as is:
 alias translate_net_name_org translate_net_name
 def translate_net_name(n)
 return n == "VDD" ? "VXX" : translate_net_name_org(n)}
 end

end

This class has been introduced in version 0.26. It has been extended in version 0.27.1.

Public constructors

new NetlistSpiceReader ptr new Creates a new reader.

new NetlistSpiceReader ptr new (NetlistSpiceReaderDelegate
ptr delegate)

Creates a new reader with a delegate.

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script side.

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 1619 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.119. API reference - Class NetlistSpiceReader

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

(1) Signature: [static] new NetlistSpiceReader ptr new

Description: Creates a new reader.

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new NetlistSpiceReader ptr new (NetlistSpiceReaderDelegate ptr delegate)

Description: Creates a new reader with a delegate.

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1620 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.120. API reference - Class DeviceClassResistor

4.120. API reference - Class DeviceClassResistor
Notation used in Ruby API documentation

Module: db

Description: A device class for a resistor.

Class hierarchy: DeviceClassResistor » DeviceClass

This class describes a resistor. Resistors are defined by their combination behavior and the basic parameter 'R' which is the resistance in
Ohm.

A resistor has two terminals, A and B. The parameters of a resistor are R (the value in Ohms), L and W (length and width in micrometers)
and A and P (area and perimeter in square micrometers and micrometers respectively).

This class has been introduced in version 0.26.

Public methods

void _assign (const
DeviceClassResistor
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] new
DeviceClassResistor
ptr

_dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

Public static methods and constants

[static,const] unsigned long PARAM_A A constant giving the parameter ID for
parameter A

[static,const] unsigned long PARAM_L A constant giving the parameter ID for
parameter L

[static,const] unsigned long PARAM_P A constant giving the parameter ID for
parameter P

[static,const] unsigned long PARAM_R A constant giving the parameter ID for
parameter R

[static,const] unsigned long PARAM_W A constant giving the parameter ID for
parameter W

For more details visit
https://www.klayout.org

Page 1621 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.120. API reference - Class DeviceClassResistor

[static,const] unsigned long TERMINAL_A A constant giving the terminal ID for terminal A

[static,const] unsigned long TERMINAL_B A constant giving the terminal ID for terminal B

Detailed description

PARAM_A
Signature: [static,const] unsigned long PARAM_A

Description: A constant giving the parameter ID for parameter A

PARAM_L
Signature: [static,const] unsigned long PARAM_L

Description: A constant giving the parameter ID for parameter L

PARAM_P
Signature: [static,const] unsigned long PARAM_P

Description: A constant giving the parameter ID for parameter P

PARAM_R
Signature: [static,const] unsigned long PARAM_R

Description: A constant giving the parameter ID for parameter R

PARAM_W
Signature: [static,const] unsigned long PARAM_W

Description: A constant giving the parameter ID for parameter W

TERMINAL_A
Signature: [static,const] unsigned long TERMINAL_A

Description: A constant giving the terminal ID for terminal A

TERMINAL_B
Signature: [static,const] unsigned long TERMINAL_B

Description: A constant giving the terminal ID for terminal B

_assign
Signature: void _assign (const DeviceClassResistor other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

For more details visit
https://www.klayout.org

Page 1622 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.120. API reference - Class DeviceClassResistor

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new DeviceClassResistor ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1623 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.121. API reference - Class DeviceClassResistorWithBulk

4.121. API reference - Class DeviceClassResistorWithBulk
Notation used in Ruby API documentation

Module: db

Description: A device class for a resistor with a bulk terminal (substrate, well).

Class hierarchy: DeviceClassResistorWithBulk » DeviceClassResistor » DeviceClass

This class is similar to DeviceClassResistor, but provides an additional terminal (BULK) for the well or substrate the resistor is embedded
in.

The additional terminal is 'W' for the well/substrate terminal.

This class has been introduced in version 0.26.

Public methods

void _assign (const
DeviceClassResistorWithBulk
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] new
DeviceClassResistorWithBulk
ptr

_dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

Public static methods and constants

[static,const] unsigned long TERMINAL_W A constant giving the terminal ID for terminal
W (well, bulk)

Detailed description

TERMINAL_W
Signature: [static,const] unsigned long TERMINAL_W

Description: A constant giving the terminal ID for terminal W (well, bulk)

_assign
Signature: void _assign (const DeviceClassResistorWithBulk other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

For more details visit
https://www.klayout.org

Page 1624 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.121. API reference - Class DeviceClassResistorWithBulk

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new DeviceClassResistorWithBulk ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1625 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.122. API reference - Class DeviceClassCapacitor

4.122. API reference - Class DeviceClassCapacitor
Notation used in Ruby API documentation

Module: db

Description: A device class for a capacitor.

Class hierarchy: DeviceClassCapacitor » DeviceClass

This describes a capacitor. Capacitors are defined by their combination behavior and the basic parameter 'C' which is the capacitance in
Farad.

A capacitor has two terminals, A and B. The parameters of a capacitor are C (the value in Farad) and A and P (area and perimeter in
square micrometers and micrometers respectively).

This class has been introduced in version 0.26.

Public methods

void _assign (const
DeviceClassCapacitor
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] new
DeviceClassCapacitor
ptr

_dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

Public static methods and constants

[static,const] unsigned long PARAM_A A constant giving the parameter ID for
parameter A

[static,const] unsigned long PARAM_C A constant giving the parameter ID for
parameter C

[static,const] unsigned long PARAM_P A constant giving the parameter ID for
parameter P

[static,const] unsigned long TERMINAL_A A constant giving the terminal ID for terminal A

[static,const] unsigned long TERMINAL_B A constant giving the terminal ID for terminal B

For more details visit
https://www.klayout.org

Page 1626 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.122. API reference - Class DeviceClassCapacitor

Detailed description

PARAM_A
Signature: [static,const] unsigned long PARAM_A

Description: A constant giving the parameter ID for parameter A

PARAM_C
Signature: [static,const] unsigned long PARAM_C

Description: A constant giving the parameter ID for parameter C

PARAM_P
Signature: [static,const] unsigned long PARAM_P

Description: A constant giving the parameter ID for parameter P

TERMINAL_A
Signature: [static,const] unsigned long TERMINAL_A

Description: A constant giving the terminal ID for terminal A

TERMINAL_B
Signature: [static,const] unsigned long TERMINAL_B

Description: A constant giving the terminal ID for terminal B

_assign
Signature: void _assign (const DeviceClassCapacitor other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new DeviceClassCapacitor ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

For more details visit
https://www.klayout.org

Page 1627 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.122. API reference - Class DeviceClassCapacitor

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1628 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.123. API reference - Class DeviceClassCapacitorWithBulk

4.123. API reference - Class DeviceClassCapacitorWithBulk
Notation used in Ruby API documentation

Module: db

Description: A device class for a capacitor with a bulk terminal (substrate, well).

Class hierarchy: DeviceClassCapacitorWithBulk » DeviceClassCapacitor » DeviceClass

This class is similar to DeviceClassCapacitor, but provides an additional terminal (BULK) for the well or substrate the capacitor is
embedded in.

The additional terminal is 'W' for the well/substrate terminal.

This class has been introduced in version 0.26.

Public methods

void _assign (const
DeviceClassCapacitorWithBulk
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] new
DeviceClassCapacitorWithBulk
ptr

_dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

Public static methods and constants

[static,const] unsigned long TERMINAL_W A constant giving the terminal ID for terminal
W (well, bulk)

Detailed description

TERMINAL_W
Signature: [static,const] unsigned long TERMINAL_W

Description: A constant giving the terminal ID for terminal W (well, bulk)

_assign
Signature: void _assign (const DeviceClassCapacitorWithBulk other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

For more details visit
https://www.klayout.org

Page 1629 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.123. API reference - Class DeviceClassCapacitorWithBulk

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new DeviceClassCapacitorWithBulk ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1630 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.124. API reference - Class DeviceClassInductor

4.124. API reference - Class DeviceClassInductor
Notation used in Ruby API documentation

Module: db

Description: A device class for an inductor.

Class hierarchy: DeviceClassInductor » DeviceClass

This class describes an inductor. Inductors are defined by their combination behavior and the basic parameter 'L' which is the inductance in
Henry.

An inductor has two terminals, A and B.

This class has been introduced in version 0.26.

Public methods

void _assign (const
DeviceClassInductor
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] new
DeviceClassInductor
ptr

_dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

Public static methods and constants

[static,const] unsigned long PARAM_L A constant giving the parameter ID for
parameter L

[static,const] unsigned long TERMINAL_A A constant giving the terminal ID for terminal
A

[static,const] unsigned long TERMINAL_B A constant giving the terminal ID for terminal
B

Detailed description

PARAM_L
Signature: [static,const] unsigned long PARAM_L

Description: A constant giving the parameter ID for parameter L

For more details visit
https://www.klayout.org

Page 1631 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.124. API reference - Class DeviceClassInductor

TERMINAL_A
Signature: [static,const] unsigned long TERMINAL_A

Description: A constant giving the terminal ID for terminal A

TERMINAL_B
Signature: [static,const] unsigned long TERMINAL_B

Description: A constant giving the terminal ID for terminal B

_assign
Signature: void _assign (const DeviceClassInductor other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new DeviceClassInductor ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method

For more details visit
https://www.klayout.org

Page 1632 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.124. API reference - Class DeviceClassInductor

will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1633 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.125. API reference - Class DeviceClassDiode

4.125. API reference - Class DeviceClassDiode
Notation used in Ruby API documentation

Module: db

Description: A device class for a diode.

Class hierarchy: DeviceClassDiode » DeviceClass

This class describes a diode. A diode has two terminals, A (anode) and C (cathode). It has two parameters: The diode area in square
micrometers (A) and the diode area perimeter in micrometers (P).

Diodes only combine when parallel and in the same direction. In this case, their areas and perimeters are added. This class has been
introduced in version 0.26.

Public methods

void _assign (const
DeviceClassDiode
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] new
DeviceClassDiode ptr

_dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

Public static methods and constants

[static,const] unsigned long PARAM_A A constant giving the parameter ID for
parameter A

[static,const] unsigned long PARAM_P A constant giving the parameter ID for
parameter P

[static,const] unsigned long TERMINAL_A A constant giving the terminal ID for terminal
A

[static,const] unsigned long TERMINAL_C A constant giving the terminal ID for terminal
C

Detailed description

PARAM_A
Signature: [static,const] unsigned long PARAM_A

For more details visit
https://www.klayout.org

Page 1634 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.125. API reference - Class DeviceClassDiode

Description: A constant giving the parameter ID for parameter A

PARAM_P
Signature: [static,const] unsigned long PARAM_P

Description: A constant giving the parameter ID for parameter P

TERMINAL_A
Signature: [static,const] unsigned long TERMINAL_A

Description: A constant giving the terminal ID for terminal A

TERMINAL_C
Signature: [static,const] unsigned long TERMINAL_C

Description: A constant giving the terminal ID for terminal C

_assign
Signature: void _assign (const DeviceClassDiode other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new DeviceClassDiode ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1635 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.125. API reference - Class DeviceClassDiode

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1636 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.126. API reference - Class DeviceClassBJT3Transistor

4.126. API reference - Class DeviceClassBJT3Transistor
Notation used in Ruby API documentation

Module: db

Description: A device class for a bipolar transistor.

Class hierarchy: DeviceClassBJT3Transistor » DeviceClass

This class describes a bipolar transistor. Bipolar transistors have tree terminals: the collector (C), the base (B) and the emitter (E). Multi-
emitter transistors are resolved in individual devices. The parameters are AE, AB and AC for the emitter, base and collector areas in square
micrometers and PE, PB and PC for the emitter, base and collector perimeters in micrometers. In addition, the emitter count (NE) is given.
The emitter count is 1 always for a transistor extracted initially. Upon combination of devices, the emitter counts are added, thus forming
multi-emitter devices.

This class has been introduced in version 0.26.

Public methods

void _assign (const
DeviceClassBJT3Transistor
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] new
DeviceClassBJT3Transistor
ptr

_dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

Public static methods and constants

[static,const] unsigned long PARAM_AB A constant giving the parameter ID for parameter
AB (base area)

[static,const] unsigned long PARAM_AC A constant giving the parameter ID for parameter
AC (collector area)

[static,const] unsigned long PARAM_AE A constant giving the parameter ID for parameter
AE (emitter area)

[static,const] unsigned long PARAM_NE A constant giving the parameter ID for parameter
NE (emitter count)

[static,const] unsigned long PARAM_PB A constant giving the parameter ID for parameter
PB (base perimeter)

For more details visit
https://www.klayout.org

Page 1637 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.126. API reference - Class DeviceClassBJT3Transistor

[static,const] unsigned long PARAM_PC A constant giving the parameter ID for parameter
PC (collector perimeter)

[static,const] unsigned long PARAM_PE A constant giving the parameter ID for parameter
PE (emitter perimeter)

[static,const] unsigned long TERMINAL_B A constant giving the terminal ID for terminal B
(base)

[static,const] unsigned long TERMINAL_C A constant giving the terminal ID for terminal C
(collector)

[static,const] unsigned long TERMINAL_E A constant giving the terminal ID for terminal E
(emitter)

Detailed description

PARAM_AB
Signature: [static,const] unsigned long PARAM_AB

Description: A constant giving the parameter ID for parameter AB (base area)

PARAM_AC
Signature: [static,const] unsigned long PARAM_AC

Description: A constant giving the parameter ID for parameter AC (collector area)

PARAM_AE
Signature: [static,const] unsigned long PARAM_AE

Description: A constant giving the parameter ID for parameter AE (emitter area)

PARAM_NE
Signature: [static,const] unsigned long PARAM_NE

Description: A constant giving the parameter ID for parameter NE (emitter count)

PARAM_PB
Signature: [static,const] unsigned long PARAM_PB

Description: A constant giving the parameter ID for parameter PB (base perimeter)

PARAM_PC
Signature: [static,const] unsigned long PARAM_PC

Description: A constant giving the parameter ID for parameter PC (collector perimeter)

PARAM_PE
Signature: [static,const] unsigned long PARAM_PE

Description: A constant giving the parameter ID for parameter PE (emitter perimeter)

TERMINAL_B
Signature: [static,const] unsigned long TERMINAL_B

Description: A constant giving the terminal ID for terminal B (base)

TERMINAL_C
Signature: [static,const] unsigned long TERMINAL_C

Description: A constant giving the terminal ID for terminal C (collector)

TERMINAL_E
Signature: [static,const] unsigned long TERMINAL_E

Description: A constant giving the terminal ID for terminal E (emitter)

For more details visit
https://www.klayout.org

Page 1638 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.126. API reference - Class DeviceClassBJT3Transistor

_assign
Signature: void _assign (const DeviceClassBJT3Transistor other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new DeviceClassBJT3Transistor ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1639 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.127. API reference - Class DeviceClassBJT4Transistor

4.127. API reference - Class DeviceClassBJT4Transistor
Notation used in Ruby API documentation

Module: db

Description: A device class for a 4-terminal bipolar transistor.

Class hierarchy: DeviceClassBJT4Transistor » DeviceClassBJT3Transistor » DeviceClass

This class describes a bipolar transistor with a substrate terminal. A device class for a bipolar transistor without a substrate terminal is
DeviceClassBJT3Transistor. The additional terminal is 'S' for the substrate terminal. BJT4 transistors combine in parallel if both substrate
terminals are connected to the same net.

This class has been introduced in version 0.26.

Public methods

void _assign (const
DeviceClassBJT4Transistor
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] new
DeviceClassBJT4Transistor
ptr

_dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

Public static methods and constants

[static,const] unsigned long TERMINAL_S A constant giving the terminal ID for
terminal S

Detailed description

TERMINAL_S
Signature: [static,const] unsigned long TERMINAL_S

Description: A constant giving the terminal ID for terminal S

_assign
Signature: void _assign (const DeviceClassBJT4Transistor other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

For more details visit
https://www.klayout.org

Page 1640 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.127. API reference - Class DeviceClassBJT4Transistor

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new DeviceClassBJT4Transistor ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1641 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.128. API reference - Class DeviceClassMOS3Transistor

4.128. API reference - Class DeviceClassMOS3Transistor
Notation used in Ruby API documentation

Module: db

Description: A device class for a 3-terminal MOS transistor.

Class hierarchy: DeviceClassMOS3Transistor » DeviceClass

This class describes a MOS transistor without a bulk terminal. A device class for a MOS transistor with a bulk terminal is
DeviceClassMOS4Transistor. MOS transistors are defined by their combination behavior and the basic parameters.

The parameters are L, W, AS, AD, PS and PD for the gate length and width in micrometers, source and drain area in square micrometers
and the source and drain perimeter in micrometers.

The terminals are S, G and D for source, gate and drain.

MOS transistors combine in parallel mode, when both gate lengths are identical and their gates are connected (source and drain can be
swapped). In this case, their widths and source and drain areas are added.

This class has been introduced in version 0.26.

Public methods

void _assign (const
DeviceClassMOS3Transistor
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] new
DeviceClassMOS3Transistor
ptr

_dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

[const] void join_split_gates (Circuit ptr
circuit)

Joins source/drain nets from 'split gate' transistor
strings on the given circuit

Public static methods and constants

[static,const] unsigned long PARAM_AD A constant giving the parameter ID for
parameter AD

[static,const] unsigned long PARAM_AS A constant giving the parameter ID for
parameter AS

[static,const] unsigned long PARAM_L A constant giving the parameter ID for
parameter L

For more details visit
https://www.klayout.org

Page 1642 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.128. API reference - Class DeviceClassMOS3Transistor

[static,const] unsigned long PARAM_PD A constant giving the parameter ID for
parameter PD

[static,const] unsigned long PARAM_PS A constant giving the parameter ID for
parameter PS

[static,const] unsigned long PARAM_W A constant giving the parameter ID for
parameter W

[static,const] unsigned long TERMINAL_D A constant giving the terminal ID for terminal D

[static,const] unsigned long TERMINAL_G A constant giving the terminal ID for terminal G

[static,const] unsigned long TERMINAL_S A constant giving the terminal ID for terminal S

Detailed description

PARAM_AD
Signature: [static,const] unsigned long PARAM_AD

Description: A constant giving the parameter ID for parameter AD

PARAM_AS
Signature: [static,const] unsigned long PARAM_AS

Description: A constant giving the parameter ID for parameter AS

PARAM_L
Signature: [static,const] unsigned long PARAM_L

Description: A constant giving the parameter ID for parameter L

PARAM_PD
Signature: [static,const] unsigned long PARAM_PD

Description: A constant giving the parameter ID for parameter PD

PARAM_PS
Signature: [static,const] unsigned long PARAM_PS

Description: A constant giving the parameter ID for parameter PS

PARAM_W
Signature: [static,const] unsigned long PARAM_W

Description: A constant giving the parameter ID for parameter W

TERMINAL_D
Signature: [static,const] unsigned long TERMINAL_D

Description: A constant giving the terminal ID for terminal D

TERMINAL_G
Signature: [static,const] unsigned long TERMINAL_G

Description: A constant giving the terminal ID for terminal G

TERMINAL_S
Signature: [static,const] unsigned long TERMINAL_S

Description: A constant giving the terminal ID for terminal S

_assign
Signature: void _assign (const DeviceClassMOS3Transistor other)

Description: Assigns another object to self

For more details visit
https://www.klayout.org

Page 1643 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.128. API reference - Class DeviceClassMOS3Transistor

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new DeviceClassMOS3Transistor ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of
the object. This method may be called if an object is returned from a C++ function and the object
is known not to be owned by any C++ instance. If necessary, the script side may delete the object
if the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

join_split_gates
Signature: [const] void join_split_gates (Circuit ptr circuit)

Description: Joins source/drain nets from 'split gate' transistor strings on the given circuit

This method has been introduced in version 0.27.9

For more details visit
https://www.klayout.org

Page 1644 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.129. API reference - Class DeviceClassMOS4Transistor

4.129. API reference - Class DeviceClassMOS4Transistor
Notation used in Ruby API documentation

Module: db

Description: A device class for a 4-terminal MOS transistor.

Class hierarchy: DeviceClassMOS4Transistor » DeviceClassMOS3Transistor » DeviceClass

This class describes a MOS transistor with a bulk terminal. A device class for a MOS transistor without a bulk terminal is
DeviceClassMOS3Transistor. MOS transistors are defined by their combination behavior and the basic parameters.

The additional terminal is 'B' for the bulk terminal. MOS4 transistors combine in parallel if both bulk terminals are connected to the same
net.

This class has been introduced in version 0.26.

Public methods

void _assign (const
DeviceClassMOS4Transistor
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] new
DeviceClassMOS4Transistor
ptr

_dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

Public static methods and constants

[static,const] unsigned long TERMINAL_B A constant giving the terminal ID for
terminal B

Detailed description

TERMINAL_B
Signature: [static,const] unsigned long TERMINAL_B

Description: A constant giving the terminal ID for terminal B

_assign
Signature: void _assign (const DeviceClassMOS4Transistor other)

Description: Assigns another object to self

For more details visit
https://www.klayout.org

Page 1645 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.129. API reference - Class DeviceClassMOS4Transistor

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new DeviceClassMOS4Transistor ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1646 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.130. API reference - Class DeviceClassFactory

4.130. API reference - Class DeviceClassFactory
Notation used in Ruby API documentation

Module: db

Description: A factory for creating specific device classes for the standard device extractors

Use a reimplementation of this class to provide a device class generator for built-in device extractors such as
DeviceExtractorMOS3Transistor. The constructor of this extractor has a 'factory' parameter which takes an object of DeviceClassFactory
type.

If such an object is provided, this factory is used to create the actual device class. The following code shows an example:

class MyClass < RBA::DeviceClassMOS3Transistor
 ... overrides some methods ...
end

class MyFactory < RBA::DeviceClassFactory
 def create_class
 MyClass.new
 end
end

extractor = RBA::DeviceExtractorMOS3Transistor::new("NMOS", false, MyFactory.new)

When using a factory with a device extractor, make sure it creates a corresponding device class, e.g. for the
DeviceExtractorMOS3Transistor extractor create a device class derived from DeviceClassMOS3Transistor.

This class has been introduced in version 0.27.3.

Public constructors

new DeviceClassFactory ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
DeviceClassFactory
other)

Assigns another object to self

[virtual,const] new DeviceClass ptr create_class Creates the DeviceClass object

For more details visit
https://www.klayout.org

Page 1647 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.130. API reference - Class DeviceClassFactory

[const] new
DeviceClassFactory ptr

dup Creates a copy of self

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

For more details visit
https://www.klayout.org

Page 1648 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.130. API reference - Class DeviceClassFactory

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const DeviceClassFactory other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

create_class
Signature: [virtual,const] new DeviceClass ptr create_class

Description: Creates the DeviceClass object

Reimplement this method to create the desired device class.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new DeviceClassFactory ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new DeviceClassFactory ptr new

Description: Creates a new object of this class

Python specific notes:

For more details visit
https://www.klayout.org

Page 1649 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.130. API reference - Class DeviceClassFactory

This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1650 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.131. API reference - Class NetlistDeviceExtractorError

4.131. API reference - Class NetlistDeviceExtractorError
Notation used in Ruby API documentation

Module: db

Description: An error that occurred during device extraction

The device extractor will keep errors that occurred during extraction of the devices. It does not by using this error class.

An error is basically described by the cell/circuit it occurs in and the message. In addition, a geometry may be attached forming a marker
that can be shown when the error is selected. The geometry is given as a DPolygon object. If no geometry is specified, this polygon is
empty.

For categorization of the errors, a category name and description may be specified. If given, the errors will be shown in the specified
category. The category description is optional.

This class has been introduced in version 0.26.

Public constructors

new NetlistDeviceExtractorError ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
NetlistDeviceExtractorError
other)

Assigns another object to self

[const] string category_description Gets the category description.

void category_description= (string
description)

Sets the category description.

[const] string category_name Gets the category name.

void category_name= (string name) Sets the category name.

[const] string cell_name Gets the cell name.

void cell_name= (string
cell_name)

Sets the cell name.

For more details visit
https://www.klayout.org

Page 1651 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.131. API reference - Class NetlistDeviceExtractorError

[const] new
NetlistDeviceExtractorError
ptr

dup Creates a copy of self

[const] DPolygon geometry Gets the geometry.

void geometry= (const
DPolygon
polygon)

Sets the geometry.

[const] string message Gets the message text.

void message= (string
message)

Sets the message text.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

For more details visit
https://www.klayout.org

Page 1652 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.131. API reference - Class NetlistDeviceExtractorError

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const NetlistDeviceExtractorError other)

Description: Assigns another object to self

category_description
Signature: [const] string category_description

Description: Gets the category description.

See category_name= for details about categories.

Python specific notes:
The object exposes a readable attribute 'category_description'. This is the getter.

category_description=
Signature: void category_description= (string description)

Description: Sets the category description.

See category_name= for details about categories.

Python specific notes:
The object exposes a writable attribute 'category_description'. This is the setter.

category_name
Signature: [const] string category_name

Description: Gets the category name.

See category_name= for more details.

Python specific notes:
The object exposes a readable attribute 'category_name'. This is the getter.

category_name=
Signature: void category_name= (string name)

Description: Sets the category name.

The category name is optional. If given, it specifies a formal category name. Errors with the same
category name are shown in that category. If in addition a category description is specified (see
category_description), this description will be displayed as the title of.

Python specific notes:
The object exposes a writable attribute 'category_name'. This is the setter.

For more details visit
https://www.klayout.org

Page 1653 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.131. API reference - Class NetlistDeviceExtractorError

cell_name
Signature: [const] string cell_name

Description: Gets the cell name.

See cell_name= for details about this attribute.

Python specific notes:
The object exposes a readable attribute 'cell_name'. This is the getter.

cell_name=
Signature: void cell_name= (string cell_name)

Description: Sets the cell name.

The cell name is the name of the layout cell which was treated. This is also the name of the circuit
the device should have appeared in (it may be dropped because of this error). If netlist hierarchy
manipulation happens however, the circuit may not exist any longer or may be renamed.

Python specific notes:
The object exposes a writable attribute 'cell_name'. This is the setter.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new NetlistDeviceExtractorError ptr dup

Description: Creates a copy of self

geometry
Signature: [const] DPolygon geometry

Description: Gets the geometry.

See geometry= for more details.

Python specific notes:
The object exposes a readable attribute 'geometry'. This is the getter.

geometry=
Signature: void geometry= (const DPolygon polygon)

Description: Sets the geometry.

The geometry is optional. If given, a marker will be shown when selecting this error.

For more details visit
https://www.klayout.org

Page 1654 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.131. API reference - Class NetlistDeviceExtractorError

Python specific notes:
The object exposes a writable attribute 'geometry'. This is the setter.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

message
Signature: [const] string message

Description: Gets the message text.

Python specific notes:
The object exposes a readable attribute 'message'. This is the getter.

message=
Signature: void message= (string message)

Description: Sets the message text.

Python specific notes:
The object exposes a writable attribute 'message'. This is the setter.

new
Signature: [static] new NetlistDeviceExtractorError ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1655 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.132. API reference - Class NetlistDeviceExtractorLayerDefinition

4.132. API reference - Class NetlistDeviceExtractorLayerDefinition
Notation used in Ruby API documentation

Module: db

Description: Describes a layer used in the device extraction

This read-only structure is used to describe a layer in the device extraction. Every device has specific layers used in the device extraction
process. Layer definitions can be retrieved using NetlistDeviceExtractor#each_layer.

This class has been introduced in version 0.26.

Public constructors

new NetlistDeviceExtractorLayerDefinition ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
NetlistDeviceExtractorLayerDefinition
other)

Assigns another object to self

[const] string description Gets the description of the layer.

[const] new
NetlistDeviceExtractorLayerDefinition
ptr

dup Creates a copy of self

[const] unsigned long fallback_index Gets the index of the fallback layer.

[const] unsigned long index Gets the index of the layer.

[const] string name Gets the name of the layer.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

For more details visit
https://www.klayout.org

Page 1656 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.132. API reference - Class NetlistDeviceExtractorLayerDefinition

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const NetlistDeviceExtractorLayerDefinition other)

Description: Assigns another object to self

For more details visit
https://www.klayout.org

Page 1657 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.132. API reference - Class NetlistDeviceExtractorLayerDefinition

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

description
Signature: [const] string description

Description: Gets the description of the layer.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new NetlistDeviceExtractorLayerDefinition ptr dup

Description: Creates a copy of self

fallback_index
Signature: [const] unsigned long fallback_index

Description: Gets the index of the fallback layer.

This is the index of the layer to be used when this layer isn't specified for input or (more important)
output.

index
Signature: [const] unsigned long index

Description: Gets the index of the layer.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

name
Signature: [const] string name

Description: Gets the name of the layer.

new
Signature: [static] new NetlistDeviceExtractorLayerDefinition ptr new

Description: Creates a new object of this class

Python specific notes:

For more details visit
https://www.klayout.org

Page 1658 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.132. API reference - Class NetlistDeviceExtractorLayerDefinition

This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1659 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.133. API reference - Class DeviceExtractorBase

4.133. API reference - Class DeviceExtractorBase
Notation used in Ruby API documentation

Module: db

Description: The base class for all device extractors.

This is an abstract base class for device extractors. See GenericDeviceExtractor for a generic class which you can reimplement to supply
your own customized device extractor. In many cases using one of the preconfigured specific device extractors may be useful already and
it's not required to implement a custom one. For an example about a preconfigured device extractor see DeviceExtractorMOS3Transistor.

This class cannot and should not be instantiated explicitly. Use one of the subclasses instead.

This class has been introduced in version 0.26.

Public constructors

new DeviceExtractorBase ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

DeviceClass ptr device_class Gets the device class used during extraction

[iter] NetlistDeviceExtractorError each_error Iterates over all errors collected in the device
extractor.

[const,iter] NetlistDeviceExtractorLayerDefinitioneach_layer_definition Iterates over all layer definitions.

string name Gets the name of the device extractor and the
device class.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

For more details visit
https://www.klayout.org

Page 1660 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.133. API reference - Class DeviceExtractorBase

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

For more details visit
https://www.klayout.org

Page 1661 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.133. API reference - Class DeviceExtractorBase

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

device_class
Signature: DeviceClass ptr device_class

Description: Gets the device class used during extraction

The attribute will hold the actual device class used in the device extraction. It is valid only after
'extract_devices'.

This method has been added in version 0.27.3.

each_error
Signature: [iter] NetlistDeviceExtractorError each_error

Description: Iterates over all errors collected in the device extractor.

each_layer_definition
Signature: [const,iter] NetlistDeviceExtractorLayerDefinition each_layer_definition

Description: Iterates over all layer definitions.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

name
Signature: string name

Description: Gets the name of the device extractor and the device class.

new
Signature: [static] new DeviceExtractorBase ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1662 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.134. API reference - Class GenericDeviceExtractor

4.134. API reference - Class GenericDeviceExtractor
Notation used in Ruby API documentation

Module: db

Description: The basic class for implementing custom device extractors.

Class hierarchy: GenericDeviceExtractor » DeviceExtractorBase

This class serves as a base class for implementing customized device extractors. This class does not provide any extraction functionality,
so you have to implement every detail.

Device extraction requires a few definitions. The definitions are made in the reimplementation of the setup method. Required definitions to
be made are:

• The name of the extractor. This will also be the name of the device class produced by the extractor. The name is set using name=.

• The device class of the devices to produce. The device class is registered using register_device_class.

• The layers used for the device extraction. These are input layers for the extraction as well as output layers for defining the terminals.
Terminals are the points at which the nets connect to the devices. Layers are defined using define_layer. Initially, layers are abstract
definitions with a name and a description. Concrete layers will be given when defining the connectivity.

When the device extraction is started, the device extraction algorithm will first ask the device extractor for the 'connectivity'. This is not a
connectivity in a sense of electrical connections. The connectivity defines are logical compound that makes up the device. 'Connected'
shapes are collected and presented to the device extractor. The connectivity is obtained by calling get_connectivity. This method must be
implemented to produce the connectivity.

Finally, the individual devices need to be extracted. Each cluster of connected shapes is presented to the device extractor. A cluster
may include more than one device. It's the device extractor's responsibility to extract the devices from this cluster and deliver the devices
through create_device. In addition, terminals have to be defined, so the net extractor can connect to the devices. Terminal definitions are
made through define_terminal. The device extraction is implemented in the extract_devices method.

If errors occur during device extraction, the error method may be used to issue such errors. Errors reported this way are kept in the error
log.

This class has been introduced in version 0.26.

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by
the script side.

Device ptr create_device Creates a device.

[const] double dbu Gets the database unit

NetlistDeviceExtractorLayerDefinitiondefine_layer (string name,
string description)

Defines a layer.

For more details visit
https://www.klayout.org

Page 1663 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.134. API reference - Class GenericDeviceExtractor

NetlistDeviceExtractorLayerDefinitiondefine_opt_layer (string name,
string description)

Defines a layer with a fallback layer.

void define_terminal (Device ptr device,
unsigned long terminal_id,
unsigned long layer_index,
const Polygon shape)

Defines a device terminal.

void define_terminal (Device ptr device,
unsigned long terminal_id,
unsigned long layer_index,
const Box shape)

Defines a device terminal.

void define_terminal (Device ptr device,
unsigned long terminal_id,
unsigned long layer_index,
const Point point)

Defines a device terminal.

void error (string message) Issues an error with the given message

void error (string message,
const DPolygon geometry)

Issues an error with the given message
and micrometer-units polygon geometry

void error (string message,
const Polygon geometry)

Issues an error with the given message
and database-unit polygon geometry

void error (string category_name,
string category_description,
string message)

Issues an error with the given category
name and description, message

void error (string category_name,
string category_description,
string message,
const DPolygon geometry)

Issues an error with the given category
name and description, message and
micrometer-units polygon geometry

void error (string category_name,
string category_description,
string message,
const Polygon geometry)

Issues an error with the given category
name and description, message and
database-unit polygon geometry

[virtual] void extract_devices (Region[] layer_geometry) Extracts the devices from the given shape
cluster.

[virtual,const]Connectivity get_connectivity (const Layout layout,
unsigned int[] layers)

Gets the connectivity object used to
extract the device geometry.

void name= (string arg1) Sets the name of the device extractor and
the device class.

void register_device_class (DeviceClass ptr
device_class)

Registers a device class.

[const] double sdbu Gets the scaled database unit

[virtual] void setup Sets up the extractor.

For more details visit
https://www.klayout.org

Page 1664 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.134. API reference - Class GenericDeviceExtractor

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

create_device
Signature: Device ptr create_device

Description: Creates a device.

The device object returned can be configured by the caller, e.g. set parameters. It will be owned by
the netlist and must not be deleted by the caller.

For more details visit
https://www.klayout.org

Page 1665 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.134. API reference - Class GenericDeviceExtractor

dbu
Signature: [const] double dbu

Description: Gets the database unit

define_layer
Signature: NetlistDeviceExtractorLayerDefinition define_layer (string name, string description)

Description: Defines a layer.

Returns: The layer descriptor object created for this layer (use 'index' to get
the layer's index)

Each call will define one more layer for the device extraction. This method shall be used inside the
implementation of setup to define the device layers. The actual geometries are later available to
extract_devices in the order the layers are defined.

define_opt_layer
Signature: NetlistDeviceExtractorLayerDefinition define_opt_layer (string name, string description)

Description: Defines a layer with a fallback layer.

Returns: The layer descriptor object created for this layer (use 'index' to get
the layer's index)

As define_layer, this method allows specification of device extraction layer. In addition to
define_layout, it features a fallback layer. If in the device extraction statement, the primary layer is not
given, the fallback layer will be used. Hence, this layer is optional. The fallback layer is given by it's
index and must be defined before the layer using the fallback layer is defined. For the index, 0 is the
first layer defined, 1 the second and so forth.

(1) Signature: void define_terminal (Device ptr device, unsigned long terminal_id, unsigned long
layer_index, const Polygon shape)

Description: Defines a device terminal.

This method will define a terminal to the given device and the given terminal ID. The terminal will
be placed on the layer given by "layer_index". The layer index is the index of the layer during layer
definition. The first layer is 0, the second layer 1 etc.

This version produces a terminal with a shape given by the polygon. Note that the polygon is
specified in database units.

(2) Signature: void define_terminal (Device ptr device, unsigned long terminal_id, unsigned long
layer_index, const Box shape)

Description: Defines a device terminal.

This method will define a terminal to the given device and the given terminal ID. The terminal will
be placed on the layer given by "layer_index". The layer index is the index of the layer during layer
definition. The first layer is 0, the second layer 1 etc.

This version produces a terminal with a shape given by the box. Note that the box is specified in
database units.

define_terminal

(3) Signature: void define_terminal (Device ptr device, unsigned long terminal_id, unsigned long
layer_index, const Point point)

Description: Defines a device terminal.

This method will define a terminal to the given device and the given terminal ID. The terminal will
be placed on the layer given by "layer_index". The layer index is the index of the layer during layer
definition. The first layer is 0, the second layer 1 etc.

This version produces a point-like terminal. Note that the point is specified in database units.

For more details visit
https://www.klayout.org

Page 1666 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.134. API reference - Class GenericDeviceExtractor

(1) Signature: void error (string message)

Description: Issues an error with the given message

(2) Signature: void error (string message, const DPolygon geometry)

Description: Issues an error with the given message and micrometer-units polygon geometry

(3) Signature: void error (string message, const Polygon geometry)

Description: Issues an error with the given message and database-unit polygon geometry

(4) Signature: void error (string category_name, string category_description, string message)

Description: Issues an error with the given category name and description, message

(5) Signature: void error (string category_name, string category_description, string message, const
DPolygon geometry)

Description: Issues an error with the given category name and description, message and
micrometer-units polygon geometry

error

(6) Signature: void error (string category_name, string category_description, string message, const
Polygon geometry)

Description: Issues an error with the given category name and description, message and database-
unit polygon geometry

extract_devices
Signature: [virtual] void extract_devices (Region[] layer_geometry)

Description: Extracts the devices from the given shape cluster.

The shape cluster is a set of geometries belonging together in terms of the connectivity defined by
"get_connectivity". The cluster might cover multiple devices, so the implementation needs to consider
this case. The geometries are already merged.

The implementation of this method shall use "create_device" to create new devices based on the
geometry found. It shall use "define_terminal" to define terminals by which the nets extracted in the
network extraction step connect to the new devices.

get_connectivity
Signature: [virtual,const] Connectivity get_connectivity (const Layout layout, unsigned int[] layers)

Description: Gets the connectivity object used to extract the device geometry.

This method shall raise an error, if the input layer are not properly defined (e.g. too few etc.)

This is not a connectivity definition in the electrical sense, but defines the cluster of shapes which
generates a specific device. In this case, 'connectivity' means 'definition of shapes that need to touch
to form the device'.

The 'layers' argument specifies the actual layer layouts for the logical device layers (see
define_layer). The list of layers corresponds to the number of layers defined. Use the layer indexes
from this list to build the connectivity with Connectivity#connect. Note, that in order to capture
a connected cluster of shapes on the same layer you'll need to include a self-connection like
'connectivity.connect(layers[0], layers[0])'.

name=
Signature: void name= (string arg1)

Description: Sets the name of the device extractor and the device class.

Python specific notes:
The object exposes a writable attribute 'name'. This is the setter.

For more details visit
https://www.klayout.org

Page 1667 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.134. API reference - Class GenericDeviceExtractor

register_device_class
Signature: void register_device_class (DeviceClass ptr device_class)

Description: Registers a device class.

The device class object will become owned by the netlist and must not be deleted by the caller. The
name of the device class will be changed to the name given to the device extractor. This method
shall be used inside the implementation of setup to register the device classes.

sdbu
Signature: [const] double sdbu

Description: Gets the scaled database unit

Use this unit to compute device properties. It is the database unit multiplied with the device scaling
factor.

setup
Signature: [virtual] void setup

Description: Sets up the extractor.

This method is supposed to set up the device extractor. This involves three basic steps: defining the
name, the device class and setting up the device layers.

Use name= to give the extractor and it's device class a name. Use register_device_class to register
the device class you need. Defined the layers by calling define_layer once or several times.

For more details visit
https://www.klayout.org

Page 1668 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.135. API reference - Class DeviceExtractorMOS3Transistor

4.135. API reference - Class DeviceExtractorMOS3Transistor
Notation used in Ruby API documentation

Module: db

Description: A device extractor for a three-terminal MOS transistor

Class hierarchy: DeviceExtractorMOS3Transistor » DeviceExtractorBase

This class supplies the generic extractor for a MOS device. The device is defined by two basic input layers: the diffusion area (source and
drain) and the gate area. It requires a third layer (poly) to put the gate terminals on. The separation between poly and allows separating the
device recognition layer (gate) from the conductive layer.

The device class produced by this extractor is DeviceClassMOS3Transistor.

The extractor delivers six parameters:

• 'L' - the gate length in micrometer units

• 'W' - the gate width in micrometer units

• 'AS' and 'AD' - the source and drain region areas in square micrometers

• 'PS' and 'PD' - the source and drain region perimeters in micrometer units

The device layer names are:

• In strict mode: 'S' (source), 'D' (drain) and 'G' (gate).

• In non-strict mode: 'SD' (source and drain) and 'G' (gate).

The terminals are output on these layers:

• 'tS' - source. Default output is 'S' (strict mode) or 'SD' (otherwise).

• 'tD' - drain. Default output is 'D' (strict mode) or 'SD' (otherwise).

• 'tG' - gate. Default output is 'G'.

The source/drain (diffusion) area is distributed on the number of gates connecting to the particular source or drain area.

This class is a closed one and methods cannot be reimplemented. To reimplement specific methods, see DeviceExtractor.

This class has been introduced in version 0.26.

Public constructors

new
DeviceExtractorMOS3Transistor
ptr

new (string name,
bool strict = false,
DeviceClassFactory ptr factory = none)

Creates a new device extractor with
the given name.

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

For more details visit
https://www.klayout.org

Page 1669 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.135. API reference - Class DeviceExtractorMOS3Transistor

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script side.

[const] bool strict? Returns a value indicating whether extraction happens in
strict mode.

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

For more details visit
https://www.klayout.org

Page 1670 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.135. API reference - Class DeviceExtractorMOS3Transistor

Usually it's not required to call this method. It has been introduced in version 0.24.

new
Signature: [static] new DeviceExtractorMOS3Transistor ptr new (string name, bool strict = false,
DeviceClassFactory ptr factory = none)

Description: Creates a new device extractor with the given name.

If strict is true, the MOS device extraction will happen in strict mode. That is, source and drain are not
interchangeable.

For the 'factory' parameter see DeviceClassFactory. It has been added in version 0.27.3.

Python specific notes:
This method is the default initializer of the object

strict?
Signature: [const] bool strict?

Description: Returns a value indicating whether extraction happens in strict mode.

For more details visit
https://www.klayout.org

Page 1671 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.136. API reference - Class DeviceExtractorMOS4Transistor

4.136. API reference - Class DeviceExtractorMOS4Transistor
Notation used in Ruby API documentation

Module: db

Description: A device extractor for a four-terminal MOS transistor

Class hierarchy: DeviceExtractorMOS4Transistor » DeviceExtractorBase

This class supplies the generic extractor for a MOS device. It is based on the DeviceExtractorMOS3Transistor class with the extension of a
bulk terminal and corresponding bulk terminal output (annotation) layer.

The parameters of a MOS4 device are the same than for MOS3 devices. For the device layers the bulk layer is added.

• 'B' (bulk) - currently this layer is not used and can be empty.

The bulk terminals are output on this layer:

• 'tB' - bulk terminal (a copy of the gate shape). Default output is 'B'.

The bulk terminal layer can be empty. In this case, it needs to be connected to a global net to establish the net connection.

The device class produced by this extractor is DeviceClassMOS4Transistor.

This class is a closed one and methods cannot be reimplemented. To reimplement specific methods, see DeviceExtractor.

This class has been introduced in version 0.26.

Public constructors

new
DeviceExtractorMOS4Transistor
ptr

new (string name,
bool strict = false,
DeviceClassFactory ptr factory = none)

Creates a new device extractor with
the given name

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script side.

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 1672 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.136. API reference - Class DeviceExtractorMOS4Transistor

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

new
Signature: [static] new DeviceExtractorMOS4Transistor ptr new (string name, bool strict = false,
DeviceClassFactory ptr factory = none)

Description: Creates a new device extractor with the given name

For the 'factory' parameter see DeviceClassFactory. It has been added in version 0.27.3.

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1673 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.137. API reference - Class DeviceExtractorResistor

4.137. API reference - Class DeviceExtractorResistor
Notation used in Ruby API documentation

Module: db

Description: A device extractor for a two-terminal resistor

Class hierarchy: DeviceExtractorResistor » DeviceExtractorBase

This class supplies the generic extractor for a resistor device. The device is defined by two geometry layers: the resistor 'wire' and two
contacts per wire. The contacts should be attached to the ends of the wire. The wire length and width is computed from the edge lengths
between the contacts and along the contacts respectively.

This simple computation is precise only when the resistor shape is a rectangle.

Using the given sheet resistance, the resistance value is computed by 'R = L / W * sheet_rho'.

The device class produced by this extractor is DeviceClassResistor. The extractor produces three parameters:

• 'R' - the resistance in Ohm

• 'A' - the resistor's area in square micrometer units

• 'P' - the resistor's perimeter in micrometer units

The device layer names are:

• 'R' - resistor path. This is the geometry that defines the resistor's current path.

• 'C' - contacts. These areas form the contact regions at the ends of the resistor path.

The terminals are output on these layers:

• 'tA', 'tB' - the two terminals of the resistor.

This class is a closed one and methods cannot be reimplemented. To reimplement specific methods, see DeviceExtractor.

This class has been introduced in version 0.26.

Public constructors

new DeviceExtractorResistor
ptr

new (string name,
double sheet_rho,
DeviceClassFactory ptr factory = none)

Creates a new device extractor with
the given name

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script side.

For more details visit
https://www.klayout.org

Page 1674 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.137. API reference - Class DeviceExtractorResistor

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

new
Signature: [static] new DeviceExtractorResistor ptr new (string name, double sheet_rho,
DeviceClassFactory ptr factory = none)

Description: Creates a new device extractor with the given name

For the 'factory' parameter see DeviceClassFactory. It has been added in version 0.27.3.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1675 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.137. API reference - Class DeviceExtractorResistor

This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1676 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.138. API reference - Class DeviceExtractorResistorWithBulk

4.138. API reference - Class DeviceExtractorResistorWithBulk
Notation used in Ruby API documentation

Module: db

Description: A device extractor for a resistor with a bulk terminal

Class hierarchy: DeviceExtractorResistorWithBulk » DeviceExtractorBase

This class supplies the generic extractor for a resistor device including a bulk terminal. The device is defined the same way than devices
are defined for DeviceExtractorResistor.

The device class produced by this extractor is DeviceClassResistorWithBulk. The extractor produces three parameters:

• 'R' - the resistance in Ohm

• 'A' - the resistor's area in square micrometer units

• 'P' - the resistor's perimeter in micrometer units

The device layer names are:

• 'R' - resistor path. This is the geometry that defines the resistor's current path.

• 'C' - contacts. These areas form the contact regions at the ends of the resistor path.

• 'W' - well, bulk. Currently this layer is ignored for the extraction and can be empty.

The terminals are output on these layers:

• 'tA', 'tB' - the two terminals of the resistor.

• 'tW' - the bulk terminal (copy of the resistor area).

The bulk terminal layer can be an empty layer representing the substrate. In this case, it needs to be connected globally.

This class is a closed one and methods cannot be reimplemented. To reimplement specific methods, see DeviceExtractor.

This class has been introduced in version 0.26.

Public constructors

new
DeviceExtractorResistorWithBulk
ptr

new (string name,
double sheet_rho,
DeviceClassFactory ptr factory = none)

Creates a new device extractor with
the given name

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script side.

For more details visit
https://www.klayout.org

Page 1677 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.138. API reference - Class DeviceExtractorResistorWithBulk

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

new
Signature: [static] new DeviceExtractorResistorWithBulk ptr new (string name, double sheet_rho,
DeviceClassFactory ptr factory = none)

Description: Creates a new device extractor with the given name

For the 'factory' parameter see DeviceClassFactory. It has been added in version 0.27.3.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1678 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.138. API reference - Class DeviceExtractorResistorWithBulk

This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1679 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.139. API reference - Class DeviceExtractorCapacitor

4.139. API reference - Class DeviceExtractorCapacitor
Notation used in Ruby API documentation

Module: db

Description: A device extractor for a two-terminal capacitor

Class hierarchy: DeviceExtractorCapacitor » DeviceExtractorBase

This class supplies the generic extractor for a capacitor device. The device is defined by two geometry layers forming the 'plates' of the
capacitor. The capacitance is computed from the overlapping area of the plates using 'C = A * area_cap' (area_cap is the capacitance per
square micrometer area).

Although 'area_cap' can be given in any unit, Farad should be preferred as this is the convention used for output into a netlist.

The device class produced by this extractor is DeviceClassCapacitor. The extractor produces three parameters:

• 'C' - the capacitance

• 'A' - the capacitor's area in square micrometer units

• 'P' - the capacitor's perimeter in micrometer units

The device layer names are:

• 'P1', 'P2' - the two plates.

The terminals are output on these layers:

• 'tA', 'tB' - the two terminals. Defaults to 'P1' and 'P2'.

This class is a closed one and methods cannot be reimplemented. To reimplement specific methods, see DeviceExtractor.

This class has been introduced in version 0.26.

Public constructors

new
DeviceExtractorCapacitor ptr

new (string name,
double area_cap,
DeviceClassFactory ptr factory = none)

Creates a new device extractor with
the given name

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script side.

For more details visit
https://www.klayout.org

Page 1680 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.139. API reference - Class DeviceExtractorCapacitor

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

new
Signature: [static] new DeviceExtractorCapacitor ptr new (string name, double area_cap,
DeviceClassFactory ptr factory = none)

Description: Creates a new device extractor with the given name

For the 'factory' parameter see DeviceClassFactory. It has been added in version 0.27.3.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1681 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.139. API reference - Class DeviceExtractorCapacitor

This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1682 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.140. API reference - Class DeviceExtractorCapacitorWithBulk

4.140. API reference - Class DeviceExtractorCapacitorWithBulk
Notation used in Ruby API documentation

Module: db

Description: A device extractor for a capacitor with a bulk terminal

Class hierarchy: DeviceExtractorCapacitorWithBulk » DeviceExtractorBase

This class supplies the generic extractor for a capacitor device including a bulk terminal. The device is defined the same way than devices
are defined for DeviceExtractorCapacitor.

The device class produced by this extractor is DeviceClassCapacitorWithBulk. The extractor produces three parameters:

• 'C' - the capacitance

• 'A' - the capacitor's area in square micrometer units

• 'P' - the capacitor's perimeter in micrometer units

The device layer names are:

• 'P1', 'P2' - the two plates.

• 'W' - well, bulk. Currently this layer is ignored for the extraction and can be empty.

The terminals are output on these layers:

• 'tA', 'tB' - the two terminals. Defaults to 'P1' and 'P2'.

• 'tW' - the bulk terminal (copy of the resistor area).

The bulk terminal layer can be an empty layer representing the substrate. In this case, it needs to be connected globally.

This class is a closed one and methods cannot be reimplemented. To reimplement specific methods, see DeviceExtractor.

This class has been introduced in version 0.26.

Public constructors

new
DeviceExtractorCapacitorWithBulk
ptr

new (string name,
double sheet_rho,
DeviceClassFactory ptr factory = none)

Creates a new device extractor with
the given name

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script side.

For more details visit
https://www.klayout.org

Page 1683 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.140. API reference - Class DeviceExtractorCapacitorWithBulk

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

new
Signature: [static] new DeviceExtractorCapacitorWithBulk ptr new (string name, double sheet_rho,
DeviceClassFactory ptr factory = none)

Description: Creates a new device extractor with the given name

For the 'factory' parameter see DeviceClassFactory. It has been added in version 0.27.3.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1684 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.140. API reference - Class DeviceExtractorCapacitorWithBulk

This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1685 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.141. API reference - Class DeviceExtractorBJT3Transistor

4.141. API reference - Class DeviceExtractorBJT3Transistor
Notation used in Ruby API documentation

Module: db

Description: A device extractor for a bipolar transistor (BJT)

Class hierarchy: DeviceExtractorBJT3Transistor » DeviceExtractorBase

This class supplies the generic extractor for a bipolar transistor device.

Extraction of vertical and lateral transistors is supported through a generic geometry model: The basic area is the base area. A marker
shape must be provided for this area. The emitter of the transistor is defined by emitter layer shapes inside the base area. Multiple emitter
shapes can be present. In this case, multiple transistor devices sharing the same base and collector are generated. Finally, a collector
layer can be given. If non-empty, the parts inside the base region will define the collector terminals. If empty, the collector is formed by the
substrate. In this case, the base region will be output to the 'tC' terminal output layer. This layer then needs to be connected to a global net
to form the net connection.

The device class produced by this extractor is DeviceClassBJT3Transistor. The extractor delivers these parameters:

• 'AE', 'AB' and 'AC' - the emitter, base and collector areas in square micrometer units

• 'PE', 'PB' and 'PC' - the emitter, base and collector perimeters in micrometer units

• 'NE' - emitter count (initially 1 but increases when devices are combined)

The device layer names are:

• 'E' - emitter.

• 'B' - base.

• 'C' - collector.

The terminals are output on these layers:

• 'tE' - emitter. Default output is 'E'.

• 'tB' - base. Default output is 'B'.

• 'tC' - collector. Default output is 'C'.

This class is a closed one and methods cannot be reimplemented. To reimplement specific methods, see DeviceExtractor.

This class has been introduced in version 0.26.

Public constructors

new
DeviceExtractorBJT3Transistor
ptr

new (string name,
DeviceClassFactory ptr factory =
none)

Creates a new device extractor with
the given name

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

For more details visit
https://www.klayout.org

Page 1686 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.141. API reference - Class DeviceExtractorBJT3Transistor

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script side.

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1687 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.141. API reference - Class DeviceExtractorBJT3Transistor

new
Signature: [static] new DeviceExtractorBJT3Transistor ptr new (string name, DeviceClassFactory ptr
factory = none)

Description: Creates a new device extractor with the given name

For the 'factory' parameter see DeviceClassFactory. It has been added in version 0.27.3.

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1688 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.142. API reference - Class DeviceExtractorBJT4Transistor

4.142. API reference - Class DeviceExtractorBJT4Transistor
Notation used in Ruby API documentation

Module: db

Description: A device extractor for a four-terminal bipolar transistor (BJT)

Class hierarchy: DeviceExtractorBJT4Transistor » DeviceExtractorBJT3Transistor » DeviceExtractorBase

This class supplies the generic extractor for a bipolar transistor device. It is based on the DeviceExtractorBJT3Transistor class with the
extension of a substrate terminal and corresponding substrate terminal output (annotation) layer.

Two new layers are introduced:

• 'S' - the bulk (substrate) layer. Currently this layer is ignored and can be empty.

• 'tS' - the bulk terminal output layer (defaults to 'S').

The bulk terminal layer ('tS') can be an empty layer representing the wafer substrate. In this use mode the substrate terminal shapes will be
produced on the 'tS' layer. This layer then needs to be connected to a global net to establish the net connection.

The device class produced by this extractor is DeviceClassBJT4Transistor. The This class is a closed one and methods cannot be
reimplemented. To reimplement specific methods, see DeviceExtractor.

This class has been introduced in version 0.26.

Public constructors

new
DeviceExtractorBJT4Transistor
ptr

new (string name,
DeviceClassFactory ptr factory =
none)

Creates a new device extractor with
the given name

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script side.

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 1689 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.142. API reference - Class DeviceExtractorBJT4Transistor

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

new
Signature: [static] new DeviceExtractorBJT4Transistor ptr new (string name, DeviceClassFactory ptr
factory = none)

Description: Creates a new device extractor with the given name

For the 'factory' parameter see DeviceClassFactory. It has been added in version 0.27.3.

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1690 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.143. API reference - Class DeviceExtractorDiode

4.143. API reference - Class DeviceExtractorDiode
Notation used in Ruby API documentation

Module: db

Description: A device extractor for a planar diode

Class hierarchy: DeviceExtractorDiode » DeviceExtractorBase

This class supplies the generic extractor for a planar diode. The diode is defined by two layers whose overlap area forms the diode. The p-
type layer forms the anode, the n-type layer the cathode.

The device class produced by this extractor is DeviceClassDiode. The extractor extracts the two parameters of this class:

• 'A' - the diode area in square micrometer units.

• 'P' - the diode perimeter in micrometer units.

The device layers are:

• 'P' - the p doped area.

• 'N' - the n doped area.

The diode region is defined by the overlap of p and n regions.

The terminal output layers are:

• 'tA' - anode. Defaults to 'P'.

• 'tC' - cathode. Defaults to 'N'.

This class is a closed one and methods cannot be reimplemented. To reimplement specific methods, see DeviceExtractor.

This class has been introduced in version 0.26.

Public constructors

new DeviceExtractorDiode ptr new (string name,
DeviceClassFactory ptr factory = none)

Creates a new device extractor with the
given name

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script side.

For more details visit
https://www.klayout.org

Page 1691 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.143. API reference - Class DeviceExtractorDiode

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

new
Signature: [static] new DeviceExtractorDiode ptr new (string name, DeviceClassFactory ptr factory =
none)

Description: Creates a new device extractor with the given name

For the 'factory' parameter see DeviceClassFactory. It has been added in version 0.27.3.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1692 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.143. API reference - Class DeviceExtractorDiode

This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1693 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.144. API reference - Class Connectivity

4.144. API reference - Class Connectivity
Notation used in Ruby API documentation

Module: db

Description: This class specifies connections between different layers.

Connections are build using connect. There are basically two flavours of connections: intra-layer and inter-layer.

Intra-layer connections make nets begin propagated along different shapes on the same net. Without the intra-layer connections, nets are
not propagated over shape boundaries. As this is usually intended, intra-layer connections should always be specified for each layer.

Inter-layer connections connect shapes on different layers. Shapes which touch across layers will be connected if their layers are specified
as being connected through inter-layer connect.

All layers are specified in terms of layer indexes. Layer indexes are layout layer indexes (see Layout class).

The connectivity object also manages the global nets. Global nets are substrate for example and they are propagated automatically
from subcircuits to circuits. Global nets are defined by name and are managed through IDs. To get the name for a given ID, use
global_net_name. This class has been introduced in version 0.26.

Public constructors

new Connectivity ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const Connectivity
other)

Assigns another object to self

void connect (unsigned int layer) Specifies intra-layer connectivity.

void connect (unsigned int
layer_a,
unsigned int
layer_b)

Specifies inter-layer connectivity.

unsigned long connect_global (unsigned int layer,
string
global_net_name)

Connects the given layer to the global net
given by name.

[const] new Connectivity ptr dup Creates a copy of self

For more details visit
https://www.klayout.org

Page 1694 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.144. API reference - Class Connectivity

unsigned long global_net_id (string
global_net_name)

Gets the ID for a given global net name.

[const] string global_net_name (unsigned long
global_net_id)

Gets the name for a given global net ID.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1695 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.144. API reference - Class Connectivity

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const Connectivity other)

Description: Assigns another object to self

(1) Signature: void connect (unsigned int layer)

Description: Specifies intra-layer connectivity.connect

(2) Signature: void connect (unsigned int layer_a, unsigned int layer_b)

Description: Specifies inter-layer connectivity.

connect_global
Signature: unsigned long connect_global (unsigned int layer, string global_net_name)

Description: Connects the given layer to the global net given by name.

Returns the ID of the global net.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new Connectivity ptr dup

Description: Creates a copy of self

For more details visit
https://www.klayout.org

Page 1696 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.144. API reference - Class Connectivity

global_net_id
Signature: unsigned long global_net_id (string global_net_name)

Description: Gets the ID for a given global net name.

global_net_name
Signature: [const] string global_net_name (unsigned long global_net_id)

Description: Gets the name for a given global net ID.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new Connectivity ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1697 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

4.145. API reference - Class LayoutToNetlist
Notation used in Ruby API documentation

Module: db

Description: A generic framework for extracting netlists from layouts

Sub-classes: BuildNetHierarchyMode

This class wraps various concepts from db::NetlistExtractor and db::NetlistDeviceExtractor and more. It is supposed to provide a framework
for extracting a netlist from a layout.

The use model of this class consists of five steps which need to be executed in this order.

• Configuration: in this step, the LayoutToNetlist object is created and if required, configured. Methods to be used in this step are
threads=, area_ratio= or max_vertex_count=. The constructor for the LayoutToNetlist object receives a RecursiveShapeIterator
object which basically supplies the hierarchy and the layout taken as input.

• Preparation In this step, the device recognition and extraction layers are drawn from the framework. Derived can now be computed
using boolean operations. Methods to use in this step are make_layer and it's variants. Layer preparation is not necessarily required
to happen before all other steps. Layers can be computed shortly before they are required.

• Following the preparation, the devices can be extracted using extract_devices. This method needs to be called for each device
extractor required. Each time, a device extractor needs to be given plus a map of device layers. The device layers are device
extractor specific. Either original or derived layers may be specified here. Layer preparation may happen between calls to
extract_devices.

• Once the devices are derived, the netlist connectivity can be defined and the netlist extracted. The connectivity is defined with
connect and it's flavours. The actual netlist extraction happens with extract_netlist.

• After netlist extraction, the information is ready to be retrieved. The produced netlist is available with netlist. The Shapes of a specific
net are available with shapes_of_net. probe_net allows finding a net by probing a specific location.

You can also use the extractor with an existing DeepShapeStore object or even flat data. In this case, preparation means importing
existing regions with the register method. If you want to use the LayoutToNetlist object with flat data, use the 'LayoutToNetlist(topcell, dbu)'
constructor. If you want to use it with hierarchical data and an existing DeepShapeStore object, use the 'LayoutToNetlist(dss)' constructor.

This class has been introduced in version 0.26.

Public constructors

new LayoutToNetlist ptr new (const RecursiveShapeIterator
iter)

Creates a new extractor connected to an
original layout

new LayoutToNetlist ptr new Creates a new and empty extractor object

new LayoutToNetlist ptr new (DeepShapeStore ptr dss) Creates a new extractor object reusing an
existing DeepShapeStore object

new LayoutToNetlist ptr new (DeepShapeStore ptr dss,
unsigned int layout_index)

Creates a new extractor object reusing an
existing DeepShapeStore object

new LayoutToNetlist ptr new (string topcell_name,
double dbu)

Creates a new extractor object with a flat DSS

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 1698 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by
the script side.

Region antenna_check (const Region gate,
const Region metal,
double ratio,
variant[] diodes = [])

Runs an antenna check on the extracted
clusters

Region antenna_check (const Region gate,
double
gate_perimeter_factor,
const Region metal,
double
metal_perimeter_factor,
double ratio,
variant[] diodes = [])

Runs an antenna check on the extracted
clusters taking the perimeter into account

Region antenna_check (const Region gate,
double gate_area_factor,
double
gate_perimeter_factor,
const Region metal,
double metal_area_factor,
double
metal_perimeter_factor,
double ratio,
variant[] diodes = [])

Runs an antenna check on the extracted
clusters taking the perimeter into account
and providing an area factor

[const] double area_ratio Gets the area_ratio parameter for the
hierarchical network processor

void area_ratio= (double r) Sets the area_ratio parameter for the
hierarchical network processor

[const] void build_all_nets (const CellMapping cmap,
Layout target,
map<unsigned int,const
Region ptr> lmap,
variant
net_cell_name_prefix = nil,
variant netname_prop =
nil,
LayoutToNetlist::BuildNetHierarchyMode
hier_mode = BNH_Flatten,
variant
circuit_cell_name_prefix =
nil,
variant
device_cell_name_prefix =
nil)

Builds a full hierarchical representation of
the nets

For more details visit
https://www.klayout.org

Page 1699 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

[const] void build_net (const Net net,
Layout target,
Cell target_cell,
map<unsigned int,const
Region ptr> lmap,
variant netname_prop =
nil,
LayoutToNetlist::BuildNetHierarchyMode
hier_mode = BNH_Flatten,
variant
circuit_cell_name_prefix =
nil,
variant
device_cell_name_prefix =
nil)

Builds a net representation in the given
layout and cell

[const] void build_nets (const Net ptr[] nets,
const CellMapping cmap,
Layout target,
map<unsigned int,const
Region ptr> lmap,
variant
net_cell_name_prefix = nil,
variant netname_prop =
nil,
LayoutToNetlist::BuildNetHierarchyMode
hier_mode = BNH_Flatten,
variant
circuit_cell_name_prefix =
nil,
variant
device_cell_name_prefix =
nil)

Like build_all_nets, but with the ability to
select some nets.

CellMapping cell_mapping_into (Layout layout,
Cell cell,
bool with_device_cells =
false)

Creates a cell mapping for copying shapes
from the internal layout to the given target
layout.

CellMapping cell_mapping_into (Layout layout,
Cell cell,
const Net ptr[] nets,
bool with_device_cells =
false)

Creates a cell mapping for copying shapes
from the internal layout to the given target
layout.

void clear_join_net_names Clears all implicit net joining expressions.

void clear_join_nets Clears all explicit net joining expressions.

void connect (const Region l) Defines an intra-layer connection for the
given layer.

void connect (const Region a,
const Region b)

Defines an inter-layer connection for the
given layers.

void connect (const Region a,
const Texts b)

Defines an inter-layer connection for the
given layers.

For more details visit
https://www.klayout.org

Page 1700 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

void connect (const Texts a,
const Region b)

Defines an inter-layer connection for the
given layers.

unsigned long connect_global (const Region l,
string global_net_name)

Defines a connection of the given layer
with a global net.

unsigned long connect_global (const Texts l,
string global_net_name)

Defines a connection of the given text layer
with a global net.

CellMapping const_cell_mapping_into(const Layout layout,
const Cell cell)

Creates a cell mapping for copying shapes
from the internal layout to the given target
layout.

[const] string description Gets the description of the database

void description= (string arg1) Sets the description of the database

[const] double device_scaling Gets the device scaling factor

void device_scaling= (double f) Sets the device scaling factor

DeepShapeStore dss Gets a reference to the internal DSS
object.

void extract_devices (DeviceExtractorBase
extractor,
map<string,ShapeCollection
ptr> layers)

Extracts devices

void extract_netlist Runs the netlist extraction

[const] string filename Gets the file name of the database

[const] string generator Gets the generator string.

void generator= (string generator) Sets the generator string.

[const] string global_net_name (unsigned long
global_net_id)

Gets the global net name for the given
global net ID.

[const] bool include_floating_subcircuits Gets a flag indicating whether to include
floating subcircuits in the netlist.

void include_floating_subcircuits=(bool flag) Sets a flag indicating whether to include
floating subcircuits in the netlist.

Layout ptr internal_layout Gets the internal layout

Cell ptr internal_top_cell Gets the internal top cell

[const] bool is_extracted? Gets a value indicating whether the netlist
has been extracted

[const] bool is_persisted? (const Region layer) Returns true, if the given layer is a
persisted region.

[const] bool is_persisted? (const Texts layer) Returns true, if the given layer is a
persisted texts collection.

For more details visit
https://www.klayout.org

Page 1701 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

void join_net_names (string pattern) Specifies another pattern for implicit joining
of nets for the top level cell.

void join_net_names (string cell_pattern,
string pattern)

Specifies another pattern for implicit joining
of nets for the cells from the given cell
pattern.

void join_nets (string[] net_names) Specifies another name list for explicit
joining of nets for the top level cell.

void join_nets (string cell_pattern,
string[] net_names)

Specifies another name list for explicit
joining of nets for the cells from the given
cell pattern.

void keep_dss Resumes ownership over the DSS object if
created with an external one.

new Region ptr layer_by_index (unsigned int index) Gets a layer object for the given index.

new Region ptr layer_by_name (string name) Gets a layer object for the given name.

[const] string layer_name (const ShapeCollection l) Gets the name of the given layer

[const] string layer_name (unsigned int l) Gets the name of the given layer (by index)

[const] string[] layer_names Returns a list of names of the layer kept
inside the LayoutToNetlist object.

[const] unsigned int layer_of (const Region l) Gets the internal layer for a given
extraction layer

[const] unsigned int layer_of (const Texts l) Gets the internal layer for a given text
collection

new Region ptr make_layer (string name =) Creates a new, empty hierarchical region

new Region ptr make_layer (unsigned int layer_index,
string name =)

Creates a new hierarchical region
representing an original layer

new Region ptr make_polygon_layer (unsigned int layer_index,
string name =)

Creates a new region representing an
original layer taking polygons and texts

new Texts ptr make_text_layer (unsigned int layer_index,
string name =)

Creates a new region representing an
original layer taking texts only

[const] unsigned long max_vertex_count

void max_vertex_count= (unsigned long n) Sets the max_vertex_count parameter for
the hierarchical network processor

[const] string name Gets the name of the database

void name= (string arg1) Sets the name of the database

[const] Netlist ptr netlist gets the netlist extracted (0 if no extraction
happened yet)

[const] string original_file Gets the original file name of the database

For more details visit
https://www.klayout.org

Page 1702 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

void original_file= (string arg1) Sets the original file name of the database

Net ptr probe_net (const Region of_layer,
const DPoint point,
SubCircuit ptr[] ptr
sc_path_out = nil,
Circuit ptr initial_circuit =
nil)

Finds the net by probing a specific location
on the given layer

Net ptr probe_net (const Region of_layer,
const Point point,
SubCircuit ptr[] ptr
sc_path_out = nil,
Circuit ptr initial_circuit =
nil)

Finds the net by probing a specific location
on the given layer

void read (string path) Reads the extracted netlist from the file.

void read_l2n (string path) Reads the extracted netlist from the file.

void register (const ShapeCollection l,
string n)

Names the given layer

void reset_extracted Resets the extracted netlist and enables
re-extraction

[const] new Region ptr shapes_of_net (const Net net,
const Region of_layer,
bool recursive)

Returns all shapes of a specific net and
layer.

[const] void shapes_of_net (const Net net,
const Region of_layer,
bool recursive,
Shapes to,
unsigned long propid = 0)

Sends all shapes of a specific net and layer
to the given Shapes container.

[const] int threads Gets the number of threads to use for
operations which support multiple threads

void threads= (int n) Sets the number of threads to use for
operations which support multiple threads

void write (string path,
bool short_format = false)

Writes the extracted netlist to a file.

void write_l2n (string path,
bool short_format = false)

Writes the extracted netlist to a file.

Public static methods and constants

[static,const] LayoutToNetlist::BuildNetHierarchyModeBNH_Disconnected This constant tells build_net and build_all_nets
to produce local nets without connections
to subcircuits (used for the "hier_mode"
parameter).

[static,const] LayoutToNetlist::BuildNetHierarchyModeBNH_Flatten This constant tells build_net and build_all_nets
to flatten the nets (used for the "hier_mode"
parameter).

For more details visit
https://www.klayout.org

Page 1703 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

[static,const] LayoutToNetlist::BuildNetHierarchyModeBNH_SubcircuitCells This constant tells build_net and build_all_nets
to produce a hierarchy of subcircuit cells per net
(used for the "hier_mode" parameter).

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

BNH_Disconnected
Signature: [static,const] LayoutToNetlist::BuildNetHierarchyMode BNH_Disconnected

Description: This constant tells build_net and build_all_nets to produce local nets without
connections to subcircuits (used for the "hier_mode" parameter).

BNH_Flatten
Signature: [static,const] LayoutToNetlist::BuildNetHierarchyMode BNH_Flatten

Description: This constant tells build_net and build_all_nets to flatten the nets (used for the
"hier_mode" parameter).

BNH_SubcircuitCells
Signature: [static,const] LayoutToNetlist::BuildNetHierarchyMode BNH_SubcircuitCells

Description: This constant tells build_net and build_all_nets to produce a hierarchy of subcircuit
cells per net (used for the "hier_mode" parameter).

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

For more details visit
https://www.klayout.org

Page 1704 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

antenna_check
(1) Signature: Region antenna_check (const Region gate, const Region metal, double ratio,
variant[] diodes = [])

Description: Runs an antenna check on the extracted clusters

The antenna check will traverse all clusters and run an antenna check for all root clusters. The
antenna ratio is defined by the total area of all "metal" shapes divided by the total area of all "gate"
shapes on the cluster. Of all clusters where the antenna ratio is larger than the limit ratio all metal
shapes are copied to the output region as error markers.

The simple call is:

l2n = ... # a LayoutToNetlist object
l2n.extract_netlist
check for antenna ratio 10.0 of metal vs. poly:
errors = l2n.antenna(poly, metal, 10.0)

You can include diodes which rectify the antenna effect. Provide recognition layers for theses
diodes and include them in the connections. Then specify the diode layers in the antenna call:

...
include diode_layer1:
errors = l2n.antenna(poly, metal, 10.0, [diode_layer1])
include diode_layer1 and diode_layer2:errors = l2n.antenna(poly, metal,
 10.0, [diode_layer1, diode_layer2])

Diodes can be configured to partially reduce the antenna effect depending on their area. This will
make the diode_layer1 increase the ratio by 50.0 per square micrometer area of the diode:

...
diode_layer1 increases the ratio by 50 per square micrometer area:

For more details visit
https://www.klayout.org

Page 1705 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

errors = l2n.antenna(poly, metal, 10.0 [[diode_layer, 50.0]])

(2) Signature: Region antenna_check (const Region gate, double gate_perimeter_factor, const
Region metal, double metal_perimeter_factor, double ratio, variant[] diodes = [])

Description: Runs an antenna check on the extracted clusters taking the perimeter into account

This version of the antenna_check method allows taking the perimeter of gate or metal into account.
The effective area is computed using:

Aeff = A + P * t

Here Aeff is the area used in the check, A is the polygon area, P the perimeter and t the perimeter
factor. This formula applies to gate polygon area/perimeter with 'gate_perimeter_factor' for t and
metal polygon area/perimeter with 'metal_perimeter_factor'. The perimeter_factor has the dimension
of micrometers and can be thought of as the width of the material. Essentially the side walls of the
material are taking into account for the surface area as well.

This variant has been introduced in version 0.26.6.

(3) Signature: Region antenna_check (const Region gate, double gate_area_factor,
double gate_perimeter_factor, const Region metal, double metal_area_factor, double
metal_perimeter_factor, double ratio, variant[] diodes = [])

Description: Runs an antenna check on the extracted clusters taking the perimeter into account
and providing an area factor

This (most generic) version of the antenna_check method allows taking the perimeter of gate
or metal into account and also provides a scaling factor for the area part. The effective area is
computed using:

Aeff = A * f + P * t

Here f is the area factor and t the perimeter factor. A is the polygon area and P the polygon
perimeter. A use case for this variant is to set the area factor to zero. This way, only perimeter
contributions are considered.

This variant has been introduced in version 0.26.6.

area_ratio
Signature: [const] double area_ratio

Description: Gets the area_ratio parameter for the hierarchical network processor

See area_ratio= for details about this attribute.

Python specific notes:
The object exposes a readable attribute 'area_ratio'. This is the getter.

area_ratio=
Signature: void area_ratio= (double r)

Description: Sets the area_ratio parameter for the hierarchical network processor

This parameter controls splitting of large polygons in order to reduce the error made by the
bounding box approximation.

Python specific notes:
The object exposes a writable attribute 'area_ratio'. This is the setter.

For more details visit
https://www.klayout.org

Page 1706 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

build_all_nets
Signature: [const] void build_all_nets (const CellMapping cmap, Layout target,
map<unsigned int,const Region ptr> lmap, variant net_cell_name_prefix = nil, variant
netname_prop = nil, LayoutToNetlist::BuildNetHierarchyMode hier_mode = BNH_Flatten, variant
circuit_cell_name_prefix = nil, variant device_cell_name_prefix = nil)

Description: Builds a full hierarchical representation of the nets

cmap: The mapping of internal layout to target layout for the
circuit mapping

target: The target layout

lmap: Target layer indexes (keys) and net regions (values)

hier_mode: See description of this method

netname_prop: An (optional) property name to which to attach the net
name

circuit_cell_name_prefix: See method description

net_cell_name_prefix: See method description

device_cell_name_prefix: See above

This method copies all nets into cells corresponding to the circuits. It uses the 'cmap' object to
determine the target cell (create it with "cell_mapping_into" or "const_cell_mapping_into"). If no
mapping is provided for a specific circuit cell, the nets are copied into the next mapped parent as
many times as the circuit cell appears there (circuit flattening).

The method has three net annotation modes:

• No annotation (net_cell_name_prefix == nil and netname_prop == nil): the shapes will be put
into the target cell simply.

• Net name property (net_cell_name_prefix == nil and netname_prop != nil): the shapes will be
annotated with a property named with netname_prop and containing the net name string.

• Individual subcells per net (net_cell_name_prefix != 0): for each net, a subcell is created and
the net shapes will be put there (name of the subcell = net_cell_name_prefix + net name).
(this mode can be combined with netname_prop too).

In addition, net hierarchy is covered in three ways:

• No connection indicated (hier_mode == BNH_Disconnected: the net shapes are simply put
into their respective circuits. The connections are not indicated.

• Subnet hierarchy (hier_mode == BNH_SubcircuitCells): for each root net, a full hierarchy is
built to accommodate the subnets (see build_net in recursive mode).

• Flat (hier_mode == BNH_Flatten): each net is flattened and put into the circuit it belongs to.

If a device cell name prefix is given, cells will be produced for each device abstract using a name
like device_cell_name_prefix + device name. Otherwise the device shapes are treated as part of the
net.

build_net
Signature: [const] void build_net (const Net net, Layout target, Cell target_cell, map<unsigned
int,const Region ptr> lmap, variant netname_prop = nil, LayoutToNetlist::BuildNetHierarchyMode
hier_mode = BNH_Flatten, variant circuit_cell_name_prefix = nil, variant device_cell_name_prefix =
nil)

Description: Builds a net representation in the given layout and cell

target: The target layout

target_cell: The target cell

lmap: Target layer indexes (keys) and net regions (values)

For more details visit
https://www.klayout.org

Page 1707 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

hier_mode: See description of this method

netname_prop: An (optional) property name to which to attach the net
name

cell_name_prefix: Chooses recursive mode if non-null

device_cell_name_prefix: See above

This method puts the shapes of a net into the given target cell using a variety of options to represent
the net name and the hierarchy of the net.

If the netname_prop name is not nil, a property with the given name is created and assigned the net
name.

Net hierarchy is covered in three ways:

• No connection indicated (hier_mode == BNH_Disconnected: the net shapes are simply put
into their respective circuits. The connections are not indicated.

• Subnet hierarchy (hier_mode == BNH_SubcircuitCells): for each root net, a full hierarchy is
built to accommodate the subnets (see build_net in recursive mode).

• Flat (hier_mode == BNH_Flatten): each net is flattened and put into the circuit it belongs to.

If a device cell name prefix is given, cells will be produced for each device abstract using a name
like device_cell_name_prefix + device name. Otherwise the device shapes are treated as part of the
net.

build_nets
Signature: [const] void build_nets (const Net ptr[] nets, const CellMapping cmap, Layout
target, map<unsigned int,const Region ptr> lmap, variant net_cell_name_prefix = nil, variant
netname_prop = nil, LayoutToNetlist::BuildNetHierarchyMode hier_mode = BNH_Flatten, variant
circuit_cell_name_prefix = nil, variant device_cell_name_prefix = nil)

Description: Like build_all_nets, but with the ability to select some nets.

(1) Signature: CellMapping cell_mapping_into (Layout layout, Cell cell, bool with_device_cells =
false)

Description: Creates a cell mapping for copying shapes from the internal layout to the given target
layout.

If 'with_device_cells' is true, cells will be produced for devices. These are cells not corresponding to
circuits, so they are disabled normally. Use this option, if you want to access device terminal shapes
per device.

CAUTION: this function may create new cells in 'layout'. Use const_cell_mapping_into if you want to
use the target layout's hierarchy and not modify it.

cell_mapping_into

(2) Signature: CellMapping cell_mapping_into (Layout layout, Cell cell, const Net ptr[] nets, bool
with_device_cells = false)

Description: Creates a cell mapping for copying shapes from the internal layout to the given target
layout.

This version will only create cells which are required to represent the nets from the 'nets' argument.

If 'with_device_cells' is true, cells will be produced for devices. These are cells not corresponding to
circuits, so they are disabled normally. Use this option, if you want to access device terminal shapes
per device.

CAUTION: this function may create new cells in 'layout'. Use const_cell_mapping_into if you want to
use the target layout's hierarchy and not modify it.

clear_join_net_names
Signature: void clear_join_net_names

For more details visit
https://www.klayout.org

Page 1708 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

Description: Clears all implicit net joining expressions.

See extract_netlist for more details about this feature.

This method has been introduced in version 0.27 and replaces the arguments of extract_netlist.

clear_join_nets
Signature: void clear_join_nets

Description: Clears all explicit net joining expressions.

See extract_netlist for more details about this feature.

Explicit net joining has been introduced in version 0.27.

(1) Signature: void connect (const Region l)

Description: Defines an intra-layer connection for the given layer.

The layer is either an original layer created with make_includelayer and it's variants or a derived
layer. Certain limitations apply. It's safe to use boolean operations for deriving layers. Other
operations are applicable as long as they are capable of delivering hierarchical layers.

(2) Signature: void connect (const Region a, const Region b)

Description: Defines an inter-layer connection for the given layers.

The conditions mentioned with intra-layer connect apply for this method too.

(3) Signature: void connect (const Region a, const Texts b)

Description: Defines an inter-layer connection for the given layers.

The conditions mentioned with intra-layer connect apply for this method too. As one argument is a
(hierarchical) text collection, this method is used to attach net labels to polygons.

This variant has been introduced in version 0.27.

connect

(4) Signature: void connect (const Texts a, const Region b)

Description: Defines an inter-layer connection for the given layers.

The conditions mentioned with intra-layer connect apply for this method too. As one argument is a
(hierarchical) text collection, this method is used to attach net labels to polygons.

This variant has been introduced in version 0.27.

(1) Signature: unsigned long connect_global (const Region l, string global_net_name)

Description: Defines a connection of the given layer with a global net.

This method returns the ID of the global net. Use global_net_name to get the name back from the
ID.

connect_global

(2) Signature: unsigned long connect_global (const Texts l, string global_net_name)

Description: Defines a connection of the given text layer with a global net.

This method returns the ID of the global net. Use global_net_name to get the name back from the
ID. This variant has been introduced in version 0.27.

const_cell_mapping_into
Signature: CellMapping const_cell_mapping_into (const Layout layout, const Cell cell)

Description: Creates a cell mapping for copying shapes from the internal layout to the given target
layout.

For more details visit
https://www.klayout.org

Page 1709 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

This version will not create new cells in the target layout. If the required cells do not exist there yet,
flatting will happen.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

description
Signature: [const] string description

Description: Gets the description of the database

Python specific notes:
The object exposes a readable attribute 'description'. This is the getter.

description=
Signature: void description= (string arg1)

Description: Sets the description of the database

Python specific notes:
The object exposes a writable attribute 'description'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

device_scaling
Signature: [const] double device_scaling

Description: Gets the device scaling factor

See device_scaling= for details about this attribute.

Python specific notes:
The object exposes a readable attribute 'device_scaling'. This is the getter.

device_scaling=
Signature: void device_scaling= (double f)

Description: Sets the device scaling factor

This factor will scale the physical properties of the extracted devices accordingly. The scale factor
applies an isotropic shrink (<1) or expansion (>1).

Python specific notes:
The object exposes a writable attribute 'device_scaling'. This is the setter.

For more details visit
https://www.klayout.org

Page 1710 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

dss
Signature: DeepShapeStore dss

Description: Gets a reference to the internal DSS object.

extract_devices
Signature: void extract_devices (DeviceExtractorBase extractor, map<string,ShapeCollection
ptr> layers)

Description: Extracts devices

See the class description for more details. This method will run device extraction for the given
extractor. The layer map is specific for the extractor and uses the region objects derived with
make_layer and it's variants.

In addition, derived regions can be passed too. Certain limitations apply. It's safe to use boolean
operations for deriving layers. Other operations are applicable as long as they are capable of
delivering hierarchical layers.

If errors occur, the device extractor will contain theses errors.

extract_netlist
Signature: void extract_netlist

Description: Runs the netlist extraction

See the class description for more details.

This method has been made parameter-less in version 0.27. Use include_floating_subcircuits= and
join_net_names as substitutes for the arguments of previous versions.

filename
Signature: [const] string filename

Description: Gets the file name of the database

The filename is the name under which the database is stored or empty if it is not associated with a
file.

generator
Signature: [const] string generator

Description: Gets the generator string.

The generator is the script that created this database.

Python specific notes:
The object exposes a readable attribute 'generator'. This is the getter.

generator=
Signature: void generator= (string generator)

Description: Sets the generator string.

Python specific notes:
The object exposes a writable attribute 'generator'. This is the setter.

global_net_name
Signature: [const] string global_net_name (unsigned long global_net_id)

Description: Gets the global net name for the given global net ID.

include_floating_subcircuits
Signature: [const] bool include_floating_subcircuits

Description: Gets a flag indicating whether to include floating subcircuits in the netlist.

See include_floating_subcircuits= for details.

This attribute has been introduced in version 0.27.

Python specific notes:
The object exposes a readable attribute 'include_floating_subcircuits'. This is the getter.

For more details visit
https://www.klayout.org

Page 1711 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

include_floating_subcircuits=
Signature: void include_floating_subcircuits= (bool flag)

Description: Sets a flag indicating whether to include floating subcircuits in the netlist.

With 'include_floating_subcircuits' set to true, subcircuits with no connection to their parent circuit
are still included in the circuit as floating subcircuits. Specifically on flattening this means that these
subcircuits are properly propagated to their parent instead of appearing as additional top circuits.

This attribute has been introduced in version 0.27 and replaces the arguments of extract_netlist.

Python specific notes:
The object exposes a writable attribute 'include_floating_subcircuits'. This is the setter.

internal_layout
Signature: Layout ptr internal_layout

Description: Gets the internal layout

Usually it should not be required to obtain the internal layout. If you need to do so, make sure not to
modify the layout as the functionality of the netlist extractor depends on it.

internal_top_cell
Signature: Cell ptr internal_top_cell

Description: Gets the internal top cell

Usually it should not be required to obtain the internal cell. If you need to do so, make sure not to
modify the cell as the functionality of the netlist extractor depends on it.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_extracted?
Signature: [const] bool is_extracted?

Description: Gets a value indicating whether the netlist has been extracted

This method has been introduced in version 0.27.1.

(1) Signature: [const] bool is_persisted? (const Region layer)

Description: Returns true, if the given layer is a persisted region.

Persisted layers are kept inside the LayoutToNetlist object and are not released if their object is
destroyed. Named layers are persisted, unnamed layers are not. Only persisted, named layers can
be put into connect.

is_persisted?

(2) Signature: [const] bool is_persisted? (const Texts layer)

Description: Returns true, if the given layer is a persisted texts collection.

Persisted layers are kept inside the LayoutToNetlist object and are not released if their object is
destroyed. Named layers are persisted, unnamed layers are not. Only persisted, named layers can
be put into connect.

The variant for Texts collections has been added in version 0.27.

join_net_names
(1) Signature: void join_net_names (string pattern)

Description: Specifies another pattern for implicit joining of nets for the top level cell.

Use this method to register a pattern for net labels considered in implicit net joining. Implicit net
joining allows connecting multiple parts of the same nets (e.g. supply rails) without need for a

For more details visit
https://www.klayout.org

Page 1712 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

physical connection. The pattern specifies labels to look for. When parts are labelled with a name
matching the expression, the parts carrying the same name are joined.

This method adds a new pattern. Use clear_join_net_names to clear the registered pattern.

Each pattern is a glob expression. Valid glob expressions are:

• "" no implicit connections.

• "*" to make all labels candidates for implicit connections.

• "VDD" to make all 'VDD'' nets candidates for implicit connections.

• "VDD" to make all 'VDD'+suffix nets candidates for implicit connections.

• "{VDD,VSS}" to all VDD and VSS nets candidates for implicit connections.

Label matching is case sensitive.

This method has been introduced in version 0.27 and replaces the arguments of extract_netlist.

(2) Signature: void join_net_names (string cell_pattern, string pattern)

Description: Specifies another pattern for implicit joining of nets for the cells from the given cell
pattern.

This method allows applying implicit net joining for specific cells, not only for the top cell.

This method adds a new pattern. Use clear_join_net_names to clear the registered pattern.

This method has been introduced in version 0.27 and replaces the arguments of extract_netlist.

(1) Signature: void join_nets (string[] net_names)

Description: Specifies another name list for explicit joining of nets for the top level cell.

Use this method to join nets from the set of net names. All these nets will be connected together
forming a single net. Explicit joining will imply implicit joining for the involved nets - partial nets
involved will be connected too (intra-net joining).

This method adds a new name list. Use clear_join_nets to clear the registered pattern.

Explicit net joining has been introduced in version 0.27.

join_nets

(2) Signature: void join_nets (string cell_pattern, string[] net_names)

Description: Specifies another name list for explicit joining of nets for the cells from the given cell
pattern.

This method allows applying explicit net joining for specific cells, not only for the top cell.

This method adds a new name list. Use clear_join_nets to clear the registered pattern.

Explicit net joining has been introduced in version 0.27.

keep_dss
Signature: void keep_dss

Description: Resumes ownership over the DSS object if created with an external one.

layer_by_index
Signature: new Region ptr layer_by_index (unsigned int index)

Description: Gets a layer object for the given index.

Only named layers can be retrieved with this method. The returned object is a copy which
represents the named layer.

For more details visit
https://www.klayout.org

Page 1713 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

layer_by_name
Signature: new Region ptr layer_by_name (string name)

Description: Gets a layer object for the given name.

The returned object is a copy which represents the named layer.

(1) Signature: [const] string layer_name (const ShapeCollection l)

Description: Gets the name of the given layerlayer_name

(2) Signature: [const] string layer_name (unsigned int l)

Description: Gets the name of the given layer (by index)

layer_names
Signature: [const] string[] layer_names

Description: Returns a list of names of the layer kept inside the LayoutToNetlist object.

(1) Signature: [const] unsigned int layer_of (const Region l)

Description: Gets the internal layer for a given extraction layer

This method is required to derive the internal layer index - for example for investigating the cluster
tree.

layer_of

(2) Signature: [const] unsigned int layer_of (const Texts l)

Description: Gets the internal layer for a given text collection

This method is required to derive the internal layer index - for example for investigating the cluster
tree.

The variant for Texts collections has been added in version 0.27.

(1) Signature: new Region ptr make_layer (string name =)

Description: Creates a new, empty hierarchical region

The name is optional. If given, the layer will already be named accordingly (see register).

make_layer

(2) Signature: new Region ptr make_layer (unsigned int layer_index, string name =)

Description: Creates a new hierarchical region representing an original layer

'layer_index' is the layer index of the desired layer in the original layout. This variant produces
polygons and takes texts for net name annotation. A variant not taking texts is make_polygon_layer.
A Variant only taking texts is make_text_layer.

The name is optional. If given, the layer will already be named accordingly (see register).

make_polygon_layer
Signature: new Region ptr make_polygon_layer (unsigned int layer_index, string name =)

Description: Creates a new region representing an original layer taking polygons and texts

See make_layer for details.

The name is optional. If given, the layer will already be named accordingly (see register).

make_text_layer
Signature: new Texts ptr make_text_layer (unsigned int layer_index, string name =)

Description: Creates a new region representing an original layer taking texts only

See make_layer for details.

The name is optional. If given, the layer will already be named accordingly (see register).

For more details visit
https://www.klayout.org

Page 1714 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

Starting with version 0.27, this method returns a Texts object.

max_vertex_count
Signature: [const] unsigned long max_vertex_count

Description:

See max_vertex_count= for details about this attribute.

Python specific notes:
The object exposes a readable attribute 'max_vertex_count'. This is the getter.

max_vertex_count=
Signature: void max_vertex_count= (unsigned long n)

Description: Sets the max_vertex_count parameter for the hierarchical network processor

This parameter controls splitting of large polygons in order to enhance performance for very big
polygons.

Python specific notes:
The object exposes a writable attribute 'max_vertex_count'. This is the setter.

name
Signature: [const] string name

Description: Gets the name of the database

Python specific notes:
The object exposes a readable attribute 'name'. This is the getter.

name=
Signature: void name= (string arg1)

Description: Sets the name of the database

Python specific notes:
The object exposes a writable attribute 'name'. This is the setter.

netlist
Signature: [const] Netlist ptr netlist

Description: gets the netlist extracted (0 if no extraction happened yet)

(1) Signature: [static] new LayoutToNetlist ptr new (const RecursiveShapeIterator iter)

Description: Creates a new extractor connected to an original layout

This constructor will attach the extractor to an original layout through the shape iterator.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new LayoutToNetlist ptr new

Description: Creates a new and empty extractor object

The main objective for this constructor is to create an object suitable for reading an annotated
netlist.

Python specific notes:
This method is the default initializer of the object

new

(3) Signature: [static] new LayoutToNetlist ptr new (DeepShapeStore ptr dss)

Description: Creates a new extractor object reusing an existing DeepShapeStore object

This constructor can be used if there is a DSS object already from which the shapes can be taken.
This version can only be used with register to add layers (regions) inside the 'dss' object.

The make_... methods will not create new layers as there is no particular place defined where to
create the layers.

For more details visit
https://www.klayout.org

Page 1715 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

The extractor will not take ownership of the dss object unless you call keep_dss.

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new LayoutToNetlist ptr new (DeepShapeStore ptr dss, unsigned int
layout_index)

Description: Creates a new extractor object reusing an existing DeepShapeStore object

This constructor can be used if there is a DSS object already from which the shapes can be taken.
NOTE: in this case, the make_... functions will create new layers inside this DSS. To register
existing layers (regions) use register.

Python specific notes:
This method is the default initializer of the object

(5) Signature: [static] new LayoutToNetlist ptr new (string topcell_name, double dbu)

Description: Creates a new extractor object with a flat DSS

topcell_name: The name of the top cell of the internal flat layout

dbu: The database unit to use for the internal flat layout

This constructor will create an extractor for flat extraction. Layers registered with register will be
flattened. New layers created with make_... will be flat layers.

The database unit is mandatory because the physical parameter extraction for devices requires this
unit for translation of layout to physical dimensions.

Python specific notes:
This method is the default initializer of the object

original_file
Signature: [const] string original_file

Description: Gets the original file name of the database

The original filename is the layout file from which the netlist DB was created.

Python specific notes:
The object exposes a readable attribute 'original_file'. This is the getter.

original_file=
Signature: void original_file= (string arg1)

Description: Sets the original file name of the database

Python specific notes:
The object exposes a writable attribute 'original_file'. This is the setter.

probe_net
(1) Signature: Net ptr probe_net (const Region of_layer, const DPoint point, SubCircuit ptr[] ptr
sc_path_out = nil, Circuit ptr initial_circuit = nil)

Description: Finds the net by probing a specific location on the given layer

This method will find a net looking at the given layer at the specific position. It will traverse the
hierarchy below if no shape in the requested layer is found in the specified location. The function will
report the topmost net from far above the hierarchy of circuits as possible.

If initial_circuit is given, the probing will start from this circuit and from the cell this circuit represents.
By default, the probing will start from the top circuit.

If no net is found at all, 0 is returned.

It is recommended to use probe_net on the netlist right after extraction. Optimization functions such
as Netlist#purge will remove parts of the net which means shape to net probing may no longer work
for these nets.

For more details visit
https://www.klayout.org

Page 1716 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

If non-null and an array, 'sc_path_out' will receive a list of SubCircuits objects which lead to the net
from the top circuit of the database.

This variant accepts a micrometer-unit location. The location is given in the coordinate space of the
initial cell.

The sc_path_out and initial_circuit parameters have been added in version 0.27.

(2) Signature: Net ptr probe_net (const Region of_layer, const Point point, SubCircuit ptr[] ptr
sc_path_out = nil, Circuit ptr initial_circuit = nil)

Description: Finds the net by probing a specific location on the given layer

See the description of the other probe_net variant. This variant accepts a database-unit location.
The location is given in the coordinate space of the initial cell.

The sc_path_out and initial_circuit parameters have been added in version 0.27.

read
Signature: void read (string path)

Description: Reads the extracted netlist from the file.

This method employs the native format of KLayout.

read_l2n
Signature: void read_l2n (string path)

Description: Reads the extracted netlist from the file.

This method employs the native format of KLayout.

register
Signature: void register (const ShapeCollection l, string n)

Description: Names the given layer

'l' must be a hierarchical Region or Texts object derived with make_layer, make_text_layer or
make_polygon_layer or a region derived from those by boolean operations or other hierarchical
operations.

Naming a layer allows the system to indicate the layer in various contexts, i.e. when writing the data
to a file. Named layers are also persisted inside the LayoutToNetlist object. They are not discarded
when the Region object is destroyed.

If required, the system will assign a name automatically. This method has been generalized in
version 0.27.

reset_extracted
Signature: void reset_extracted

Description: Resets the extracted netlist and enables re-extraction

This method is implicitly called when using connect or connect_global after a netlist has been
extracted. This enables incremental connect with re-extraction.

This method has been introduced in version 0.27.1.

(1) Signature: [const] new Region ptr shapes_of_net (const Net net, const Region of_layer, bool
recursive)

Description: Returns all shapes of a specific net and layer.

If 'recursive'' is true, the returned region will contain the shapes of all subcircuits too.

shapes_of_net

(2) Signature: [const] void shapes_of_net (const Net net, const Region of_layer, bool recursive,
Shapes to, unsigned long propid = 0)

Description: Sends all shapes of a specific net and layer to the given Shapes container.

For more details visit
https://www.klayout.org

Page 1717 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.145. API reference - Class LayoutToNetlist

If 'recursive'' is true, the returned region will contain the shapes of all subcircuits too. "prop_id" is an
optional properties ID. If given, this property set will be attached to the shapes.

threads
Signature: [const] int threads

Description: Gets the number of threads to use for operations which support multiple threads

Python specific notes:
The object exposes a readable attribute 'threads'. This is the getter.

threads=
Signature: void threads= (int n)

Description: Sets the number of threads to use for operations which support multiple threads

Python specific notes:
The object exposes a writable attribute 'threads'. This is the setter.

write
Signature: void write (string path, bool short_format = false)

Description: Writes the extracted netlist to a file.

This method employs the native format of KLayout.

write_l2n
Signature: void write_l2n (string path, bool short_format = false)

Description: Writes the extracted netlist to a file.

This method employs the native format of KLayout.

For more details visit
https://www.klayout.org

Page 1718 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.146. API reference - Class LayoutToNetlist::BuildNetHierarchyMode

4.146. API reference - Class LayoutToNetlist::BuildNetHierarchyMode
Notation used in Ruby API documentation

Module: db

Description: This class represents the LayoutToNetlist::BuildNetHierarchyMode enum

This class is equivalent to the class LayoutToNetlist::BuildNetHierarchyMode

This enum is used for LayoutToNetlist#build_all_nets and LayoutToNetlist#build_net.

Public constructors

new
LayoutToNetlist::BuildNetHierarchyMode ptr

new (int i) Creates an enum from an integer value

new
LayoutToNetlist::BuildNetHierarchyMode ptr

new (string s) Creates an enum from a string value

Public methods

[const] bool != (const
LayoutToNetlist::BuildNetHierarchyMode
other)

Compares two enums for inequality

[const] bool < (const
LayoutToNetlist::BuildNetHierarchyMode
other)

Returns true if the first enum is less (in the
enum symbol order) than the second

[const] bool == (const
LayoutToNetlist::BuildNetHierarchyMode
other)

Compares two enums

[const] string inspect Converts an enum to a visual string

[const] int to_i Gets the integer value from the enum

[const] string to_s Gets the symbolic string from an enum

Public static methods and constants

[static,const] LayoutToNetlist::BuildNetHierarchyModeBNH_Disconnected This constant tells build_net and build_all_nets
to produce local nets without connections
to subcircuits (used for the "hier_mode"
parameter).

[static,const] LayoutToNetlist::BuildNetHierarchyModeBNH_Flatten This constant tells build_net and build_all_nets
to flatten the nets (used for the "hier_mode"
parameter).

[static,const] LayoutToNetlist::BuildNetHierarchyModeBNH_SubcircuitCells This constant tells build_net and build_all_nets
to produce a hierarchy of subcircuit cells per net
(used for the "hier_mode" parameter).

For more details visit
https://www.klayout.org

Page 1719 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.146. API reference - Class LayoutToNetlist::BuildNetHierarchyMode

Detailed description

!=
Signature: [const] bool != (const LayoutToNetlist::BuildNetHierarchyMode other)

Description: Compares two enums for inequality

<
Signature: [const] bool < (const LayoutToNetlist::BuildNetHierarchyMode other)

Description: Returns true if the first enum is less (in the enum symbol order) than the second

==
Signature: [const] bool == (const LayoutToNetlist::BuildNetHierarchyMode other)

Description: Compares two enums

BNH_Disconnected
Signature: [static,const] LayoutToNetlist::BuildNetHierarchyMode BNH_Disconnected

Description: This constant tells build_net and build_all_nets to produce local nets without
connections to subcircuits (used for the "hier_mode" parameter).

BNH_Flatten
Signature: [static,const] LayoutToNetlist::BuildNetHierarchyMode BNH_Flatten

Description: This constant tells build_net and build_all_nets to flatten the nets (used for the
"hier_mode" parameter).

BNH_SubcircuitCells
Signature: [static,const] LayoutToNetlist::BuildNetHierarchyMode BNH_SubcircuitCells

Description: This constant tells build_net and build_all_nets to produce a hierarchy of subcircuit
cells per net (used for the "hier_mode" parameter).

inspect
Signature: [const] string inspect

Description: Converts an enum to a visual string

Python specific notes:
This method is also available as 'repr(object)'

(1) Signature: [static] new LayoutToNetlist::BuildNetHierarchyMode ptr new (int i)

Description: Creates an enum from an integer value

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new LayoutToNetlist::BuildNetHierarchyMode ptr new (string s)

Description: Creates an enum from a string value

Python specific notes:
This method is the default initializer of the object

to_i
Signature: [const] int to_i

Description: Gets the integer value from the enum

to_s
Signature: [const] string to_s

Description: Gets the symbolic string from an enum

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 1720 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.147. API reference - Class DeepShapeStore

4.147. API reference - Class DeepShapeStore
Notation used in Ruby API documentation

Module: db

Description: An opaque layout heap for the deep region processor

This class is used for keeping intermediate, hierarchical data for the deep region processor. It is used in conjunction with the region
constructor to create a deep (hierarchical) region.

layout = ... # a layout
layer = ... # a layer
cell = ... # a cell (initial cell for the deep region)
dss = RBA::DeepShapeStore::new
region = RBA::Region::new(cell.begin(layer), dss)

The DeepShapeStore object also supplies some configuration options for the operations acting on the deep regions. See for example
threads=.

This class has been introduced in version 0.26.

Public constructors

new DeepShapeStore ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void add_breakout_cell (unsigned int
layout_index,
unsigned int[]
cell_index)

Adds a cell indexe to the breakout cell list for
the given layout inside the store

void add_breakout_cells (unsigned int
layout_index,
unsigned int[]
cells)

Adds cell indexes to the breakout cell list for the
given layout inside the store

void add_breakout_cells (unsigned int
layout_index,
string pattern)

Adds cells (given by a cell name pattern) to the
breakout cell list for the given layout inside the
store

For more details visit
https://www.klayout.org

Page 1721 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.147. API reference - Class DeepShapeStore

void add_breakout_cells (string pattern) Adds cells (given by a cell name pattern) to the
breakout cell list to all layouts inside the store

void clear_breakout_cells (unsigned int
layout_index)

Clears the breakout cells

void clear_breakout_cells Clears the breakout cells

[const] bool is_singular? Gets a value indicating whether there is a single
layout variant

[const] double max_area_ratio Gets the max. area ratio.

void max_area_ratio= (double ratio) Sets the max. area ratio for bounding box vs.
polygon area

[const] unsigned long max_vertex_count Gets the maximum vertex count.

void max_vertex_count= (unsigned long
count)

Sets the maximum vertex count default value

void pop_state Restores the store's state on the state state

void push_state Pushes the store's state on the state state

[const] bool reject_odd_polygons Gets a flag indicating whether to reject odd
polygons.

void reject_odd_polygons= (bool count) Sets a flag indicating whether to reject odd
polygons

void set_breakout_cells (unsigned int
layout_index,
unsigned int[]
cells)

Sets the breakout cell list (as cell indexes) for
the given layout inside the store

void set_breakout_cells (unsigned int
layout_index,
string pattern)

Sets the breakout cell list (as cell name pattern)
for the given layout inside the store

void set_breakout_cells (string pattern) Sets the breakout cell list (as cell name pattern)
for the all layouts inside the store

[const] int text_enlargement Gets the text enlargement value.

void text_enlargement= (int value) Sets the text enlargement value

[const] variant text_property_name Gets the text property name.

void text_property_name= (variant name) Sets the text property name.

[const] int threads Gets the number of threads.

void threads= (int n) Sets the number of threads to allocate for the
hierarchical processor

For more details visit
https://www.klayout.org

Page 1722 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.147. API reference - Class DeepShapeStore

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method

For more details visit
https://www.klayout.org

Page 1723 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.147. API reference - Class DeepShapeStore

will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

add_breakout_cell
Signature: void add_breakout_cell (unsigned int layout_index, unsigned int[] cell_index)

Description: Adds a cell indexe to the breakout cell list for the given layout inside the store

See clear_breakout_cells for an explanation of breakout cells.

This method has been added in version 0.26.1

(1) Signature: void add_breakout_cells (unsigned int layout_index, unsigned int[] cells)

Description: Adds cell indexes to the breakout cell list for the given layout inside the store

See clear_breakout_cells for an explanation of breakout cells.

This method has been added in version 0.26.1

(2) Signature: void add_breakout_cells (unsigned int layout_index, string pattern)

Description: Adds cells (given by a cell name pattern) to the breakout cell list for the given layout
inside the store

See clear_breakout_cells for an explanation of breakout cells.

This method has been added in version 0.26.1

add_breakout_cells

(3) Signature: void add_breakout_cells (string pattern)

Description: Adds cells (given by a cell name pattern) to the breakout cell list to all layouts inside
the store

See clear_breakout_cells for an explanation of breakout cells.

This method has been added in version 0.26.1

(1) Signature: void clear_breakout_cells (unsigned int layout_index)

Description: Clears the breakout cells

Breakout cells are a feature by which hierarchy handling can be disabled for specific cells. If
cells are specified as breakout cells, they don't interact with neighbor or parent cells, hence are
virtually isolated. Breakout cells are useful to shortcut hierarchy evaluation for cells which are
otherwise difficult to handle. An example are memory array cells with overlaps to their neighbors:
a precise handling of such cells would generate variants and the boundary of the array. Although
precise, this behavior leads to partial flattening and propagation of shapes. In consequence, this
will also result in wrong device detection in LVS applications. In such cases, these array cells can
be declared 'breakout cells' which makes them isolated entities and variant generation does not
happen.

See also set_breakout_cells and add_breakout_cells.

This method has been added in version 0.26.1

clear_breakout_cells

(2) Signature: void clear_breakout_cells

Description: Clears the breakout cells

See the other variant of clear_breakout_cells for details.

This method has been added in version 0.26.1

For more details visit
https://www.klayout.org

Page 1724 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.147. API reference - Class DeepShapeStore

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

is_singular?
Signature: [const] bool is_singular?

Description: Gets a value indicating whether there is a single layout variant

Specifically for network extraction, singular DSS objects are required. Multiple layouts may be
present if different sources of layouts have been used. Such DSS objects are not usable for
network extraction.

max_area_ratio
Signature: [const] double max_area_ratio

Description: Gets the max. area ratio.

Python specific notes:
The object exposes a readable attribute 'max_area_ratio'. This is the getter.

max_area_ratio=
Signature: void max_area_ratio= (double ratio)

Description: Sets the max. area ratio for bounding box vs. polygon area

This parameter is used to simplify complex polygons. It is used by create_polygon_layer with the
default parameters. It's also used by boolean operations when they deliver their output.

Python specific notes:
The object exposes a writable attribute 'max_area_ratio'. This is the setter.

max_vertex_count
Signature: [const] unsigned long max_vertex_count

Description: Gets the maximum vertex count.

For more details visit
https://www.klayout.org

Page 1725 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.147. API reference - Class DeepShapeStore

Python specific notes:
The object exposes a readable attribute 'max_vertex_count'. This is the getter.

max_vertex_count=
Signature: void max_vertex_count= (unsigned long count)

Description: Sets the maximum vertex count default value

This parameter is used to simplify complex polygons. It is used by create_polygon_layer with the
default parameters. It's also used by boolean operations when they deliver their output.

Python specific notes:
The object exposes a writable attribute 'max_vertex_count'. This is the setter.

new
Signature: [static] new DeepShapeStore ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

pop_state
Signature: void pop_state

Description: Restores the store's state on the state state

This will restore the state pushed by push_state.

This method has been added in version 0.26.1

push_state
Signature: void push_state

Description: Pushes the store's state on the state state

This will save the stores state (threads, max_vertex_count, max_area_ratio, breakout cells ...) on
the state stack. pop_state can be used to restore the state.

This method has been added in version 0.26.1

reject_odd_polygons
Signature: [const] bool reject_odd_polygons

Description: Gets a flag indicating whether to reject odd polygons.

This attribute has been introduced in version 0.27.

Python specific notes:
The object exposes a readable attribute 'reject_odd_polygons'. This is the getter.

reject_odd_polygons=
Signature: void reject_odd_polygons= (bool count)

Description: Sets a flag indicating whether to reject odd polygons

Some kind of 'odd' (e.g. non-orientable) polygons may spoil the functionality because they cannot
be handled properly. By using this flag, the shape store we reject these kind of polygons. The
default is 'accept' (without warning).

This attribute has been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'reject_odd_polygons'. This is the setter.

(1) Signature: void set_breakout_cells (unsigned int layout_index, unsigned int[] cells)

Description: Sets the breakout cell list (as cell indexes) for the given layout inside the store

See clear_breakout_cells for an explanation of breakout cells.

This method has been added in version 0.26.1

set_breakout_cells

For more details visit
https://www.klayout.org

Page 1726 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.147. API reference - Class DeepShapeStore

(2) Signature: void set_breakout_cells (unsigned int layout_index, string pattern)

Description: Sets the breakout cell list (as cell name pattern) for the given layout inside the store

See clear_breakout_cells for an explanation of breakout cells.

This method has been added in version 0.26.1

(3) Signature: void set_breakout_cells (string pattern)

Description: Sets the breakout cell list (as cell name pattern) for the all layouts inside the store

See clear_breakout_cells for an explanation of breakout cells.

This method has been added in version 0.26.1

text_enlargement
Signature: [const] int text_enlargement

Description: Gets the text enlargement value.

Python specific notes:
The object exposes a readable attribute 'text_enlargement'. This is the getter.

text_enlargement=
Signature: void text_enlargement= (int value)

Description: Sets the text enlargement value

If set to a non-negative value, text objects are converted to boxes with the given enlargement
(width = 2 * enlargement). The box centers are identical to the original location of the text. If this
value is negative (the default), texts are ignored.

Python specific notes:
The object exposes a writable attribute 'text_enlargement'. This is the setter.

text_property_name
Signature: [const] variant text_property_name

Description: Gets the text property name.

Python specific notes:
The object exposes a readable attribute 'text_property_name'. This is the getter.

text_property_name=
Signature: void text_property_name= (variant name)

Description: Sets the text property name.

If set to a non-null variant, text strings are attached to the generated boxes as properties with this
particular name. This option has an effect only if the text_enlargement property is not negative. By
default, the name is empty.

Python specific notes:
The object exposes a writable attribute 'text_property_name'. This is the setter.

threads
Signature: [const] int threads

Description: Gets the number of threads.

Python specific notes:
The object exposes a readable attribute 'threads'. This is the getter.

threads=
Signature: void threads= (int n)

Description: Sets the number of threads to allocate for the hierarchical processor

Python specific notes:
The object exposes a writable attribute 'threads'. This is the setter.

For more details visit
https://www.klayout.org

Page 1727 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.148. API reference - Class NetlistCompareLogger

4.148. API reference - Class NetlistCompareLogger
Notation used in Ruby API documentation

Module: db

Description: A base class for netlist comparer event receivers

See GenericNetlistCompareLogger for custom implementations of such receivers.

Public constructors

new NetlistCompareLogger ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script side.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 1728 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.148. API reference - Class NetlistCompareLogger

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

For more details visit
https://www.klayout.org

Page 1729 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.148. API reference - Class NetlistCompareLogger

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new NetlistCompareLogger ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1730 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.149. API reference - Class GenericNetlistCompareLogger

4.149. API reference - Class GenericNetlistCompareLogger
Notation used in Ruby API documentation

Module: db

Description: An event receiver for the netlist compare feature.

Class hierarchy: GenericNetlistCompareLogger » NetlistCompareLogger

The NetlistComparer class will send compare events to a logger derived from this class. Use this class to implement your own logger class.
You can override on of it's methods to receive certain kind of events. This class has been introduced in version 0.26.

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the
script side.

void _unmanage Marks the object as no longer owned
by the script side.

[virtual] void begin_circuit (const Circuit ptr a,
const Circuit ptr b)

This function is called when a new
circuit is compared.

[virtual] void begin_netlist (const Netlist ptr a,
const Netlist ptr b)

This function is called at the beginning
of the compare process.

[virtual] void circuit_mismatch (const Circuit ptr a,
const Circuit ptr b,
string msg)

This function is called when circuits
can't be compared.

[virtual] void circuit_skipped (const Circuit ptr a,
const Circuit ptr b,
string msg)

This function is called when circuits
can't be compared.

[virtual] void device_class_mismatch(const DeviceClass ptr a,
const DeviceClass ptr b,
string msg)

This function is called when device
classes can't be compared.

[virtual] void device_mismatch (const Device ptr a,
const Device ptr b,
string msg)

This function is called when two
devices can't be paired.

[virtual] void end_circuit (const Circuit ptr a,
const Circuit ptr b,
bool matching,
string msg)

This function is called at the end of the
compare process.

[virtual] void end_netlist (const Netlist ptr a,
const Netlist ptr b)

This function is called at the end of the
compare process.

For more details visit
https://www.klayout.org

Page 1731 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.149. API reference - Class GenericNetlistCompareLogger

[virtual] void match_ambiguous_nets(const Net ptr a,
const Net ptr b,
string msg)

This function is called when two
nets are identified, but this choice is
ambiguous.

[virtual] void match_devices (const Device ptr a,
const Device ptr b)

This function is called when two
devices are identified.

[virtual] void match_devices_with_different_device_classes(const Device ptr a,
const Device ptr b)

This function is called when two
devices are identified but have different
device classes.

[virtual] void match_devices_with_different_parameters(const Device ptr a,
const Device ptr b)

This function is called when two
devices are identified but have different
parameters.

[virtual] void match_nets (const Net ptr a,
const Net ptr b)

This function is called when two nets
are identified.

[virtual] void match_pins (const Pin ptr a,
const Pin ptr b)

This function is called when two pins
are identified.

[virtual] void match_subcircuits (const SubCircuit ptr a,
const SubCircuit ptr b)

This function is called when two
subcircuits are identified.

[virtual] void net_mismatch (const Net ptr a,
const Net ptr b,
string msg)

This function is called when a net can't
be paired.

[virtual] void pin_mismatch (const Pin ptr a,
const Pin ptr b,
string msg)

This function is called when two pins
can't be paired.

[virtual] void subcircuit_mismatch (const SubCircuit ptr a,
const SubCircuit ptr b,
string msg)

This function is called when two
subcircuits can't be paired.

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

For more details visit
https://www.klayout.org

Page 1732 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.149. API reference - Class GenericNetlistCompareLogger

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

begin_circuit
Signature: [virtual] void begin_circuit (const Circuit ptr a, const Circuit ptr b)

Description: This function is called when a new circuit is compared.

This compare procedure will run the netlist compare circuit vs. circuit in a bottom-up fashion.
Before each circuit is compared, this method is called once with the circuits that are about to be
compared. After the circuit has been compared, end_circuit will be called.

In some cases, the compare algorithm will decide that circuits can't be compared. This happens if
for some or all subcircuits the pin assignment can't be derived. In this case, circuit_skipped will be
called once instead of begin_circuit and end_circuit.

begin_netlist
Signature: [virtual] void begin_netlist (const Netlist ptr a, const Netlist ptr b)

Description: This function is called at the beginning of the compare process.

This method is called once when the compare run begins.

circuit_mismatch
Signature: [virtual] void circuit_mismatch (const Circuit ptr a, const Circuit ptr b, string msg)

Description: This function is called when circuits can't be compared.

This method is called when a circuit can't be mapped to a partner in the other netlist. In this case,
this method is called with the one circuit and nil for the other circuit.

This method is called instead of begin_circuit and end_circuit.

circuit_skipped
Signature: [virtual] void circuit_skipped (const Circuit ptr a, const Circuit ptr b, string msg)

Description: This function is called when circuits can't be compared.

If there is a known circuit pair, but the circuits can be compared - for example because subcircuits
can't be identified - this method will be called with both circuits.

This method is called instead of begin_circuit and end_circuit.

For more details visit
https://www.klayout.org

Page 1733 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.149. API reference - Class GenericNetlistCompareLogger

device_class_mismatch
Signature: [virtual] void device_class_mismatch (const DeviceClass ptr a, const DeviceClass
ptr b, string msg)

Description: This function is called when device classes can't be compared.

This method is called when a device class can't be mapped to a partner in the other netlist. In this
case, this method is called with the one device class and nil for the other class.

device_mismatch
Signature: [virtual] void device_mismatch (const Device ptr a, const Device ptr b, string msg)

Description: This function is called when two devices can't be paired.

This will report the device considered in a or b. The other argument is nil. See match_devices for
details.

end_circuit
Signature: [virtual] void end_circuit (const Circuit ptr a, const Circuit ptr b, bool matching, string
msg)

Description: This function is called at the end of the compare process.

The 'matching' argument indicates whether the circuits have been identified as identical. See
begin_circuit for details.

end_netlist
Signature: [virtual] void end_netlist (const Netlist ptr a, const Netlist ptr b)

Description: This function is called at the end of the compare process.

This method is called once when the compare run ended.

match_ambiguous_nets
Signature: [virtual] void match_ambiguous_nets (const Net ptr a, const Net ptr b, string msg)

Description: This function is called when two nets are identified, but this choice is ambiguous.

This choice is a last-resort fallback to allow continuation of the compare procedure. It is likely that
this compare will fail later. Looking for ambiguous nets allows deduction of the origin of this faulty
decision. See match_nets for more details.

match_devices
Signature: [virtual] void match_devices (const Device ptr a, const Device ptr b)

Description: This function is called when two devices are identified.

If two devices are identified as a corresponding pair, this method will be called with
both devices. If the devices can be paired, but the device parameters don't match,
match_devices_with_different_parameters will be called instead. If the devices can be paired,
but the device classes don't match, match_devices_with_different_device_classes will be
called instead. If devices can't be matched, device_mismatch will be called with the one device
considered and the other device being nil.

match_devices_with_different_device_classes
Signature: [virtual] void match_devices_with_different_device_classes (const Device ptr a,
const Device ptr b)

Description: This function is called when two devices are identified but have different device
classes.

See match_devices for details.

match_devices_with_different_parameters
Signature: [virtual] void match_devices_with_different_parameters (const Device ptr a, const
Device ptr b)

Description: This function is called when two devices are identified but have different parameters.

See match_devices for details.

For more details visit
https://www.klayout.org

Page 1734 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.149. API reference - Class GenericNetlistCompareLogger

match_nets
Signature: [virtual] void match_nets (const Net ptr a, const Net ptr b)

Description: This function is called when two nets are identified.

If two nets are identified as a corresponding pair, this method will be called with both nets. If the
nets can be paired, but this match is ambiguous, match_ambiguous_nets will be called instead. If
nets can't be matched to a partner, net_mismatch will be called.

match_pins
Signature: [virtual] void match_pins (const Pin ptr a, const Pin ptr b)

Description: This function is called when two pins are identified.

If two pins are identified as a corresponding pair, this method will be called with both pins. If pins
can't be matched, pin_mismatch will be called with the one pin considered and the other pin being
nil.

match_subcircuits
Signature: [virtual] void match_subcircuits (const SubCircuit ptr a, const SubCircuit ptr b)

Description: This function is called when two subcircuits are identified.

If two subcircuits are identified as a corresponding pair, this method will be called with both
subcircuits. If subcircuits can't be matched, subcircuit_mismatch will be called with the one
subcircuit considered and the other subcircuit being nil.

net_mismatch
Signature: [virtual] void net_mismatch (const Net ptr a, const Net ptr b, string msg)

Description: This function is called when a net can't be paired.

This method will be called, if a net cannot be identified as identical with another net. The
corresponding argument will identify the net and source netlist. The other argument will be nil.

In some cases, a mismatch is reported with two nets given. This means, nets are known not to
match. Still the compare algorithm will proceed as if these nets were equivalent to derive further
matches.

pin_mismatch
Signature: [virtual] void pin_mismatch (const Pin ptr a, const Pin ptr b, string msg)

Description: This function is called when two pins can't be paired.

This will report the pin considered in a or b. The other argument is nil. See match_pins for details.

subcircuit_mismatch
Signature: [virtual] void subcircuit_mismatch (const SubCircuit ptr a, const SubCircuit ptr b,
string msg)

Description: This function is called when two subcircuits can't be paired.

This will report the subcircuit considered in a or b. The other argument is nil. See
match_subcircuits for details.

For more details visit
https://www.klayout.org

Page 1735 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.150. API reference - Class NetlistComparer

4.150. API reference - Class NetlistComparer
Notation used in Ruby API documentation

Module: db

Description: Compares two netlists

This class performs a comparison of two netlists. It can be used with an event receiver (logger) to track the errors and net mismatches.
Event receivers are derived from class GenericNetlistCompareLogger. The netlist comparer can be configured in different ways. Specific
hints can be given for nets, device classes or circuits to improve efficiency and reliability of the graph equivalence deduction algorithm. For
example, objects can be marked as equivalent using same_nets, same_circuits etc. The compare algorithm will then use these hints to
derive further equivalences. This way, ambiguities can be resolved.

Another configuration option relates to swappable pins of subcircuits. If pins are marked this way, the compare algorithm may swap them to
achieve net matching. Swappable pins belong to an 'equivalence group' and can be defined with equivalent_pins.

This class has been introduced in version 0.26.

Public constructors

new NetlistComparer ptr new Creates a new comparer object.

new NetlistComparer ptr new (GenericNetlistCompareLogger
ptr logger)

Creates a new comparer object.

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the
script side.

void _unmanage Marks the object as no longer owned by
the script side.

[const] bool compare (const Netlist ptr netlist_a,
const Netlist ptr netlist_b)

Compares two netlists.

[const] bool compare (const Netlist ptr netlist_a,
const Netlist ptr netlist_b,
NetlistCompareLogger ptr
logger)

Compares two netlists.

[const] bool dont_consider_net_names Gets a value indicating whether net
names shall not be considered

void dont_consider_net_names=(bool f) Sets a value indicating whether net
names shall not be considered

void equivalent_pins (const Circuit ptr circuit_b,
unsigned long pin_id1,

Marks two pins of the given circuit as
equivalent (i.e. they can be swapped).

For more details visit
https://www.klayout.org

Page 1736 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.150. API reference - Class NetlistComparer

unsigned long pin_id2)

void equivalent_pins (const Circuit ptr circuit_b,
unsigned long[] pin_ids)

Marks several pins of the given circuit as
equivalent (i.e. they can be swapped).

void join_symmetric_nets (Circuit ptr circuit) Joins symmetric nodes in the given circuit.

[const] unsigned long max_branch_complexity Gets the maximum branch complexity

void max_branch_complexity=(unsigned long n) Sets the maximum branch complexity

[const] unsigned long max_depth Gets the maximum search depth

void max_depth= (unsigned long n) Sets the maximum search depth

void max_resistance= (double threshold) Excludes all resistor devices with a
resistance values higher than the given
threshold.

void min_capacitance= (double threshold) Excludes all capacitor devices with a
capacitance values less than the given
threshold.

void same_circuits (const Circuit ptr circuit_a,
const Circuit ptr circuit_b)

Marks two circuits as identical.

void same_device_classes (const DeviceClass ptr
dev_cls_a,
const DeviceClass ptr
dev_cls_b)

Marks two device classes as identical.

void same_nets (const Net ptr net_a,
const Net ptr net_b,
bool must_match = false)

Marks two nets as identical.

void same_nets (const Circuit ptr circuit_a,
const Circuit ptr circuit_b,
const Net ptr net_a,
const Net ptr net_b,
bool must_match = false)

Marks two nets as identical.

[const] Circuit ptr[] unmatched_circuits_a (Netlist ptr a,
Netlist ptr b)

Returns a list of circuits in A for which
there is not corresponding circuit in B

[const] Circuit ptr[] unmatched_circuits_b (Netlist ptr a,
Netlist ptr b)

Returns a list of circuits in B for which
there is not corresponding circuit in A

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

For more details visit
https://www.klayout.org

Page 1737 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.150. API reference - Class NetlistComparer

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

(1) Signature: [const] bool compare (const Netlist ptr netlist_a, const Netlist ptr netlist_b)

Description: Compares two netlists.

This method will perform the actual netlist compare. It will return true if both netlists are identical. If
the comparer has been configured with same_nets or similar methods, the objects given there must
be located inside 'circuit_a' and 'circuit_b' respectively.

compare

For more details visit
https://www.klayout.org

Page 1738 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.150. API reference - Class NetlistComparer

(2) Signature: [const] bool compare (const Netlist ptr netlist_a, const Netlist ptr netlist_b,
NetlistCompareLogger ptr logger)

Description: Compares two netlists.

This method will perform the actual netlist compare using the given logger. It will return true if both
netlists are identical. If the comparer has been configured with same_nets or similar methods, the
objects given there must be located inside 'circuit_a' and 'circuit_b' respectively.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dont_consider_net_names
Signature: [const] bool dont_consider_net_names

Description: Gets a value indicating whether net names shall not be considered

See dont_consider_net_names= for details.

Python specific notes:
The object exposes a readable attribute 'dont_consider_net_names'. This is the getter.

dont_consider_net_names=
Signature: void dont_consider_net_names= (bool f)

Description: Sets a value indicating whether net names shall not be considered

If this value is set to true, net names will not be considered when resolving ambiguities. Not
considering net names usually is more expensive. The default is 'false' indicating that net names will
be considered for ambiguity resolution.

This property has been introduced in version 0.26.7.

Python specific notes:
The object exposes a writable attribute 'dont_consider_net_names'. This is the setter.

equivalent_pins
(1) Signature: void equivalent_pins (const Circuit ptr circuit_b, unsigned long pin_id1, unsigned
long pin_id2)

Description: Marks two pins of the given circuit as equivalent (i.e. they can be swapped).

For more details visit
https://www.klayout.org

Page 1739 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.150. API reference - Class NetlistComparer

Only circuits from the second input can be given swappable pins. This will imply the same
swappable pins on the equivalent circuit of the first input. To mark multiple pins as swappable, use
the version that takes a list of pins.

(2) Signature: void equivalent_pins (const Circuit ptr circuit_b, unsigned long[] pin_ids)

Description: Marks several pins of the given circuit as equivalent (i.e. they can be swapped).

Only circuits from the second input can be given swappable pins. This will imply the same
swappable pins on the equivalent circuit of the first input. This version is a generic variant of the
two-pin version of this method.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

join_symmetric_nets
Signature: void join_symmetric_nets (Circuit ptr circuit)

Description: Joins symmetric nodes in the given circuit.

Nodes are symmetrical if swapping them would not modify the circuit. Hence they will carry the
same potential and can be connected (joined). This will simplify the circuit and can be applied
before device combination to render a schematic-equivalent netlist in some cases (split gate
option).

This algorithm will apply the comparer's settings to the symmetry condition (device filtering, device
compare tolerances, device class equivalence etc.).

This method has been introduced in version 0.26.4.

max_branch_complexity
Signature: [const] unsigned long max_branch_complexity

Description: Gets the maximum branch complexity

See max_branch_complexity= for details.

Python specific notes:
The object exposes a readable attribute 'max_branch_complexity'. This is the getter.

max_branch_complexity=
Signature: void max_branch_complexity= (unsigned long n)

Description: Sets the maximum branch complexity

This value limits the maximum branch complexity of the backtracking algorithm. The complexity
is the accumulated number of branch options with ambiguous net matches. Backtracking will stop
when the maximum number of options has been exceeded.

By default, from version 0.27 on the complexity is unlimited and can be reduced in cases where
runtimes need to be limited at the cost less elaborate matching evaluation.

As the computational complexity is the square of the branch count, this value should be adjusted
carefully.

Python specific notes:
The object exposes a writable attribute 'max_branch_complexity'. This is the setter.

max_depth
Signature: [const] unsigned long max_depth

Description: Gets the maximum search depth

See max_depth= for details.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1740 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.150. API reference - Class NetlistComparer

The object exposes a readable attribute 'max_depth'. This is the getter.

max_depth=
Signature: void max_depth= (unsigned long n)

Description: Sets the maximum search depth

This value limits the search depth of the backtracking algorithm to the given number of jumps.

By default, from version 0.27 on the depth is unlimited and can be reduced in cases where runtimes
need to be limited at the cost less elaborate matching evaluation.

Python specific notes:
The object exposes a writable attribute 'max_depth'. This is the setter.

max_resistance=
Signature: void max_resistance= (double threshold)

Description: Excludes all resistor devices with a resistance values higher than the given threshold.

To reset this constraint, set this attribute to zero.

Python specific notes:
The object exposes a writable attribute 'max_resistance'. This is the setter.

min_capacitance=
Signature: void min_capacitance= (double threshold)

Description: Excludes all capacitor devices with a capacitance values less than the given
threshold.

To reset this constraint, set this attribute to zero.

Python specific notes:
The object exposes a writable attribute 'min_capacitance'. This is the setter.

(1) Signature: [static] new NetlistComparer ptr new

Description: Creates a new comparer object.

See the class description for more details.

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new NetlistComparer ptr new (GenericNetlistCompareLogger ptr logger)

Description: Creates a new comparer object.

The logger is a delegate or event receiver which the comparer will send compare events to. See the
class description for more details.

Python specific notes:
This method is the default initializer of the object

same_circuits
Signature: void same_circuits (const Circuit ptr circuit_a, const Circuit ptr circuit_b)

Description: Marks two circuits as identical.

This method makes a circuit circuit_a in netlist a identical to the corresponding circuit circuit_b in
netlist b (see compare). By default circuits with the same name are identical.

same_device_classes
Signature: void same_device_classes (const DeviceClass ptr dev_cls_a, const DeviceClass ptr
dev_cls_b)

Description: Marks two device classes as identical.

This makes a device class dev_cls_a in netlist a identical to the corresponding device class
dev_cls_b in netlist b (see compare). By default device classes with the same name are identical.

For more details visit
https://www.klayout.org

Page 1741 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.150. API reference - Class NetlistComparer

(1) Signature: void same_nets (const Net ptr net_a, const Net ptr net_b, bool must_match =
false)

Description: Marks two nets as identical.

This makes a net net_a in netlist a identical to the corresponding net net_b in netlist b (see
compare). Otherwise, the algorithm will try to identify nets according to their topology. This method
can be used to supply hints to the compare algorithm. It will use these hints to derive further
identities.

If 'must_match' is true, the nets are required to match. If they don't, an error is reported.

The 'must_match' optional argument has been added in version 0.27.3.

same_nets

(2) Signature: void same_nets (const Circuit ptr circuit_a, const Circuit ptr circuit_b, const Net ptr
net_a, const Net ptr net_b, bool must_match = false)

Description: Marks two nets as identical.

This makes a net net_a in netlist a identical to the corresponding net net_b in netlist b (see
compare). Otherwise, the algorithm will try to identify nets according to their topology. This method
can be used to supply hints to the compare algorithm. It will use these hints to derive further
identities.

If 'must_match' is true, the nets are required to match. If they don't, an error is reported.

This variant allows specifying nil for the nets indicating the nets are mismatched by definition. with
'must_match' this will render a net mismatch error.

This variant has been added in version 0.27.3.

unmatched_circuits_a
Signature: [const] Circuit ptr[] unmatched_circuits_a (Netlist ptr a, Netlist ptr b)

Description: Returns a list of circuits in A for which there is not corresponding circuit in B

This list can be used to flatten these circuits so they do not participate in the compare process.

unmatched_circuits_b
Signature: [const] Circuit ptr[] unmatched_circuits_b (Netlist ptr a, Netlist ptr b)

Description: Returns a list of circuits in B for which there is not corresponding circuit in A

This list can be used to flatten these circuits so they do not participate in the compare process.

For more details visit
https://www.klayout.org

Page 1742 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.151. API reference - Class NetlistCrossReference

4.151. API reference - Class NetlistCrossReference
Notation used in Ruby API documentation

Module: db

Description: Represents the identity mapping between the objects of two netlists.

Class hierarchy: NetlistCrossReference » NetlistCompareLogger

Sub-classes: NetPairData, DevicePairData, PinPairData, SubCircuitPairData, CircuitPairData, NetTerminalRefPair, NetPinRefPair,
NetSubcircuitPinRefPair, Status

The NetlistCrossReference object is a container for the results of a netlist comparison. It implemented the NetlistCompareLogger interface,
hence can be used as output for a netlist compare operation (NetlistComparer#compare). It's purpose is to store the results of the compare.
It is used in this sense inside the LayoutVsSchematic framework.

The basic idea of the cross reference object is pairing: the netlist comparer will try to identify matching items and store them as pairs inside
the cross reference object. If no match is found, a single-sided pair is generated: one item is nil in this case. Beside the items, a status is
kept which gives more details about success or failure of the match operation.

Item pairing happens on different levels, reflecting the hierarchy of the netlists. On the top level there are circuits. Inside circuits nets,
devices, subcircuits and pins are paired. Nets further contribute their connected items through terminals (for devices), pins (outgoing) and
subcircuit pins.

This class has been introduced in version 0.26.

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the
script side.

void _unmanage Marks the object as no longer owned
by the script side.

[const] unsigned long circuit_count Gets the number of circuit pairs in the
cross-reference object.

[iter] NetlistCrossReference::CircuitPairDataeach_circuit_pair Delivers the circuit pairs and their
status.

[iter] NetlistCrossReference::DevicePairDataeach_device_pair (const
NetlistCrossReference::CircuitPairData
circuit_pair)

Delivers the device pairs and their
status for the given circuit pair.

[iter] NetlistCrossReference::NetPairDataeach_net_pair (const
NetlistCrossReference::CircuitPairData
circuit_pair)

Delivers the net pairs and their status
for the given circuit pair.

[iter] NetlistCrossReference::NetPinRefPaireach_net_pin_pair (const
NetlistCrossReference::NetPairData
net_pair)

Delivers the pin pairs for the given net
pair.

For more details visit
https://www.klayout.org

Page 1743 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.151. API reference - Class NetlistCrossReference

[iter] NetlistCrossReference::NetSubcircuitPinRefPaireach_net_subcircuit_pin_pair(const
NetlistCrossReference::NetPairData
net_pair)

Delivers the subcircuit pin pairs for the
given net pair.

[iter] NetlistCrossReference::NetTerminalRefPaireach_net_terminal_pair(const
NetlistCrossReference::NetPairData
net_pair)

Delivers the device terminal pairs for
the given net pair.

[iter] NetlistCrossReference::PinPairDataeach_pin_pair (const
NetlistCrossReference::CircuitPairData
circuit_pair)

Delivers the pin pairs and their status
for the given circuit pair.

[iter] NetlistCrossReference::SubCircuitPairDataeach_subcircuit_pair (const
NetlistCrossReference::CircuitPairData
circuit_pair)

Delivers the subcircuit pairs and their
status for the given circuit pair.

[const] const Netlist ptr netlist_a Gets the first netlist which participated
in the compare.

[const] const Netlist ptr netlist_b Gets the second netlist which
participated in the compare.

[const] const Circuit ptr other_circuit_for (const Circuit ptr
circuit)

Gets the matching other circuit for a
given primary circuit.

[const] const Device ptr other_device_for (const Device ptr
device)

Gets the matching other device for a
given primary device.

[const] const Net ptr other_net_for (const Net ptr net) Gets the matching other net for a given
primary net.

[const] const Pin ptr other_pin_for (const Pin ptr pin) Gets the matching other pin for a given
primary pin.

[const] const SubCircuit ptr other_subcircuit_for (const SubCircuit
ptr subcircuit)

Gets the matching other subcircuit for
a given primary subcircuit.

Public static methods and constants

[static,const] NetlistCrossReference::Status Match Enum constant
NetlistCrossReference::Match

[static,const] NetlistCrossReference::Status MatchWithWarning Enum constant
NetlistCrossReference::MatchWithWarning

[static,const] NetlistCrossReference::Status Mismatch Enum constant
NetlistCrossReference::Mismatch

[static,const] NetlistCrossReference::Status NoMatch Enum constant
NetlistCrossReference::NoMatch

[static,const] NetlistCrossReference::Status None Enum constant
NetlistCrossReference::None

[static,const] NetlistCrossReference::Status Skipped Enum constant
NetlistCrossReference::Skipped

For more details visit
https://www.klayout.org

Page 1744 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.151. API reference - Class NetlistCrossReference

Detailed description

Match
Signature: [static,const] NetlistCrossReference::Status Match

Description: Enum constant NetlistCrossReference::Match

An exact match exists if this code is present.

MatchWithWarning
Signature: [static,const] NetlistCrossReference::Status MatchWithWarning

Description: Enum constant NetlistCrossReference::MatchWithWarning

If this code is present, a match was found but a warning is issued. For nets, this means that the
choice is ambiguous and one, unspecific candidate has been chosen. For devices, this means a
device match was established, but parameters or the device class are not matching exactly.

Mismatch
Signature: [static,const] NetlistCrossReference::Status Mismatch

Description: Enum constant NetlistCrossReference::Mismatch

This code means there is a match candidate, but exact identity could not be confirmed.

NoMatch
Signature: [static,const] NetlistCrossReference::Status NoMatch

Description: Enum constant NetlistCrossReference::NoMatch

If this code is present, no match could be found. There is also 'Mismatch' which means there is a
candidate, but exact identity could not be confirmed.

None
Signature: [static,const] NetlistCrossReference::Status None

Description: Enum constant NetlistCrossReference::None

No specific status is implied if this code is present.

Python specific notes:
This attribute is available as 'None_' in Python

Skipped
Signature: [static,const] NetlistCrossReference::Status Skipped

Description: Enum constant NetlistCrossReference::Skipped

On circuits this code means that a match has not been attempted because subcircuits of this
circuits were not matched. As circuit matching happens bottom-up, all subcircuits must match at
least with respect to their pins to allow any parent circuit to be matched.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

For more details visit
https://www.klayout.org

Page 1745 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.151. API reference - Class NetlistCrossReference

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of
the object. This method may be called if an object is returned from a C++ function and the object
is known not to be owned by any C++ instance. If necessary, the script side may delete the object
if the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

circuit_count
Signature: [const] unsigned long circuit_count

Description: Gets the number of circuit pairs in the cross-reference object.

each_circuit_pair
Signature: [iter] NetlistCrossReference::CircuitPairData each_circuit_pair

Description: Delivers the circuit pairs and their status.

See the class description for details.

each_device_pair
Signature: [iter] NetlistCrossReference::DevicePairData each_device_pair (const
NetlistCrossReference::CircuitPairData circuit_pair)

Description: Delivers the device pairs and their status for the given circuit pair.

See the class description for details.

each_net_pair
Signature: [iter] NetlistCrossReference::NetPairData each_net_pair (const
NetlistCrossReference::CircuitPairData circuit_pair)

Description: Delivers the net pairs and their status for the given circuit pair.

See the class description for details.

each_net_pin_pair
Signature: [iter] NetlistCrossReference::NetPinRefPair each_net_pin_pair (const
NetlistCrossReference::NetPairData net_pair)

For more details visit
https://www.klayout.org

Page 1746 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.151. API reference - Class NetlistCrossReference

Description: Delivers the pin pairs for the given net pair.

For the net pair, lists the pin pairs identified on this net.

each_net_subcircuit_pin_pair
Signature: [iter] NetlistCrossReference::NetSubcircuitPinRefPair
each_net_subcircuit_pin_pair (const NetlistCrossReference::NetPairData net_pair)

Description: Delivers the subcircuit pin pairs for the given net pair.

For the net pair, lists the subcircuit pin pairs identified on this net.

each_net_terminal_pair
Signature: [iter] NetlistCrossReference::NetTerminalRefPair each_net_terminal_pair (const
NetlistCrossReference::NetPairData net_pair)

Description: Delivers the device terminal pairs for the given net pair.

For the net pair, lists the device terminal pairs identified on this net.

each_pin_pair
Signature: [iter] NetlistCrossReference::PinPairData each_pin_pair (const
NetlistCrossReference::CircuitPairData circuit_pair)

Description: Delivers the pin pairs and their status for the given circuit pair.

See the class description for details.

each_subcircuit_pair
Signature: [iter] NetlistCrossReference::SubCircuitPairData each_subcircuit_pair (const
NetlistCrossReference::CircuitPairData circuit_pair)

Description: Delivers the subcircuit pairs and their status for the given circuit pair.

See the class description for details.

netlist_a
Signature: [const] const Netlist ptr netlist_a

Description: Gets the first netlist which participated in the compare.

This member may be nil, if the respective netlist is no longer valid. In this case, the netlist cross-
reference object cannot be used.

netlist_b
Signature: [const] const Netlist ptr netlist_b

Description: Gets the second netlist which participated in the compare.

This member may be nil, if the respective netlist is no longer valid.In this case, the netlist cross-
reference object cannot be used.

other_circuit_for
Signature: [const] const Circuit ptr other_circuit_for (const Circuit ptr circuit)

Description: Gets the matching other circuit for a given primary circuit.

The return value will be nil if no match is found. Otherwise it is the 'b' circuit for circuits from the 'a'
netlist and vice versa.

This method has been introduced in version 0.27.

other_device_for
Signature: [const] const Device ptr other_device_for (const Device ptr device)

Description: Gets the matching other device for a given primary device.

The return value will be nil if no match is found. Otherwise it is the 'b' device for devices from the
'a' netlist and vice versa.

This method has been introduced in version 0.27.

For more details visit
https://www.klayout.org

Page 1747 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.151. API reference - Class NetlistCrossReference

other_net_for
Signature: [const] const Net ptr other_net_for (const Net ptr net)

Description: Gets the matching other net for a given primary net.

The return value will be nil if no match is found. Otherwise it is the 'b' net for nets from the 'a'
netlist and vice versa.

other_pin_for
Signature: [const] const Pin ptr other_pin_for (const Pin ptr pin)

Description: Gets the matching other pin for a given primary pin.

The return value will be nil if no match is found. Otherwise it is the 'b' pin for pins from the 'a'
netlist and vice versa.

This method has been introduced in version 0.27.

other_subcircuit_for
Signature: [const] const SubCircuit ptr other_subcircuit_for (const SubCircuit ptr subcircuit)

Description: Gets the matching other subcircuit for a given primary subcircuit.

The return value will be nil if no match is found. Otherwise it is the 'b' subcircuit for subcircuits
from the 'a' netlist and vice versa.

This method has been introduced in version 0.27.

For more details visit
https://www.klayout.org

Page 1748 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.152. API reference - Class NetlistCrossReference::NetPairData

4.152. API reference - Class NetlistCrossReference::NetPairData
Notation used in Ruby API documentation

Module: db

Description: A net match entry.

This class is equivalent to the class NetlistCrossReference::NetPairData

This object is used to describe the relationship of two nets in a netlist match.

Upon successful match, the first and second members are the matching objects and status is 'Match'. This object is also used to describe
non-matches or match errors. In this case, first or second may be nil and status further describes the case.

Public methods

[const] const Net ptr first Gets the first object of the relation pair.

[const] const Net ptr second Gets the second object of the relation pair.

[const] NetlistCrossReference::Status status Gets the status of the relation.

Detailed description

first
Signature: [const] const Net ptr first

Description: Gets the first object of the relation pair.

The first object is usually the one obtained from the layout-derived netlist. This member can be nil if the
pair is describing a non-matching reference object. In this case, the second member is the reference
object for which no match was found.

second
Signature: [const] const Net ptr second

Description: Gets the second object of the relation pair.

The first object is usually the one obtained from the reference netlist. This member can be nil if the pair
is describing a non-matching layout object. In this case, the first member is the layout-derived object
for which no match was found.

status
Signature: [const] NetlistCrossReference::Status status

Description: Gets the status of the relation.

This enum described the match status of the relation pair.

For more details visit
https://www.klayout.org

Page 1749 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.153. API reference - Class NetlistCrossReference::DevicePairData

4.153. API reference - Class NetlistCrossReference::DevicePairData
Notation used in Ruby API documentation

Module: db

Description: A device match entry.

This class is equivalent to the class NetlistCrossReference::DevicePairData

This object is used to describe the relationship of two devices in a netlist match.

Upon successful match, the first and second members are the matching objects and status is 'Match'. This object is also used to describe
non-matches or match errors. In this case, first or second may be nil and status further describes the case.

Public methods

[const] const Device ptr first Gets the first object of the relation pair.

[const] const Device ptr second Gets the second object of the relation pair.

[const] NetlistCrossReference::Status status Gets the status of the relation.

Detailed description

first
Signature: [const] const Device ptr first

Description: Gets the first object of the relation pair.

The first object is usually the one obtained from the layout-derived netlist. This member can be nil if the
pair is describing a non-matching reference object. In this case, the second member is the reference
object for which no match was found.

second
Signature: [const] const Device ptr second

Description: Gets the second object of the relation pair.

The first object is usually the one obtained from the reference netlist. This member can be nil if the pair
is describing a non-matching layout object. In this case, the first member is the layout-derived object
for which no match was found.

status
Signature: [const] NetlistCrossReference::Status status

Description: Gets the status of the relation.

This enum described the match status of the relation pair.

For more details visit
https://www.klayout.org

Page 1750 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.154. API reference - Class NetlistCrossReference::PinPairData

4.154. API reference - Class NetlistCrossReference::PinPairData
Notation used in Ruby API documentation

Module: db

Description: A pin match entry.

This class is equivalent to the class NetlistCrossReference::PinPairData

This object is used to describe the relationship of two circuit pins in a netlist match.

Upon successful match, the first and second members are the matching objects and status is 'Match'. This object is also used to describe
non-matches or match errors. In this case, first or second may be nil and status further describes the case.

Public methods

[const] const Pin ptr first Gets the first object of the relation pair.

[const] const Pin ptr second Gets the second object of the relation pair.

[const] NetlistCrossReference::Status status Gets the status of the relation.

Detailed description

first
Signature: [const] const Pin ptr first

Description: Gets the first object of the relation pair.

The first object is usually the one obtained from the layout-derived netlist. This member can be nil if the
pair is describing a non-matching reference object. In this case, the second member is the reference
object for which no match was found.

second
Signature: [const] const Pin ptr second

Description: Gets the second object of the relation pair.

The first object is usually the one obtained from the reference netlist. This member can be nil if the pair
is describing a non-matching layout object. In this case, the first member is the layout-derived object
for which no match was found.

status
Signature: [const] NetlistCrossReference::Status status

Description: Gets the status of the relation.

This enum described the match status of the relation pair.

For more details visit
https://www.klayout.org

Page 1751 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.155. API reference - Class NetlistCrossReference::SubCircuitPairData

4.155. API reference - Class NetlistCrossReference::SubCircuitPairData
Notation used in Ruby API documentation

Module: db

Description: A subcircuit match entry.

This class is equivalent to the class NetlistCrossReference::SubCircuitPairData

This object is used to describe the relationship of two subcircuits in a netlist match.

Upon successful match, the first and second members are the matching objects and status is 'Match'. This object is also used to describe
non-matches or match errors. In this case, first or second may be nil and status further describes the case.

Public methods

[const] const SubCircuit ptr first Gets the first object of the relation pair.

[const] const SubCircuit ptr second Gets the second object of the relation pair.

[const] NetlistCrossReference::Status status Gets the status of the relation.

Detailed description

first
Signature: [const] const SubCircuit ptr first

Description: Gets the first object of the relation pair.

The first object is usually the one obtained from the layout-derived netlist. This member can be nil if the
pair is describing a non-matching reference object. In this case, the second member is the reference
object for which no match was found.

second
Signature: [const] const SubCircuit ptr second

Description: Gets the second object of the relation pair.

The first object is usually the one obtained from the reference netlist. This member can be nil if the pair
is describing a non-matching layout object. In this case, the first member is the layout-derived object
for which no match was found.

status
Signature: [const] NetlistCrossReference::Status status

Description: Gets the status of the relation.

This enum described the match status of the relation pair.

For more details visit
https://www.klayout.org

Page 1752 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.156. API reference - Class NetlistCrossReference::CircuitPairData

4.156. API reference - Class NetlistCrossReference::CircuitPairData
Notation used in Ruby API documentation

Module: db

Description: A circuit match entry.

This class is equivalent to the class NetlistCrossReference::CircuitPairData

This object is used to describe the relationship of two circuits in a netlist match.

Upon successful match, the first and second members are the matching objects and status is 'Match'. This object is also used to describe
non-matches or match errors. In this case, first or second may be nil and status further describes the case.

Public methods

[const] const Circuit ptr first Gets the first object of the relation pair.

[const] const Circuit ptr second Gets the second object of the relation pair.

[const] NetlistCrossReference::Status status Gets the status of the relation.

Detailed description

first
Signature: [const] const Circuit ptr first

Description: Gets the first object of the relation pair.

The first object is usually the one obtained from the layout-derived netlist. This member can be nil if the
pair is describing a non-matching reference object. In this case, the second member is the reference
object for which no match was found.

second
Signature: [const] const Circuit ptr second

Description: Gets the second object of the relation pair.

The first object is usually the one obtained from the reference netlist. This member can be nil if the pair
is describing a non-matching layout object. In this case, the first member is the layout-derived object
for which no match was found.

status
Signature: [const] NetlistCrossReference::Status status

Description: Gets the status of the relation.

This enum described the match status of the relation pair.

For more details visit
https://www.klayout.org

Page 1753 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.157. API reference - Class NetlistCrossReference::NetTerminalRefPair

4.157. API reference - Class NetlistCrossReference::NetTerminalRefPair
Notation used in Ruby API documentation

Module: db

Description: A match entry for a net terminal pair.

This class is equivalent to the class NetlistCrossReference::NetTerminalRefPair

This object is used to describe the matching terminal pairs or non-matching terminals on a net.

Upon successful match, the first and second members are the matching net objects.Otherwise, either first or second is nil and the other
member is the object for which no match was found.

Public methods

[const] const NetTerminalRef ptr first Gets the first object of the relation pair.

[const] const NetTerminalRef ptr second Gets the second object of the relation pair.

Detailed description

first
Signature: [const] const NetTerminalRef ptr first

Description: Gets the first object of the relation pair.

The first object is usually the one obtained from the layout-derived netlist. This member can be nil if the
pair is describing a non-matching reference object. In this case, the second member is the reference
object for which no match was found.

second
Signature: [const] const NetTerminalRef ptr second

Description: Gets the second object of the relation pair.

The first object is usually the one obtained from the reference netlist. This member can be nil if the pair
is describing a non-matching layout object. In this case, the first member is the layout-derived object for
which no match was found.

For more details visit
https://www.klayout.org

Page 1754 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.158. API reference - Class NetlistCrossReference::NetPinRefPair

4.158. API reference - Class NetlistCrossReference::NetPinRefPair
Notation used in Ruby API documentation

Module: db

Description: A match entry for a net pin pair.

This class is equivalent to the class NetlistCrossReference::NetPinRefPair

This object is used to describe the matching pin pairs or non-matching pins on a net.

Upon successful match, the first and second members are the matching net objects.Otherwise, either first or second is nil and the other
member is the object for which no match was found.

Public methods

[const] const NetPinRef ptr first Gets the first object of the relation pair.

[const] const NetPinRef ptr second Gets the second object of the relation pair.

Detailed description

first
Signature: [const] const NetPinRef ptr first

Description: Gets the first object of the relation pair.

The first object is usually the one obtained from the layout-derived netlist. This member can be nil if the
pair is describing a non-matching reference object. In this case, the second member is the reference
object for which no match was found.

second
Signature: [const] const NetPinRef ptr second

Description: Gets the second object of the relation pair.

The first object is usually the one obtained from the reference netlist. This member can be nil if the pair
is describing a non-matching layout object. In this case, the first member is the layout-derived object for
which no match was found.

For more details visit
https://www.klayout.org

Page 1755 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.159. API reference - Class NetlistCrossReference::NetSubcircuitPinRefPair

4.159. API reference - Class NetlistCrossReference::NetSubcircuitPinRefPair
Notation used in Ruby API documentation

Module: db

Description: A match entry for a net subcircuit pin pair.

This class is equivalent to the class NetlistCrossReference::NetSubcircuitPinRefPair

This object is used to describe the matching subcircuit pin pairs or non-matching subcircuit pins on a net.

Upon successful match, the first and second members are the matching net objects.Otherwise, either first or second is nil and the other
member is the object for which no match was found.

Public methods

[const] const NetSubcircuitPinRef ptr first Gets the first object of the relation pair.

[const] const NetSubcircuitPinRef ptr second Gets the second object of the relation pair.

Detailed description

first
Signature: [const] const NetSubcircuitPinRef ptr first

Description: Gets the first object of the relation pair.

The first object is usually the one obtained from the layout-derived netlist. This member can be nil if the
pair is describing a non-matching reference object. In this case, the second member is the reference
object for which no match was found.

second
Signature: [const] const NetSubcircuitPinRef ptr second

Description: Gets the second object of the relation pair.

The first object is usually the one obtained from the reference netlist. This member can be nil if the pair
is describing a non-matching layout object. In this case, the first member is the layout-derived object for
which no match was found.

For more details visit
https://www.klayout.org

Page 1756 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.160. API reference - Class NetlistCrossReference::Status

4.160. API reference - Class NetlistCrossReference::Status
Notation used in Ruby API documentation

Module: db

Description: This class represents the NetlistCrossReference::Status enum

This class is equivalent to the class NetlistCrossReference::Status

Public constructors

new NetlistCrossReference::Status ptr new (int i) Creates an enum from an integer value

new NetlistCrossReference::Status ptr new (string s) Creates an enum from a string value

Public methods

[const] bool != (const
NetlistCrossReference::Status
other)

Compares two enums for inequality

[const] bool < (const
NetlistCrossReference::Status
other)

Returns true if the first enum is less (in the
enum symbol order) than the second

[const] bool == (const
NetlistCrossReference::Status
other)

Compares two enums

[const] string inspect Converts an enum to a visual string

[const] int to_i Gets the integer value from the enum

[const] string to_s Gets the symbolic string from an enum

Public static methods and constants

[static,const] NetlistCrossReference::Status Match Enum constant
NetlistCrossReference::Match

[static,const] NetlistCrossReference::Status MatchWithWarning Enum constant
NetlistCrossReference::MatchWithWarning

[static,const] NetlistCrossReference::Status Mismatch Enum constant
NetlistCrossReference::Mismatch

[static,const] NetlistCrossReference::Status NoMatch Enum constant
NetlistCrossReference::NoMatch

[static,const] NetlistCrossReference::Status None Enum constant
NetlistCrossReference::None

[static,const] NetlistCrossReference::Status Skipped Enum constant
NetlistCrossReference::Skipped

For more details visit
https://www.klayout.org

Page 1757 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.160. API reference - Class NetlistCrossReference::Status

Detailed description

!=
Signature: [const] bool != (const NetlistCrossReference::Status other)

Description: Compares two enums for inequality

<
Signature: [const] bool < (const NetlistCrossReference::Status other)

Description: Returns true if the first enum is less (in the enum symbol order) than the second

==
Signature: [const] bool == (const NetlistCrossReference::Status other)

Description: Compares two enums

Match
Signature: [static,const] NetlistCrossReference::Status Match

Description: Enum constant NetlistCrossReference::Match

An exact match exists if this code is present.

MatchWithWarning
Signature: [static,const] NetlistCrossReference::Status MatchWithWarning

Description: Enum constant NetlistCrossReference::MatchWithWarning

If this code is present, a match was found but a warning is issued. For nets, this means that the
choice is ambiguous and one, unspecific candidate has been chosen. For devices, this means a
device match was established, but parameters or the device class are not matching exactly.

Mismatch
Signature: [static,const] NetlistCrossReference::Status Mismatch

Description: Enum constant NetlistCrossReference::Mismatch

This code means there is a match candidate, but exact identity could not be confirmed.

NoMatch
Signature: [static,const] NetlistCrossReference::Status NoMatch

Description: Enum constant NetlistCrossReference::NoMatch

If this code is present, no match could be found. There is also 'Mismatch' which means there is a
candidate, but exact identity could not be confirmed.

None
Signature: [static,const] NetlistCrossReference::Status None

Description: Enum constant NetlistCrossReference::None

No specific status is implied if this code is present.

Python specific notes:
This attribute is available as 'None_' in Python

Skipped
Signature: [static,const] NetlistCrossReference::Status Skipped

Description: Enum constant NetlistCrossReference::Skipped

On circuits this code means that a match has not been attempted because subcircuits of this circuits
were not matched. As circuit matching happens bottom-up, all subcircuits must match at least with
respect to their pins to allow any parent circuit to be matched.

inspect
Signature: [const] string inspect

Description: Converts an enum to a visual string

Python specific notes:

For more details visit
https://www.klayout.org

Page 1758 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.160. API reference - Class NetlistCrossReference::Status

This method is also available as 'repr(object)'

(1) Signature: [static] new NetlistCrossReference::Status ptr new (int i)

Description: Creates an enum from an integer value

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new NetlistCrossReference::Status ptr new (string s)

Description: Creates an enum from a string value

Python specific notes:
This method is the default initializer of the object

to_i
Signature: [const] int to_i

Description: Gets the integer value from the enum

to_s
Signature: [const] string to_s

Description: Gets the symbolic string from an enum

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 1759 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.161. API reference - Class LayoutVsSchematic

4.161. API reference - Class LayoutVsSchematic
Notation used in Ruby API documentation

Module: db

Description: A generic framework for doing LVS (layout vs. schematic)

Class hierarchy: LayoutVsSchematic » LayoutToNetlist

This class extends the concept of the netlist extraction from a layout to LVS verification. It does so by adding these concepts to the
LayoutToNetlist class:

• A reference netlist. This will be the netlist against which the layout-derived netlist is compared against. See reference and reference=.

• A compare step. During the compare the layout-derived netlist and the reference netlists are compared. The compare results are
captured in the cross-reference object. See compare and NetlistComparer for the comparer object.

• A cross-reference. This object (of class NetlistCrossReference) will keep the relations between the objects of the two netlists. It also
lists the differences between the netlists. See xref about how to access this object.

The LVS object can be persisted to and from a file in a specific format, so it is sometimes referred to as the "LVS database".

LVS objects can be attached to layout views with LayoutView#add_lvsdb so they become available in the netlist database browser.

This class has been introduced in version 0.26.

Public constructors

new LayoutVsSchematic ptr new (const
RecursiveShapeIterator iter)

Creates a new LVS object with the extractor
connected to an original layout

new LayoutVsSchematic ptr new Creates a new LVS object

new LayoutVsSchematic ptr new (DeepShapeStore ptr dss) Creates a new LVS object with the extractor
object reusing an existing DeepShapeStore
object

new LayoutVsSchematic ptr new (DeepShapeStore ptr dss,
unsigned int layout_index)

Creates a new LVS object with the extractor
object reusing an existing DeepShapeStore
object

new LayoutVsSchematic ptr new (string topcell_name,
double dbu)

Creates a new LVS object with the extractor
object taking a flat DSS

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

For more details visit
https://www.klayout.org

Page 1760 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.161. API reference - Class LayoutVsSchematic

void _unmanage Marks the object as no longer owned by the
script side.

bool compare (NetlistComparer
ptr comparer)

Compare the layout-extracted netlist against the
reference netlist using the given netlist comparer.

void read (string path) Reads the LVS object from the file.

void read_l2n (string path) Reads the LayoutToNetlist part of the object from
a file.

Netlist ptr reference Gets the reference netlist.

void reference= (Netlist ptr
reference_netlist)

Sets the reference netlist.

void write (string path,
bool short_format
= false)

Writes the LVS object to a file.

void write_l2n (string path,
bool short_format
= false)

Writes the LayoutToNetlist part of the object to a
file.

NetlistCrossReference
ptr

xref Gets the cross-reference object

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

For more details visit
https://www.klayout.org

Page 1761 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.161. API reference - Class LayoutVsSchematic

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

compare
Signature: bool compare (NetlistComparer ptr comparer)

Description: Compare the layout-extracted netlist against the reference netlist using the given netlist
comparer.

(1) Signature: [static] new LayoutVsSchematic ptr new (const RecursiveShapeIterator iter)

Description: Creates a new LVS object with the extractor connected to an original layout

This constructor will attach the extractor of the LVS object to an original layout through the shape
iterator.

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new LayoutVsSchematic ptr new

Description: Creates a new LVS object

The main objective for this constructor is to create an object suitable for reading and writing LVS
database files.

Python specific notes:
This method is the default initializer of the object

(3) Signature: [static] new LayoutVsSchematic ptr new (DeepShapeStore ptr dss)

Description: Creates a new LVS object with the extractor object reusing an existing
DeepShapeStore object

See the corresponding constructor of the LayoutToNetlist object for more details.

Python specific notes:
This method is the default initializer of the object

new

(4) Signature: [static] new LayoutVsSchematic ptr new (DeepShapeStore ptr dss, unsigned int
layout_index)

Description: Creates a new LVS object with the extractor object reusing an existing
DeepShapeStore object

See the corresponding constructor of the LayoutToNetlist object for more details.

For more details visit
https://www.klayout.org

Page 1762 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.161. API reference - Class LayoutVsSchematic

Python specific notes:
This method is the default initializer of the object

(5) Signature: [static] new LayoutVsSchematic ptr new (string topcell_name, double dbu)

Description: Creates a new LVS object with the extractor object taking a flat DSS

See the corresponding constructor of the LayoutToNetlist object for more details.

Python specific notes:
This method is the default initializer of the object

read
Signature: void read (string path)

Description: Reads the LVS object from the file.

This method employs the native format of KLayout.

read_l2n
Signature: void read_l2n (string path)

Description: Reads the LayoutToNetlist part of the object from a file.

This method employs the native format of KLayout.

reference
Signature: Netlist ptr reference

Description: Gets the reference netlist.

Python specific notes:
The object exposes a readable attribute 'reference'. This is the getter.

reference=
Signature: void reference= (Netlist ptr reference_netlist)

Description: Sets the reference netlist.

This will set the reference netlist used inside compare as the second netlist to compare against the
layout-extracted netlist.

The LVS object will take ownership over the netlist - i.e. if it goes out of scope, the reference netlist is
deleted.

Python specific notes:
The object exposes a writable attribute 'reference'. This is the setter.

write
Signature: void write (string path, bool short_format = false)

Description: Writes the LVS object to a file.

This method employs the native format of KLayout.

write_l2n
Signature: void write_l2n (string path, bool short_format = false)

Description: Writes the LayoutToNetlist part of the object to a file.

This method employs the native format of KLayout.

xref
Signature: NetlistCrossReference ptr xref

Description: Gets the cross-reference object

The cross-reference object is created while comparing the layout-extracted netlist against the
reference netlist - i.e. during compare. Before compare is called, this object is nil. It holds the
results of the comparison - a cross-reference between the nets and other objects in the match
case and a listing of non-matching nets and other objects for the non-matching cases. See
NetlistCrossReference for more details.

For more details visit
https://www.klayout.org

Page 1763 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.162. API reference - Class Texts

4.162. API reference - Class Texts
Notation used in Ruby API documentation

Module: db

Description: Texts (a collection of texts)

Class hierarchy: Texts » ShapeCollection

Text objects are useful as labels for net names, to identify certain regions and to specify specific locations in general. Text collections
provide a way to store - also in a hierarchical fashion - and manipulate a collection of text objects.

Text objects can be turned into polygons by creating small boxes around the texts (polygons). Texts can also be turned into dot-like edges
(edges). Texts can be filtered by string, either by matching against a fixed string (with_text) or a glob-style pattern (with_match).

Text collections can be filtered geometrically against a polygon Region using interacting or non-interacting. Vice versa, texts can be used to
select polygons from a Region using pull_interacting.

Beside that, text collections can be transformed, flattened and combined, similar to EdgePairs.

This class has been introduced in version 0.27.

Public constructors

new Texts ptr new Default constructor

new Texts ptr new (Text[] array) Constructor from an text array

new Texts ptr new (const Text text) Constructor from a single edge pair object

new Texts ptr new (const Shapes shapes) Shapes constructor

new Texts ptr new (const RecursiveShapeIterator
shape_iterator)

Constructor from a hierarchical shape set

new Texts ptr new (const RecursiveShapeIterator
shape_iterator,
const ICplxTrans trans)

Constructor from a hierarchical shape set
with a transformation

new Texts ptr new (const RecursiveShapeIterator
shape_iterator,
DeepShapeStore dss)

Creates a hierarchical text collection from
an original layer

new Texts ptr new (const RecursiveShapeIterator
shape_iterator,
DeepShapeStore dss,
const ICplxTrans trans)

Creates a hierarchical text collection from
an original layer with a transformation

Public methods

[const] Texts & (const Region
other)

Returns the texts from this text collection which
are inside or on the edge of polygons from the
given region

[const] Texts + (const Texts other) Returns the combined text collection of self and
the other one

Texts += (const Texts other) Adds the texts of the other text collection to self

For more details visit
https://www.klayout.org

Page 1764 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.162. API reference - Class Texts

[const] Texts - (const Region
other)

Returns the texts from this text collection which
are not inside or on the edge of polygons from
the given region

[const] const Text ptr [] (unsigned long n) Returns the nth text

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const Texts other) Assigns another object to self

[const] Box bbox Return the bounding box of the text collection

void clear Clears the text collection

[const] unsigned long count Returns the (flat) number of texts in the text
collection

[const] unsigned long data_id Returns the data ID (a unique identifier for the
underlying data storage)

void disable_progress Disable progress reporting

[const] new Texts ptr dup Creates a copy of self

[const,iter] Text each Returns each text of the text collection

[const] Edges edges Returns dot-like edges for the texts

void enable_progress (string label) Enable progress reporting

[const] Region extents (int d = 1) Returns a region with the enlarged bounding
boxes of the texts

[const] Region extents (int dx,
int dy)

Returns a region with the enlarged bounding
boxes of the texts

void flatten Explicitly flattens an text collection

[const] bool has_valid_texts? Returns true if the text collection is flat and
individual texts can be accessed randomly

[const] unsigned long hier_count Returns the (hierarchical) number of texts in the
text collection

void insert (const Text text) Inserts a text into the collection

For more details visit
https://www.klayout.org

Page 1765 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.162. API reference - Class Texts

void insert (const Texts texts) Inserts all texts from the other text collection
into this collection

[const] void insert_into (Layout ptr layout,
unsigned int
cell_index,
unsigned int layer)

Inserts this texts into the given layout, below the
given cell and into the given layer.

[const] void insert_into_as_polygons(Layout ptr layout,
unsigned int
cell_index,
unsigned int layer,
int e)

Inserts this texts into the given layout, below the
given cell and into the given layer.

[const] Texts interacting (const Region
other)

Returns the texts from this text collection which
are inside or on the edge of polygons from the
given region

[const] bool is_deep? Returns true if the edge pair collection is a deep
(hierarchical) one

[const] bool is_empty? Returns true if the collection is empty

Texts move (const Vector p) Moves the text collection

Texts move (int x,
int y)

Moves the text collection

[const] Texts moved (const Vector p) Returns the moved text collection (does not
modify self)

[const] Texts moved (int x,
int y)

Returns the moved edge pair collection (does
not modify self)

[const] Texts not_interacting (const Region
other)

Returns the texts from this text collection which
are not inside or on the edge of polygons from
the given region

[const] Region polygons (int e = 1) Converts the edge pairs to polygons

[const] Region pull_interacting (const Region
other)

Returns all polygons of "other" which are
including texts of this text set

Texts select_interacting (const Region
other)

Selects the texts from this text collection which
are inside or on the edge of polygons from the
given region

Texts select_not_interacting(const Region
other)

Selects the texts from this text collection which
are not inside or on the edge of polygons from
the given region

void swap (Texts other) Swap the contents of this collection with the
contents of another collection

[const] string to_s Converts the text collection to a string

[const] string to_s (unsigned long
max_count)

Converts the text collection to a string

For more details visit
https://www.klayout.org

Page 1766 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.162. API reference - Class Texts

Texts transform (const Trans t) Transform the text collection (modifies self)

Texts transform (const ICplxTrans t) Transform the text collection with a complex
transformation (modifies self)

[const] Texts transformed (const Trans t) Transform the edge pair collection

[const] Texts transformed (const ICplxTrans t) Transform the text collection with a complex
transformation

[const] Texts with_match (string pattern,
bool inverse)

Filter the text by glob pattern

[const] Texts with_text (string text,
bool inverse)

Filter the text by text string

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[const] unsigned long size Use of this method is deprecated. Use count
instead

Texts transform_icplx (const
ICplxTrans
t)

Use of this method is deprecated. Use transform
instead

[const] Texts transformed_icplx (const
ICplxTrans
t)

Use of this method is deprecated. Use transformed
instead

Detailed description

&
Signature: [const] Texts & (const Region other)

Description: Returns the texts from this text collection which are inside or on the edge of polygons
from the given region

Returns: A new text collection containing the texts inside or on the edge of
polygons from the region

+
Signature: [const] Texts + (const Texts other)

Description: Returns the combined text collection of self and the other one

Returns: The resulting text collection

This operator adds the texts of the other collection to self and returns a new combined set.

For more details visit
https://www.klayout.org

Page 1767 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.162. API reference - Class Texts

+=
Signature: Texts += (const Texts other)

Description: Adds the texts of the other text collection to self

Returns: The text collection after modification (self)

This operator adds the texts of the other collection to self.

-
Signature: [const] Texts - (const Region other)

Description: Returns the texts from this text collection which are not inside or on the edge of
polygons from the given region

Returns: A new text collection containing the texts not inside or on the edge
of polygons from the region

[]
Signature: [const] const Text ptr [] (unsigned long n)

Description: Returns the nth text

This method returns nil if the index is out of range. It is available for flat texts only - i.e. those for
which has_valid_texts? is true. Use flatten to explicitly flatten an text collection.

The each iterator is the more general approach to access the texts.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

For more details visit
https://www.klayout.org

Page 1768 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.162. API reference - Class Texts

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const Texts other)

Description: Assigns another object to self

bbox
Signature: [const] Box bbox

Description: Return the bounding box of the text collection

The bounding box is the box enclosing all origins of all texts.

clear
Signature: void clear

Description: Clears the text collection

count
Signature: [const] unsigned long count

Description: Returns the (flat) number of texts in the text collection

The count is computed 'as if flat', i.e. texts inside a cell are multiplied by the number of times a cell is
instantiated.

Starting with version 0.27, the method is called 'count' for consistency with Region. 'size' is still
provided as an alias.

Python specific notes:
This method is also available as 'len(object)'

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

data_id
Signature: [const] unsigned long data_id

Description: Returns the data ID (a unique identifier for the underlying data storage)

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

For more details visit
https://www.klayout.org

Page 1769 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.162. API reference - Class Texts

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

disable_progress
Signature: void disable_progress

Description: Disable progress reporting

Calling this method will disable progress reporting. See enable_progress.

dup
Signature: [const] new Texts ptr dup

Description: Creates a copy of self

each
Signature: [const,iter] Text each

Description: Returns each text of the text collection

Python specific notes:
This method enables iteration of the object

edges
Signature: [const] Edges edges

Description: Returns dot-like edges for the texts

Returns: An edge collection containing the individual, dot-like edges

enable_progress
Signature: void enable_progress (string label)

Description: Enable progress reporting

After calling this method, the text collection will report the progress through a progress bar while
expensive operations are running. The label is a text which is put in front of the progress bar. Using
a progress bar will imply a performance penalty of a few percent typically.

(1) Signature: [const] Region extents (int d = 1)

Description: Returns a region with the enlarged bounding boxes of the texts

Text bounding boxes are point-like boxes which vanish unless an enlargement of >0 is specified.
The bounding box is centered at the text's location. The boxes will not be merged, so it is possible to
determine overlaps of these boxes for example.

extents

(2) Signature: [const] Region extents (int dx, int dy)

Description: Returns a region with the enlarged bounding boxes of the texts

This method acts like the other version of extents, but allows giving different enlargements for x and
y direction.

flatten
Signature: void flatten

Description: Explicitly flattens an text collection

For more details visit
https://www.klayout.org

Page 1770 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.162. API reference - Class Texts

If the collection is already flat (i.e. has_valid_texts? returns true), this method will not change the
collection.

has_valid_texts?
Signature: [const] bool has_valid_texts?

Description: Returns true if the text collection is flat and individual texts can be accessed randomly

hier_count
Signature: [const] unsigned long hier_count

Description: Returns the (hierarchical) number of texts in the text collection

The count is computed 'hierarchical', i.e. texts inside a cell are counted once even if the cell is
instantiated multiple times.

This method has been introduced in version 0.27.

(1) Signature: void insert (const Text text)

Description: Inserts a text into the collectioninsert

(2) Signature: void insert (const Texts texts)

Description: Inserts all texts from the other text collection into this collection

insert_into
Signature: [const] void insert_into (Layout ptr layout, unsigned int cell_index, unsigned int layer)

Description: Inserts this texts into the given layout, below the given cell and into the given layer.

If the text collection is a hierarchical one, a suitable hierarchy will be built below the top cell or and
existing hierarchy will be reused.

insert_into_as_polygons
Signature: [const] void insert_into_as_polygons (Layout ptr layout, unsigned int cell_index,
unsigned int layer, int e)

Description: Inserts this texts into the given layout, below the given cell and into the given layer.

If the text collection is a hierarchical one, a suitable hierarchy will be built below the top cell or and
existing hierarchy will be reused.

The texts will be converted to polygons with the enlargement value given be 'e'. See polygon or
extents for details.

interacting
Signature: [const] Texts interacting (const Region other)

Description: Returns the texts from this text collection which are inside or on the edge of polygons
from the given region

Returns: A new text collection containing the texts inside or on the edge of
polygons from the region

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_deep?
Signature: [const] bool is_deep?

Description: Returns true if the edge pair collection is a deep (hierarchical) one

For more details visit
https://www.klayout.org

Page 1771 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.162. API reference - Class Texts

is_empty?
Signature: [const] bool is_empty?

Description: Returns true if the collection is empty

(1) Signature: Texts move (const Vector p)

Description: Moves the text collection

p: The distance to move the texts.

Returns: The moved texts (self).

Moves the texts by the given offset and returns the moved text collection. The text collection is
overwritten.

move

(2) Signature: Texts move (int x, int y)

Description: Moves the text collection

x: The x distance to move the texts.

y: The y distance to move the texts.

Returns: The moved texts (self).

Moves the edge pairs by the given offset and returns the moved texts. The edge pair collection is
overwritten.

(1) Signature: [const] Texts moved (const Vector p)

Description: Returns the moved text collection (does not modify self)

p: The distance to move the texts.

Returns: The moved texts.

Moves the texts by the given offset and returns the moved texts. The text collection is not modified.

moved

(2) Signature: [const] Texts moved (int x, int y)

Description: Returns the moved edge pair collection (does not modify self)

x: The x distance to move the texts.

y: The y distance to move the texts.

Returns: The moved texts.

Moves the texts by the given offset and returns the moved texts. The text collection is not modified.

(1) Signature: [static] new Texts ptr new

Description: Default constructor

This constructor creates an empty text collection.

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new Texts ptr new (Text[] array)

Description: Constructor from an text array

This constructor creates an text collection from an array of Text objects.

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1772 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.162. API reference - Class Texts

(3) Signature: [static] new Texts ptr new (const Text text)

Description: Constructor from a single edge pair object

This constructor creates an text collection with a single text.

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new Texts ptr new (const Shapes shapes)

Description: Shapes constructor

This constructor creates an text collection from a Shapes collection.

Python specific notes:
This method is the default initializer of the object

(5) Signature: [static] new Texts ptr new (const RecursiveShapeIterator shape_iterator)

Description: Constructor from a hierarchical shape set

This constructor creates a text collection from the shapes delivered by the given recursive shape
iterator. Only texts are taken from the shape set and other shapes are ignored. This method allows
feeding the text collection from a hierarchy of cells.

layout = ... # a layout
cell = ... # the index of the initial cell
layer = ... # the index of the layer from where to take the shapes from
r = RBA::Texts::new(layout.begin_shapes(cell, layer))

Python specific notes:
This method is the default initializer of the object

(6) Signature: [static] new Texts ptr new (const RecursiveShapeIterator shape_iterator, const
ICplxTrans trans)

Description: Constructor from a hierarchical shape set with a transformation

This constructor creates a text collection from the shapes delivered by the given recursive
shape iterator. Only texts are taken from the shape set and other shapes are ignored. The given
transformation is applied to each text taken. This method allows feeding the text collection from a
hierarchy of cells. The transformation is useful to scale to a specific database unit for example.

layout = ... # a layout
cell = ... # the index of the initial cell
layer = ... # the index of the layer from where to take the shapes from
dbu = 0.1 # the target database unit
r = RBA::Texts::new(layout.begin_shapes(cell, layer),
 RBA::ICplxTrans::new(layout.dbu / dbu))

Python specific notes:
This method is the default initializer of the object

(7) Signature: [static] new Texts ptr new (const RecursiveShapeIterator shape_iterator,
DeepShapeStore dss)

Description: Creates a hierarchical text collection from an original layer

For more details visit
https://www.klayout.org

Page 1773 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.162. API reference - Class Texts

This constructor creates a text collection from the shapes delivered by the given recursive shape
iterator. This version will create a hierarchical text collection which supports hierarchical operations.

dss = RBA::DeepShapeStore::new
layout = ... # a layout
cell = ... # the index of the initial cell
layer = ... # the index of the layer from where to take the shapes from
r = RBA::Texts::new(layout.begin_shapes(cell, layer))

Python specific notes:
This method is the default initializer of the object

(8) Signature: [static] new Texts ptr new (const RecursiveShapeIterator shape_iterator,
DeepShapeStore dss, const ICplxTrans trans)

Description: Creates a hierarchical text collection from an original layer with a transformation

This constructor creates a text collection from the shapes delivered by the given recursive shape
iterator. This version will create a hierarchical text collection which supports hierarchical operations.
The transformation is useful to scale to a specific database unit for example.

dss = RBA::DeepShapeStore::new
layout = ... # a layout
cell = ... # the index of the initial cell
layer = ... # the index of the layer from where to take the shapes from
dbu = 0.1 # the target database unit
r = RBA::Texts::new(layout.begin_shapes(cell, layer),
 RBA::ICplxTrans::new(layout.dbu / dbu))

Python specific notes:
This method is the default initializer of the object

not_interacting
Signature: [const] Texts not_interacting (const Region other)

Description: Returns the texts from this text collection which are not inside or on the edge of
polygons from the given region

Returns: A new text collection containing the texts not inside or on the edge
of polygons from the region

polygons
Signature: [const] Region polygons (int e = 1)

Description: Converts the edge pairs to polygons

This method creates polygons from the texts. This is equivalent to calling extents.

pull_interacting
Signature: [const] Region pull_interacting (const Region other)

Description: Returns all polygons of "other" which are including texts of this text set

Returns: The region after the polygons have been selected (from other)

The "pull_..." method is similar to "select_..." but works the opposite way: it selects shapes from
the argument region rather than self. In a deep (hierarchical) context the output region will be
hierarchically aligned with self, so the "pull_..." method provide a way for re-hierarchization.

Merged semantics applies for the polygon region.

For more details visit
https://www.klayout.org

Page 1774 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.162. API reference - Class Texts

select_interacting
Signature: Texts select_interacting (const Region other)

Description: Selects the texts from this text collection which are inside or on the edge of polygons
from the given region

Returns: A text collection after the texts have been selected (self)

In contrast to interacting, this method will modify self.

select_not_interacting
Signature: Texts select_not_interacting (const Region other)

Description: Selects the texts from this text collection which are not inside or on the edge of
polygons from the given region

Returns: A text collection after the texts have been selected (self)

In contrast to interacting, this method will modify self.

size
Signature: [const] unsigned long size

Description: Returns the (flat) number of texts in the text collection

Use of this method is deprecated. Use count instead

The count is computed 'as if flat', i.e. texts inside a cell are multiplied by the number of times a cell is
instantiated.

Starting with version 0.27, the method is called 'count' for consistency with Region. 'size' is still
provided as an alias.

Python specific notes:
This method is also available as 'len(object)'

swap
Signature: void swap (Texts other)

Description: Swap the contents of this collection with the contents of another collection

This method is useful to avoid excessive memory allocation in some cases. For managed memory
languages such as Ruby, those cases will be rare.

(1) Signature: [const] string to_s

Description: Converts the text collection to a string

The length of the output is limited to 20 texts to avoid giant strings on large collections. For full
output use "to_s" with a maximum count parameter.

Python specific notes:
This method is also available as 'str(object)'

to_s

(2) Signature: [const] string to_s (unsigned long max_count)

Description: Converts the text collection to a string

This version allows specification of the maximum number of texts contained in the string.

Python specific notes:
This method is also available as 'str(object)'

transform
(1) Signature: Texts transform (const Trans t)

Description: Transform the text collection (modifies self)

t: The transformation to apply.

Returns: The transformed text collection.

For more details visit
https://www.klayout.org

Page 1775 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.162. API reference - Class Texts

Transforms the text collection with the given transformation. This version modifies the text collection
and returns a reference to self.

(2) Signature: Texts transform (const ICplxTrans t)

Description: Transform the text collection with a complex transformation (modifies self)

t: The transformation to apply.

Returns: The transformed text collection.

Transforms the text collection with the given transformation. This version modifies the text collection
and returns a reference to self.

transform_icplx
Signature: Texts transform_icplx (const ICplxTrans t)

Description: Transform the text collection with a complex transformation (modifies self)

t: The transformation to apply.

Returns: The transformed text collection.

Use of this method is deprecated. Use transform instead

Transforms the text collection with the given transformation. This version modifies the text collection
and returns a reference to self.

(1) Signature: [const] Texts transformed (const Trans t)

Description: Transform the edge pair collection

t: The transformation to apply.

Returns: The transformed texts.

Transforms the texts with the given transformation. Does not modify the edge pair collection but
returns the transformed texts.

transformed

(2) Signature: [const] Texts transformed (const ICplxTrans t)

Description: Transform the text collection with a complex transformation

t: The transformation to apply.

Returns: The transformed texts.

Transforms the text with the given complex transformation. Does not modify the text collection but
returns the transformed texts.

transformed_icplx
Signature: [const] Texts transformed_icplx (const ICplxTrans t)

Description: Transform the text collection with a complex transformation

t: The transformation to apply.

Returns: The transformed texts.

Use of this method is deprecated. Use transformed instead

Transforms the text with the given complex transformation. Does not modify the text collection but
returns the transformed texts.

with_match
Signature: [const] Texts with_match (string pattern, bool inverse)

Description: Filter the text by glob pattern

For more details visit
https://www.klayout.org

Page 1776 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.162. API reference - Class Texts

"pattern" is a glob-style pattern (e.g. "A*" will select all texts starting with a capital "A"). If "inverse" is
false, this method returns the texts matching the pattern. If "inverse" is true, this method returns the
texts not matching the pattern.

with_text
Signature: [const] Texts with_text (string text, bool inverse)

Description: Filter the text by text string

If "inverse" is false, this method returns the texts with the given string. If "inverse" is true, this method
returns the texts not having the given string.

For more details visit
https://www.klayout.org

Page 1777 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.163. API reference - Class ShapeCollection

4.163. API reference - Class ShapeCollection
Notation used in Ruby API documentation

Module: db

Description: A base class for the shape collections (\Region, \Edges, \EdgePairs and \Texts)

This class has been introduced in version 0.27.

Public constructors

new ShapeCollection ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script side.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 1778 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.163. API reference - Class ShapeCollection

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

For more details visit
https://www.klayout.org

Page 1779 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.163. API reference - Class ShapeCollection

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new ShapeCollection ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1780 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.164. API reference - Class RdbReference

4.164. API reference - Class RdbReference
Notation used in Ruby API documentation

Module: rdb

Description: A cell reference inside the report database

This class describes a cell reference. Such reference object can be attached to cells to describe instantiations of them in parent cells. Not
necessarily all instantiations of a cell in the layout database are represented by references and in some cases there might even be no
references at all. The references are merely a hint how a marker must be displayed in the context of any other, potentially parent, cell in the
layout database.

Public constructors

new RdbReference ptr new (const DCplxTrans trans,
unsigned long parent_cell_id)

Creates a reference with a given
transformation and parent cell ID

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
RdbReference
other)

Assigns another object to self

[const] const ReportDatabase
ptr

database Gets the database object that category is
associated with

[const] new RdbReference
ptr

dup Creates a copy of self

[const] unsigned long parent_cell_id Gets parent cell ID for this reference

void parent_cell_id= (unsigned
long id)

Sets the parent cell ID for this reference

[const] DCplxTrans trans Gets the transformation for this reference

void trans= (const
DCplxTrans
trans)

Sets the transformation for this reference

For more details visit
https://www.klayout.org

Page 1781 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.164. API reference - Class RdbReference

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method

For more details visit
https://www.klayout.org

Page 1782 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.164. API reference - Class RdbReference

will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const RdbReference other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

database
Signature: [const] const ReportDatabase ptr database

Description: Gets the database object that category is associated with

This method has been introduced in version 0.23.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new RdbReference ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new RdbReference ptr new (const DCplxTrans trans, unsigned long
parent_cell_id)

Description: Creates a reference with a given transformation and parent cell ID

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1783 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.164. API reference - Class RdbReference

parent_cell_id
Signature: [const] unsigned long parent_cell_id

Description: Gets parent cell ID for this reference

Returns: The parent cell ID

Python specific notes:
The object exposes a readable attribute 'parent_cell_id'. This is the getter.

parent_cell_id=
Signature: void parent_cell_id= (unsigned long id)

Description: Sets the parent cell ID for this reference

Python specific notes:
The object exposes a writable attribute 'parent_cell_id'. This is the setter.

trans
Signature: [const] DCplxTrans trans

Description: Gets the transformation for this reference

Returns: The transformation

The transformation describes the transformation of the child cell into the parent cell. In that sense that
is the usual transformation of a cell reference.

Python specific notes:
The object exposes a readable attribute 'trans'. This is the getter.

trans=
Signature: void trans= (const DCplxTrans trans)

Description: Sets the transformation for this reference

Python specific notes:
The object exposes a writable attribute 'trans'. This is the setter.

For more details visit
https://www.klayout.org

Page 1784 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.165. API reference - Class RdbCell

4.165. API reference - Class RdbCell
Notation used in Ruby API documentation

Module: rdb

Description: A cell inside the report database

This class represents a cell in the report database. There is not necessarily a 1:1 correspondence of RDB cells and layout database cells.
Cells have an ID, a name, optionally a variant name and a set of references which describe at least one example instantiation in some
parent cell. The references do not necessarily map to references or cover all references in the layout database.

Public constructors

new RdbCell ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void add_reference (const
RdbReference
ref)

Adds a reference to the references of this cell

void clear_references Removes all references from this cell

[const] const
ReportDatabase ptr

database Gets the database object that category is
associated with

[const,iter] RdbItem each_item Iterates over all items inside the database which
are associated with this cell

[const,iter] RdbReference each_reference Iterates over all references

[const] string name Gets the cell name

[const] unsigned long num_items Gets the number of items for this cell

[const] unsigned long num_items_visited Gets the number of visited items for this cell

[const] string qname Gets the cell's qualified name

[const] unsigned long rdb_id Gets the cell ID

[const] string variant Gets the cell variant name

For more details visit
https://www.klayout.org

Page 1785 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.165. API reference - Class RdbCell

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method

For more details visit
https://www.klayout.org

Page 1786 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.165. API reference - Class RdbCell

will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

add_reference
Signature: void add_reference (const RdbReference ref)

Description: Adds a reference to the references of this cell

ref: The reference to add.

clear_references
Signature: void clear_references

Description: Removes all references from this cell

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

database
Signature: [const] const ReportDatabase ptr database

Description: Gets the database object that category is associated with

This method has been introduced in version 0.23.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

each_item
Signature: [const,iter] RdbItem each_item

Description: Iterates over all items inside the database which are associated with this cell

This method has been introduced in version 0.23.

each_reference
Signature: [const,iter] RdbReference each_reference

Description: Iterates over all references

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

For more details visit
https://www.klayout.org

Page 1787 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.165. API reference - Class RdbCell

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

name
Signature: [const] string name

Description: Gets the cell name

Returns: The cell name

The cell name is an string that identifies the category in the database. Additionally, a cell may carry
a variant identifier which is a string that uniquely identifies a cell in the context of it's variants. The
"qualified name" contains both the cell name and the variant name. Cell names are also used to
identify report database cell's with layout cells.

new
Signature: [static] new RdbCell ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

num_items
Signature: [const] unsigned long num_items

Description: Gets the number of items for this cell

num_items_visited
Signature: [const] unsigned long num_items_visited

Description: Gets the number of visited items for this cell

qname
Signature: [const] string qname

Description: Gets the cell's qualified name

Returns: The qualified name

The qualified name is a combination of the cell name and optionally the variant name. It is used to
identify the cell by name in a unique way.

rdb_id
Signature: [const] unsigned long rdb_id

Description: Gets the cell ID

Returns: The cell ID

The cell ID is an integer that uniquely identifies the cell. It is used for referring to a cell in RdbItem
for example.

variant
Signature: [const] string variant

Description: Gets the cell variant name

Returns: The cell variant name

A variant name additionally identifies the cell when multiple cells with the same name are present.
A variant name is either assigned automatically or set when creating a cell.

For more details visit
https://www.klayout.org

Page 1788 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.166. API reference - Class RdbCategory

4.166. API reference - Class RdbCategory
Notation used in Ruby API documentation

Module: rdb

Description: A category inside the report database

Every item in the report database is assigned to a category. A category is a DRC rule check for example. Categories can be organized
hierarchically, i.e. a category may have sub-categories. Item counts are summarized for categories and items belonging to sub-categories
of one category can be browsed together for example. As a general rule, categories not being leaf categories (having child categories) may
not have items.

Public constructors

new RdbCategory ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] const
ReportDatabase
ptr

database Gets the database object that category is
associated with

[const] string description Gets the category description

void description= (string description) Sets the category description

[const,iter] RdbItem each_item Iterates over all items inside the database
which are associated with this category

[iter] RdbCategory each_sub_category Iterates over all sub-categories

[const] string name Gets the category name

[const] unsigned long num_items Gets the number of items in this category

[const] unsigned long num_items_visited Gets the number of visited items in this
category

RdbCategory ptr parent Gets the parent category of this category

[const] string path Gets the category path

For more details visit
https://www.klayout.org

Page 1789 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.166. API reference - Class RdbCategory

[const] unsigned long rdb_id Gets the category ID

void scan_collection (RdbCell ptr cell,
const CplxTrans
trans,
const Region
region,
bool flat = false)

Turns the given region into a hierarchical or
flat report database

void scan_collection (RdbCell ptr cell,
const CplxTrans
trans,
const Edges
edges,
bool flat = false)

Turns the given edge collection into a
hierarchical or flat report database

void scan_collection (RdbCell ptr cell,
const CplxTrans
trans,
const EdgePairs
edge_pairs,
bool flat = false)

Turns the given edge pair collection into a
hierarchical or flat report database

void scan_layer (const Layout
layout,
unsigned int layer)

Scans a layer from a layout into this category

void scan_layer (const Layout
layout,
unsigned int layer,
const Cell ptr cell)

Scans a layer from a layout into this category,
starting with a given cell

void scan_layer (const Layout
layout,
unsigned int layer,
const Cell ptr cell,
int levels)

Scans a layer from a layout into this category,
starting with a given cell and a depth
specification

void scan_shapes (const
RecursiveShapeIterator
iter,
bool flat = false)

Scans the polygon or edge shapes from the
shape iterator into the category

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

For more details visit
https://www.klayout.org

Page 1790 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.166. API reference - Class RdbCategory

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

For more details visit
https://www.klayout.org

Page 1791 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.166. API reference - Class RdbCategory

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

database
Signature: [const] const ReportDatabase ptr database

Description: Gets the database object that category is associated with

This method has been introduced in version 0.23.

description
Signature: [const] string description

Description: Gets the category description

Returns: The description string

Python specific notes:
The object exposes a readable attribute 'description'. This is the getter.

description=
Signature: void description= (string description)

Description: Sets the category description

description: The description string

Python specific notes:
The object exposes a writable attribute 'description'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

each_item
Signature: [const,iter] RdbItem each_item

Description: Iterates over all items inside the database which are associated with this category

This method has been introduced in version 0.23.

each_sub_category
Signature: [iter] RdbCategory each_sub_category

Description: Iterates over all sub-categories

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

For more details visit
https://www.klayout.org

Page 1792 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.166. API reference - Class RdbCategory

name
Signature: [const] string name

Description: Gets the category name

Returns: The category name

The category name is an string that identifies the category in the context of a parent category or
inside the database when it is a top level category. The name is not the path name which is a path to
a child category and incorporates all names of parent categories.

new
Signature: [static] new RdbCategory ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

num_items
Signature: [const] unsigned long num_items

Description: Gets the number of items in this category

The number of items includes the items in sub-categories of this category.

num_items_visited
Signature: [const] unsigned long num_items_visited

Description: Gets the number of visited items in this category

The number of items includes the items in sub-categories of this category.

parent
Signature: RdbCategory ptr parent

Description: Gets the parent category of this category

Returns: The parent category or nil if this category is a top-level category

path
Signature: [const] string path

Description: Gets the category path

Returns: The path for this category

The category path is the category name for top level categories. For child categories, the path
contains the names of all parent categories separated by a dot.

rdb_id
Signature: [const] unsigned long rdb_id

Description: Gets the category ID

Returns: The category ID

The category ID is an integer that uniquely identifies the category. It is used for referring to a
category in RdbItem for example.

scan_collection
(1) Signature: void scan_collection (RdbCell ptr cell, const CplxTrans trans, const Region region,
bool flat = false)

Description: Turns the given region into a hierarchical or flat report database

The exact behavior depends on the nature of the region. If the region is a hierarchical (original or
deep) region and the 'flat' argument is false, this method will produce a hierarchical report database
in the given category. The 'cell_id' parameter is ignored in this case. Sample references will be
produced to supply minimal instantiation information.

If the region is a flat one or the 'flat' argument is true, the region's polygons will be produced as
report database items in this category and in the cell given by 'cell_id'.

The transformation argument needs to supply the dbu-to-micron transformation.

For more details visit
https://www.klayout.org

Page 1793 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.166. API reference - Class RdbCategory

This method has been introduced in version 0.26.

(2) Signature: void scan_collection (RdbCell ptr cell, const CplxTrans trans, const Edges edges,
bool flat = false)

Description: Turns the given edge collection into a hierarchical or flat report database

This a another flavour of scan_collection accepting an edge collection.

This method has been introduced in version 0.26.

(3) Signature: void scan_collection (RdbCell ptr cell, const CplxTrans trans, const EdgePairs
edge_pairs, bool flat = false)

Description: Turns the given edge pair collection into a hierarchical or flat report database

This a another flavour of scan_collection accepting an edge pair collection.

This method has been introduced in version 0.26.

(1) Signature: void scan_layer (const Layout layout, unsigned int layer)

Description: Scans a layer from a layout into this category

Creates RDB items for each polygon or edge shape read from the each cell in the layout on the
given layer and puts them into this category. New cells will be generated for every cell encountered
in the layout. Other settings like database unit, description, top cell etc. are not made in the RDB.

This method has been introduced in version 0.23.

(2) Signature: void scan_layer (const Layout layout, unsigned int layer, const Cell ptr cell)

Description: Scans a layer from a layout into this category, starting with a given cell

Creates RDB items for each polygon or edge shape read from the cell and it's children in the layout
on the given layer and puts them into this category. New cells will be generated when required.
Other settings like database unit, description, top cell etc. are not made in the RDB.

This method has been introduced in version 0.23.

scan_layer

(3) Signature: void scan_layer (const Layout layout, unsigned int layer, const Cell ptr cell, int
levels)

Description: Scans a layer from a layout into this category, starting with a given cell and a depth
specification

Creates RDB items for each polygon or edge shape read from the cell and it's children in the layout
on the given layer and puts them into this category. New cells will be generated when required.
"levels" is the number of hierarchy levels to take the child cells from. 0 means to use only "cell" and
don't descend, -1 means "all levels". Other settings like database unit, description, top cell etc. are
not made in the RDB.

This method has been introduced in version 0.23.

scan_shapes
Signature: void scan_shapes (const RecursiveShapeIterator iter, bool flat = false)

Description: Scans the polygon or edge shapes from the shape iterator into the category

Creates RDB items for each polygon or edge shape read from the iterator and puts them
into this category. A similar, but lower-level method is ReportDatabase#create_items with a
RecursiveShapeIterator argument. In contrast to ReportDatabase#create_items, 'scan_shapes'
can also produce hierarchical databases if the flat argument is false. In this case, the hierarchy the
recursive shape iterator traverses is copied into the report database using sample references.

This method has been introduced in version 0.23. The flat mode argument has been added in
version 0.26.

For more details visit
https://www.klayout.org

Page 1794 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.167. API reference - Class RdbItemValue

4.167. API reference - Class RdbItemValue
Notation used in Ruby API documentation

Module: rdb

Description: A value object inside the report database

Value objects are attached to items to provide markers. An arbitrary number of such value objects can be attached to an item. Currently, a
value can represent a box, a polygon or an edge. Geometrical objects are represented in micron units and are therefore "D" type objects
(DPolygon, DEdge and DBox).

Public constructors

new RdbItemValue ptr new (double f) Creates a value representing a numeric value

new RdbItemValue ptr new (string s) Creates a value representing a string

new RdbItemValue ptr new (const DPolygon p) Creates a value representing a DPolygon
object

new RdbItemValue ptr new (const DPath p) Creates a value representing a DPath object

new RdbItemValue ptr new (const DText t) Creates a value representing a DText object

new RdbItemValue ptr new (const DEdge e) Creates a value representing a DEdge object

new RdbItemValue ptr new (const DEdgePair ee) Creates a value representing a DEdgePair
object

new RdbItemValue ptr new (const DBox b) Creates a value representing a DBox object

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
RdbItemValue
other)

Assigns another object to self

[const] DBox box Gets the box if the value represents one.

[const] new RdbItemValue
ptr

dup Creates a copy of self

For more details visit
https://www.klayout.org

Page 1795 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.167. API reference - Class RdbItemValue

[const] DEdge edge Gets the edge if the value represents one.

[const] DEdgePair edge_pair Gets the edge pair if the value represents one.

[const] double float Gets the numeric value.

[const] bool is_box? Returns true if the value object represents a box

[const] bool is_edge? Returns true if the value object represents an edge

[const] bool is_edge_pair? Returns true if the value object represents an edge
pair

[const] bool is_float? Returns true if the value object represents a numeric
value

[const] bool is_path? Returns true if the value object represents a path

[const] bool is_polygon? Returns true if the value object represents a polygon

[const] bool is_string? Returns true if the object represents a string value

[const] bool is_text? Returns true if the value object represents a text

[const] DPath path Gets the path if the value represents one.

[const] DPolygon polygon Gets the polygon if the value represents one.

[const] string string Gets the string representation of the value.

[const] unsigned long tag_id Gets the tag ID if the value is a tagged value or 0 if
not

void tag_id= (unsigned
long
id)

Sets the tag ID to make the value a tagged value or
0 to reset it

[const] DText text Gets the text if the value represents one.

[const] string to_s Converts a value to a string

Public static methods and constants

RdbItemValue ptr from_s (string s) Creates a value object from a string

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

For more details visit
https://www.klayout.org

Page 1796 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.167. API reference - Class RdbItemValue

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const RdbItemValue other)

Description: Assigns another object to self

box
Signature: [const] DBox box

Description: Gets the box if the value represents one.

For more details visit
https://www.klayout.org

Page 1797 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.167. API reference - Class RdbItemValue

Returns: The DBox object or nil

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new RdbItemValue ptr dup

Description: Creates a copy of self

edge
Signature: [const] DEdge edge

Description: Gets the edge if the value represents one.

Returns: The DEdge object or nil

edge_pair
Signature: [const] DEdgePair edge_pair

Description: Gets the edge pair if the value represents one.

Returns: The DEdgePair object or nil

float
Signature: [const] double float

Description: Gets the numeric value.

Returns: The numeric value or 0

This method has been introduced in version 0.24.

from_s
Signature: [static] RdbItemValue ptr from_s (string s)

Description: Creates a value object from a string

The string format is the same than obtained by the to_s method.

is_box?
Signature: [const] bool is_box?

For more details visit
https://www.klayout.org

Page 1798 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.167. API reference - Class RdbItemValue

Description: Returns true if the value object represents a box

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_edge?
Signature: [const] bool is_edge?

Description: Returns true if the value object represents an edge

is_edge_pair?
Signature: [const] bool is_edge_pair?

Description: Returns true if the value object represents an edge pair

is_float?
Signature: [const] bool is_float?

Description: Returns true if the value object represents a numeric value

This method has been introduced in version 0.24.

is_path?
Signature: [const] bool is_path?

Description: Returns true if the value object represents a path

This method has been introduced in version 0.22.

is_polygon?
Signature: [const] bool is_polygon?

Description: Returns true if the value object represents a polygon

is_string?
Signature: [const] bool is_string?

Description: Returns true if the object represents a string value

is_text?
Signature: [const] bool is_text?

Description: Returns true if the value object represents a text

This method has been introduced in version 0.22.

(1) Signature: [static] new RdbItemValue ptr new (double f)

Description: Creates a value representing a numeric value

This variant has been introduced in version 0.24

Python specific notes:
This method is the default initializer of the object

(2) Signature: [static] new RdbItemValue ptr new (string s)

Description: Creates a value representing a string

Python specific notes:
This method is the default initializer of the object

new

(3) Signature: [static] new RdbItemValue ptr new (const DPolygon p)

For more details visit
https://www.klayout.org

Page 1799 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.167. API reference - Class RdbItemValue

Description: Creates a value representing a DPolygon object

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new RdbItemValue ptr new (const DPath p)

Description: Creates a value representing a DPath object

This method has been introduced in version 0.22.

Python specific notes:
This method is the default initializer of the object

(5) Signature: [static] new RdbItemValue ptr new (const DText t)

Description: Creates a value representing a DText object

This method has been introduced in version 0.22.

Python specific notes:
This method is the default initializer of the object

(6) Signature: [static] new RdbItemValue ptr new (const DEdge e)

Description: Creates a value representing a DEdge object

Python specific notes:
This method is the default initializer of the object

(7) Signature: [static] new RdbItemValue ptr new (const DEdgePair ee)

Description: Creates a value representing a DEdgePair object

Python specific notes:
This method is the default initializer of the object

(8) Signature: [static] new RdbItemValue ptr new (const DBox b)

Description: Creates a value representing a DBox object

Python specific notes:
This method is the default initializer of the object

path
Signature: [const] DPath path

Description: Gets the path if the value represents one.

Returns: The DPath object

This method has been introduced in version 0.22.

polygon
Signature: [const] DPolygon polygon

Description: Gets the polygon if the value represents one.

Returns: The DPolygon object

string
Signature: [const] string string

Description: Gets the string representation of the value.

For more details visit
https://www.klayout.org

Page 1800 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.167. API reference - Class RdbItemValue

Returns: The stringThis method will always deliver a valid string, even if
is_string? is false. The objects stored in the value are converted to a
string accordingly.

tag_id
Signature: [const] unsigned long tag_id

Description: Gets the tag ID if the value is a tagged value or 0 if not

Returns: The tag ID

See tag_id= for details about tagged values.

Tagged values have been added in version 0.24.

Python specific notes:
The object exposes a readable attribute 'tag_id'. This is the getter.

tag_id=
Signature: void tag_id= (unsigned long id)

Description: Sets the tag ID to make the value a tagged value or 0 to reset it

id: The tag ID

To get a tag ID, use RdbDatabase#user_tag_id (preferred) or RdbDatabase#tag_id (for internal
use). Tagged values have been added in version 0.24. Tags can be given to identify a value, for
example to attache measurement values to an item. To attach a value for a specific measurement, a
tagged value can be used where the tag ID describes the measurement made. In that way, multiple
values for different measurements can be attached to an item.

This variant has been introduced in version 0.24

Python specific notes:
The object exposes a writable attribute 'tag_id'. This is the setter.

text
Signature: [const] DText text

Description: Gets the text if the value represents one.

Returns: The DText object

This method has been introduced in version 0.22.

to_s
Signature: [const] string to_s

Description: Converts a value to a string

Returns: The string

The string can be used by the string constructor to create another object from it.

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 1801 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.168. API reference - Class RdbItem

4.168. API reference - Class RdbItem
Notation used in Ruby API documentation

Module: rdb

Description: An item inside the report database

An item is the basic information entity in the RDB. It is associated with a cell and a category. It can be assigned values which encapsulate
other objects such as strings and geometrical objects. In addition, items can be assigned an image (i.e. a screenshot image) and tags
which are basically boolean flags that can be defined freely.

Public constructors

new RdbItem ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void add_tag (unsigned long
tag_id)

Adds a tag with the given id to the item

void add_value (const
RdbItemValue
value)

Adds a value object to the values of this item

void add_value (const DPolygon
value)

Adds a polygon object to the values of this
item

void add_value (const DBox
value)

Adds a box object to the values of this item

void add_value (const DEdge
value)

Adds an edge object to the values of this item

void add_value (const
DEdgePair
value)

Adds an edge pair object to the values of this
item

void add_value (string value) Adds a string object to the values of this item

void add_value (double value) Adds a numeric value to the values of this
item

For more details visit
https://www.klayout.org

Page 1802 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.168. API reference - Class RdbItem

void add_value (const Shape
shape,
const CplxTrans
trans)

Adds a geometrical value object from a shape

void assign (const RdbItem
other)

Assigns another object to self

[const] unsigned long category_id Gets the category ID

[const] unsigned long cell_id Gets the cell ID

void clear_values Removes all values from this item

[const] const
ReportDatabase ptr

database Gets the database object that item is
associated with

[const] new RdbItem ptr dup Creates a copy of self

[const,iter] RdbItemValue each_value Iterates over all values

[const] bool has_tag? (unsigned long
tag_id)

Returns a value indicating whether the item
has a tag with the given ID

[const] string image_str Gets the image associated with this item as a
string

void image_str= (string image) Sets the image from a string

[const] bool is_visited? Gets a value indicating whether the item was
already visited

void remove_tag (unsigned long
tag_id)

Remove the tag with the given id from the item

[const] string tags_str Returns a string listing all tags of this item

void tags_str= (string tags) Sets the tags from a string

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

For more details visit
https://www.klayout.org

Page 1803 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.168. API reference - Class RdbItem

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

add_tag
Signature: void add_tag (unsigned long tag_id)

Description: Adds a tag with the given id to the item

Each tag can be added once to the item. The tags of an item thus form a set. If a tag with that ID
already exists, this method does nothing.

(1) Signature: void add_value (const RdbItemValue value)

Description: Adds a value object to the values of this item

value: The value to add.

add_value

(2) Signature: void add_value (const DPolygon value)

For more details visit
https://www.klayout.org

Page 1804 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.168. API reference - Class RdbItem

Description: Adds a polygon object to the values of this item

value: The polygon to add.

This method has been introduced in version 0.25 as a convenience method.

(3) Signature: void add_value (const DBox value)

Description: Adds a box object to the values of this item

value: The box to add.

This method has been introduced in version 0.25 as a convenience method.

(4) Signature: void add_value (const DEdge value)

Description: Adds an edge object to the values of this item

value: The edge to add.

This method has been introduced in version 0.25 as a convenience method.

(5) Signature: void add_value (const DEdgePair value)

Description: Adds an edge pair object to the values of this item

value: The edge pair to add.

This method has been introduced in version 0.25 as a convenience method.

(6) Signature: void add_value (string value)

Description: Adds a string object to the values of this item

value: The string to add.

This method has been introduced in version 0.25 as a convenience method.

(7) Signature: void add_value (double value)

Description: Adds a numeric value to the values of this item

value: The value to add.

This method has been introduced in version 0.25 as a convenience method.

(8) Signature: void add_value (const Shape shape, const CplxTrans trans)

Description: Adds a geometrical value object from a shape

value: The shape object from which to take the geometrical object.

trans: The transformation to apply.

The transformation can be used to convert database units to micron units.

This method has been introduced in version 0.25.3.

assign
Signature: void assign (const RdbItem other)

Description: Assigns another object to self

category_id
Signature: [const] unsigned long category_id

Description: Gets the category ID

Returns: The category ID

For more details visit
https://www.klayout.org

Page 1805 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.168. API reference - Class RdbItem

Returns the ID of the category that this item is associated with.

cell_id
Signature: [const] unsigned long cell_id

Description: Gets the cell ID

Returns: The cell ID

Returns the ID of the cell that this item is associated with.

clear_values
Signature: void clear_values

Description: Removes all values from this item

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

database
Signature: [const] const ReportDatabase ptr database

Description: Gets the database object that item is associated with

This method has been introduced in version 0.23.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new RdbItem ptr dup

Description: Creates a copy of self

each_value
Signature: [const,iter] RdbItemValue each_value

Description: Iterates over all values

has_tag?
Signature: [const] bool has_tag? (unsigned long tag_id)

Description: Returns a value indicating whether the item has a tag with the given ID

Returns: True, if the item has a tag with the given ID

For more details visit
https://www.klayout.org

Page 1806 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.168. API reference - Class RdbItem

image_str
Signature: [const] string image_str

Description: Gets the image associated with this item as a string

Returns: A base64-encoded image file (usually in PNG format)

Python specific notes:
The object exposes a readable attribute 'image_str'. This is the getter.

image_str=
Signature: void image_str= (string image)

Description: Sets the image from a string

image: A base64-encoded image file (preferably in PNG format)

Python specific notes:
The object exposes a writable attribute 'image_str'. This is the setter.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

is_visited?
Signature: [const] bool is_visited?

Description: Gets a value indicating whether the item was already visited

Returns: True, if the item has been visited already

new
Signature: [static] new RdbItem ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

remove_tag
Signature: void remove_tag (unsigned long tag_id)

Description: Remove the tag with the given id from the item

If a tag with that ID does not exists on this item, this method does nothing.

tags_str
Signature: [const] string tags_str

Description: Returns a string listing all tags of this item

Returns: A comma-separated list of tags

Python specific notes:
The object exposes a readable attribute 'tags_str'. This is the getter.

tags_str=
Signature: void tags_str= (string tags)

Description: Sets the tags from a string

tags: A comma-separated list of tags

Python specific notes:
The object exposes a writable attribute 'tags_str'. This is the setter.

For more details visit
https://www.klayout.org

Page 1807 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.169. API reference - Class ReportDatabase

4.169. API reference - Class ReportDatabase
Notation used in Ruby API documentation

Module: rdb

Description: The report database object

A report database is organized around a set of items which are associated with cells and categories. Categories can be organized
hierarchically by created sub-categories of other categories. Cells are associated with layout database cells and can come with a example
instantiation if the layout database does not allow a unique association of the cells. Items in the database can have a variety of attributes:
values, tags and an image object. Values are geometrical objects for example. Tags are a set of boolean flags and an image can be
attached to an item to provide a screenshot for visualization for example. This is the main report database object. The basic use case of
this object is to create one inside a LayoutView and populate it with items, cell and categories or load it from a file. Another use case is to
create a standalone ReportDatabase object and use the methods provided to perform queries or to populate it.

Public constructors

new ReportDatabase ptr new (string name) Creates a report database

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the
script side.

void _unmanage Marks the object as no longer owned by
the script side.

[const] const
RdbCategory ptr

category_by_id (unsigned long id) Gets a category by ID

[const] const
RdbCategory ptr

category_by_path (string path) Gets a category by path

[const] const RdbCell ptr cell_by_id (unsigned long id) Returns the cell for a given ID

[const] const RdbCell ptr cell_by_qname (string qname) Returns the cell for a given qualified
name

RdbCategory ptr create_category (string name) Creates a new top level category

RdbCategory ptr create_category (RdbCategory ptr parent,
string name)

Creates a new sub-category

RdbCell ptr create_cell (string name) Creates a new cell

RdbCell ptr create_cell (string name,
string variant)

Creates a new cell, potentially as a
variant for a cell with the same name

For more details visit
https://www.klayout.org

Page 1808 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.169. API reference - Class ReportDatabase

RdbItem ptr create_item (unsigned long cell_id,
unsigned long
category_id)

Creates a new item for the given cell/
category combination

RdbItem ptr create_item (RdbCell ptr cell,
RdbCategory ptr
category)

Creates a new item for the given cell/
category combination

void create_item (unsigned long cell_id,
unsigned long
category_id,
const CplxTrans trans,
const Shape shape)

Creates a new item from a single shape

void create_items (unsigned long cell_id,
unsigned long
category_id,
const
RecursiveShapeIterator
iter)

Creates new items from a shape iterator

void create_items (unsigned long cell_id,
unsigned long
category_id,
const CplxTrans trans,
const Shapes shapes)

Creates new items from a shape
container

void create_items (unsigned long cell_id,
unsigned long
category_id,
const CplxTrans trans,
const Region region)

Creates new polygon items for the given
cell/category combination

void create_items (unsigned long cell_id,
unsigned long
category_id,
const CplxTrans trans,
const Edges edges)

Creates new edge items for the given
cell/category combination

void create_items (unsigned long cell_id,
unsigned long
category_id,
const CplxTrans trans,
const EdgePairs
edge_pairs)

Creates new edge pair items for the
given cell/category combination

void create_items (unsigned long cell_id,
unsigned long
category_id,
const CplxTrans trans,
Polygon[] array)

Creates new polygon items for the given
cell/category combination

void create_items (unsigned long cell_id,
unsigned long
category_id,
const CplxTrans trans,
Edge[] array)

Creates new edge items for the given
cell/category combination

void create_items (unsigned long cell_id, Creates new edge pair items for the
given cell/category combination

For more details visit
https://www.klayout.org

Page 1809 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.169. API reference - Class ReportDatabase

unsigned long
category_id,
const CplxTrans trans,
EdgePair[] array)

[const] string description Gets the databases description

void description= (string desc) Sets the databases description

[const,iter] RdbCategory each_category Iterates over all top-level categories

[const,iter] RdbCell each_cell Iterates over all cells

[const,iter] RdbItem each_item Iterates over all items inside the
database

[const,iter] RdbItem each_item_per_category(unsigned long
category_id)

Iterates over all items inside the
database which are associated with the
given category

[const,iter] RdbItem each_item_per_cell (unsigned long cell_id) Iterates over all items inside the
database which are associated with the
given cell

[const,iter] RdbItem each_item_per_cell_and_category(unsigned long cell_id,
unsigned long
category_id)

Iterates over all items inside the
database which are associated with the
given cell and category

[const] string filename Gets the file name and path where the
report database is stored

[const] string generator Gets the databases generator

void generator= (string generator) Sets the generator string

[const] bool is_modified? Returns a value indicating whether the
database has been modified

void load (string filename) Loads the database from the given file

[const] string name Gets the database name

[const] unsigned long num_items Returns the number of items inside the
database

[const] unsigned long num_items (unsigned long cell_id,
unsigned long
category_id)

Returns the number of items inside
the database for a given cell/category
combination

[const] unsigned long num_items_visited Returns the number of items already
visited inside the database

[const] unsigned long num_items_visited (unsigned long cell_id,
unsigned long
category_id)

Returns the number of items visited
already for a given cell/category
combination

[const] string original_file Gets the original file name and path

void original_file= (string path) Sets the original file name and path

For more details visit
https://www.klayout.org

Page 1810 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.169. API reference - Class ReportDatabase

void reset_modified Reset the modified flag

void save (string filename) Saves the database to the given file

void set_item_visited (const RdbItem ptr item,
bool visited)

Modifies the visited state of an item

void set_tag_description (unsigned long tag_id,
string description)

Sets the tag description for the given tag
ID

[const] string tag_description (unsigned long tag_id) Gets the tag description for the given tag
ID

[const] unsigned long tag_id (string name) Gets the tag ID for a given tag name

[const] string tag_name (unsigned long tag_id) Gets the tag name for the given tag ID

[const] string top_cell_name Gets the top cell name

void top_cell_name= (string cell_name) Sets the top cell name string

[const] unsigned long user_tag_id (string name) Gets the tag ID for a given user tag
name

unsigned long[] variants (string name) Gets the variants for a given cell name

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

For more details visit
https://www.klayout.org

Page 1811 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.169. API reference - Class ReportDatabase

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

category_by_id
Signature: [const] const RdbCategory ptr category_by_id (unsigned long id)

Description: Gets a category by ID

Returns: The (const) category object or nil if the ID is not valid

category_by_path
Signature: [const] const RdbCategory ptr category_by_path (string path)

Description: Gets a category by path

path: The full path to the category starting from the top level
(subcategories separated by dots)

Returns: The (const) category object or nil if the name is not valid

cell_by_id
Signature: [const] const RdbCell ptr cell_by_id (unsigned long id)

Description: Returns the cell for a given ID

id: The ID of the cell

Returns: The cell object or nil if no cell with that ID exists

cell_by_qname
Signature: [const] const RdbCell ptr cell_by_qname (string qname)

Description: Returns the cell for a given qualified name

For more details visit
https://www.klayout.org

Page 1812 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.169. API reference - Class ReportDatabase

qname: The qualified name of the cell (name plus variant name
optionally)

Returns: The cell object or nil if no such cell exists

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

(1) Signature: RdbCategory ptr create_category (string name)

Description: Creates a new top level category

name: The name of the category

create_category

(2) Signature: RdbCategory ptr create_category (RdbCategory ptr parent, string name)

Description: Creates a new sub-category

parent: The category under which the category should be created

name: The name of the category

(1) Signature: RdbCell ptr create_cell (string name)

Description: Creates a new cell

name: The name of the cell

create_cell

(2) Signature: RdbCell ptr create_cell (string name, string variant)

Description: Creates a new cell, potentially as a variant for a cell with the same name

name: The name of the cell

variant: The variant name of the cell

(1) Signature: RdbItem ptr create_item (unsigned long cell_id, unsigned long category_id)

Description: Creates a new item for the given cell/category combination

cell_id: The ID of the cell to which the item is associated

category_id: The ID of the category to which the item is associated

A more convenient method that takes cell and category objects instead of ID's is the other version
of create_item.

(2) Signature: RdbItem ptr create_item (RdbCell ptr cell, RdbCategory ptr category)

Description: Creates a new item for the given cell/category combination

cell: The cell to which the item is associated

category: The category to which the item is associated

This convenience method has been added in version 0.25.

create_item

For more details visit
https://www.klayout.org

Page 1813 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.169. API reference - Class ReportDatabase

(3) Signature: void create_item (unsigned long cell_id, unsigned long category_id, const
CplxTrans trans, const Shape shape)

Description: Creates a new item from a single shape

cell_id: The ID of the cell to which the item is associated

category_id: The ID of the category to which the item is associated

shape: The shape to take the geometrical object from

trans: The transformation to apply

This method produces an item from the given shape. It accepts various kind of shapes, such as
texts, polygons, boxes and paths and converts them to a corresponding item. The transformation
argument can be used to supply the transformation that applies the database unit for example.

This method has been introduced in version 0.25.3.

(1) Signature: void create_items (unsigned long cell_id, unsigned long category_id, const
RecursiveShapeIterator iter)

Description: Creates new items from a shape iterator

cell_id: The ID of the cell to which the item is associated

category_id: The ID of the category to which the item is associated

iter: The iterator (a RecursiveShapeIterator object) from which to
take the items

This method takes the shapes from the given iterator and produces items from them. It accepts
various kind of shapes, such as texts, polygons, boxes and paths and converts them to
corresponding items. This method will produce a flat version of the shapes iterated by the shape
iterator. A similar method, which is intended for production of polygon or edge error layers and
also provides hierarchical database construction is RdbCategory#scan_shapes.

This method has been introduced in version 0.25.3.

(2) Signature: void create_items (unsigned long cell_id, unsigned long category_id, const
CplxTrans trans, const Shapes shapes)

Description: Creates new items from a shape container

cell_id: The ID of the cell to which the item is associated

category_id: The ID of the category to which the item is associated

shapes: The shape container from which to take the items

trans: The transformation to apply

This method takes the shapes from the given container and produces items from them. It
accepts various kind of shapes, such as texts, polygons, boxes and paths and converts them to
corresponding items. The transformation argument can be used to supply the transformation that
applies the database unit for example.

This method has been introduced in version 0.25.3.

create_items

(3) Signature: void create_items (unsigned long cell_id, unsigned long category_id, const
CplxTrans trans, const Region region)

Description: Creates new polygon items for the given cell/category combination

cell_id: The ID of the cell to which the item is associated

category_id: The ID of the category to which the item is associated

trans: The transformation to apply

region: The region (a Region object) containing the polygons for
which to create items

For more details visit
https://www.klayout.org

Page 1814 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.169. API reference - Class ReportDatabase

For each polygon in the region a single item will be created. The value of the item will be this
polygon. A transformation can be supplied which can be used for example to convert the object's
dimensions to micron units by scaling by the database unit.

This method will also produce a flat version of the shapes inside the region.
RdbCategory#scan_collection is a similar method which also supports construction of hierarchical
databases from deep regions.

This method has been introduced in version 0.23.

(4) Signature: void create_items (unsigned long cell_id, unsigned long category_id, const
CplxTrans trans, const Edges edges)

Description: Creates new edge items for the given cell/category combination

cell_id: The ID of the cell to which the item is associated

category_id: The ID of the category to which the item is associated

trans: The transformation to apply

edges: The list of edges (an Edges object) for which the items are
created

For each edge a single item will be created. The value of the item will be this edge. A
transformation can be supplied which can be used for example to convert the object's dimensions
to micron units by scaling by the database unit.

This method will also produce a flat version of the edges inside the edge collection.
RdbCategory#scan_collection is a similar method which also supports construction of hierarchical
databases from deep edge collections.

This method has been introduced in version 0.23.

(5) Signature: void create_items (unsigned long cell_id, unsigned long category_id, const
CplxTrans trans, const EdgePairs edge_pairs)

Description: Creates new edge pair items for the given cell/category combination

cell_id: The ID of the cell to which the item is associated

category_id: The ID of the category to which the item is associated

trans: The transformation to apply

edges: The list of edge pairs (an EdgePairs object) for which the
items are created

For each edge pair a single item will be created. The value of the item will be this edge pair. A
transformation can be supplied which can be used for example to convert the object's dimensions
to micron units by scaling by the database unit.

This method will also produce a flat version of the edge pairs inside the edge pair collection.
RdbCategory#scan_collection is a similar method which also supports construction of hierarchical
databases from deep edge pair collections.

This method has been introduced in version 0.23.

(6) Signature: void create_items (unsigned long cell_id, unsigned long category_id, const
CplxTrans trans, Polygon[] array)

Description: Creates new polygon items for the given cell/category combination

cell_id: The ID of the cell to which the item is associated

category_id: The ID of the category to which the item is associated

trans: The transformation to apply

polygons: The list of polygons for which the items are created

For more details visit
https://www.klayout.org

Page 1815 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.169. API reference - Class ReportDatabase

For each polygon a single item will be created. The value of the item will be this polygon. A
transformation can be supplied which can be used for example to convert the object's dimensions
to micron units by scaling by the database unit.

This method has been introduced in version 0.23.

(7) Signature: void create_items (unsigned long cell_id, unsigned long category_id, const
CplxTrans trans, Edge[] array)

Description: Creates new edge items for the given cell/category combination

cell_id: The ID of the cell to which the item is associated

category_id: The ID of the category to which the item is associated

trans: The transformation to apply

edges: The list of edges for which the items are created

For each edge a single item will be created. The value of the item will be this edge. A
transformation can be supplied which can be used for example to convert the object's dimensions
to micron units by scaling by the database unit.

This method has been introduced in version 0.23.

(8) Signature: void create_items (unsigned long cell_id, unsigned long category_id, const
CplxTrans trans, EdgePair[] array)

Description: Creates new edge pair items for the given cell/category combination

cell_id: The ID of the cell to which the item is associated

category_id: The ID of the category to which the item is associated

trans: The transformation to apply

edge_pairs: The list of edge_pairs for which the items are created

For each edge pair a single item will be created. The value of the item will be this edge pair. A
transformation can be supplied which can be used for example to convert the object's dimensions
to micron units by scaling by the database unit.

This method has been introduced in version 0.23.

description
Signature: [const] string description

Description: Gets the databases description

Returns: The description string

The description is a general purpose string that is supposed to further describe the database and
it's content in a human-readable form.

Python specific notes:
The object exposes a readable attribute 'description'. This is the getter.

description=
Signature: void description= (string desc)

Description: Sets the databases description

desc: The description string

Python specific notes:
The object exposes a writable attribute 'description'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

For more details visit
https://www.klayout.org

Page 1816 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.169. API reference - Class ReportDatabase

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

each_category
Signature: [const,iter] RdbCategory each_category

Description: Iterates over all top-level categories

each_cell
Signature: [const,iter] RdbCell each_cell

Description: Iterates over all cells

each_item
Signature: [const,iter] RdbItem each_item

Description: Iterates over all items inside the database

each_item_per_category
Signature: [const,iter] RdbItem each_item_per_category (unsigned long category_id)

Description: Iterates over all items inside the database which are associated with the given
category

category_id: The ID of the category for which all associated items should
be retrieved

each_item_per_cell
Signature: [const,iter] RdbItem each_item_per_cell (unsigned long cell_id)

Description: Iterates over all items inside the database which are associated with the given cell

cell_id: The ID of the cell for which all associated items should be
retrieved

each_item_per_cell_and_category
Signature: [const,iter] RdbItem each_item_per_cell_and_category (unsigned long cell_id,
unsigned long category_id)

Description: Iterates over all items inside the database which are associated with the given cell
and category

cell_id: The ID of the cell for which all associated items should be
retrieved

category_id: The ID of the category for which all associated items should be
retrieved

filename
Signature: [const] string filename

Description: Gets the file name and path where the report database is stored

Returns: The file name and path

This property is set when a database is saved or loaded. It cannot be set manually.

generator
Signature: [const] string generator

Description: Gets the databases generator

For more details visit
https://www.klayout.org

Page 1817 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.169. API reference - Class ReportDatabase

Returns: The generator string

The generator string describes how the database was created, i.e. DRC tool name and tool
options. In a later version this will allow re-running the tool that created the report.

Python specific notes:
The object exposes a readable attribute 'generator'. This is the getter.

generator=
Signature: void generator= (string generator)

Description: Sets the generator string

generator: The generator string

Python specific notes:
The object exposes a writable attribute 'generator'. This is the setter.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

is_modified?
Signature: [const] bool is_modified?

Description: Returns a value indicating whether the database has been modified

load
Signature: void load (string filename)

Description: Loads the database from the given file

filename: The file from which to load the database

The reader recognizes the format automatically and will choose the appropriate decoder. 'gzip'
compressed files are uncompressed automatically.

name
Signature: [const] string name

Description: Gets the database name

Returns: The database name

The name of the database is supposed to identify the database within a layout view context. The
name is modified to be unique when a database is entered into a layout view.

new
Signature: [static] new ReportDatabase ptr new (string name)

Description: Creates a report database

name: The name of the database

The name of the database will be used in the user interface to refer to a certain database.

Python specific notes:
This method is the default initializer of the object

(1) Signature: [const] unsigned long num_items

Description: Returns the number of items inside the database

Returns: The total number of items

num_items

For more details visit
https://www.klayout.org

Page 1818 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.169. API reference - Class ReportDatabase

(2) Signature: [const] unsigned long num_items (unsigned long cell_id, unsigned long
category_id)

Description: Returns the number of items inside the database for a given cell/category
combination

cell_id: The ID of the cell for which to retrieve the number

category_id: The ID of the category for which to retrieve the number

Returns: The total number of items for the given cell and the given
category

(1) Signature: [const] unsigned long num_items_visited

Description: Returns the number of items already visited inside the database

Returns: The total number of items already visited

num_items_visited

(2) Signature: [const] unsigned long num_items_visited (unsigned long cell_id, unsigned long
category_id)

Description: Returns the number of items visited already for a given cell/category combination

cell_id: The ID of the cell for which to retrieve the number

category_id: The ID of the category for which to retrieve the number

Returns: The total number of items visited for the given cell and the
given category

original_file
Signature: [const] string original_file

Description: Gets the original file name and path

Returns: The original file name and path

The original file name is supposed to describe the file from which this report database was
generated.

Python specific notes:
The object exposes a readable attribute 'original_file'. This is the getter.

original_file=
Signature: void original_file= (string path)

Description: Sets the original file name and path

path: The path

Python specific notes:
The object exposes a writable attribute 'original_file'. This is the setter.

reset_modified
Signature: void reset_modified

Description: Reset the modified flag

save
Signature: void save (string filename)

Description: Saves the database to the given file

filename: The file to which to save the database

The database is always saved in KLayout's XML-based format.

set_item_visited
Signature: void set_item_visited (const RdbItem ptr item, bool visited)

Description: Modifies the visited state of an item

For more details visit
https://www.klayout.org

Page 1819 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.169. API reference - Class ReportDatabase

item: The item to modify

visited: True to set the item to visited state, false otherwise

set_tag_description
Signature: void set_tag_description (unsigned long tag_id, string description)

Description: Sets the tag description for the given tag ID

tag_id: The ID of the tag

description: The description string

See tag_id for a details about tags.

tag_description
Signature: [const] string tag_description (unsigned long tag_id)

Description: Gets the tag description for the given tag ID

tag_id: The ID of the tag

Returns: The description string

See tag_id for a details about tags.

tag_id
Signature: [const] unsigned long tag_id (string name)

Description: Gets the tag ID for a given tag name

name: The tag name

Returns: The corresponding tag ID

Tags are used to tag items in the database and to specify tagged (named) values. This method
will always succeed and the tag will be created if it does not exist yet. Tags are basically names.
There are user tags (for free assignment) and system tags which are used within the system. Both
are separated to avoid name clashes.

tag_id handles system tags while user_tag_id handles user tags.

tag_name
Signature: [const] string tag_name (unsigned long tag_id)

Description: Gets the tag name for the given tag ID

tag_id: The ID of the tag

Returns: The name of the tag

See tag_id for a details about tags.

This method has been introduced in version 0.24.10.

top_cell_name
Signature: [const] string top_cell_name

Description: Gets the top cell name

Returns: The top cell name

The top cell name identifies the top cell of the design for which the report was generated. This
property must be set to establish a proper hierarchical context for a hierarchical report database.

Python specific notes:
The object exposes a readable attribute 'top_cell_name'. This is the getter.

top_cell_name=
Signature: void top_cell_name= (string cell_name)

Description: Sets the top cell name string

cell_name: The top cell name

Python specific notes:

For more details visit
https://www.klayout.org

Page 1820 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.169. API reference - Class ReportDatabase

The object exposes a writable attribute 'top_cell_name'. This is the setter.

user_tag_id
Signature: [const] unsigned long user_tag_id (string name)

Description: Gets the tag ID for a given user tag name

name: The user tag name

Returns: The corresponding tag ID

This method will always succeed and the tag will be created if it does not exist yet. See tag_id for
a details about tags.

This method has been added in version 0.24.

variants
Signature: unsigned long[] variants (string name)

Description: Gets the variants for a given cell name

name: The basic name of the cell

Returns: An array of ID's representing cells that are variants for the
given base name

For more details visit
https://www.klayout.org

Page 1821 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.170. API reference - Class MacroExecutionContext

4.170. API reference - Class MacroExecutionContext
Notation used in Ruby API documentation

Module: lay

Description: Support for various debugger features

This class implements some features that allow customization of the debugger behavior, specifically the generation of back traces and the
handling of exception. These functions are particular useful for implementing DSL interpreters and providing proper error locations in the
back traces or to suppress exceptions when re-raising them.

Public constructors

new MacroExecutionContext ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
MacroExecutionContext
other)

Assigns another object to self

[const] new
MacroExecutionContext
ptr

dup Creates a copy of self

Public static methods and constants

void ignore_next_exception Ignores the next exception in the debugger

void remove_debugger_scope Removes a debugger scope previously set with
set_debugger_scope

void set_debugger_scope (string
filename)

Sets a debugger scope (file level which shall
appear in the debugger)

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

For more details visit
https://www.klayout.org

Page 1822 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.170. API reference - Class MacroExecutionContext

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1823 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.170. API reference - Class MacroExecutionContext

assign
Signature: void assign (const MacroExecutionContext other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new MacroExecutionContext ptr dup

Description: Creates a copy of self

ignore_next_exception
Signature: [static] void ignore_next_exception

Description: Ignores the next exception in the debugger

The next exception thrown will be ignored in the debugger. That feature is useful when re-raising
exceptions if those new exception shall not appear in the debugger.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new MacroExecutionContext ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

remove_debugger_scope
Signature: [static] void remove_debugger_scope

Description: Removes a debugger scope previously set with set_debugger_scope

For more details visit
https://www.klayout.org

Page 1824 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.170. API reference - Class MacroExecutionContext

set_debugger_scope
Signature: [static] void set_debugger_scope (string filename)

Description: Sets a debugger scope (file level which shall appear in the debugger)

If a debugger scope is set, back traces will be produced starting from that scope. Setting a scope
is useful for implementing DSL interpreters and giving a proper hint about the original location of an
error.

For more details visit
https://www.klayout.org

Page 1825 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.171. API reference - Class MacroInterpreter

4.171. API reference - Class MacroInterpreter
Notation used in Ruby API documentation

Module: lay

Description: A custom interpreter for a DSL (domain specific language)

DSL interpreters are a way to provide macros written in a language specific for the application. One example are DRC scripts which are
written in some special language optimized for DRC ruledecks. Interpreters for such languages can be built using scripts itself by providing
the interpreter implementation through this object.

An interpreter implementation involves at least these steps:

• Derive a new object from RBA::MacroInterpreter

• Reimplement the execute method for the actual execution of the code

• In the initialize method configure the object using the attribute setters like suffix= and register the object as DSL interpreter (in that
order)

• Create at least one template macro in the initialize method

Template macros provide a way for the macro editor to present macros for the new interpreter in the list of templates. Template macros can
provide menu bindings, shortcuts and some initial text for example

The simple implementation can be enhanced by providing more information, i.e. syntax highlighter information, the debugger to use etc.
This involves reimplementing further methods, i.e. "syntax_scheme".

This is a simple example for an interpreter in Ruby. Is is registered under the name 'simple-dsl' and just evaluates the script text:

class SimpleExecutable < RBA::Excutable

 # Constructor
 def initialize(macro)
 @macro = macro
 end

 # Implements the execute method
 def execute
 eval(@macro.text, nil, @macro.path)
 nil
 end

end

class SimpleInterpreter < RBA::MacroInterpreter

 # Constructor
 def initialize
 self.description = "A test interpreter"
 # Registers the new interpreter
 register("simple-dsl")
 # create a template for the macro editor:
 # Name is "new_simple", the description will be "Simple interpreter macro"
 # in the "Special" group.
 mt = create_template("new_simple")
 mt.description = "Special;;Simple interpreter macro"
 end

 # Creates the executable delegate
 def executable(macro)
 SimpleExecutable::new(macro)
 end

end

For more details visit
https://www.klayout.org

Page 1826 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.171. API reference - Class MacroInterpreter

Register the new interpreter
SimpleInterpreter::new

Please note that such an implementation is dangerous because the evaluation of the script happens in the context of the interpreter object.
In this implementation the script could redefine the execute method for example. This implementation is provided as an example only. A
real implementation should add execution of prolog and epilog code inside the execute method and proper error handling.

In order to make the above code effective, store the code in an macro, set "early auto-run" and restart KLayout.

This class has been introduced in version 0.23 and modified in 0.27.

Public constructors

new MacroInterpreter ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
MacroInterpreter
other)

Assigns another object to self

Macro ptr create_template (string url) Creates a new macro template

void debugger_scheme= (Macro::Interpreter
scheme)

Sets the debugger scheme (which debugger to
use for the DSL macro)

void description= (string description) Sets a description string

[const] new
MacroInterpreter
ptr

dup Creates a copy of self

[virtual,const]Executable ptr executable (const Macro ptr
macro)

Returns the executable object which
implements the macro execution

void register (string name) Registers the macro interpreter

void storage_scheme= (Macro::Format
scheme)

Sets the storage scheme (the format as which
the macro is stored)

void suffix= (string suffix) Sets the file suffix

For more details visit
https://www.klayout.org

Page 1827 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.171. API reference - Class MacroInterpreter

void supports_include_expansion=(bool flag) Sets a value indicating whether this interpreter
supports the default include file expansion
scheme.

void syntax_scheme= (string scheme) Sets a string indicating the syntax highlighter
scheme

Public static methods and constants

[static,const] Macro::Format MacroFormat The macro has macro (XML) format

Macro::Interpreter NoDebugger Indicates no debugging for
debugger_scheme

[static,const] Macro::Format PlainTextFormat The macro has plain text format

[static,const] Macro::Format PlainTextWithHashAnnotationsFormatThe macro has plain text format with
special pseudo-comment annotations

Macro::Interpreter RubyDebugger Indicates Ruby debugger for
debugger_scheme

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

MacroFormat
Signature: [static,const] Macro::Format MacroFormat

Description: The macro has macro (XML) format

NoDebugger
Signature: [static] Macro::Interpreter NoDebugger

Description: Indicates no debugging for debugger_scheme

PlainTextFormat
Signature: [static,const] Macro::Format PlainTextFormat

Description: The macro has plain text format

PlainTextWithHashAnnotationsFormat
Signature: [static,const] Macro::Format PlainTextWithHashAnnotationsFormat

Description: The macro has plain text format with special pseudo-comment annotations

RubyDebugger
Signature: [static] Macro::Interpreter RubyDebugger

Description: Indicates Ruby debugger for debugger_scheme

For more details visit
https://www.klayout.org

Page 1828 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.171. API reference - Class MacroInterpreter

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const MacroInterpreter other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

For more details visit
https://www.klayout.org

Page 1829 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.171. API reference - Class MacroInterpreter

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

create_template
Signature: Macro ptr create_template (string url)

Description: Creates a new macro template

url: The template will be initialized from that URL.

This method will create a register a new macro template. It returns a Macro object which can be
modified in order to adjust the template (for example to set description, add a content, menu binding,
autorun flags etc.)

This method must be called after register has called.

debugger_scheme=
Signature: void debugger_scheme= (Macro::Interpreter scheme)

Description: Sets the debugger scheme (which debugger to use for the DSL macro)

The value can be one of the constants RubyDebugger or NoDebugger.

Use this attribute setter in the initializer before registering the interpreter.

Before version 0.25 this attribute was a re-implementable method. It has been turned into an
attribute for performance reasons in version 0.25.

Python specific notes:
The object exposes a writable attribute 'debugger_scheme'. This is the setter.

description=
Signature: void description= (string description)

Description: Sets a description string

This string is used for showing the type of DSL macro in the file selection box together with the suffix
for example. Use this attribute setter in the initializer before registering the interpreter.

Before version 0.25 this attribute was a re-implementable method. It has been turned into an
attribute for performance reasons in version 0.25.

Python specific notes:
The object exposes a writable attribute 'description'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new MacroInterpreter ptr dup

Description: Creates a copy of self

For more details visit
https://www.klayout.org

Page 1830 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.171. API reference - Class MacroInterpreter

executable
Signature: [virtual,const] Executable ptr executable (const Macro ptr macro)

Description: Returns the executable object which implements the macro execution

macro: The macro to execute

This method must be reimplemented to return an Executable object for the actual implementation.
The system will use this function to execute the script when a macro with interpreter type 'dsl' and
the name of this interpreter is run.

This method has been introduced in version 0.27 and replaces the 'execute' method.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new MacroInterpreter ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

register
Signature: void register (string name)

Description: Registers the macro interpreter

name: The interpreter name. This is an arbitrary string which should be
unique.

Registration of the interpreter makes the object known to the system. After registration, macros
whose interpreter is set to 'dsl' can use this object to run the script. For executing a script, the
system will call the interpreter's execute method.

storage_scheme=
Signature: void storage_scheme= (Macro::Format scheme)

Description: Sets the storage scheme (the format as which the macro is stored)

This value indicates how files for this DSL macro type shall be stored. The value can be one of the
constants PlainTextFormat, PlainTextWithHashAnnotationsFormat and MacroFormat.

Use this attribute setter in the initializer before registering the interpreter.

Before version 0.25 this attribute was a re-implementable method. It has been turned into an
attribute for performance reasons in version 0.25.

Python specific notes:
The object exposes a writable attribute 'storage_scheme'. This is the setter.

suffix=
Signature: void suffix= (string suffix)

Description: Sets the file suffix

This string defines which file suffix to associate with the DSL macro. If an empty string is given (the
default) no particular suffix is assciated with that macro type and "lym" is assumed. Use this attribute
setter in the initializer before registering the interpreter.

Before version 0.25 this attribute was a re-implementable method. It has been turned into an
attribute for performance reasons in version 0.25.

Python specific notes:
The object exposes a writable attribute 'suffix'. This is the setter.

For more details visit
https://www.klayout.org

Page 1831 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.171. API reference - Class MacroInterpreter

supports_include_expansion=
Signature: void supports_include_expansion= (bool flag)

Description: Sets a value indicating whether this interpreter supports the default include file
expansion scheme.

If this value is set to true (the default), lines like '# %include ...' will be substituted by the content
of the file following the '%include' keyword. Set this value to false if you don't want to support this
feature.

This attribute has been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'supports_include_expansion'. This is the setter.

syntax_scheme=
Signature: void syntax_scheme= (string scheme)

Description: Sets a string indicating the syntax highlighter scheme

The scheme string can be empty (indicating no syntax highlighting), "ruby" for the Ruby syntax
highlighter or another string. In that case, the highlighter will look for a syntax definition under the
resource path ":/syntax/<scheme>.xml".

Use this attribute setter in the initializer before registering the interpreter.

Before version 0.25 this attribute was a re-implementable method. It has been turned into an
attribute for performance reasons in version 0.25.

Python specific notes:
The object exposes a writable attribute 'syntax_scheme'. This is the setter.

For more details visit
https://www.klayout.org

Page 1832 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.172. API reference - Class Macro

4.172. API reference - Class Macro
Notation used in Ruby API documentation

Module: lay

Description: A macro class

Sub-classes: Format, Interpreter

This class is provided mainly to support generation of template macros in the DSL interpreter framework provided by MacroInterpreter. The
implementation may be enhanced in future versions and provide access to macros stored inside KLayout's macro repository. But it can be
used to execute macro code in a consistent way:

path = "path-to-macro.lym"
RBA::Macro::new(path).run()

Using the Macro class with run for executing code will chose the right interpreter and is able to execute DRC and LVS scripts in the proper
environment. This also provides an option to execute Ruby code from Python and vice versa.

In this scenario you can pass values to the script using Interpreter#define_variable. The interpreter to choose for DRC and LVS scripts is
Interpreter#ruby_interpreter. For passing values back from the script, wrap the variable value into a Value object which can be modified by
the called script and read back by the caller.

Public constructors

new Macro ptr new (string path) Loads the macro from the given file path

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] string category Gets the category tags

void category= (string string) Sets the category tags string

[const] string description Gets the description text

void description= (string
description)

Sets the description text

[const] string doc Gets the macro's documentation string

For more details visit
https://www.klayout.org

Page 1833 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.172. API reference - Class Macro

void doc= (string doc) Sets the macro's documentation string

[const] string dsl_interpreter Gets the macro's DSL interpreter name (if
interpreter is DSLInterpreter)

void dsl_interpreter= (string
dsl_interpreter)

Sets the macro's DSL interpreter name (if
interpreter is DSLInterpreter)

[const] string epilog Gets the epilog code

void epilog= (string string) Sets the epilog

[const] Macro::Format format Gets the macro's storage format

void format= (Macro::Format
format)

Sets the macro's storage format

[const] string group_name Gets the menu group name

void group_name= (string string) Sets the menu group name

[const] Macro::Interpreter interpreter Gets the macro's interpreter

void interpreter= (Macro::Interpreter
interpreter)

Sets the macro's interpreter

[const] string interpreter_name Gets the macro interpreter name

void is_autorun= (bool flag) Sets a flag indicating whether the macro is
automatically executed on startup

[const] bool is_autorun? Gets a flag indicating whether the macro is
automatically executed on startup

void is_autorun_early= (bool flag) Sets a flag indicating whether the macro is
automatically executed early on startup

[const] bool is_autorun_early? Gets a flag indicating whether the macro is
automatically executed early on startup

[const] string menu_path Gets the menu path

void menu_path= (string string) Sets the menu path

[const] string name Gets the name of the macro

[const] string path Gets the path of the macro

[const] string prolog Gets the prolog code

void prolog= (string string) Sets the prolog

[const] int run Executes the macro

void save_to (string path) Saves the macro to the given file

[const] string shortcut Gets the macro's keyboard shortcut

For more details visit
https://www.klayout.org

Page 1834 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.172. API reference - Class Macro

void shortcut= (string
shortcut)

Sets the macro's keyboard shortcut

void show_in_menu= (bool flag) Sets a value indicating whether the macro
shall be shown in the menu

[const] bool show_in_menu? Gets a value indicating whether the macro
shall be shown in the menu

void sync_properties_with_text Synchronizes the macro properties with the
text

void sync_text_with_properties Synchronizes the macro text with the
properties

[const] string text Gets the macro text

void text= (string string) Sets the macro text

[const] string version Gets the macro's version

void version= (string
version)

Sets the macro's version

Public static methods and constants

[static,const] Macro::Interpreter DSLInterpreter A domain-specific interpreter (DSL)

[static,const] Macro::Format MacroFormat The macro has macro (XML) format

[static,const] Macro::Interpreter None No specific interpreter

[static,const] Macro::Format PlainTextFormat The macro has plain text format

[static,const] Macro::Format PlainTextWithHashAnnotationsFormat The macro has plain text format with
special pseudo-comment annotations

[static,const] Macro::Interpreter Python The interpreter is Python

[static,const] Macro::Interpreter Ruby The interpreter is Ruby

[static,const] Macro::Interpreter Text Plain text

Macro ptr macro_by_path (string
path)

Finds the macro by installation path

int real_line (string
path,
int line)

Gets the real line number for an
include-encoded path and line number

string real_path (string
path,
int line)

Gets the real path for an include-
encoded path and line number

For more details visit
https://www.klayout.org

Page 1835 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.172. API reference - Class Macro

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

DSLInterpreter
Signature: [static,const] Macro::Interpreter DSLInterpreter

Description: A domain-specific interpreter (DSL)

MacroFormat
Signature: [static,const] Macro::Format MacroFormat

Description: The macro has macro (XML) format

None
Signature: [static,const] Macro::Interpreter None

Description: No specific interpreter

Python specific notes:
This attribute is available as 'None_' in Python

PlainTextFormat
Signature: [static,const] Macro::Format PlainTextFormat

Description: The macro has plain text format

PlainTextWithHashAnnotationsFormat
Signature: [static,const] Macro::Format PlainTextWithHashAnnotationsFormat

Description: The macro has plain text format with special pseudo-comment annotations

Python
Signature: [static,const] Macro::Interpreter Python

Description: The interpreter is Python

Ruby
Signature: [static,const] Macro::Interpreter Ruby

Description: The interpreter is Ruby

Text
Signature: [static,const] Macro::Interpreter Text

Description: Plain text

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 1836 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.172. API reference - Class Macro

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

category
Signature: [const] string category

Description: Gets the category tags

The category tags string indicates to which categories a macro will belong to. This string is only
used for templates currently and is a comma-separated list of category names.

Python specific notes:
The object exposes a readable attribute 'category'. This is the getter.

category=
Signature: void category= (string string)

Description: Sets the category tags string

See category for details.

Python specific notes:
The object exposes a writable attribute 'category'. This is the setter.

For more details visit
https://www.klayout.org

Page 1837 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.172. API reference - Class Macro

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

description
Signature: [const] string description

Description: Gets the description text

The description text of a macro will appear in the macro list. If used as a macro template, the
description text can have the format "Group;;Description". In that case, the macro will appear in a
group with title "Group".

Python specific notes:
The object exposes a readable attribute 'description'. This is the getter.

description=
Signature: void description= (string description)

Description: Sets the description text

description: The description text.

See description for details.

Python specific notes:
The object exposes a writable attribute 'description'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

doc
Signature: [const] string doc

Description: Gets the macro's documentation string

This method has been introduced in version 0.27.5.

Python specific notes:
The object exposes a readable attribute 'doc'. This is the getter.

doc=
Signature: void doc= (string doc)

Description: Sets the macro's documentation string

This method has been introduced in version 0.27.5.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1838 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.172. API reference - Class Macro

The object exposes a writable attribute 'doc'. This is the setter.

dsl_interpreter
Signature: [const] string dsl_interpreter

Description: Gets the macro's DSL interpreter name (if interpreter is DSLInterpreter)

This method has been introduced in version 0.27.5.

Python specific notes:
The object exposes a readable attribute 'dsl_interpreter'. This is the getter.

dsl_interpreter=
Signature: void dsl_interpreter= (string dsl_interpreter)

Description: Sets the macro's DSL interpreter name (if interpreter is DSLInterpreter)

This method has been introduced in version 0.27.5.

Python specific notes:
The object exposes a writable attribute 'dsl_interpreter'. This is the setter.

epilog
Signature: [const] string epilog

Description: Gets the epilog code

The epilog is executed after the actual code is executed. Interpretation depends on the
implementation of the DSL interpreter for DSL macros.

Python specific notes:
The object exposes a readable attribute 'epilog'. This is the getter.

epilog=
Signature: void epilog= (string string)

Description: Sets the epilog

See epilog for details.

Python specific notes:
The object exposes a writable attribute 'epilog'. This is the setter.

format
Signature: [const] Macro::Format format

Description: Gets the macro's storage format

This method has been introduced in version 0.27.5.

Python specific notes:
The object exposes a readable attribute 'format'. This is the getter.

format=
Signature: void format= (Macro::Format format)

Description: Sets the macro's storage format

This method has been introduced in version 0.27.5.

Python specific notes:
The object exposes a writable attribute 'format'. This is the setter.

group_name
Signature: [const] string group_name

Description: Gets the menu group name

If a group name is specified and show_in_menu? is true, the macro will appear in a separate group
(separated by a separator) together with other macros sharing the same group.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1839 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.172. API reference - Class Macro

The object exposes a readable attribute 'group_name'. This is the getter.

group_name=
Signature: void group_name= (string string)

Description: Sets the menu group name

See group_name for details.

Python specific notes:
The object exposes a writable attribute 'group_name'. This is the setter.

interpreter
Signature: [const] Macro::Interpreter interpreter

Description: Gets the macro's interpreter

This method has been introduced in version 0.27.5.

Python specific notes:
The object exposes a readable attribute 'interpreter'. This is the getter.

interpreter=
Signature: void interpreter= (Macro::Interpreter interpreter)

Description: Sets the macro's interpreter

This method has been introduced in version 0.27.5.

Python specific notes:
The object exposes a writable attribute 'interpreter'. This is the setter.

interpreter_name
Signature: [const] string interpreter_name

Description: Gets the macro interpreter name

This is the string version of interpreter.

This method has been introduced in version 0.27.5.

is_autorun=
Signature: void is_autorun= (bool flag)

Description: Sets a flag indicating whether the macro is automatically executed on startup

This method has been introduced in version 0.27.5.

Python specific notes:
The object exposes a writable attribute 'is_autorun'. This is the setter.

is_autorun?
Signature: [const] bool is_autorun?

Description: Gets a flag indicating whether the macro is automatically executed on startup

This method has been introduced in version 0.27.5.

Python specific notes:
The object exposes a readable attribute 'is_autorun'. This is the getter.

is_autorun_early=
Signature: void is_autorun_early= (bool flag)

Description: Sets a flag indicating whether the macro is automatically executed early on startup

This method has been introduced in version 0.27.5.

Python specific notes:
The object exposes a writable attribute 'is_autorun_early'. This is the setter.

For more details visit
https://www.klayout.org

Page 1840 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.172. API reference - Class Macro

is_autorun_early?
Signature: [const] bool is_autorun_early?

Description: Gets a flag indicating whether the macro is automatically executed early on startup

This method has been introduced in version 0.27.5.

Python specific notes:
The object exposes a readable attribute 'is_autorun_early'. This is the getter.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

macro_by_path
Signature: [static] Macro ptr macro_by_path (string path)

Description: Finds the macro by installation path

Returns nil if no macro with this path can be found.

This method has been added in version 0.26.

menu_path
Signature: [const] string menu_path

Description: Gets the menu path

If a menu path is specified and show_in_menu? is true, the macro will appear in the menu at the
specified position.

Python specific notes:
The object exposes a readable attribute 'menu_path'. This is the getter.

menu_path=
Signature: void menu_path= (string string)

Description: Sets the menu path

See menu_path for details.

Python specific notes:
The object exposes a writable attribute 'menu_path'. This is the setter.

name
Signature: [const] string name

Description: Gets the name of the macro

This attribute has been added in version 0.25.

new
Signature: [static] new Macro ptr new (string path)

Description: Loads the macro from the given file path

This constructor has been introduced in version 0.27.5.

Python specific notes:
This method is the default initializer of the object

path
Signature: [const] string path

Description: Gets the path of the macro

For more details visit
https://www.klayout.org

Page 1841 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.172. API reference - Class Macro

The path is the path where the macro is stored, starting with an abstract group identifier. The path
is used to identify the macro in the debugger for example.

prolog
Signature: [const] string prolog

Description: Gets the prolog code

The prolog is executed before the actual code is executed. Interpretation depends on the
implementation of the DSL interpreter for DSL macros.

Python specific notes:
The object exposes a readable attribute 'prolog'. This is the getter.

prolog=
Signature: void prolog= (string string)

Description: Sets the prolog

See prolog for details.

Python specific notes:
The object exposes a writable attribute 'prolog'. This is the setter.

real_line
Signature: [static] int real_line (string path, int line)

Description: Gets the real line number for an include-encoded path and line number

When using KLayout's include scheme based on '# %include ...', __FILE__ and __LINE__ (Ruby)
will not have the proper values but encoded file names. This method allows retrieving the real line
number by using

Ruby
real_line = RBA::Macro::real_line(__FILE__, __LINE__)

Python
real_line = pya::Macro::real_line(__file__, __line__)

This substitution is not required for top-level macros as KLayout's interpreter will automatically use
this function instead of __FILE__. Call this function when you need __FILE__ from files included
through the languages mechanisms such as 'require' or 'load' where this substitution does not
happen.

For Python there is no equivalent for __LINE__, so you always have to use:

Pythonimport inspect
real_line = pya.Macro.real_line(__file__,
 inspect.currentframe().f_back.f_lineno)

This feature has been introduced in version 0.27.

real_path
Signature: [static] string real_path (string path, int line)

Description: Gets the real path for an include-encoded path and line number

When using KLayout's include scheme based on '# %include ...', __FILE__ and __LINE__ (Ruby)
will not have the proper values but encoded file names. This method allows retrieving the real file
by using

Ruby

For more details visit
https://www.klayout.org

Page 1842 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.172. API reference - Class Macro

real_file = RBA::Macro::real_path(__FILE__, __LINE__)

This substitution is not required for top-level macros as KLayout's interpreter will automatically use
this function instead of __FILE__. Call this function when you need __FILE__ from files included
through the languages mechanisms such as 'require' or 'load' where this substitution does not
happen.

For Python there is no equivalent for __LINE__, so you always have to use:

Pythonimport inspect
real_file = pya.Macro.real_path(__file__,
 inspect.currentframe().f_back.f_lineno)

This feature has been introduced in version 0.27.

run
Signature: [const] int run

Description: Executes the macro

This method has been introduced in version 0.27.5.

save_to
Signature: void save_to (string path)

Description: Saves the macro to the given file

This method has been introduced in version 0.27.5.

shortcut
Signature: [const] string shortcut

Description: Gets the macro's keyboard shortcut

This method has been introduced in version 0.27.5.

Python specific notes:
The object exposes a readable attribute 'shortcut'. This is the getter.

shortcut=
Signature: void shortcut= (string shortcut)

Description: Sets the macro's keyboard shortcut

This method has been introduced in version 0.27.5.

Python specific notes:
The object exposes a writable attribute 'shortcut'. This is the setter.

show_in_menu=
Signature: void show_in_menu= (bool flag)

Description: Sets a value indicating whether the macro shall be shown in the menu

Python specific notes:
The object exposes a writable attribute 'show_in_menu'. This is the setter.

show_in_menu?
Signature: [const] bool show_in_menu?

Description: Gets a value indicating whether the macro shall be shown in the menu

Python specific notes:
The object exposes a readable attribute 'show_in_menu'. This is the getter.

For more details visit
https://www.klayout.org

Page 1843 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.172. API reference - Class Macro

sync_properties_with_text
Signature: void sync_properties_with_text

Description: Synchronizes the macro properties with the text

This method performs the reverse process of sync_text_with_properties.

This method has been introduced in version 0.27.5.

sync_text_with_properties
Signature: void sync_text_with_properties

Description: Synchronizes the macro text with the properties

This method applies to PlainTextWithHashAnnotationsFormat format. The macro text will be
enhanced with pseudo-comments reflecting the macro properties. This way, the macro properties
can be stored in plain files.

This method has been introduced in version 0.27.5.

text
Signature: [const] string text

Description: Gets the macro text

The text is the code executed by the macro interpreter. Depending on the DSL interpreter, the text
can be any kind of code.

Python specific notes:
The object exposes a readable attribute 'text'. This is the getter.

text=
Signature: void text= (string string)

Description: Sets the macro text

See text for details.

Python specific notes:
The object exposes a writable attribute 'text'. This is the setter.

version
Signature: [const] string version

Description: Gets the macro's version

This method has been introduced in version 0.27.5.

Python specific notes:
The object exposes a readable attribute 'version'. This is the getter.

version=
Signature: void version= (string version)

Description: Sets the macro's version

This method has been introduced in version 0.27.5.

Python specific notes:
The object exposes a writable attribute 'version'. This is the setter.

For more details visit
https://www.klayout.org

Page 1844 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.173. API reference - Class Macro::Format

4.173. API reference - Class Macro::Format
Notation used in Ruby API documentation

Module: lay

Description: Specifies the format of a macro

This class is equivalent to the class Macro::Format

This enum has been introduced in version 0.27.5.

Public constructors

new Macro::Format ptr new (int i) Creates an enum from an integer value

new Macro::Format ptr new (string s) Creates an enum from a string value

Public methods

[const] bool != (const Macro::Format
other)

Compares two enums for inequality

[const] bool < (const Macro::Format
other)

Returns true if the first enum is less (in the
enum symbol order) than the second

[const] bool == (const Macro::Format
other)

Compares two enums

[const] string inspect Converts an enum to a visual string

[const] int to_i Gets the integer value from the enum

[const] string to_s Gets the symbolic string from an enum

Public static methods and constants

[static,const] Macro::Format MacroFormat The macro has macro (XML) format

[static,const] Macro::Format PlainTextFormat The macro has plain text format

[static,const] Macro::Format PlainTextWithHashAnnotationsFormatThe macro has plain text format with
special pseudo-comment annotations

Detailed description

!=
Signature: [const] bool != (const Macro::Format other)

Description: Compares two enums for inequality

<
Signature: [const] bool < (const Macro::Format other)

Description: Returns true if the first enum is less (in the enum symbol order) than the second

==
Signature: [const] bool == (const Macro::Format other)

For more details visit
https://www.klayout.org

Page 1845 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.173. API reference - Class Macro::Format

Description: Compares two enums

MacroFormat
Signature: [static,const] Macro::Format MacroFormat

Description: The macro has macro (XML) format

PlainTextFormat
Signature: [static,const] Macro::Format PlainTextFormat

Description: The macro has plain text format

PlainTextWithHashAnnotationsFormat
Signature: [static,const] Macro::Format PlainTextWithHashAnnotationsFormat

Description: The macro has plain text format with special pseudo-comment annotations

inspect
Signature: [const] string inspect

Description: Converts an enum to a visual string

Python specific notes:
This method is also available as 'repr(object)'

(1) Signature: [static] new Macro::Format ptr new (int i)

Description: Creates an enum from an integer value

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new Macro::Format ptr new (string s)

Description: Creates an enum from a string value

Python specific notes:
This method is the default initializer of the object

to_i
Signature: [const] int to_i

Description: Gets the integer value from the enum

to_s
Signature: [const] string to_s

Description: Gets the symbolic string from an enum

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 1846 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.174. API reference - Class Macro::Interpreter

4.174. API reference - Class Macro::Interpreter
Notation used in Ruby API documentation

Module: lay

Description: Specifies the interpreter used for executing a macro

This class is equivalent to the class Macro::Interpreter

This enum has been introduced in version 0.27.5.

Public constructors

new Macro::Interpreter ptr new (int i) Creates an enum from an integer value

new Macro::Interpreter ptr new (string s) Creates an enum from a string value

Public methods

[const] bool != (const
Macro::Interpreter
other)

Compares two enums for inequality

[const] bool < (const
Macro::Interpreter
other)

Returns true if the first enum is less (in the
enum symbol order) than the second

[const] bool == (const
Macro::Interpreter
other)

Compares two enums

[const] string inspect Converts an enum to a visual string

[const] int to_i Gets the integer value from the enum

[const] string to_s Gets the symbolic string from an enum

Public static methods and constants

[static,const] Macro::Interpreter DSLInterpreter A domain-specific interpreter
(DSL)

[static,const] Macro::Interpreter None No specific interpreter

[static,const] Macro::Interpreter Python The interpreter is Python

[static,const] Macro::Interpreter Ruby The interpreter is Ruby

[static,const] Macro::Interpreter Text Plain text

Detailed description

!=
Signature: [const] bool != (const Macro::Interpreter other)

Description: Compares two enums for inequality

For more details visit
https://www.klayout.org

Page 1847 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.174. API reference - Class Macro::Interpreter

<
Signature: [const] bool < (const Macro::Interpreter other)

Description: Returns true if the first enum is less (in the enum symbol order) than the second

==
Signature: [const] bool == (const Macro::Interpreter other)

Description: Compares two enums

DSLInterpreter
Signature: [static,const] Macro::Interpreter DSLInterpreter

Description: A domain-specific interpreter (DSL)

None
Signature: [static,const] Macro::Interpreter None

Description: No specific interpreter

Python specific notes:
This attribute is available as 'None_' in Python

Python
Signature: [static,const] Macro::Interpreter Python

Description: The interpreter is Python

Ruby
Signature: [static,const] Macro::Interpreter Ruby

Description: The interpreter is Ruby

Text
Signature: [static,const] Macro::Interpreter Text

Description: Plain text

inspect
Signature: [const] string inspect

Description: Converts an enum to a visual string

Python specific notes:
This method is also available as 'repr(object)'

(1) Signature: [static] new Macro::Interpreter ptr new (int i)

Description: Creates an enum from an integer value

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new Macro::Interpreter ptr new (string s)

Description: Creates an enum from a string value

Python specific notes:
This method is the default initializer of the object

to_i
Signature: [const] int to_i

Description: Gets the integer value from the enum

to_s
Signature: [const] string to_s

Description: Gets the symbolic string from an enum

Python specific notes:

For more details visit
https://www.klayout.org

Page 1848 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.174. API reference - Class Macro::Interpreter

This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 1849 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.175. API reference - Class BrowserDialog

4.175. API reference - Class BrowserDialog
Notation used in Ruby API documentation

Module: lay

Description: A HTML display and browser dialog

Class hierarchy: BrowserDialog » QDialog » QWidget » QObject

The browser dialog displays HTML code in a browser panel. The HTML code is delivered through a separate object of class
BrowserSource which acts as a "server" for a specific kind of URL scheme. Whenever the browser sees a URL starting with "int:" it will ask
the connected BrowserSource object for the HTML code of that page using it's 'get' method. The task of the BrowserSource object is to
format the data requested in HTML and deliver it.

One use case for that class is the implementation of rich data browsers for structured information. In a simple scenario, the browser dialog
can be instantiated with a static HTML page. In that case, only the content of that page is shown.

Here's a simple example:

html = "<html><body>Hello, world!</body></html>"
RBA::BrowserDialog::new(html).exec

And that is an example for the use case with a BrowserSource as the "server":

class MySource < RBA::BrowserSource
 def get(url)
 if (url =~ /b.html$/)
 return "<html><body>The second page</body></html>"
 else
 return "<html><body>The first page with a link</body></html>"
 end
 end
end

source = MySource::new
RBA::BrowserDialog::new(source).exec

Public constructors

new BrowserDialog ptr new (BrowserSource ptr source) Creates a HTML browser window with a
BrowserSource as the source of HTML code

new BrowserDialog ptr new (string html) Creates a HTML browser window with a static
HTML content

new BrowserDialog ptr new (QWidget ptr parent,
BrowserSource ptr source)

Creates a HTML browser window with a
BrowserSource as the source of HTML code

new BrowserDialog ptr new (QWidget ptr parent,
string html)

Creates a HTML browser window with a static
HTML content

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 1850 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.175. API reference - Class BrowserDialog

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void caption= (string caption) Sets the caption of the window

int execute Executes the HTML browser dialog as a modal
window

void home= (string home_url) Sets the browser's initial and current URL which is
selected if the "home" location is chosen

void label= (string label) Sets the label text

void load (string url) Loads the given URL into the browser dialog

void reload Reloads the current page

void resize (int width,
int height)

Sets the size of the dialog window

void search (string
search_item)

Issues a search request using the given search item
and the search URL specified with set_search_url

void set_search_url (string url,
string query_item)

Enables the search field and specifies the search
URL generated for a search

void source= (BrowserSource
ptr source)

Connects to a source object

Deprecated methods (protected, public, static, non-static and constructors)

[virtual] void closed Use of this method is deprecated

int exec Use of this method is deprecated. Use execute
instead

void set_caption (string caption) Use of this method is deprecated. Use caption=
instead

void set_home (string home_url) Use of this method is deprecated. Use home=
instead

void set_size (int width,
int height)

Use of this method is deprecated. Use resize
instead

void set_source (BrowserSource ptr
source)

Use of this method is deprecated. Use source=
instead

For more details visit
https://www.klayout.org

Page 1851 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.175. API reference - Class BrowserDialog

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

caption=
Signature: void caption= (string caption)

Description: Sets the caption of the window

Python specific notes:
The object exposes a writable attribute 'caption'. This is the setter.

For more details visit
https://www.klayout.org

Page 1852 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.175. API reference - Class BrowserDialog

closed
Signature: [virtual] void closed

Description: Callback when the dialog is closed

Use of this method is deprecated

This callback can be reimplemented to implement cleanup functionality when the dialog is closed.

exec
Signature: int exec

Description: Executes the HTML browser dialog as a modal window

Use of this method is deprecated. Use execute instead

Python specific notes:
This attribute is available as 'exec_' in Python

execute
Signature: int execute

Description: Executes the HTML browser dialog as a modal window

Python specific notes:
This attribute is available as 'exec_' in Python

home=
Signature: void home= (string home_url)

Description: Sets the browser's initial and current URL which is selected if the "home" location is
chosen

The home URL is the one shown initially and the one which is selected when the "home" button is
pressed. The default location is "int:/index.html".

Python specific notes:
The object exposes a writable attribute 'home'. This is the setter.

label=
Signature: void label= (string label)

Description: Sets the label text

The label is shown left of the navigation buttons. By default, no label is specified.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'label'. This is the setter.

load
Signature: void load (string url)

Description: Loads the given URL into the browser dialog

Typically the URL has the "int:" scheme so the HTML code is taken from the BrowserSource object.

(1) Signature: [static] new BrowserDialog ptr new (BrowserSource ptr source)

Description: Creates a HTML browser window with a BrowserSource as the source of HTML code

This method has been introduced in version 0.23.

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new BrowserDialog ptr new (string html)

Description: Creates a HTML browser window with a static HTML content

This method has been introduced in version 0.23.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1853 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.175. API reference - Class BrowserDialog

This method is the default initializer of the object

(3) Signature: [static] new BrowserDialog ptr new (QWidget ptr parent, BrowserSource ptr source)

Description: Creates a HTML browser window with a BrowserSource as the source of HTML code

This method variant with a parent argument has been introduced in version 0.24.2.

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new BrowserDialog ptr new (QWidget ptr parent, string html)

Description: Creates a HTML browser window with a static HTML content

This method variant with a parent argument has been introduced in version 0.24.2.

Python specific notes:
This method is the default initializer of the object

reload
Signature: void reload

Description: Reloads the current page

resize
Signature: void resize (int width, int height)

Description: Sets the size of the dialog window

search
Signature: void search (string search_item)

Description: Issues a search request using the given search item and the search URL specified with
set_search_url

See set_search_url for a description of the search mechanism.

set_caption
Signature: void set_caption (string caption)

Description: Sets the caption of the window

Use of this method is deprecated. Use caption= instead

Python specific notes:
The object exposes a writable attribute 'caption'. This is the setter.

set_home
Signature: void set_home (string home_url)

Description: Sets the browser's initial and current URL which is selected if the "home" location is
chosen

Use of this method is deprecated. Use home= instead

The home URL is the one shown initially and the one which is selected when the "home" button is
pressed. The default location is "int:/index.html".

Python specific notes:
The object exposes a writable attribute 'home'. This is the setter.

set_search_url
Signature: void set_search_url (string url, string query_item)

Description: Enables the search field and specifies the search URL generated for a search

If a search URL is set, the search box right to the navigation bar will be enabled. When a text is
entered into the search box, the browser will navigate to an URL composed of the search URL, the
search item and the search text, i.e. "myurl?item=search_text".

For more details visit
https://www.klayout.org

Page 1854 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.175. API reference - Class BrowserDialog

This method has been introduced in version 0.23.

set_size
Signature: void set_size (int width, int height)

Description: Sets the size of the dialog window

Use of this method is deprecated. Use resize instead

set_source
Signature: void set_source (BrowserSource ptr source)

Description: Connects to a source object

Use of this method is deprecated. Use source= instead

Setting the source should be the first thing done after the BrowserDialog object is created. It will not
have any effect after the browser has loaded the first page. In particular, home= should be called after
the source was set.

Python specific notes:
The object exposes a writable attribute 'source'. This is the setter.

source=
Signature: void source= (BrowserSource ptr source)

Description: Connects to a source object

Setting the source should be the first thing done after the BrowserDialog object is created. It will not
have any effect after the browser has loaded the first page. In particular, home= should be called after
the source was set.

Python specific notes:
The object exposes a writable attribute 'source'. This is the setter.

For more details visit
https://www.klayout.org

Page 1855 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.176. API reference - Class BrowserSource

4.176. API reference - Class BrowserSource
Notation used in Ruby API documentation

Module: lay

Description: The BrowserDialog's source for "int" URL's

The source object basically acts as a "server" for special URL's using "int" as the scheme. Classes that want to implement such
functionality must derive from BrowserSource and reimplement the get method. This method is supposed to deliver a HTML page for the
given URL.

Alternatively to implementing this functionality, a source object may be instantiated using the constructor with a HTML code string. This will
create a source object that simply displays the given string as the initial and only page.

Public constructors

new BrowserSource ptr new (string arg1) Constructs a BrowserSource object with a default
HTML string

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
BrowserSource
other)

Assigns another object to self

[const] new BrowserSource
ptr

dup Creates a copy of self

[virtual] string get (string url) Gets the HTML code for a given "int" URL.

QImage get_image (string url) Gets the image object for a specific URL

string next_topic (string url) Gets the next topic URL from a given URL

string prev_topic (string url) Gets the previous topic URL from a given URL

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

For more details visit
https://www.klayout.org

Page 1856 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.176. API reference - Class BrowserSource

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[static] new BrowserSource
ptr

new_html (string
arg1)

Use of this method is deprecated. Use new instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the

For more details visit
https://www.klayout.org

Page 1857 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.176. API reference - Class BrowserSource

reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const BrowserSource other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new BrowserSource ptr dup

Description: Creates a copy of self

get
Signature: [virtual] string get (string url)

Description: Gets the HTML code for a given "int" URL.

If this method returns an empty string, the browser will not be set to a new location. This allows
implementing any functionality behind such links. If the method returns a string, the content of this
string is displayed in the HTML browser page.

get_image
Signature: QImage get_image (string url)

Description: Gets the image object for a specific URL

This method has been introduced in version 0.28.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

For more details visit
https://www.klayout.org

Page 1858 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.176. API reference - Class BrowserSource

new
Signature: [static] new BrowserSource ptr new (string arg1)

Description: Constructs a BrowserSource object with a default HTML string

The default HTML string is sent when no specific implementation is provided.

Python specific notes:
This method is the default initializer of the object

new_html
Signature: [static] new BrowserSource ptr new_html (string arg1)

Description: Constructs a BrowserSource object with a default HTML string

Use of this method is deprecated. Use new instead

The default HTML string is sent when no specific implementation is provided.

Python specific notes:
This method is the default initializer of the object

next_topic
Signature: string next_topic (string url)

Description: Gets the next topic URL from a given URL

An empty string will be returned if no next topic is available.

This method has been introduced in version 0.28.

prev_topic
Signature: string prev_topic (string url)

Description: Gets the previous topic URL from a given URL

An empty string will be returned if no previous topic is available.

This method has been introduced in version 0.28.

For more details visit
https://www.klayout.org

Page 1859 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.177. API reference - Class BrowserPanel

4.177. API reference - Class BrowserPanel
Notation used in Ruby API documentation

Module: lay

Description: A HTML display and browser widget

Class hierarchy: BrowserPanel » QWidget » QObject

This widget provides the functionality of BrowserDialog within a widget. It can be embedded into other dialogs. For details about the use
model of this class see BrowserDialog.

This class has been introduced in version 0.25.

Public constructors

new BrowserPanel ptr new (QWidget ptr parent,
BrowserSource ptr source)

Creates a HTML browser widget with a
BrowserSource as the source of HTML
code

new BrowserPanel ptr new (QWidget ptr parent) Creates a HTML browser widget

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void home= (string
home_url)

Sets the browser widget's initial and current URL
which is selected if the "home" location is chosen

void label= (string label) Sets the label text

void load (string url) Loads the given URL into the browser widget

void reload Reloads the current page

void search (string
search_item)

Issues a search request using the given search item
and the search URL specified with set_search_url

void set_search_url (string url,
string
query_item)

Enables the search field and specifies the search
URL generated for a search

void source= (BrowserSource
ptr source)

Connects to a source object

For more details visit
https://www.klayout.org

Page 1860 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.177. API reference - Class BrowserPanel

[const] string url Gets the URL currently shown

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

home=
Signature: void home= (string home_url)

Description: Sets the browser widget's initial and current URL which is selected if the "home" location
is chosen

For more details visit
https://www.klayout.org

Page 1861 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.177. API reference - Class BrowserPanel

The home URL is the one shown initially and the one which is selected when the "home" button is
pressed. The default location is "int:/index.html".

Python specific notes:
The object exposes a writable attribute 'home'. This is the setter.

label=
Signature: void label= (string label)

Description: Sets the label text

The label is shown left of the navigation buttons. By default, no label is specified.

Python specific notes:
The object exposes a writable attribute 'label'. This is the setter.

load
Signature: void load (string url)

Description: Loads the given URL into the browser widget

Typically the URL has the "int:" scheme so the HTML code is taken from the BrowserSource object.

(1) Signature: [static] new BrowserPanel ptr new (QWidget ptr parent, BrowserSource ptr source)

Description: Creates a HTML browser widget with a BrowserSource as the source of HTML code

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new BrowserPanel ptr new (QWidget ptr parent)

Description: Creates a HTML browser widget

Python specific notes:
This method is the default initializer of the object

reload
Signature: void reload

Description: Reloads the current page

search
Signature: void search (string search_item)

Description: Issues a search request using the given search item and the search URL specified with
set_search_url

See search_url= for a description of the search mechanism.

set_search_url
Signature: void set_search_url (string url, string query_item)

Description: Enables the search field and specifies the search URL generated for a search

If a search URL is set, the search box right to the navigation bar will be enabled. When a text is
entered into the search box, the browser will navigate to an URL composed of the search URL, the
search item and the search text, i.e. "myurl?item=search_text".

source=
Signature: void source= (BrowserSource ptr source)

Description: Connects to a source object

Setting the source should be the first thing done after the BrowserDialog object is created. It will not
have any effect after the browser has loaded the first page. In particular, home= should be called after
the source was set.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1862 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.177. API reference - Class BrowserPanel

The object exposes a writable attribute 'source'. This is the setter.

url
Signature: [const] string url

Description: Gets the URL currently shown

For more details visit
https://www.klayout.org

Page 1863 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.178. API reference - Class InputDialog

4.178. API reference - Class InputDialog
Notation used in Ruby API documentation

Module: lay

Description: Various methods to open a dialog requesting data entry

This class provides some basic dialogs to enter a single value. Values can be strings floating-point values, integer values or an item from a
list. This functionality is provided through the static (class) methods ask_...

Here are some examples:

get a double value between -10 and 10 (initial value is 0):
v = RBA::InputDialog::ask_double_ex("Dialog Title", "Enter the value here:", 0, -10, 10, 1)
get an item from a list:
v = RBA::InputDialog::ask_item("Dialog Title", "Select one:", ["item 1", "item 2", "item 3"], 1)

All these examples return the "nil" value if "Cancel" is pressed.

If you have enabled the Qt binding, you can use QInputDialog directly.

Public constructors

new InputDialog ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
InputDialog
other)

Assigns another object to self

[const] new InputDialog ptr dup Creates a copy of self

Public static methods and constants

variant ask_double (string title,
string label,
double value,
int digits)

Open an input dialog requesting a
floating-point value

For more details visit
https://www.klayout.org

Page 1864 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.178. API reference - Class InputDialog

variant ask_double_ex (string title,
string label,
double value,
double min,
double max,
int digits)

Open an input dialog requesting a
floating-point value with enhanced
capabilities

variant ask_int (string title,
string label,
int value)

Open an input dialog requesting an
integer value

variant ask_int_ex (string title,
string label,
int value,
int min,
int max,
int step)

Open an input dialog requesting an
integer value with enhanced capabilities

variant ask_item (string title,
string label,
string[] items,
int value)

Open an input dialog requesting an item
from a list

variant ask_string (string title,
string label,
string value)

Open an input dialog requesting a string

variant ask_string_password(string title,
string label,
string value)

Open an input dialog requesting a string
without showing the actual characters
entered

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated.
Use _create instead

void destroy Use of this method is deprecated.
Use _destroy instead

[const] bool destroyed? Use of this method is deprecated.
Use _destroyed? instead

[static] DoubleValue get_double (string title,
string label,
double value,
int digits)

Use of this method is deprecated

[static] DoubleValue get_double_ex (string title,
string label,
double value,
double min,
double max,
int digits)

Use of this method is deprecated

[static] IntValue get_int (string title,
string label,
int value)

Use of this method is deprecated

For more details visit
https://www.klayout.org

Page 1865 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.178. API reference - Class InputDialog

[static] IntValue get_int_ex (string title,
string label,
int value,
int min,
int max,
int step)

Use of this method is deprecated

[static] StringValue get_item (string title,
string label,
string[] items,
int value)

Use of this method is deprecated

[static] StringValue get_string (string title,
string label,
string value)

Use of this method is deprecated

[static] StringValue get_string_password (string title,
string label,
string value)

Use of this method is deprecated

[const] bool is_const_object? Use of this method is deprecated.
Use _is_const_object? instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known

For more details visit
https://www.klayout.org

Page 1866 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.178. API reference - Class InputDialog

not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

ask_double
Signature: [static] variant ask_double (string title, string label, double value, int digits)

Description: Open an input dialog requesting a floating-point value

title: The title to display for the dialog

label: The label text to display for the dialog

value: The initial value for the input field

digits: The number of digits allowed

Returns: The value entered if "Ok" was pressed or nil if "Cancel" was
pressed

This method has been introduced in 0.22 and is somewhat easier to use than the get_.. equivalent.

ask_double_ex
Signature: [static] variant ask_double_ex (string title, string label, double value, double min, double
max, int digits)

Description: Open an input dialog requesting a floating-point value with enhanced capabilities

title: The title to display for the dialog

label: The label text to display for the dialog

value: The initial value for the input field

min: The minimum value allowed

max: The maximum value allowed

digits: The number of digits allowed

Returns: The value entered if "Ok" was pressed or nil if "Cancel" was
pressed

This method has been introduced in 0.22 and is somewhat easier to use than the get_.. equivalent.

ask_int
Signature: [static] variant ask_int (string title, string label, int value)

Description: Open an input dialog requesting an integer value

title: The title to display for the dialog

label: The label text to display for the dialog

value: The initial value for the input field

Returns: The value entered if "Ok" was pressed or nil if "Cancel" was
pressed

This method has been introduced in 0.22 and is somewhat easier to use than the get_.. equivalent.

For more details visit
https://www.klayout.org

Page 1867 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.178. API reference - Class InputDialog

ask_int_ex
Signature: [static] variant ask_int_ex (string title, string label, int value, int min, int max, int step)

Description: Open an input dialog requesting an integer value with enhanced capabilities

title: The title to display for the dialog

label: The label text to display for the dialog

value: The initial value for the input field

min: The minimum value allowed

max: The maximum value allowed

step: The step size for the spin buttons

Returns: The value entered if "Ok" was pressed or nil if "Cancel" was
pressed

This method has been introduced in 0.22 and is somewhat easier to use than the get_.. equivalent.

ask_item
Signature: [static] variant ask_item (string title, string label, string[] items, int value)

Description: Open an input dialog requesting an item from a list

title: The title to display for the dialog

label: The label text to display for the dialog

items: The list of items to show in the selection element

selection: The initial selection (index of the element selected initially)

Returns: The string of the item selected if "Ok" was pressed or nil if
"Cancel" was pressed

This method has been introduced in 0.22 and is somewhat easier to use than the get_.. equivalent.

ask_string
Signature: [static] variant ask_string (string title, string label, string value)

Description: Open an input dialog requesting a string

title: The title to display for the dialog

label: The label text to display for the dialog

value: The initial value for the input field

Returns: The string entered if "Ok" was pressed or nil if "Cancel" was
pressed

This method has been introduced in 0.22 and is somewhat easier to use than the get_.. equivalent.

ask_string_password
Signature: [static] variant ask_string_password (string title, string label, string value)

Description: Open an input dialog requesting a string without showing the actual characters entered

title: The title to display for the dialog

label: The label text to display for the dialog

value: The initial value for the input field

Returns: The string entered if "Ok" was pressed or nil if "Cancel" was
pressed

This method has been introduced in 0.22 and is somewhat easier to use than the get_.. equivalent.

assign
Signature: void assign (const InputDialog other)

Description: Assigns another object to self

For more details visit
https://www.klayout.org

Page 1868 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.178. API reference - Class InputDialog

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new InputDialog ptr dup

Description: Creates a copy of self

get_double
Signature: [static] DoubleValue get_double (string title, string label, double value, int digits)

Description: Open an input dialog requesting a floating-point value

title: The title to display for the dialog

label: The label text to display for the dialog

value: The initial value for the input field

digits: The number of digits allowed

Returns: A DoubleValue object with has_value? set to true, if "Ok" was
pressed and the value given in it's value attribute

Use of this method is deprecated

Starting from 0.22, this method is deprecated and it is recommended to use the ask_... equivalent.

get_double_ex
Signature: [static] DoubleValue get_double_ex (string title, string label, double value, double min,
double max, int digits)

Description: Open an input dialog requesting a floating-point value with enhanced capabilities

title: The title to display for the dialog

label: The label text to display for the dialog

value: The initial value for the input field

min: The minimum value allowed

max: The maximum value allowed

digits: The number of digits allowed

Returns: A DoubleValue object with has_value? set to true, if "Ok" was
pressed and the value given in it's value attribute

For more details visit
https://www.klayout.org

Page 1869 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.178. API reference - Class InputDialog

Use of this method is deprecated

Starting from 0.22, this method is deprecated and it is recommended to use the ask_... equivalent.

get_int
Signature: [static] IntValue get_int (string title, string label, int value)

Description: Open an input dialog requesting an integer value

title: The title to display for the dialog

label: The label text to display for the dialog

value: The initial value for the input field

Returns: A IntValue object with has_value? set to true, if "Ok" was pressed
and the value given in it's value attribute

Use of this method is deprecated

Starting from 0.22, this method is deprecated and it is recommended to use the ask_... equivalent.

get_int_ex
Signature: [static] IntValue get_int_ex (string title, string label, int value, int min, int max, int step)

Description: Open an input dialog requesting an integer value with enhanced capabilities

title: The title to display for the dialog

label: The label text to display for the dialog

value: The initial value for the input field

min: The minimum value allowed

max: The maximum value allowed

step: The step size for the spin buttons

Returns: A IntValue object with has_value? set to true, if "Ok" was
pressed and the value given in it's value attribute

Use of this method is deprecated

Starting from 0.22, this method is deprecated and it is recommended to use the ask_... equivalent.

get_item
Signature: [static] StringValue get_item (string title, string label, string[] items, int value)

Description: Open an input dialog requesting an item from a list

title: The title to display for the dialog

label: The label text to display for the dialog

items: The list of items to show in the selection element

selection: The initial selection (index of the element selected initially)

Returns: A StringValue object with has_value? set to true, if "Ok" was
pressed and the value given in it's value attribute

Use of this method is deprecated

Starting from 0.22, this method is deprecated and it is recommended to use the ask_... equivalent.

get_string
Signature: [static] StringValue get_string (string title, string label, string value)

Description: Open an input dialog requesting a string

title: The title to display for the dialog

label: The label text to display for the dialog

value: The initial value for the input field

For more details visit
https://www.klayout.org

Page 1870 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.178. API reference - Class InputDialog

Returns: A StringValue object with has_value? set to true, if "Ok" was
pressed and the value given in it's value attribute

Use of this method is deprecated

Starting from 0.22, this method is deprecated and it is recommended to use the ask_... equivalent.

get_string_password
Signature: [static] StringValue get_string_password (string title, string label, string value)

Description: Open an input dialog requesting a string without showing the actual characters entered

title: The title to display for the dialog

label: The label text to display for the dialog

value: The initial value for the input field

Returns: A StringValue object with has_value? set to true, if "Ok" was
pressed and the value given in it's value attribute

Use of this method is deprecated

Starting from 0.22, this method is deprecated and it is recommended to use the ask_... equivalent.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new InputDialog ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1871 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.179. API reference - Class FileDialog

4.179. API reference - Class FileDialog
Notation used in Ruby API documentation

Module: lay

Description: Various methods to request a file name

This class provides some basic dialogs to select a file or directory. This functionality is provided through the static (class) methods ask_...

Here are some examples:

get an existing directory:
v = RBA::FileDialog::ask_existing_dir("Dialog Title", ".")
get multiple files:
v = RBA::FileDialog::ask_open_file_names("Title", ".", "All files (*)")
ask for one file name to save a file:
v = RBA::FileDialog::ask_save_file_name("Title", ".", "All files (*)")

All these examples return the "nil" value if "Cancel" is pressed.

If you have enabled the Qt binding, you can use QFileDialog directly.

Public constructors

new FileDialog ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
FileDialog
other)

Assigns another object to self

[const] new FileDialog ptr dup Creates a copy of self

Public static methods and constants

variant ask_existing_dir (string title,
string dir)

Open a dialog to select a
directory

variant ask_open_file_name (string title,
string dir,

Select one file for opening

For more details visit
https://www.klayout.org

Page 1872 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.179. API reference - Class FileDialog

string filter)

variant ask_open_file_names (string title,
string dir,
string filter)

Select one or multiple files for
opening

variant ask_save_file_name (string title,
string dir,
string filter)

Select one file for writing

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use
_create instead

void destroy Use of this method is deprecated. Use
_destroy instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

[static] StringValue get_existing_dir (string title,
string dir)

Use of this method is deprecated

[static] StringValue get_open_file_name (string title,
string dir,
string filter)

Use of this method is deprecated

[static] StringListValue get_open_file_names (string title,
string dir,
string filter)

Use of this method is deprecated

[static] StringValue get_save_file_name (string title,
string dir,
string filter)

Use of this method is deprecated

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

For more details visit
https://www.klayout.org

Page 1873 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.179. API reference - Class FileDialog

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

ask_existing_dir
Signature: [static] variant ask_existing_dir (string title, string dir)

Description: Open a dialog to select a directory

title: The title of the dialog

dir: The directory selected initially

Returns: The directory path selected or "nil" if "Cancel" was pressed

This method has been introduced in version 0.23. It is somewhat easier to use than the get_...
equivalent.

ask_open_file_name
Signature: [static] variant ask_open_file_name (string title, string dir, string filter)

Description: Select one file for opening

title: The title of the dialog

dir: The directory selected initially

filter: The filters available, for example "Images (*.png *.xpm
.jpg);;Text files (.txt);;XML files (*.xml)"

Returns: The path of the file selected or "nil" if "Cancel" was pressed

This method has been introduced in version 0.23. It is somewhat easier to use than the get_...
equivalent.

For more details visit
https://www.klayout.org

Page 1874 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.179. API reference - Class FileDialog

ask_open_file_names
Signature: [static] variant ask_open_file_names (string title, string dir, string filter)

Description: Select one or multiple files for opening

title: The title of the dialog

dir: The directory selected initially

filter: The filters available, for example "Images (*.png *.xpm
.jpg);;Text files (.txt);;XML files (*.xml)"

Returns: An array with the file paths selected or "nil" if "Cancel" was
pressed

This method has been introduced in version 0.23. It is somewhat easier to use than the get_...
equivalent.

ask_save_file_name
Signature: [static] variant ask_save_file_name (string title, string dir, string filter)

Description: Select one file for writing

title: The title of the dialog

dir: The directory selected initially

filter: The filters available, for example "Images (*.png *.xpm
.jpg);;Text files (.txt);;XML files (*.xml)"

Returns: The path of the file chosen or "nil" if "Cancel" was pressed

This method has been introduced in version 0.23. It is somewhat easier to use than the get_...
equivalent.

assign
Signature: void assign (const FileDialog other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new FileDialog ptr dup

For more details visit
https://www.klayout.org

Page 1875 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.179. API reference - Class FileDialog

Description: Creates a copy of self

get_existing_dir
Signature: [static] StringValue get_existing_dir (string title, string dir)

Description: Open a dialog to select a directory

title: The title of the dialog

dir: The directory selected initially

Returns: A StringValue object that contains the directory path selected or
with has_value? = false if "Cancel" was pressed

Use of this method is deprecated

Starting with version 0.23 this method is deprecated. Use ask_existing_dir instead.

get_open_file_name
Signature: [static] StringValue get_open_file_name (string title, string dir, string filter)

Description: Select one file for opening

title: The title of the dialog

dir: The directory selected initially

filter: The filters available, for example "Images (*.png *.xpm
.jpg);;Text files (.txt);;XML files (*.xml)"

Returns: A StringValue object that contains the files selected or with
has_value? = false if "Cancel" was pressed

Use of this method is deprecated

Starting with version 0.23 this method is deprecated. Use ask_open_file_name instead.

get_open_file_names
Signature: [static] StringListValue get_open_file_names (string title, string dir, string filter)

Description: Select one or multiple files for opening

title: The title of the dialog

dir: The directory selected initially

filter: The filters available, for example "Images (*.png *.xpm
.jpg);;Text files (.txt);;XML files (*.xml)"

Returns: A StringListValue object that contains the files selected or with
has_value? = false if "Cancel" was pressed

Use of this method is deprecated

Starting with version 0.23 this method is deprecated. Use ask_open_file_names instead.

get_save_file_name
Signature: [static] StringValue get_save_file_name (string title, string dir, string filter)

Description: Select one file for writing

title: The title of the dialog

dir: The directory selected initially

filter: The filters available, for example "Images (*.png *.xpm
.jpg);;Text files (.txt);;XML files (*.xml)"

Returns: A StringValue object that contains the files selected or with
has_value? = false if "Cancel" was pressed

Use of this method is deprecated

Starting with version 0.23 this method is deprecated. Use ask_save_file_name instead.

For more details visit
https://www.klayout.org

Page 1876 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.179. API reference - Class FileDialog

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new FileDialog ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1877 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.180. API reference - Class MessageBox

4.180. API reference - Class MessageBox
Notation used in Ruby API documentation

Module: lay

Description: Various methods to display message boxes

Class hierarchy: MessageBox » QMainWindow » QWidget » QObject

This class provides some basic message boxes. This functionality is provided through the static (class) methods warning, question and so
on.

Here is some example:

issue a warning and ask whether to continue:
v = RBA::MessageBox::warning("Dialog Title", "Something happened. Continue?", RBA::MessageBox::Yes +
 RBA::MessageBox::No)
if v == RBA::MessageBox::Yes
 ... continue ...
end

If you have enabled the Qt binding, you can use QMessageBox directly.

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
MessageBox
other)

Assigns another object to self

[const] new MessageBox ptr dup Creates a copy of self

Public static methods and constants

int Abort A constant describing the 'Abort' button

int Cancel A constant describing the 'Cancel' button

int Ignore A constant describing the 'Ignore' button

int No A constant describing the 'No' button

int Ok A constant describing the 'Ok' button

For more details visit
https://www.klayout.org

Page 1878 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.180. API reference - Class MessageBox

int Retry A constant describing the 'Retry' button

int Yes A constant describing the 'Yes' button

int critical (string title,
string text,
int buttons)

Open a critical (error) message box

int info (string title,
string text,
int buttons)

Open a information message box

int question (string title,
string text,
int buttons)

Open a question message box

int warning (string title,
string text,
int buttons)

Open a warning message box

Deprecated methods (protected, public, static, non-static and constructors)

[static] int b_abort Use of this method is deprecated. Use Abort instead

[static] int b_cancel Use of this method is deprecated. Use Cancel instead

[static] int b_ignore Use of this method is deprecated. Use Ignore instead

[static] int b_no Use of this method is deprecated. Use No instead

[static] int b_ok Use of this method is deprecated. Use Ok instead

[static] int b_retry Use of this method is deprecated. Use Retry instead

[static] int b_yes Use of this method is deprecated. Use Yes instead

Detailed description

Abort
Signature: [static] int Abort

Description: A constant describing the 'Abort' button

Cancel
Signature: [static] int Cancel

Description: A constant describing the 'Cancel' button

Ignore
Signature: [static] int Ignore

Description: A constant describing the 'Ignore' button

No
Signature: [static] int No

Description: A constant describing the 'No' button

Ok
Signature: [static] int Ok

For more details visit
https://www.klayout.org

Page 1879 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.180. API reference - Class MessageBox

Description: A constant describing the 'Ok' button

Retry
Signature: [static] int Retry

Description: A constant describing the 'Retry' button

Yes
Signature: [static] int Yes

Description: A constant describing the 'Yes' button

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 1880 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.180. API reference - Class MessageBox

assign
Signature: void assign (const MessageBox other)

Description: Assigns another object to self

b_abort
Signature: [static] int b_abort

Description: A constant describing the 'Abort' button

Use of this method is deprecated. Use Abort instead

b_cancel
Signature: [static] int b_cancel

Description: A constant describing the 'Cancel' button

Use of this method is deprecated. Use Cancel instead

b_ignore
Signature: [static] int b_ignore

Description: A constant describing the 'Ignore' button

Use of this method is deprecated. Use Ignore instead

b_no
Signature: [static] int b_no

Description: A constant describing the 'No' button

Use of this method is deprecated. Use No instead

b_ok
Signature: [static] int b_ok

Description: A constant describing the 'Ok' button

Use of this method is deprecated. Use Ok instead

b_retry
Signature: [static] int b_retry

Description: A constant describing the 'Retry' button

Use of this method is deprecated. Use Retry instead

b_yes
Signature: [static] int b_yes

Description: A constant describing the 'Yes' button

Use of this method is deprecated. Use Yes instead

critical
Signature: [static] int critical (string title, string text, int buttons)

Description: Open a critical (error) message box

title: The title of the window

text: The text to show

buttons: A combination (+) of button constants (Ok and so on) describing
the buttons to show for the message box

Returns: The button constant describing the button that was pressed

dup
Signature: [const] new MessageBox ptr dup

Description: Creates a copy of self

For more details visit
https://www.klayout.org

Page 1881 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.180. API reference - Class MessageBox

info
Signature: [static] int info (string title, string text, int buttons)

Description: Open a information message box

title: The title of the window

text: The text to show

buttons: A combination (+) of button constants (Ok and so on) describing
the buttons to show for the message box

Returns: The button constant describing the button that was pressed

question
Signature: [static] int question (string title, string text, int buttons)

Description: Open a question message box

title: The title of the window

text: The text to show

buttons: A combination (+) of button constants (Ok and so on) describing
the buttons to show for the message box

Returns: The button constant describing the button that was pressed

warning
Signature: [static] int warning (string title, string text, int buttons)

Description: Open a warning message box

title: The title of the window

text: The text to show

buttons: A combination (+) of button constants (Ok and so on) describing
the buttons to show for the message box

Returns: The button constant describing the button that was pressed

For more details visit
https://www.klayout.org

Page 1882 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

4.181. API reference - Class LayerProperties
Notation used in Ruby API documentation

Module: lay

Description: The layer properties structure

The layer properties encapsulate the settings relevant for the display and source of a layer.

Each attribute is present in two incarnations: local and real. "real" refers to the effective attribute after collecting the attributes from
the parents to the leaf property node. In the spirit of this distinction, all read accessors are present in "local" and "real" form. The read
accessors take a boolean parameter "real" that must be set to true, if the real value shall be returned.

"brightness" is a index that indicates how much to make the color brighter to darker rendering the effective color (eff_frame_color,
eff_fill_color). It's value is roughly between -255 and 255.

Public constructors

new LayerProperties ptr new Creates a new object of this class

Public methods

[const] bool != (const
LayerProperties
other)

Inequality

[const] bool == (const
LayerProperties
other)

Equality

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] int animation (bool real) Gets the animation state

[const] int animation Gets the animation state

void animation= (int animation) Sets the animation state

void assign (const
LayerProperties
other)

Assigns another object to self

[const] int cellview Gets the the cellview index

For more details visit
https://www.klayout.org

Page 1883 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

void clear_dither_pattern Clears the dither pattern

void clear_fill_color Resets the fill color

void clear_frame_color Resets the frame color

void clear_line_style Clears the line style

void clear_lower_hier_level Clears the lower hierarchy level
specification

void clear_source_name Removes any stream layer name
specification from this layer

void clear_upper_hier_level Clears the upper hierarchy level
specification

[const] int dither_pattern (bool real) Gets the dither pattern index

[const] int dither_pattern Gets the dither pattern index

void dither_pattern= (int index) Sets the dither pattern index

[const] new
LayerProperties
ptr

dup Creates a copy of self

[const] unsigned int eff_dither_pattern (bool real) Gets the effective dither pattern index

[const] unsigned int eff_dither_pattern Gets the effective dither pattern index

[const] unsigned int eff_fill_color (bool real) Gets the effective fill color

[const] unsigned int eff_fill_color Gets the effective fill color

[const] unsigned int eff_frame_color (bool real) Gets the effective frame color

[const] unsigned int eff_frame_color Gets the effective frame color

[const] unsigned int eff_line_style (bool real) Gets the effective line style index

[const] unsigned int eff_line_style Gets the line style index

[const] int fill_brightness (bool real) Gets the fill brightness value

[const] int fill_brightness Gets the fill brightness value

void fill_brightness= (int brightness) Sets the fill brightness

[const] unsigned int fill_color (bool real) Gets the fill color

[const] unsigned int fill_color Gets the fill color

void fill_color= (unsigned int
color)

Sets the fill color to the given value

[const] LayerProperties flat Returns the "flattened" (effective) layer
properties entry for this node

For more details visit
https://www.klayout.org

Page 1884 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

[const] int frame_brightness (bool real) Gets the frame brightness value

[const] int frame_brightness Gets the frame brightness value

void frame_brightness= (int brightness) Sets the frame brightness

[const] unsigned int frame_color (bool real) Gets the frame color

[const] unsigned int frame_color Gets the frame color

void frame_color= (unsigned int
color)

Sets the frame color to the given value

[const] bool has_dither_pattern? (bool real) True, if the dither pattern is set

[const] bool has_dither_pattern? True, if the dither pattern is set

[const] bool has_fill_color? (bool real) True, if the fill color is set

[const] bool has_fill_color? True, if the fill color is set

[const] bool has_frame_color? (bool real) True, if the frame color is set

[const] bool has_frame_color? True, if the frame color is set

[const] bool has_line_style? (bool real) Gets a value indicating whether the line
style is set

[const] bool has_line_style? True, if the line style is set

[const] bool has_lower_hier_level? (bool real) Gets a value indicating whether a lower
hierarchy level is explicitly specified

[const] bool has_lower_hier_level? Gets a value indicating whether a lower
hierarchy level is explicitly specified

[const] bool has_source_name? (bool real) Gets a value indicating whether a stream
layer name is specified for this layer

[const] bool has_source_name? Gets a value indicating whether a stream
layer name is specified for this layer

[const] bool has_upper_hier_level? (bool real) Gets a value indicating whether an upper
hierarchy level is explicitly specified

[const] bool has_upper_hier_level? Gets a value indicating whether an upper
hierarchy level is explicitly specified

[const] int layer_index Gets the the layer index

[const] int line_style (bool real) Gets the line style index

[const] int line_style Gets the line style index

void line_style= (int index) Sets the line style index

[const] int lower_hier_level (bool real) Gets the lower hierarchy level shown

For more details visit
https://www.klayout.org

Page 1885 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

[const] int lower_hier_level Gets the lower hierarchy level shown

void lower_hier_level= (int level) Sets the lower hierarchy level

[const] int lower_hier_level_mode (bool arg1) Gets the mode for the lower hierarchy level.

[const] int lower_hier_level_mode Gets the mode for the lower hierarchy level.

[const] bool lower_hier_level_relative? (bool real) Gets a value indicating whether the lower
hierarchy level is relative.

[const] bool lower_hier_level_relative? Gets a value indicating whether the upper
hierarchy level is relative.

void marked= (bool marked) Sets the marked state

[const] bool marked? (bool real) Gets the marked state

[const] bool marked? Gets the marked state

[const] string name Gets the name

void name= (string name) Sets the name to the given string

void set_lower_hier_level (int level,
bool relative)

Sets the lower hierarchy level and if it is
relative to the context cell

void set_lower_hier_level (int level,
bool relative,
int mode)

Sets the lower hierarchy level, whether it is
relative to the context cell and the mode

void set_upper_hier_level (int level,
bool relative)

Sets the upper hierarchy level and if it is
relative to the context cell

void set_upper_hier_level (int level,
bool relative,
int mode)

Sets the upper hierarchy level, if it is
relative to the context cell and the mode

[const] string source (bool real) Gets the source specification

[const] string source Gets the source specification

void source= (string s) Loads the source specification from a string

[const] int source_cellview (bool real) Gets the cellview index that this layer refers
to

[const] int source_cellview Gets the cellview index that this layer refers
to

void source_cellview= (int
cellview_index)

Sets the cellview index that this layer refers
to

[const] int source_datatype (bool real) Gets the stream datatype that the shapes
are taken from

[const] int source_datatype Gets the stream datatype that the shapes
are taken from

For more details visit
https://www.klayout.org

Page 1886 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

void source_datatype= (int datatype) Sets the stream datatype that the shapes
are taken from

[const] int source_layer (bool real) Gets the stream layer that the shapes are
taken from

[const] int source_layer Gets the stream layer that the shapes are
taken from

void source_layer= (int layer) Sets the stream layer that the shapes are
taken from

[const] int source_layer_index (bool real) Gets the layer index that the shapes are
taken from

[const] int source_layer_index Gets the stream layer that the shapes are
taken from

void source_layer_index= (int index) Sets the layer index specification that the
shapes are taken from

[const] string source_name (bool real) Gets the stream name that the shapes are
taken from

[const] string source_name Gets the stream name that the shapes are
taken from

void source_name= (string name) Sets the stream layer name that the shapes
are taken from

[const] DCplxTrans[] trans (bool real) Gets the transformations that the layer is
transformed with

[const] DCplxTrans[] trans Gets the transformations that the layer is
transformed with

void trans= (DCplxTrans[]
trans_vector)

Sets the transformations that the layer is
transformed with

void transparent= (bool
transparent)

Sets the transparency state

[const] bool transparent? (bool real) Gets the transparency state

[const] bool transparent? Gets the transparency state

[const] int upper_hier_level (bool real) Gets the upper hierarchy level shown

[const] int upper_hier_level Gets the upper hierarchy level shown

void upper_hier_level= (int level) Sets a upper hierarchy level

[const] int upper_hier_level_mode (bool real) Gets the mode for the upper hierarchy
level.

[const] int upper_hier_level_mode Gets the mode for the upper hierarchy
level.

For more details visit
https://www.klayout.org

Page 1887 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

[const] bool upper_hier_level_relative? (bool real) Gets a value indicating whether if the upper
hierarchy level is relative.

[const] bool upper_hier_level_relative? Gets a value indicating whether the upper
hierarchy level is relative.

void valid= (bool valid) Sets the validity state

[const] bool valid? (bool real) Gets the validity state

[const] bool valid? Gets the validity state

void visible= (bool visible) Sets the visibility state

[const] bool visible? (bool real) Gets the visibility state

[const] bool visible? Gets the visibility state

[const] int width (bool real) Gets the line width

[const] int width Gets the line width

void width= (int width) Sets the line width to the given width

void xfill= (bool xfill) Sets a value indicating whether shapes are
drawn with a cross

[const] bool xfill? (bool real) Gets a value indicating whether shapes are
drawn with a cross

[const] bool xfill? Gets a value indicating whether shapes are
drawn with a cross

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[const] bool lower_hier_level_relative (bool
real)

Use of this method is deprecated. Use
lower_hier_level_relative? instead

[const] bool lower_hier_level_relative Use of this method is deprecated. Use
lower_hier_level_relative? instead

[const] bool upper_hier_level_relative (bool
real)

Use of this method is deprecated. Use
upper_hier_level_relative? instead

For more details visit
https://www.klayout.org

Page 1888 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

[const] bool upper_hier_level_relative Use of this method is deprecated. Use
upper_hier_level_relative? instead

Detailed description

!=
Signature: [const] bool != (const LayerProperties other)

Description: Inequality

other: The other object to compare against

==
Signature: [const] bool == (const LayerProperties other)

Description: Equality

other: The other object to compare against

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of
the object. This method may be called if an object is returned from a C++ function and the object
is known not to be owned by any C++ instance. If necessary, the script side may delete the object
if the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

For more details visit
https://www.klayout.org

Page 1889 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

(1) Signature: [const] int animation (bool real)

Description: Gets the animation state

The animation state is an integer either being 0 (static), 1 (scrolling), 2 (blinking) or 3 (inversely
blinking)

Python specific notes:
This attribute is available as 'animation_' in Python

animation

(2) Signature: [const] int animation

Description: Gets the animation state

This method is a convenience method for "animation(true)"

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'animation'. This is the getter.

animation=
Signature: void animation= (int animation)

Description: Sets the animation state

See the description of the animation method for details about the animation state

Python specific notes:
The object exposes a writable attribute 'animation'. This is the setter.

assign
Signature: void assign (const LayerProperties other)

Description: Assigns another object to self

cellview
Signature: [const] int cellview

Description: Gets the the cellview index

This is the index of the actual cellview to use. Basically, this method returns source_cellview in
"real" mode. The result may be different, if the cellview is not valid for example. In this case, a
negative value is returned.

clear_dither_pattern
Signature: void clear_dither_pattern

Description: Clears the dither pattern

clear_fill_color
Signature: void clear_fill_color

Description: Resets the fill color

clear_frame_color
Signature: void clear_frame_color

Description: Resets the frame color

For more details visit
https://www.klayout.org

Page 1890 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

clear_line_style
Signature: void clear_line_style

Description: Clears the line style

This method has been introduced in version 0.25.

clear_lower_hier_level
Signature: void clear_lower_hier_level

Description: Clears the lower hierarchy level specification

See has_lower_hier_level for a description of this property

clear_source_name
Signature: void clear_source_name

Description: Removes any stream layer name specification from this layer

clear_upper_hier_level
Signature: void clear_upper_hier_level

Description: Clears the upper hierarchy level specification

See has_upper_hier_level for a description of this property

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

(1) Signature: [const] int dither_pattern (bool real)

Description: Gets the dither pattern index

real: Set to true to return the real instead of local value

This method may deliver an invalid dither pattern index if it is not set.

Python specific notes:
This attribute is available as 'dither_pattern_' in Python

dither_pattern

(2) Signature: [const] int dither_pattern

Description: Gets the dither pattern index

For more details visit
https://www.klayout.org

Page 1891 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

This method is a convenience method for "dither_pattern(true)"

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'dither_pattern'. This is the getter.

dither_pattern=
Signature: void dither_pattern= (int index)

Description: Sets the dither pattern index

The dither pattern index must be one of the valid indices. The first indices are reserved for built-
in pattern, the following ones are custom pattern. Index 0 is always solid filled and 1 is always the
hollow filled pattern. For custom pattern see LayoutView#add_stipple.

Python specific notes:
The object exposes a writable attribute 'dither_pattern'. This is the setter.

dup
Signature: [const] new LayerProperties ptr dup

Description: Creates a copy of self

(1) Signature: [const] unsigned int eff_dither_pattern (bool real)

Description: Gets the effective dither pattern index

real: Set to true to return the real instead of local value

The effective dither pattern index is always a valid index, even if no dither pattern is set.

eff_dither_pattern

(2) Signature: [const] unsigned int eff_dither_pattern

Description: Gets the effective dither pattern index

This method is a convenience method for "eff_dither_pattern(true)"

This method has been introduced in version 0.22.

(1) Signature: [const] unsigned int eff_fill_color (bool real)

Description: Gets the effective fill color

real: Set to true to return the real instead of local value

The effective fill color is computed from the frame color brightness and the frame color.

eff_fill_color

(2) Signature: [const] unsigned int eff_fill_color

Description: Gets the effective fill color

This method is a convenience method for "eff_fill_color(true)"

This method has been introduced in version 0.22.

(1) Signature: [const] unsigned int eff_frame_color (bool real)

Description: Gets the effective frame color

real: Set to true to return the real instead of local value

The effective frame color is computed from the frame color brightness and the frame color.

eff_frame_color

(2) Signature: [const] unsigned int eff_frame_color

Description: Gets the effective frame color

For more details visit
https://www.klayout.org

Page 1892 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

This method is a convenience method for "eff_frame_color(true)"

This method has been introduced in version 0.22.

(1) Signature: [const] unsigned int eff_line_style (bool real)

Description: Gets the effective line style index

real: Set to true to return the real instead of local value

The effective line style index is always a valid index, even if no line style is set. In that case, a
default style index will be returned.

This method has been introduced in version 0.25.

eff_line_style

(2) Signature: [const] unsigned int eff_line_style

Description: Gets the line style index

This method is a convenience method for "eff_line_style(true)"

This method has been introduced in version 0.25.

(1) Signature: [const] int fill_brightness (bool real)

Description: Gets the fill brightness value

real: Set to true to return the real instead of local value

If the brightness is not set, this method may return an invalid value

Python specific notes:
This attribute is available as 'fill_brightness_' in Python

fill_brightness

(2) Signature: [const] int fill_brightness

Description: Gets the fill brightness value

This method is a convenience method for "fill_brightness(true)"

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'fill_brightness'. This is the getter.

fill_brightness=
Signature: void fill_brightness= (int brightness)

Description: Sets the fill brightness

For neutral brightness set this value to 0. For darker colors set it to a negative value (down to
-255), for brighter colors to a positive value (up to 255)

Python specific notes:
The object exposes a writable attribute 'fill_brightness'. This is the setter.

(1) Signature: [const] unsigned int fill_color (bool real)

Description: Gets the fill color

real: Set to true to return the real instead of local value

This method may return an invalid color if the color is not set.

Python specific notes:
This attribute is available as 'fill_color_' in Python

fill_color

For more details visit
https://www.klayout.org

Page 1893 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

(2) Signature: [const] unsigned int fill_color

Description: Gets the fill color

This method is a convenience method for "fill_color(true)"

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'fill_color'. This is the getter.

fill_color=
Signature: void fill_color= (unsigned int color)

Description: Sets the fill color to the given value

The color is a 32bit value encoding the blue value in the lower 8 bits, the green value in the next 8
bits and the red value in the 8 bits above that.

Python specific notes:
The object exposes a writable attribute 'fill_color'. This is the setter.

flat
Signature: [const] LayerProperties flat

Description: Returns the "flattened" (effective) layer properties entry for this node

This method returns a LayerProperties object that is not embedded into a hierarchy. This object
represents the effective layer properties for the given node. In particular, all 'local' properties are
identical to the 'real' properties. Such an object can be used as a basis for manipulations. This
method has been introduced in version 0.22.

(1) Signature: [const] int frame_brightness (bool real)

Description: Gets the frame brightness value

real: Set to true to return the real instead of local value

If the brightness is not set, this method may return an invalid value

Python specific notes:
This attribute is available as 'frame_brightness_' in Python

frame_brightness

(2) Signature: [const] int frame_brightness

Description: Gets the frame brightness value

This method is a convenience method for "frame_brightness(true)"

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'frame_brightness'. This is the getter.

frame_brightness=
Signature: void frame_brightness= (int brightness)

Description: Sets the frame brightness

For neutral brightness set this value to 0. For darker colors set it to a negative value (down to
-255), for brighter colors to a positive value (up to 255)

Python specific notes:
The object exposes a writable attribute 'frame_brightness'. This is the setter.

frame_color
(1) Signature: [const] unsigned int frame_color (bool real)

Description: Gets the frame color

real: Set to true to return the real instead of local value

For more details visit
https://www.klayout.org

Page 1894 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

This method may return an invalid color if the color is not set.

Python specific notes:
This attribute is available as 'frame_color_' in Python

(2) Signature: [const] unsigned int frame_color

Description: Gets the frame color

This method is a convenience method for "frame_color(true)"

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'frame_color'. This is the getter.

frame_color=
Signature: void frame_color= (unsigned int color)

Description: Sets the frame color to the given value

The color is a 32bit value encoding the blue value in the lower 8 bits, the green value in the next 8
bits and the red value in the 8 bits above that.

Python specific notes:
The object exposes a writable attribute 'frame_color'. This is the setter.

(1) Signature: [const] bool has_dither_pattern? (bool real)

Description: True, if the dither pattern is sethas_dither_pattern?

(2) Signature: [const] bool has_dither_pattern?

Description: True, if the dither pattern is set

This method is a convenience method for "has_dither_pattern?(true)"

This method has been introduced in version 0.22.

(1) Signature: [const] bool has_fill_color? (bool real)

Description: True, if the fill color is sethas_fill_color?

(2) Signature: [const] bool has_fill_color?

Description: True, if the fill color is set

This method is a convenience method for "has_fill_color?(true)"

This method has been introduced in version 0.22.

(1) Signature: [const] bool has_frame_color? (bool real)

Description: True, if the frame color is sethas_frame_color?

(2) Signature: [const] bool has_frame_color?

Description: True, if the frame color is set

This method is a convenience method for "has_frame_color?(true)"

This method has been introduced in version 0.22.

For more details visit
https://www.klayout.org

Page 1895 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

(1) Signature: [const] bool has_line_style? (bool real)

Description: Gets a value indicating whether the line style is set

This method has been introduced in version 0.25.

has_line_style?

(2) Signature: [const] bool has_line_style?

Description: True, if the line style is set

This method is a convenience method for "has_line_style?(true)"

This method has been introduced in version 0.25.

(1) Signature: [const] bool has_lower_hier_level? (bool real)

Description: Gets a value indicating whether a lower hierarchy level is explicitly specified

If "real" is true, the effective value is returned.

has_lower_hier_level?

(2) Signature: [const] bool has_lower_hier_level?

Description: Gets a value indicating whether a lower hierarchy level is explicitly specified

This method is a convenience method for "has_lower_hier_level?(true)"

This method has been introduced in version 0.22.

(1) Signature: [const] bool has_source_name? (bool real)

Description: Gets a value indicating whether a stream layer name is specified for this layer

If "real" is true, the effective value is returned.

has_source_name?

(2) Signature: [const] bool has_source_name?

Description: Gets a value indicating whether a stream layer name is specified for this layer

This method is a convenience method for "has_source_name?(true)"

This method has been introduced in version 0.22.

(1) Signature: [const] bool has_upper_hier_level? (bool real)

Description: Gets a value indicating whether an upper hierarchy level is explicitly specified

If "real" is true, the effective value is returned.

has_upper_hier_level?

(2) Signature: [const] bool has_upper_hier_level?

Description: Gets a value indicating whether an upper hierarchy level is explicitly specified

This method is a convenience method for "has_upper_hier_level?(true)"

This method has been introduced in version 0.22.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

For more details visit
https://www.klayout.org

Page 1896 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

layer_index
Signature: [const] int layer_index

Description: Gets the the layer index

This is the index of the actual layer used. The source specification given by source_layer,
source_datatype, source_name is evaluated and the corresponding layer is looked up in the
layout object. If a source_layer_index is specified, this layer index is taken as the layer index to
use.

(1) Signature: [const] int line_style (bool real)

Description: Gets the line style index

real: Set to true to return the real instead of local value

This method may deliver an invalid line style index if it is not set (see has_line_style?).

This method has been introduced in version 0.25.

Python specific notes:
This attribute is available as 'line_style_' in Python

line_style

(2) Signature: [const] int line_style

Description: Gets the line style index

This method is a convenience method for "line_style(true)"

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'line_style'. This is the getter.

line_style=
Signature: void line_style= (int index)

Description: Sets the line style index

The line style index must be one of the valid indices. The first indices are reserved for built-in
pattern, the following ones are custom pattern. Index 0 is always solid filled. For custom line styles
see LayoutView#add_line_style.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'line_style'. This is the setter.

(1) Signature: [const] int lower_hier_level (bool real)

Description: Gets the lower hierarchy level shown

This is the hierarchy level at which the drawing starts. This property is only meaningful, if
has_lower_hier_level is true. The hierarchy level can be relative in which case, 0 refers to the
context cell's level. A mode can be specified for the hierarchy level which is 0 for absolute, 1 for
minimum of specified level and set level and 2 for maximum of specified level and set level.

Python specific notes:
This attribute is available as 'lower_hier_level_' in Python

lower_hier_level

(2) Signature: [const] int lower_hier_level

Description: Gets the lower hierarchy level shown

This method is a convenience method for "lower_hier_level(true)"

This method has been introduced in version 0.22.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1897 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

The object exposes a readable attribute 'lower_hier_level'. This is the getter.

lower_hier_level=
Signature: void lower_hier_level= (int level)

Description: Sets the lower hierarchy level

If this method is called, the lower hierarchy level is enabled. See lower_hier_level for a description
of this property.

Python specific notes:
The object exposes a writable attribute 'lower_hier_level'. This is the setter.

(1) Signature: [const] int lower_hier_level_mode (bool arg1)

Description: Gets the mode for the lower hierarchy level.

real: If true, the computed value is returned, otherwise the local node
value

The mode value can be 0 (value is given by lower_hier_level), 1 for "minimum value" and 2 for
"maximum value".

This method has been introduced in version 0.20.

lower_hier_level_mode

(2) Signature: [const] int lower_hier_level_mode

Description: Gets the mode for the lower hierarchy level.

This method is a convenience method for "lower_hier_level_mode(true)"

This method has been introduced in version 0.22.

(1) Signature: [const] bool lower_hier_level_relative (bool real)

Description: Gets a value indicating whether the lower hierarchy level is relative.

Use of this method is deprecated. Use lower_hier_level_relative? instead

See lower_hier_level for a description of this property.

This method has been introduced in version 0.19.

lower_hier_level_relative

(2) Signature: [const] bool lower_hier_level_relative

Description: Gets a value indicating whether the upper hierarchy level is relative.

Use of this method is deprecated. Use lower_hier_level_relative? instead

This method is a convenience method for "lower_hier_level_relative(true)"

This method has been introduced in version 0.22.

(1) Signature: [const] bool lower_hier_level_relative? (bool real)

Description: Gets a value indicating whether the lower hierarchy level is relative.

See lower_hier_level for a description of this property.

This method has been introduced in version 0.19.

lower_hier_level_relative?

(2) Signature: [const] bool lower_hier_level_relative?

Description: Gets a value indicating whether the upper hierarchy level is relative.

This method is a convenience method for "lower_hier_level_relative(true)"

For more details visit
https://www.klayout.org

Page 1898 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

This method has been introduced in version 0.22.

marked=
Signature: void marked= (bool marked)

Description: Sets the marked state

Python specific notes:
The object exposes a writable attribute 'marked'. This is the setter.

(1) Signature: [const] bool marked? (bool real)

Description: Gets the marked state

Python specific notes:
This attribute is available as 'marked_' in Python

marked?

(2) Signature: [const] bool marked?

Description: Gets the marked state

This method is a convenience method for "marked?(true)"

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'marked'. This is the getter.

name
Signature: [const] string name

Description: Gets the name

Python specific notes:
The object exposes a readable attribute 'name'. This is the getter.

name=
Signature: void name= (string name)

Description: Sets the name to the given string

Python specific notes:
The object exposes a writable attribute 'name'. This is the setter.

new
Signature: [static] new LayerProperties ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

(1) Signature: void set_lower_hier_level (int level, bool relative)

Description: Sets the lower hierarchy level and if it is relative to the context cell

If this method is called, the lower hierarchy level is enabled. See lower_hier_level for a description
of this property.

This method has been introduced in version 0.19.

set_lower_hier_level

(2) Signature: void set_lower_hier_level (int level, bool relative, int mode)

Description: Sets the lower hierarchy level, whether it is relative to the context cell and the mode

If this method is called, the lower hierarchy level is enabled. See lower_hier_level for a description
of this property.

This method has been introduced in version 0.20.

For more details visit
https://www.klayout.org

Page 1899 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

(1) Signature: void set_upper_hier_level (int level, bool relative)

Description: Sets the upper hierarchy level and if it is relative to the context cell

If this method is called, the upper hierarchy level is enabled. See upper_hier_level for a
description of this property.

This method has been introduced in version 0.19.

set_upper_hier_level

(2) Signature: void set_upper_hier_level (int level, bool relative, int mode)

Description: Sets the upper hierarchy level, if it is relative to the context cell and the mode

If this method is called, the upper hierarchy level is enabled. See upper_hier_level for a
description of this property.

This method has been introduced in version 0.20.

(1) Signature: [const] string source (bool real)

Description: Gets the source specification

real: Set to true to return the computed instead of local value

This method delivers the source specification as a string

Python specific notes:
This attribute is available as 'source_' in Python

source

(2) Signature: [const] string source

Description: Gets the source specification

This method is a convenience method for "source(true)"

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'source'. This is the getter.

source=
Signature: void source= (string s)

Description: Loads the source specification from a string

Sets the source specification to the given string. The source specification may contain the cellview
index, the source layer (given by layer/datatype or layer name), transformation, property selector
etc. This method throws an exception if the specification is not valid.

Python specific notes:
The object exposes a writable attribute 'source'. This is the setter.

(1) Signature: [const] int source_cellview (bool real)

Description: Gets the cellview index that this layer refers to

If "real" is true, the effective value is returned.

Python specific notes:
This attribute is available as 'source_cellview_' in Python

source_cellview

(2) Signature: [const] int source_cellview

Description: Gets the cellview index that this layer refers to

This method is a convenience method for "source_cellview(true)"

For more details visit
https://www.klayout.org

Page 1900 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'source_cellview'. This is the getter.

source_cellview=
Signature: void source_cellview= (int cellview_index)

Description: Sets the cellview index that this layer refers to

See cellview for a description of the transformations.

Python specific notes:
The object exposes a writable attribute 'source_cellview'. This is the setter.

(1) Signature: [const] int source_datatype (bool real)

Description: Gets the stream datatype that the shapes are taken from

If the datatype is positive, the actual layer is looked up by this stream datatype. If a name or layer
index is specified, the stream datatype is not used.

If "real" is true, the effective value is returned.

Python specific notes:
This attribute is available as 'source_datatype_' in Python

source_datatype

(2) Signature: [const] int source_datatype

Description: Gets the stream datatype that the shapes are taken from

This method is a convenience method for "source_datatype(true)"

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'source_datatype'. This is the getter.

source_datatype=
Signature: void source_datatype= (int datatype)

Description: Sets the stream datatype that the shapes are taken from

See datatype for a description of this property

Python specific notes:
The object exposes a writable attribute 'source_datatype'. This is the setter.

(1) Signature: [const] int source_layer (bool real)

Description: Gets the stream layer that the shapes are taken from

If the layer is positive, the actual layer is looked up by this stream layer. If a name or layer index is
specified, the stream layer is not used.

If "real" is true, the effective value is returned.

Python specific notes:
This attribute is available as 'source_layer_' in Python

source_layer

(2) Signature: [const] int source_layer

Description: Gets the stream layer that the shapes are taken from

This method is a convenience method for "source_layer(true)"

This method has been introduced in version 0.22.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1901 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

The object exposes a readable attribute 'source_layer'. This is the getter.

source_layer=
Signature: void source_layer= (int layer)

Description: Sets the stream layer that the shapes are taken from

See source_layer for a description of this property

Python specific notes:
The object exposes a writable attribute 'source_layer'. This is the setter.

(1) Signature: [const] int source_layer_index (bool real)

Description: Gets the layer index that the shapes are taken from

If the layer index is positive, the shapes drawn are taken from this layer rather than searched for
by layer and datatype. This property is stronger than the layer/datatype or name specification.

A different method is layer_index which indicates the ID of the layer actually used. While
"source_layer_index" is one of several ways to address the layer drawn, "layer_index" is the ID
(index) of the layer matching the source specification and is >= 0 if such a layer is found.

If "real" is true, the effective value is returned.

Python specific notes:
This attribute is available as 'source_layer_index_' in Python

source_layer_index

(2) Signature: [const] int source_layer_index

Description: Gets the stream layer that the shapes are taken from

This method is a convenience method for "source_layer_index(true)"

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'source_layer_index'. This is the getter.

source_layer_index=
Signature: void source_layer_index= (int index)

Description: Sets the layer index specification that the shapes are taken from

See source_layer_index for a description of this property.

Python specific notes:
The object exposes a writable attribute 'source_layer_index'. This is the setter.

(1) Signature: [const] string source_name (bool real)

Description: Gets the stream name that the shapes are taken from

If the name is non-empty, the actual layer is looked up by this stream layer name. If a layer index
(see layer_index) is specified, the stream datatype is not used. A name is only meaningful for
OASIS files.

If "real" is true, the effective value is returned.

Python specific notes:
This attribute is available as 'source_name_' in Python

source_name

(2) Signature: [const] string source_name

Description: Gets the stream name that the shapes are taken from

This method is a convenience method for "source_name(true)"

This method has been introduced in version 0.22.

For more details visit
https://www.klayout.org

Page 1902 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

Python specific notes:
The object exposes a readable attribute 'source_name'. This is the getter.

source_name=
Signature: void source_name= (string name)

Description: Sets the stream layer name that the shapes are taken from

See name for a description of this property

Python specific notes:
The object exposes a writable attribute 'source_name'. This is the setter.

(1) Signature: [const] DCplxTrans[] trans (bool real)

Description: Gets the transformations that the layer is transformed with

The transformations returned by this accessor is the one used for displaying this layer. The layout
is transformed with each of these transformations before it is drawn.

If "real" is true, the effective value is returned.

Python specific notes:
This attribute is available as 'trans_' in Python

trans

(2) Signature: [const] DCplxTrans[] trans

Description: Gets the transformations that the layer is transformed with

This method is a convenience method for "trans(true)"

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'trans'. This is the getter.

trans=
Signature: void trans= (DCplxTrans[] trans_vector)

Description: Sets the transformations that the layer is transformed with

See trans for a description of the transformations.

Python specific notes:
The object exposes a writable attribute 'trans'. This is the setter.

transparent=
Signature: void transparent= (bool transparent)

Description: Sets the transparency state

Python specific notes:
The object exposes a writable attribute 'transparent'. This is the setter.

(1) Signature: [const] bool transparent? (bool real)

Description: Gets the transparency state

Python specific notes:
This attribute is available as 'transparent_' in Python

transparent?

(2) Signature: [const] bool transparent?

Description: Gets the transparency state

This method is a convenience method for "transparent?(true)"

This method has been introduced in version 0.22.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1903 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

The object exposes a readable attribute 'transparent'. This is the getter.

(1) Signature: [const] int upper_hier_level (bool real)

Description: Gets the upper hierarchy level shown

This is the hierarchy level at which the drawing starts. This property is only meaningful, if
has_upper_hier_level is true. The hierarchy level can be relative in which case, 0 refers to the
context cell's level. A mode can be specified for the hierarchy level which is 0 for absolute, 1 for
minimum of specified level and set level and 2 for maximum of specified level and set level.

Python specific notes:
This attribute is available as 'upper_hier_level_' in Python

upper_hier_level

(2) Signature: [const] int upper_hier_level

Description: Gets the upper hierarchy level shown

This method is a convenience method for "upper_hier_level(true)"

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'upper_hier_level'. This is the getter.

upper_hier_level=
Signature: void upper_hier_level= (int level)

Description: Sets a upper hierarchy level

If this method is called, the upper hierarchy level is enabled. See upper_hier_level for a
description of this property.

Python specific notes:
The object exposes a writable attribute 'upper_hier_level'. This is the setter.

(1) Signature: [const] int upper_hier_level_mode (bool real)

Description: Gets the mode for the upper hierarchy level.

real: If true, the computed value is returned, otherwise the local node
value

The mode value can be 0 (value is given by upper_hier_level), 1 for "minimum value" and 2 for
"maximum value".

This method has been introduced in version 0.20.

upper_hier_level_mode

(2) Signature: [const] int upper_hier_level_mode

Description: Gets the mode for the upper hierarchy level.

This method is a convenience method for "upper_hier_level_mode(true)"

This method has been introduced in version 0.22.

(1) Signature: [const] bool upper_hier_level_relative (bool real)

Description: Gets a value indicating whether if the upper hierarchy level is relative.

Use of this method is deprecated. Use upper_hier_level_relative? instead

See upper_hier_level for a description of this property.

This method has been introduced in version 0.19.

upper_hier_level_relative

For more details visit
https://www.klayout.org

Page 1904 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

(2) Signature: [const] bool upper_hier_level_relative

Description: Gets a value indicating whether the upper hierarchy level is relative.

Use of this method is deprecated. Use upper_hier_level_relative? instead

This method is a convenience method for "upper_hier_level_relative(true)"

This method has been introduced in version 0.22.

(1) Signature: [const] bool upper_hier_level_relative? (bool real)

Description: Gets a value indicating whether if the upper hierarchy level is relative.

See upper_hier_level for a description of this property.

This method has been introduced in version 0.19.

upper_hier_level_relative?

(2) Signature: [const] bool upper_hier_level_relative?

Description: Gets a value indicating whether the upper hierarchy level is relative.

This method is a convenience method for "upper_hier_level_relative(true)"

This method has been introduced in version 0.22.

valid=
Signature: void valid= (bool valid)

Description: Sets the validity state

Python specific notes:
The object exposes a writable attribute 'valid'. This is the setter.

(1) Signature: [const] bool valid? (bool real)

Description: Gets the validity state

Python specific notes:
This attribute is available as 'valid_' in Python

valid?

(2) Signature: [const] bool valid?

Description: Gets the validity state

This method is a convenience method for "valid?(true)"

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a readable attribute 'valid'. This is the getter.

visible=
Signature: void visible= (bool visible)

Description: Sets the visibility state

Python specific notes:
The object exposes a writable attribute 'visible'. This is the setter.

(1) Signature: [const] bool visible? (bool real)

Description: Gets the visibility state

Python specific notes:
This attribute is available as 'visible_' in Python

visible?

(2) Signature: [const] bool visible?

For more details visit
https://www.klayout.org

Page 1905 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.181. API reference - Class LayerProperties

Description: Gets the visibility state

This method is a convenience method for "visible?(true)"

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'visible'. This is the getter.

(1) Signature: [const] int width (bool real)

Description: Gets the line width

Python specific notes:
This attribute is available as 'width_' in Python

width

(2) Signature: [const] int width

Description: Gets the line width

This method is a convenience method for "width(true)"

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'width'. This is the getter.

width=
Signature: void width= (int width)

Description: Sets the line width to the given width

Python specific notes:
The object exposes a writable attribute 'width'. This is the setter.

xfill=
Signature: void xfill= (bool xfill)

Description: Sets a value indicating whether shapes are drawn with a cross

This attribute has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'xfill'. This is the setter.

(1) Signature: [const] bool xfill? (bool real)

Description: Gets a value indicating whether shapes are drawn with a cross

This attribute has been introduced in version 0.25.

Python specific notes:
This attribute is available as 'xfill_' in Python

xfill?

(2) Signature: [const] bool xfill?

Description: Gets a value indicating whether shapes are drawn with a cross

This method is a convenience method for "xfill?(true)"

This attribute has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'xfill'. This is the getter.

For more details visit
https://www.klayout.org

Page 1906 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.182. API reference - Class LayerPropertiesNode

4.182. API reference - Class LayerPropertiesNode
Notation used in Ruby API documentation

Module: lay

Description: A layer properties node structure

Class hierarchy: LayerPropertiesNode » LayerProperties

This class is derived from LayerProperties. Objects of this class are used in the hierarchy of layer views that are arranged in a tree while
the LayerProperties object reflects the properties of a single node.

Public methods

[const] bool != (const
LayerPropertiesNode
other)

Inequality

[const] bool == (const
LayerPropertiesNode
other)

Equality

void _assign (const
LayerPropertiesNode
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] new
LayerPropertiesNode
ptr

_dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

LayerPropertiesNodeRef add_child Add a child entry

LayerPropertiesNodeRef add_child (const
LayerProperties
ptr child)

Add a child entry

[const] DBox bbox Compute the bbox of this layer

void clear_children Clears all children

[const] LayerPropertiesNode flat return the "flattened" (effective) layer
properties node for this node

For more details visit
https://www.klayout.org

Page 1907 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.182. API reference - Class LayerPropertiesNode

[const] bool has_children? Test, if there are children

[const] unsigned int id Obtain the unique ID

[const] unsigned int list_index Gets the index of the layer properties list that
the node lives in

[const] LayoutView ptr view Gets the view this node lives in

Detailed description

!=
Signature: [const] bool != (const LayerPropertiesNode other)

Description: Inequality

other: The other object to compare against

==
Signature: [const] bool == (const LayerPropertiesNode other)

Description: Equality

other: The other object to compare against

_assign
Signature: void _assign (const LayerPropertiesNode other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new LayerPropertiesNode ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

For more details visit
https://www.klayout.org

Page 1908 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.182. API reference - Class LayerPropertiesNode

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

(1) Signature: LayerPropertiesNodeRef add_child

Description: Add a child entry

Returns: A reference to the node created

This method allows building a layer properties tree by adding children to node objects. It returns a
reference to the node object created which is a freshly initialized one.

The parameterless version of this method was introduced in version 0.25.

add_child

(2) Signature: LayerPropertiesNodeRef add_child (const LayerProperties ptr child)

Description: Add a child entry

Returns: A reference to the node created

This method allows building a layer properties tree by adding children to node objects. It returns a
reference to the node object created.

This method was introduced in version 0.22.

bbox
Signature: [const] DBox bbox

Description: Compute the bbox of this layer

Returns: A bbox in micron units

This takes the layout and path definition (supported by the given default layout or path, if no specific
is given). The node must have been attached to a view to make this operation possible.

clear_children
Signature: void clear_children

Description: Clears all children

This method was introduced in version 0.22.

flat
Signature: [const] LayerPropertiesNode flat

Description: return the "flattened" (effective) layer properties node for this node

For more details visit
https://www.klayout.org

Page 1909 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.182. API reference - Class LayerPropertiesNode

This method returns a LayerPropertiesNode object that is not embedded into a hierarchy. This object
represents the effective layer properties for the given node. In particular, all 'local' properties are
identical to the 'real' properties. Such an object can be used as a basis for manipulations.

Unlike the name suggests, this node will still contain a hierarchy of nodes below if the original node
did so.

has_children?
Signature: [const] bool has_children?

Description: Test, if there are children

id
Signature: [const] unsigned int id

Description: Obtain the unique ID

Each layer properties node object has a unique ID that is created when a new LayerPropertiesNode
object is instantiated. The ID is copied when the object is copied. The ID can be used to identify the
object irregardless of it's content.

list_index
Signature: [const] unsigned int list_index

Description: Gets the index of the layer properties list that the node lives in

view
Signature: [const] LayoutView ptr view

Description: Gets the view this node lives in

This reference can be nil if the node is a orphan node that lives outside a view.

For more details visit
https://www.klayout.org

Page 1910 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.183. API reference - Class LayerPropertiesNodeRef

4.183. API reference - Class LayerPropertiesNodeRef
Notation used in Ruby API documentation

Module: lay

Description: A class representing a reference to a layer properties node

Class hierarchy: LayerPropertiesNodeRef » LayerPropertiesNode » LayerProperties

This object is returned by the layer properties iterator's current method (LayerPropertiesIterator#current). A reference behaves like a layer
properties node, but changes in the node are reflected in the view it is attached to.

A typical use case for references is this:

Hides a layers of a view
view = RBA::LayoutView::current
view.each_layer do |lref|
 # lref is a LayerPropertiesNodeRef object
 lref.visible = false
end

This class has been introduced in version 0.25.

Public methods

void _assign (const
LayerPropertiesNodeRef
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] new
LayerPropertiesNodeRef
ptr

_dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
LayerPropertiesNode
other)

Assigns the contents of the 'other' object to self.

void assign (const
LayerProperties
other)

Assigns the contents of the 'other' object to self.

void delete Erases the current node and all child nodes

For more details visit
https://www.klayout.org

Page 1911 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.183. API reference - Class LayerPropertiesNodeRef

[const] LayerPropertiesNode dup Creates a LayerPropertiesNode object as a copy of
the content of this node.

[const] bool is_valid? Returns true, if the reference points to a valid layer
properties node

Detailed description

_assign
Signature: void _assign (const LayerPropertiesNodeRef other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new LayerPropertiesNodeRef ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it

For more details visit
https://www.klayout.org

Page 1912 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.183. API reference - Class LayerPropertiesNodeRef

is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

(1) Signature: void assign (const LayerPropertiesNode other)

Description: Assigns the contents of the 'other' object to self.

This version accepts a LayerPropertiesNode object and allows modification of the layer node's
hierarchy. Assignment will reconfigure the layer node in the view.

assign

(2) Signature: void assign (const LayerProperties other)

Description: Assigns the contents of the 'other' object to self.

This version accepts a LayerProperties object. Assignment will change the properties of the layer in
the view.

delete
Signature: void delete

Description: Erases the current node and all child nodes

After erasing the node, the reference will become invalid.

dup
Signature: [const] LayerPropertiesNode dup

Description: Creates a LayerPropertiesNode object as a copy of the content of this node.

This method is mainly provided for backward compatibility with 0.24 and before.

is_valid?
Signature: [const] bool is_valid?

Description: Returns true, if the reference points to a valid layer properties node

Invalid references behave like ordinary LayerPropertiesNode objects but without the ability to update
the view upon changes of attributes.

For more details visit
https://www.klayout.org

Page 1913 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.184. API reference - Class LayerPropertiesIterator

4.184. API reference - Class LayerPropertiesIterator
Notation used in Ruby API documentation

Module: lay

Description: Layer properties iterator

This iterator provides a flat view for the layers in the layer tree if used with the next method. In this mode it will descend into the hierarchy
and deliver node by node as a linear (flat) sequence.

The iterator can also be used to navigate through the node hierarchy using next_sibling, down_first_child, parent etc.

The iterator also plays an important role for manipulating the layer properties tree, i.e. by specifying insertion points in the tree for the
LayoutView class.

Public constructors

new LayerPropertiesIterator ptr new Creates a new object of this class

Public methods

[const] bool != (const
LayerPropertiesIterator
other)

Inequality

[const] bool < (const
LayerPropertiesIterator
other)

Comparison

[const] bool == (const
LayerPropertiesIterator
other)

Equality

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by
the script side.

void assign (const
LayerPropertiesIterator
other)

Assigns another object to self

[const] bool at_end? At-the-end property

[const] bool at_top? At-the-top property

For more details visit
https://www.klayout.org

Page 1914 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.184. API reference - Class LayerPropertiesIterator

[const] unsigned long child_index Returns the index of the child within the
parent

[const] LayerPropertiesNodeRef current Returns a reference to the layer properties
node that the iterator points to

LayerPropertiesIterator down_first_child Move to the first child

LayerPropertiesIterator down_last_child Move to the last child

[const] new
LayerPropertiesIterator ptr

dup Creates a copy of self

[const] LayerPropertiesIterator first_child Returns the iterator pointing to the first
child

[const] bool is_null? "is null" predicate

[const] LayerPropertiesIterator last_child Returns the iterator pointing behind the
last child

LayerPropertiesIterator next Increment operator

LayerPropertiesIterator next_sibling (long n) Move to the next sibling by a given
distance

[const] unsigned long num_siblings Return the number of siblings

[const] LayerPropertiesIterator parent Returns the iterator pointing to the parent
node

LayerPropertiesIterator to_sibling (unsigned
long n)

Move to the sibling with the given index

LayerPropertiesIterator up Move up

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

!=
Signature: [const] bool != (const LayerPropertiesIterator other)

Description: Inequality

other: The other object to compare against

For more details visit
https://www.klayout.org

Page 1915 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.184. API reference - Class LayerPropertiesIterator

<
Signature: [const] bool < (const LayerPropertiesIterator other)

Description: Comparison

other: The other object to compare against

Returns: true, if self points to an object that comes before other

==
Signature: [const] bool == (const LayerPropertiesIterator other)

Description: Equality

other: The other object to compare against

Returns true, if self and other point to the same layer properties node. Caution: this does not imply
that both layer properties nodes sit in the same tab. Just their position in the tree is compared.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the

For more details visit
https://www.klayout.org

Page 1916 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.184. API reference - Class LayerPropertiesIterator

reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const LayerPropertiesIterator other)

Description: Assigns another object to self

at_end?
Signature: [const] bool at_end?

Description: At-the-end property

This predicate is true if the iterator is at the end of either all elements or at the end of the child list (if
down_last_child or down_first_child is used to iterate).

at_top?
Signature: [const] bool at_top?

Description: At-the-top property

This predicate is true if there is no parent node above the node addressed by self.

child_index
Signature: [const] unsigned long child_index

Description: Returns the index of the child within the parent

This method returns the index of that the properties node the iterator points to in the list of children
of it's parent. If the element does not have a parent, the index of the element in the global list is
returned.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

current
Signature: [const] LayerPropertiesNodeRef current

Description: Returns a reference to the layer properties node that the iterator points to

Starting with version 0.25, the returned object can be manipulated and the changes will be reflected
in the view immediately.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

For more details visit
https://www.klayout.org

Page 1917 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.184. API reference - Class LayerPropertiesIterator

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

down_first_child
Signature: LayerPropertiesIterator down_first_child

Description: Move to the first child

This method moves to the first child of the current element. If there is no child, at_end? will be true.
Even then, the iterator is sitting at the the child level and up can be used to move back.

down_last_child
Signature: LayerPropertiesIterator down_last_child

Description: Move to the last child

This method moves behind the last child of the current element. at_end? will be true then. Even then,
the iterator points to the child level and up can be used to move back.

Despite the name, the iterator does not address the last child, but the position after that child. To
actually get the iterator for the last child, use down_last_child and next_sibling(-1).

dup
Signature: [const] new LayerPropertiesIterator ptr dup

Description: Creates a copy of self

first_child
Signature: [const] LayerPropertiesIterator first_child

Description: Returns the iterator pointing to the first child

If there is no children, the iterator will be a valid insert point but not point to any valid element. It will
report at_end? = true.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_null?
Signature: [const] bool is_null?

Description: "is null" predicate

This predicate is true if the iterator is "null". Such an iterator can be created with the default
constructor or by moving a top-level iterator up.

last_child
Signature: [const] LayerPropertiesIterator last_child

Description: Returns the iterator pointing behind the last child

The iterator will be a valid insert point but not point to any valid element. It will report at_end? = true.

Despite the name, the iterator does not address the last child, but the position after that child. To
actually get the iterator for the last child, use last_child and call next_sibling(-1) on that iterator.

new
Signature: [static] new LayerPropertiesIterator ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1918 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.184. API reference - Class LayerPropertiesIterator

next
Signature: LayerPropertiesIterator next

Description: Increment operator

The iterator will be incremented to point to the next layer entry. It will descend into the hierarchy to
address child nodes if there are any.

next_sibling
Signature: LayerPropertiesIterator next_sibling (long n)

Description: Move to the next sibling by a given distance

The iterator is moved to the nth next sibling of the current element. Use negative distances to move
backward.

num_siblings
Signature: [const] unsigned long num_siblings

Description: Return the number of siblings

The count includes the current element. More precisely, this property delivers the number of children
of the current node's parent.

parent
Signature: [const] LayerPropertiesIterator parent

Description: Returns the iterator pointing to the parent node

This method will return an iterator pointing to the parent element. If there is no parent, the returned
iterator will be a null iterator.

to_sibling
Signature: LayerPropertiesIterator to_sibling (unsigned long n)

Description: Move to the sibling with the given index

The iterator is moved to the nth sibling by selecting the nth child in the current node's parent.

up
Signature: LayerPropertiesIterator up

Description: Move up

The iterator is moved to point to the current element's parent. If the current element does not have a
parent, the iterator will become a null iterator.

For more details visit
https://www.klayout.org

Page 1919 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

4.185. API reference - Class LayoutView
Notation used in Ruby API documentation

Module: lay

Description: The view object presenting one or more layout objects

Class hierarchy: LayoutView » QWidget » QObject

Sub-classes: SelectionMode

The visual part of the view is the tab panel in the main window. The non-visual part are the redraw thread, the layout handles, cell lists,
layer view lists etc. This object controls these aspects of the view and controls the appearance of the data.

Public constructors

new LayoutView ptr new (QWidget ptr parent,
bool editable = false,
Manager ptr manager = nil,
unsigned int options = 0)

Creates a standalone view

new LayoutView ptr new (bool editable = false,
Manager ptr manager = nil,
unsigned int options = 0)

Creates a standalone view

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

CellView active_cellview Gets the active cellview (shown in hierarchy
browser)

[const] int active_cellview_index Gets the index of the active cellview (shown
in hierarchy browser)

void active_setview_index= (int index) Makes the cellview with the given index the
active one (shown in hierarchy browser)

unsigned int add_l2ndb (LayoutToNetlist ptr
db)

Adds the given netlist database to the view

unsigned int add_line_style (string name,
unsigned int data,
unsigned int bits)

Adds a custom line style

For more details visit
https://www.klayout.org

Page 1920 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

unsigned int add_line_style (string name,
string string)

Adds a custom line style from a string

unsigned int add_lvsdb (LayoutVsSchematic
ptr db)

Adds the given database to the view

void add_missing_layers Adds new layers to layer list

unsigned int add_rdb (ReportDatabase ptr
db)

Adds the given report database to the view

unsigned int add_stipple (string name,
unsigned int[] data,
unsigned int bits)

Adds a stipple pattern

unsigned int add_stipple (string name,
string string)

Adds a stipple pattern given by a string

Annotation annotation (int id) Gets the annotation given by an ID

InstElement ascend (int index) Ascends upwards in the hierarchy.

[const] LayerPropertiesIteratorbegin_layers Begin iterator for the layers

[const] LayerPropertiesIteratorbegin_layers (unsigned int index) Begin iterator for the layers

void bookmark_view (string name) Bookmarks the current view under the given
name

QWidget ptr bookmarks_frame Gets the bookmarks side widget

[const] DBox box Returns the displayed box in micron space

void call_menu (string arg1) Calls the menu item with the provided
symbol.

void cancel Cancels all edit operations

CellView cellview (unsigned int
cv_index)

Gets the cellview object for a given index

[const] unsigned int cellviews Gets the number of cellviews

void clear_annotations Clears all annotations on this view

void clear_config Clears the local configuration parameters

void clear_images Clear all images on this view

void clear_layers Clears all layers

void clear_layers (unsigned int index) Clears all layers for the given layer
properties list

void clear_line_styles Removes all custom line styles

[const] void clear_object_selection Clears the selection of geometrical objects
(shapes or cell instances)

For more details visit
https://www.klayout.org

Page 1921 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

void clear_selection Clears the selection of all objects (shapes,
annotations, images ...)

void clear_stipples Removes all custom line styles

void clear_transactions Clears all transactions

void clear_transient_selection Clears the transient selection (mouse-
over hightlights) of all objects (shapes,
annotations, images ...)

void close Closes the view

void commit Ends a transaction

void commit_config Commits the configuration settings

unsigned int create_l2ndb (string name) Creates a new netlist database and returns
the index of the new database

unsigned int create_layout (bool add_cellview) Creates a new, empty layout

unsigned int create_layout (string tech,
bool add_cellview)

Create a new, empty layout and associate it
with the given technology

unsigned int create_layout (string tech,
bool add_cellview,
bool init_layers)

Create a new, empty layout and associate it
with the given technology

unsigned int create_lvsdb (string name) Creates a new netlist database and returns
the index of the new database

Annotation create_measure_ruler (const DPoint point,
int ac =
Annotation#AngleAny)

Createas an auto-measure ruler at the given
point.

unsigned int create_rdb (string name) Creates a new report database and returns
the index of the new database

[const] LayerPropertiesIteratorcurrent_layer Gets the current layer view

void current_layer= (const
LayerPropertiesIterator
iter)

Sets the current layer view

[const] unsigned int current_layer_list Gets the index of the currently selected
layer properties tab

void current_layer_list= (unsigned int index) Sets the index of the currently selected layer
properties tab

void delete_layer (LayerPropertiesIterator
iter)

Deletes the layer properties node specified
by the iterator

void delete_layer (unsigned int index,
LayerPropertiesIterator
iter)

Deletes the layer properties node specified
by the iterator

void delete_layer_list (unsigned int index) Deletes the given properties list

For more details visit
https://www.klayout.org

Page 1922 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

void delete_layers (LayerPropertiesIterator[]
iterators)

Deletes the layer properties nodes specified
by the iterator

void delete_layers (unsigned int index,
LayerPropertiesIterator[]
iterators)

Deletes the layer properties nodes specified
by the iterator

void descend (InstElement[] path,
int index)

Descends further into the hierarchy.

[iter] Annotation each_annotation Iterates over all annotations attached to this
view

[const,iter] Annotation each_annotation_selected Iterate over each selected annotation
objects, yielding a Annotation object for
each of them

[iter] Image each_image Iterate over all images attached to this view

[const,iter] Image each_image_selected Iterate over each selected image object,
yielding a Image object for each of them

[iter] LayerPropertiesNodeRefeach_layer Hierarchically iterates over the layers in the
first layer list

[iter] LayerPropertiesNodeRefeach_layer (unsigned int
layer_list)

Hierarchically iterates over the layers in the
given layer list

[const,iter] ObjectInstPath each_object_selected Iterates over each selected geometrical
object, yielding a ObjectInstPath object for
each of them

[const,iter] ObjectInstPath each_object_selected_transient Iterates over each geometrical objects in the
transient selection, yielding a ObjectInstPath
object for each of them

void enable_edits (bool enable) Enables or disables edits

[const] LayerPropertiesIteratorend_layers End iterator for the layers

[const] LayerPropertiesIteratorend_layers (unsigned int index) End iterator for the layers

void erase_annotation (int id) Erases the annotation given by the id

void erase_cellview (unsigned int index) Erases the cellview with the given index

void erase_image (unsigned long id) Erase the given image

void expand_layer_properties Expands the layer properties for all tabs

void expand_layer_properties (unsigned int index) Expands the layer properties for the given
tab

[const] string get_config (string name) Gets the value of a local configuration
parameter

string[] get_config_names Gets the configuration parameter names

QImage get_image (unsigned int width, Gets the layout image as a QImage

For more details visit
https://www.klayout.org

Page 1923 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

unsigned int height)

QImage get_image_with_options (unsigned int width,
unsigned int height,
int linewidth,
int oversampling,
double resolution,
const DBox target,
bool monochrome)

Gets the layout image as a QImage (with
options)

string get_line_style (unsigned int index) Gets the line style string for the style with
the given index

QImage get_screenshot Gets a screenshot as a QImage

string get_stipple (unsigned int index) Gets the stipple pattern string for the pattern
with the given index

[const] bool has_annotation_selection? Returns true, if annotations (rulers) are
selected in this view

[const] bool has_image_selection? Returns true, if images are selected in this
view

[const] bool has_object_selection? Returns true, if geometrical objects (shapes
or cell instances) are selected in this view

bool has_selection? Indicates whether any objects are selected

[const] bool has_transient_object_selection? Returns true, if geometrical objects (shapes
or cell instances) are selected in this view in
the transient selection

void hide_cell (unsigned int
cell_index,
int cv_index)

Hides the given cell for the given cellview

QWidget ptr hierarchy_control_frame Gets the cell view (hierarchy view) side
widget

Image image (unsigned long id) Gets the image given by an ID

[const] void init_layer_properties (LayerProperties
props)

Fills the layer properties for a new layer

void insert_annotation (Annotation ptr obj) Inserts an annotation object into the given
view

void insert_image (Image obj) Insert an image object into the given view

LayerPropertiesNodeRefinsert_layer (const
LayerPropertiesIterator
iter,
const
LayerProperties
node =
LayerProperties())

Inserts the given layer properties node into
the list before the given position

For more details visit
https://www.klayout.org

Page 1924 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

LayerPropertiesNodeRefinsert_layer (unsigned int index,
const
LayerPropertiesIterator
iter,
const
LayerProperties
node =
LayerProperties())

Inserts the given layer properties node into
the list before the given position

void insert_layer_list (unsigned int index) Inserts a new layer properties list at the
given index

[const] bool is_cell_hidden? (unsigned int
cell_index,
int cv_index)

Returns true, if the cell is hidden

[const] bool is_editable? Returns true if the view is in editable mode

bool is_transacting? Indicates if a transaction is ongoing

LayoutToNetlist
ptr

l2ndb (int index) Gets the netlist database with the given
index

QWidget ptr layer_control_frame Gets the layer control side widget

QWidget ptr libraries_frame Gets the library view side widget

void load_layer_props (string fn) Loads the layer properties

void load_layer_props (string fn,
bool add_default)

Loads the layer properties with options

void load_layer_props (string fn,
int cv_index,
bool add_default)

Loads the layer properties with options

unsigned int load_layout (string filename,
const
LoadLayoutOptions
options,
string technology,
bool add_cellview)

Loads a (new) file into the layout view with
the given technology

unsigned int load_layout (string filename,
const
LoadLayoutOptions
options,
bool add_cellview)

Loads a (new) file into the layout view

unsigned int load_layout (string filename,
string technology,
bool add_cellview)

Loads a (new) file into the layout view with
the given technology

unsigned int load_layout (string filename,
bool add_cellview)

Loads a (new) file into the layout view

LayoutVsSchematic
ptr

lvsdb (unsigned int index) Gets the netlist database with the given
index

For more details visit
https://www.klayout.org

Page 1925 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

void max_hier Selects all hierarchy levels available

[const] int max_hier_levels Returns the maximum hierarchy level up to
which to display geometries

void max_hier_levels= (int level) Sets the maximum hierarchy level up to
which to display geometries

[const] int min_hier_levels Returns the minimum hierarchy level at
which to display geometries

void min_hier_levels= (int level) Sets the minimum hierarchy level at which
to display geometries

NetlistBrowserDialog
ptr

netlist_browser Gets the netlist browser object for the given
layout view

[const] unsigned int num_l2ndbs Gets the number of netlist databases loaded
into this view

[const] unsigned int num_layer_lists Gets the number of layer properties tabs
present

[const] unsigned int num_rdbs Gets the number of report databases loaded
into this view

[const] ObjectInstPath[] object_selection Returns a list of selected objects

[const] void object_selection= (ObjectInstPath[]
sel)

Sets the list of selected objects

[signal] void on_active_cellview_changed An event indicating that the active cellview
has changed

[signal] void on_annotation_changed (int id) A event indicating that an annotation has
been modified

[signal] void on_annotation_selection_changed A event indicating that the annotation
selection has changed

[signal] void on_annotations_changed A event indicating that annotations have
been added or removed

[signal] void on_cell_visibility_changed An event indicating that the visibility of one
or more cells has changed

[signal] void on_cellview_changed (int cellview_index) An event indicating that a cellview has
changed

[signal] void on_cellviews_changed An event indicating that the cellview
collection has changed

[signal] void on_close A event indicating that the view is about to
close

[signal] void on_current_layer_list_changed(int index) An event indicating the current layer list (the
selected tab) has changed

[signal] void on_file_open An event indicating that a file was opened

For more details visit
https://www.klayout.org

Page 1926 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

[signal] void on_hide A event indicating that the view is going to
become invisible

[signal] void on_image_changed (int id) A event indicating that an image has been
modified

[signal] void on_image_selection_changed A event indicating that the image selection
has changed

[signal] void on_images_changed A event indicating that images have been
added or removed

[signal] void on_l2ndb_list_changed An event that is triggered the list of netlist
databases is changed

[signal] void on_layer_list_changed (int flags) An event indicating that the layer list has
changed

[signal] void on_layer_list_deleted (int index) An event indicating that a layer list (a tab)
has been removed

[signal] void on_layer_list_inserted (int index) An event indicating that a layer list (a tab)
has been inserted

[signal] void on_rdb_list_changed An event that is triggered the list of report
databases is changed

[signal] void on_selection_changed An event that is triggered if the selection is
changed

[signal] void on_show A event indicating that the view is going to
become visible

[signal] void on_transient_selection_changed An event that is triggered if the transient
selection is changed

[signal] void on_viewport_changed An event indicating that the viewport (the
visible rectangle) has changed

D25View ptr open_d25_view Opens the 2.5d view window and returns a
reference to the D25View object.

void pan_center (const DPoint p) Pans to the given point

void pan_down Pans down

void pan_left Pans to the left

void pan_right Pans to the right

void pan_up Pans upward

ReportDatabase
ptr

rdb (int index) Gets the report database with the given
index

void reload_layout (unsigned int cv) Reloads the given cellview

For more details visit
https://www.klayout.org

Page 1927 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

void remove_l2ndb (unsigned int index) Removes a netlist database with the given
index

void remove_line_style (unsigned int index) Removes the line style with the given index

void remove_rdb (unsigned int index) Removes a report database with the given
index

void remove_stipple (unsigned int index) Removes the stipple pattern with the given
index

void remove_unused_layers Removes unused layers from layer list

void rename_cellview (string name,
int index)

Renames the cellview with the given index

void rename_layer_list (unsigned int index,
string name)

Sets the title of the given layer properties
tab

void replace_annotation (int id,
const Annotation
obj)

Replaces the annotation given by the id with
the new one

void replace_image (unsigned long id,
Image new_obj)

Replace an image object with the new
image

unsigned int replace_l2ndb (unsigned int
db_index,
LayoutToNetlist ptr
db)

Replaces the netlist database with the given
index

void replace_layer_node (const
LayerPropertiesIterator
iter,
const
LayerProperties
node)

Replaces the layer node at the position
given by "iter" with a new one

void replace_layer_node (unsigned int index,
const
LayerPropertiesIterator
iter,
const
LayerProperties
node)

Replaces the layer node at the position
given by "iter" with a new one

unsigned int replace_lvsdb (unsigned int
db_index,
LayoutVsSchematic
ptr db)

Replaces the database with the given index

unsigned int replace_rdb (unsigned int
db_index,
ReportDatabase ptr
db)

Replaces the report database with the given
index

void reset_title Resets the title to the standard title

void save_as (unsigned int index,
string filename,

Saves a layout to the given stream file

For more details visit
https://www.klayout.org

Page 1928 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

const
SaveLayoutOptions
options)

void save_image (string filename,
unsigned int width,
unsigned int height)

Saves the layout as an image to the given
file

void save_image_with_options (string filename,
unsigned int width,
unsigned int height,
int linewidth,
int oversampling,
double resolution,
const DBox target,
bool monochrome)

Saves the layout as an image to the given
file (with options)

void save_layer_props (string fn) Saves the layer properties

void save_screenshot (string filename) Saves a screenshot to the given file

void select_all Selects all objects from the view

void select_from (const DPoint point,
LayoutView::SelectionMode
mode = Replace)

Selects the objects from a given point

void select_from (const DBox box,
LayoutView::SelectionMode
mode = Replace)

Selects the objects from a given box

[const] void select_object (const
ObjectInstPath obj)

Adds the given selection to the list of
selected objects

[const] unsigned int[][] selected_cells_paths (int cv_index) Gets the paths of the selected cells

[const] LayerPropertiesIterator[]selected_layers Gets the selected layers

DBox selection_bbox Returns the bounding box of the current
selection

unsigned long selection_size Returns the number of selected objects

void set_config (string name,
string value)

Sets a local configuration parameter with the
given name to the given value

void set_layer_properties (const
LayerPropertiesIterator
iter,
const
LayerProperties
props)

Sets the layer properties of the layer pointed
to by the iterator

void set_layer_properties (unsigned int index,
const
LayerPropertiesIterator
iter,

Sets the layer properties of the layer pointed
to by the iterator

For more details visit
https://www.klayout.org

Page 1929 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

const
LayerProperties
props)

void show_all_cells Makes all cells shown (cancel effects of
hide_cell)

void show_all_cells (int cv_index) Makes all cells shown (cancel effects of
hide_cell) for the specified cell view

void show_cell (unsigned int
cell_index,
int cv_index)

Shows the given cell for the given cellview
(cancel effect of hide_cell)

void show_image (unsigned long id,
bool visible)

Shows or hides the given image

void show_l2ndb (int l2ndb_index,
int cv_index)

Shows a netlist database in the marker
browser on a certain layout

unsigned int show_layout (Layout ptr layout,
bool add_cellview)

Shows an existing layout in the view

unsigned int show_layout (Layout ptr layout,
string tech,
bool add_cellview)

Shows an existing layout in the view

unsigned int show_layout (Layout ptr layout,
string tech,
bool add_cellview,
bool init_layers)

Shows an existing layout in the view

void show_lvsdb (int lvsdb_index,
int cv_index)

Shows a netlist database in the marker
browser on a certain layout

void show_rdb (int rdb_index,
int cv_index)

Shows a report database in the marker
browser on a certain layout

void stop Stops redraw thread and close any
browsers

void stop_redraw Stops the redraw thread

[const] string title Returns the view's title string

void title= (string title) Sets the title of the view

void transaction (string description) Begins a transaction

void transient_to_selection Turns the transient selection into the actual
selection

[const] void unselect_object (const
ObjectInstPath obj)

Removes the given selection from the list of
selected objects

void update_content Updates the layout view to the current state

[const] int viewport_height Return the viewport height in pixels

For more details visit
https://www.klayout.org

Page 1930 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

[const] DCplxTrans viewport_trans Returns the transformation that converts
micron coordinates to pixels

[const] int viewport_width Returns the viewport width in pixels

void zoom_box (const DBox box) Sets the viewport to the given box

void zoom_fit Fits the contents of the current view into the
window

void zoom_fit_sel Fits the contents of the current selection into
the window

void zoom_in Zooms in somewhat

void zoom_out Zooms out somewhat

Public static methods and constants

[static,const] LayoutView::SelectionMode Add Adds to any existing selection

[static,const] LayoutView::SelectionMode Invert Adds to any existing selection, if it's not there
yet or removes it from the selection if it's
already selected

[static,const] unsigned int LV_Naked With this option, no separate views will be
provided

[static,const] unsigned int LV_NoBookmarksView With this option, no bookmarks view will be
provided (see bookmarks_frame)

[static,const] unsigned int LV_NoEditorOptionsPanel With this option, no editor options panel will be
provided (see editor_options_frame)

[static,const] unsigned int LV_NoGrid With this option, the grid background is not
shown

[static,const] unsigned int LV_NoHierarchyPanel With this option, no cell hierarchy view will be
provided (see hierarchy_control_frame)

[static,const] unsigned int LV_NoLayers With this option, no layers view will be
provided (see layer_control_frame)

[static,const] unsigned int LV_NoLibrariesView With this option, no library view will be
provided (see libraries_frame)

[static,const] unsigned int LV_NoMove With this option, move operations are not
supported

[static,const] unsigned int LV_NoPlugins With this option, all plugins are disabled

[static,const] unsigned int LV_NoSelection With this option, objects cannot be selected

[static,const] unsigned int LV_NoServices This option disables all services except the
ones for pure viewing

For more details visit
https://www.klayout.org

Page 1931 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

[static,const] unsigned int LV_NoTracker With this option, mouse position tracking is not
supported

[static,const] unsigned int LV_NoZoom With this option, zooming is disabled

[static,const] LayoutView::SelectionMode Replace Replaces the existing selection

[static,const] LayoutView::SelectionMode Reset Removes from any existing selection

LayoutView ptr current Returns the current view

string[] menu_symbols Gets all available menu symbols (see
call_menu).

Deprecated methods (protected, public, static, non-static and constructors)

[const] unsigned int[] get_current_cell_path (int cv_index) Use of this method is deprecated

void save_as (unsigned int index,
string filename,
bool gzip,
const SaveLayoutOptions
options)

Use of this method is deprecated

void select_cell (unsigned int cell_index,
int cv_index)

Use of this method is deprecated

void select_cell_path (unsigned int[] cell_index,
int cv_index)

Use of this method is deprecated

void set_active_cellview_index (int index) Use of this method is deprecated. Use
active_setview_index= instead

void set_current_cell_path (int cv_index,
unsigned int[] cell_path)

Use of this method is deprecated

void set_current_layer_list (unsigned int index) Use of this method is deprecated. Use
current_layer_list= instead

void set_title (string title) Use of this method is deprecated. Use
title= instead

Detailed description

Add
Signature: [static,const] LayoutView::SelectionMode Add

Description: Adds to any existing selection

Invert
Signature: [static,const] LayoutView::SelectionMode Invert

Description: Adds to any existing selection, if it's not there yet or removes it from the selection if
it's already selected

LV_Naked
Signature: [static,const] unsigned int LV_Naked

Description: With this option, no separate views will be provided

For more details visit
https://www.klayout.org

Page 1932 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

Use this value with the constructor's 'options' argument. This option is basically equivalent to using
LV_NoLayers+LV_NoHierarchyPanel+LV_NoLibrariesView+LV_NoBookmarksView

This constant has been introduced in version 0.27.

LV_NoBookmarksView
Signature: [static,const] unsigned int LV_NoBookmarksView

Description: With this option, no bookmarks view will be provided (see bookmarks_frame)

Use this value with the constructor's 'options' argument.

This constant has been introduced in version 0.27.

LV_NoEditorOptionsPanel
Signature: [static,const] unsigned int LV_NoEditorOptionsPanel

Description: With this option, no editor options panel will be provided (see editor_options_frame)

Use this value with the constructor's 'options' argument.

This constant has been introduced in version 0.27.

LV_NoGrid
Signature: [static,const] unsigned int LV_NoGrid

Description: With this option, the grid background is not shown

Use this value with the constructor's 'options' argument.

This constant has been introduced in version 0.27.

LV_NoHierarchyPanel
Signature: [static,const] unsigned int LV_NoHierarchyPanel

Description: With this option, no cell hierarchy view will be provided (see
hierarchy_control_frame)

Use this value with the constructor's 'options' argument.

This constant has been introduced in version 0.27.

LV_NoLayers
Signature: [static,const] unsigned int LV_NoLayers

Description: With this option, no layers view will be provided (see layer_control_frame)

Use this value with the constructor's 'options' argument.

This constant has been introduced in version 0.27.

LV_NoLibrariesView
Signature: [static,const] unsigned int LV_NoLibrariesView

Description: With this option, no library view will be provided (see libraries_frame)

Use this value with the constructor's 'options' argument.

This constant has been introduced in version 0.27.

LV_NoMove
Signature: [static,const] unsigned int LV_NoMove

Description: With this option, move operations are not supported

Use this value with the constructor's 'options' argument.

This constant has been introduced in version 0.27.

LV_NoPlugins
Signature: [static,const] unsigned int LV_NoPlugins

Description: With this option, all plugins are disabled

Use this value with the constructor's 'options' argument.

This constant has been introduced in version 0.27.

For more details visit
https://www.klayout.org

Page 1933 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

LV_NoSelection
Signature: [static,const] unsigned int LV_NoSelection

Description: With this option, objects cannot be selected

Use this value with the constructor's 'options' argument.

This constant has been introduced in version 0.27.

LV_NoServices
Signature: [static,const] unsigned int LV_NoServices

Description: This option disables all services except the ones for pure viewing

Use this value with the constructor's 'options' argument. With this option, all manipulation features
are disabled, except zooming. It is equivalent to LV_NoMove + LV_NoTracker + LV_NoSelection +
LV_NoPlugins.

This constant has been introduced in version 0.27.

LV_NoTracker
Signature: [static,const] unsigned int LV_NoTracker

Description: With this option, mouse position tracking is not supported

Use this value with the constructor's 'options' argument. This option is not useful currently as no
mouse tracking support is provided.

This constant has been introduced in version 0.27.

LV_NoZoom
Signature: [static,const] unsigned int LV_NoZoom

Description: With this option, zooming is disabled

Use this value with the constructor's 'options' argument.

This constant has been introduced in version 0.27.

Replace
Signature: [static,const] LayoutView::SelectionMode Replace

Description: Replaces the existing selection

Reset
Signature: [static,const] LayoutView::SelectionMode Reset

Description: Removes from any existing selection

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

For more details visit
https://www.klayout.org

Page 1934 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

active_cellview
Signature: CellView active_cellview

Description: Gets the active cellview (shown in hierarchy browser)

This is a convenience method which is equivalent to cellview(active_cellview_index()).

This method has been introduced in version 0.19. Starting from version 0.25, the returned object
can be manipulated which will have an immediate effect on the display.

active_cellview_index
Signature: [const] int active_cellview_index

Description: Gets the index of the active cellview (shown in hierarchy browser)

active_setview_index=
Signature: void active_setview_index= (int index)

Description: Makes the cellview with the given index the active one (shown in hierarchy browser)

See active_cellview_index.

This method has been renamed from set_active_cellview_index to active_cellview_index= in
version 0.25. The original name is still available, but is deprecated.

Python specific notes:
The object exposes a writable attribute 'active_setview_index'. This is the setter.

add_l2ndb
Signature: unsigned int add_l2ndb (LayoutToNetlist ptr db)

Description: Adds the given netlist database to the view

Returns: The index of the database within the view (see l2ndb)

This method will add an existing database to the view. It will then appear in the netlist database
browser. A similar method is create_l2ndb which will create a new database within the view.

This method has been added in version 0.26.

For more details visit
https://www.klayout.org

Page 1935 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

(1) Signature: unsigned int add_line_style (string name, unsigned int data, unsigned int bits)

Description: Adds a custom line style

name: The name under which this pattern will appear in the style editor

data: A bit set with the new line style pattern (bit 0 is the leftmost pixel)

bits: The number of bits to be used

Returns: The index of the newly created style, which can be used as the
line style index of LayerProperties.

This method has been introduced in version 0.25.

add_line_style

(2) Signature: unsigned int add_line_style (string name, string string)

Description: Adds a custom line style from a string

name: The name under which this pattern will appear in the style editor

string: A string describing the bits of the pattern ('.' for missing pixel, '*'
for a set pixel)

Returns: The index of the newly created style, which can be used as the
line style index of LayerProperties.

This method has been introduced in version 0.25.

add_lvsdb
Signature: unsigned int add_lvsdb (LayoutVsSchematic ptr db)

Description: Adds the given database to the view

Returns: The index of the database within the view (see lvsdb)

This method will add an existing database to the view. It will then appear in the netlist database
browser. A similar method is create_lvsdb which will create a new database within the view.

This method has been added in version 0.26.

add_missing_layers
Signature: void add_missing_layers

Description: Adds new layers to layer list

This method was introduced in version 0.19.

add_rdb
Signature: unsigned int add_rdb (ReportDatabase ptr db)

Description: Adds the given report database to the view

Returns: The index of the database within the view (see rdb)

This method will add an existing database to the view. It will then appear in the marker database
browser. A similar method is create_rdb which will create a new database within the view.

This method has been added in version 0.26.

add_stipple
(1) Signature: unsigned int add_stipple (string name, unsigned int[] data, unsigned int bits)

Description: Adds a stipple pattern

name: The name under which this pattern will appear in the stipple
editor

data: See above

bits: See above

Returns: The index of the newly created stipple pattern, which can be
used as the dither pattern index of LayerProperties.

For more details visit
https://www.klayout.org

Page 1936 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

'data' is an array of unsigned integers describing the bits that make up the stipple pattern. If the
array has less than 32 entries, the pattern will be repeated vertically. The number of bits used can
be less than 32 bit which can be specified by the 'bits' parameter. Logically, the pattern will be put
at the end of the list.

(2) Signature: unsigned int add_stipple (string name, string string)

Description: Adds a stipple pattern given by a string

name: The name under which this pattern will appear in the stipple
editor

string: See above

Returns: The index of the newly created stipple pattern, which can be
used as the dither pattern index of LayerProperties.

'string' is a string describing the pattern. It consists of one or more lines composed of '.' or '*'
characters and separated by newline characters. A '.' is for a missing pixel and '*' for a set pixel.
The length of each line must be the same. Blanks before or after each line are ignored.

This method has been introduced in version 0.25.

annotation
Signature: Annotation annotation (int id)

Description: Gets the annotation given by an ID

Returns a reference to the annotation given by the respective ID or an invalid annotation if the ID
is not valid. Use Annotation#is_valid? to determine whether the returned annotation is valid or not.

The returned annotation is a 'live' object and changing it will update the view.

This method has been introduced in version 0.25.

ascend
Signature: InstElement ascend (int index)

Description: Ascends upwards in the hierarchy.

Removes one element from the specific path of the cellview with the given index. Returns the
element removed.

(1) Signature: [const] LayerPropertiesIterator begin_layers

Description: Begin iterator for the layers

This iterator delivers the layers of this view, either in a recursive or non-recursive fashion,
depending which iterator increment methods are used. The iterator delivered by end_layers is the
past-the-end iterator. It can be compared against a current iterator to check, if there are no further
elements.

Starting from version 0.25, an alternative solution is provided with 'each_layer' which is based on
the LayerPropertiesNodeRef class.

begin_layers

(2) Signature: [const] LayerPropertiesIterator begin_layers (unsigned int index)

Description: Begin iterator for the layers

This iterator delivers the layers of this view, either in a recursive or non-recursive fashion,
depending which iterator increment methods are used. The iterator delivered by end_layers is the
past-the-end iterator. It can be compared against a current iterator to check, if there are no further
elements. This version addresses a specific list in a multi-tab layer properties arrangement with
the "index" parameter. This method has been introduced in version 0.21.

For more details visit
https://www.klayout.org

Page 1937 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

bookmark_view
Signature: void bookmark_view (string name)

Description: Bookmarks the current view under the given name

name: The name under which to bookmark the current state

bookmarks_frame
Signature: QWidget ptr bookmarks_frame

Description: Gets the bookmarks side widget

For details about side widgets see layer_control_frame.

This method has been introduced in version 0.27

box
Signature: [const] DBox box

Description: Returns the displayed box in micron space

call_menu
Signature: void call_menu (string arg1)

Description: Calls the menu item with the provided symbol.

To obtain all symbols, use get_menu_symbols.

This method has been introduced in version 0.27.

cancel
Signature: void cancel

Description: Cancels all edit operations

This method will stop all pending edit operations (i.e. drag and drop) and cancel the current
selection. Calling this method is useful to ensure there are no potential interactions with the script's
functionality.

cellview
Signature: CellView cellview (unsigned int cv_index)

Description: Gets the cellview object for a given index

cv_index: The cellview index for which to get the object for

Starting with version 0.25, this method returns a CellView object that can be manipulated to
directly reflect any changes in the display.

cellviews
Signature: [const] unsigned int cellviews

Description: Gets the number of cellviews

clear_annotations
Signature: void clear_annotations

Description: Clears all annotations on this view

clear_config
Signature: void clear_config

Description: Clears the local configuration parameters

See set_config for a description of the local configuration parameters.

clear_images
Signature: void clear_images

Description: Clear all images on this view

For more details visit
https://www.klayout.org

Page 1938 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

(1) Signature: void clear_layers

Description: Clears all layersclear_layers

(2) Signature: void clear_layers (unsigned int index)

Description: Clears all layers for the given layer properties list

This version addresses a specific list in a multi-tab layer properties arrangement with the "index"
parameter. This method has been introduced in version 0.21.

clear_line_styles
Signature: void clear_line_styles

Description: Removes all custom line styles

All line styles except the fixed ones are removed. If any of the custom styles is still used by the
layers displayed, the results will be undefined. This method has been introduced in version 0.25.

clear_object_selection
Signature: [const] void clear_object_selection

Description: Clears the selection of geometrical objects (shapes or cell instances)

The selection of other objects (such as annotations and images) will not be affected.

This method has been introduced in version 0.24

clear_selection
Signature: void clear_selection

Description: Clears the selection of all objects (shapes, annotations, images ...)

This method has been introduced in version 0.26.2

clear_stipples
Signature: void clear_stipples

Description: Removes all custom line styles

All stipple pattern except the fixed ones are removed. If any of the custom stipple pattern is still
used by the layers displayed, the results will be undefined.

clear_transactions
Signature: void clear_transactions

Description: Clears all transactions

Discard all actions in the undo buffer. After clearing that buffer, no undo is available. It is important
to clear the buffer when making database modifications outside transactions, i.e after that
modifications have been done. If failing to do so, 'undo' operations are likely to produce invalid
results. This method was introduced in version 0.16.

clear_transient_selection
Signature: void clear_transient_selection

Description: Clears the transient selection (mouse-over hightlights) of all objects (shapes,
annotations, images ...)

This method has been introduced in version 0.26.2

close
Signature: void close

Description: Closes the view

This method has been added in version 0.27.

For more details visit
https://www.klayout.org

Page 1939 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

commit
Signature: void commit

Description: Ends a transaction

See transaction for a detailed description of transactions. This method was introduced in version
0.16.

commit_config
Signature: void commit_config

Description: Commits the configuration settings

Some configuration options are queued for performance reasons and become active only after
'commit_config' has been called. After a sequence of set_config calls, this method should be
called to activate the settings made by these calls.

This method has been introduced in version 0.25.

create_l2ndb
Signature: unsigned int create_l2ndb (string name)

Description: Creates a new netlist database and returns the index of the new database

name: The name of the new netlist database

Returns: The index of the new database

This method returns an index of the new netlist database. Use l2ndb to get the actual object. If a
netlist database with the given name already exists, a unique name will be created. The name will
be replaced by the file name when a file is loaded into the netlist database.

This method has been added in version 0.26.

(1) Signature: unsigned int create_layout (bool add_cellview)

Description: Creates a new, empty layout

Returns: The index of the cellview created.

The add_cellview parameter controls whether to create a new cellview (true) or clear all cellviews
before (false).

This version will associate the new layout with the default technology.

(2) Signature: unsigned int create_layout (string tech, bool add_cellview)

Description: Create a new, empty layout and associate it with the given technology

Returns: The index of the cellview created.

The add_cellview parameter controls whether to create a new cellview (true) or clear all cellviews
before (false).

This variant has been introduced in version 0.22.

create_layout

(3) Signature: unsigned int create_layout (string tech, bool add_cellview, bool init_layers)

Description: Create a new, empty layout and associate it with the given technology

Returns: The index of the cellview created.

The add_cellview parameter controls whether to create a new cellview (true) or clear all cellviews
before (false). This variant also allows one to control whether the layer properties are initialized
(init_layers = true) or not (init_layers = false).

This variant has been introduced in version 0.22.

For more details visit
https://www.klayout.org

Page 1940 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

create_lvsdb
Signature: unsigned int create_lvsdb (string name)

Description: Creates a new netlist database and returns the index of the new database

name: The name of the new netlist database

Returns: The index of the new database

This method returns an index of the new netlist database. Use lvsdb to get the actual object. If a
netlist database with the given name already exists, a unique name will be created. The name will
be replaced by the file name when a file is loaded into the netlist database.

This method has been added in version 0.26.

create_measure_ruler
Signature: Annotation create_measure_ruler (const DPoint point, int ac =
Annotation#AngleAny)

Description: Createas an auto-measure ruler at the given point.

point: The seed point where to create the auto-measure ruler

ac: The orientation constraints (determines the search direction too)

Returns: The new ruler object

The ac parameters takes one of the Angle... constants from Annotation.

This method will create a ruler with a measurement, looking to the sides of the seed point for
visible layout in the vicinity. The angle constraint determines the main directions where to look.
If suitable edges are found, the method will pull a line between the closest edges. The ruler's
endpoints will sit on these lines and the ruler's length will be the distance. Only visible layers will
participate in the measurement.

The new ruler is inserted into the view already. It is created with the default style of rulers. If the
measurement fails because there is no layout in the vicinity, a ruler with identical start and end
points will be created.

This method was introduced in version 0.26.

create_rdb
Signature: unsigned int create_rdb (string name)

Description: Creates a new report database and returns the index of the new database

name: The name of the new report database

Returns: The index of the new database

This method returns an index of the new report database. Use rdb to get the actual object. If a
report database with the given name already exists, a unique name will be created. The name will
be replaced by the file name when a file is loaded into the report database.

current
Signature: [static] LayoutView ptr current

Description: Returns the current view

The current view is the one that is shown in the current tab. Returns nil if no layout is loaded.

This method has been introduced in version 0.23.

current_layer
Signature: [const] LayerPropertiesIterator current_layer

Description: Gets the current layer view

Returns the LayerPropertiesIterator pointing to the current layer view (the one that has the focus).
If no layer view is active currently, a null iterator is returned.

Python specific notes:
The object exposes a readable attribute 'current_layer'. This is the getter.

For more details visit
https://www.klayout.org

Page 1941 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

current_layer=
Signature: void current_layer= (const LayerPropertiesIterator iter)

Description: Sets the current layer view

Specifies an LayerPropertiesIterator pointing to the new current layer view.

This method has been introduced in version 0.23.

Python specific notes:
The object exposes a writable attribute 'current_layer'. This is the setter.

current_layer_list
Signature: [const] unsigned int current_layer_list

Description: Gets the index of the currently selected layer properties tab

This method has been introduced in version 0.21.

Python specific notes:
The object exposes a readable attribute 'current_layer_list'. This is the getter.

current_layer_list=
Signature: void current_layer_list= (unsigned int index)

Description: Sets the index of the currently selected layer properties tab

This method has been introduced in version 0.21.

Python specific notes:
The object exposes a writable attribute 'current_layer_list'. This is the setter.

(1) Signature: void delete_layer (LayerPropertiesIterator iter)

Description: Deletes the layer properties node specified by the iterator

This method deletes the object that the iterator points to and invalidates the iterator since the
object that the iterator points to is no longer valid.

delete_layer

(2) Signature: void delete_layer (unsigned int index, LayerPropertiesIterator iter)

Description: Deletes the layer properties node specified by the iterator

This method deletes the object that the iterator points to and invalidates the iterator since the
object that the iterator points to is no longer valid. This version addresses a specific list in a multi-
tab layer properties arrangement with the "index" parameter. This method has been introduced in
version 0.21.

delete_layer_list
Signature: void delete_layer_list (unsigned int index)

Description: Deletes the given properties list

At least one layer properties list must remain. This method may change the current properties list.
This method has been introduced in version 0.21.

(1) Signature: void delete_layers (LayerPropertiesIterator[] iterators)

Description: Deletes the layer properties nodes specified by the iterator

This method deletes the nodes specifies by the iterators. This method is the most convenient way
to delete multiple entries.

This method has been added in version 0.22.

delete_layers

(2) Signature: void delete_layers (unsigned int index, LayerPropertiesIterator[] iterators)

Description: Deletes the layer properties nodes specified by the iterator

For more details visit
https://www.klayout.org

Page 1942 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

This method deletes the nodes specifies by the iterators. This method is the most convenient
way to delete multiple entries. This version addresses a specific list in a multi-tab layer properties
arrangement with the "index" parameter. This method has been introduced in version 0.22.

descend
Signature: void descend (InstElement[] path, int index)

Description: Descends further into the hierarchy.

Adds the given path (given as an array of InstElement objects) to the specific path of the cellview
with the given index. In effect, the cell addressed by the terminal of the new path components
can be shown in the context of the upper cells, if the minimum hierarchy level is set to a negative
value. The path is assumed to originate from the current cell and contain specific instances sorted
from top to bottom.

each_annotation
Signature: [iter] Annotation each_annotation

Description: Iterates over all annotations attached to this view

each_annotation_selected
Signature: [const,iter] Annotation each_annotation_selected

Description: Iterate over each selected annotation objects, yielding a Annotation object for each
of them

This method was introduced in version 0.19.

each_image
Signature: [iter] Image each_image

Description: Iterate over all images attached to this view

With version 0.25, the objects returned by the iterator are references and can be manipulated to
change their appearance.

each_image_selected
Signature: [const,iter] Image each_image_selected

Description: Iterate over each selected image object, yielding a Image object for each of them

This method was introduced in version 0.19.

(1) Signature: [iter] LayerPropertiesNodeRef each_layer

Description: Hierarchically iterates over the layers in the first layer list

This iterator will recursively deliver the layers in the first layer list of the view. The objects
presented by the iterator are LayerPropertiesNodeRef objects. They can be manipulated to apply
changes to the layer settings or even the hierarchy of layers:

RBA::LayoutView::current.each_layer do |lref|
 # lref is a RBA::LayerPropertiesNodeRef object
 lref.visible = false
end

This method was introduced in version 0.25.

each_layer

(2) Signature: [iter] LayerPropertiesNodeRef each_layer (unsigned int layer_list)

Description: Hierarchically iterates over the layers in the given layer list

This version of this method allows specification of the layer list to be iterated over. The layer list
is specified by it's index which is a value between 0 and num_layer_lists-1.For details see the
parameter-less version of this method.

For more details visit
https://www.klayout.org

Page 1943 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

This method was introduced in version 0.25.

each_object_selected
Signature: [const,iter] ObjectInstPath each_object_selected

Description: Iterates over each selected geometrical object, yielding a ObjectInstPath object for
each of them

This iterator will deliver const objects - they cannot be modified. In order to modify the selection,
create a copy of the ObjectInstPath objects, modify them and install the new selection using
select_object or object_selection=.

Another way of obtaining the selection is object_selection, which returns an array of
ObjectInstPath objects.

each_object_selected_transient
Signature: [const,iter] ObjectInstPath each_object_selected_transient

Description: Iterates over each geometrical objects in the transient selection, yielding a
ObjectInstPath object for each of them

This method was introduced in version 0.18.

enable_edits
Signature: void enable_edits (bool enable)

Description: Enables or disables edits

enable: Enable edits if set to true

This method allows putting the view into read-only mode by disabling all edit functions. For doing
so, this method has to be called with a 'false' argument. Calling it with a 'true' parameter enables
all edits again. This method must not be confused with the edit/viewer mode. The LayoutView's
enable_edits method is intended to temporarily disable all menu entries and functions which could
allow the user to alter the database. In 0.25, this method has been moved from MainWindow to
LayoutView.

(1) Signature: [const] LayerPropertiesIterator end_layers

Description: End iterator for the layers

See begin_layers for a description about this iterator

end_layers

(2) Signature: [const] LayerPropertiesIterator end_layers (unsigned int index)

Description: End iterator for the layers

See begin_layers for a description about this iterator This version addresses a specific list in
a multi-tab layer properties arrangement with the "index" parameter. This method has been
introduced in version 0.21.

erase_annotation
Signature: void erase_annotation (int id)

Description: Erases the annotation given by the id

Deletes an existing annotation given by the id parameter. The id of an annotation can be obtained
through Annotation#id.

This method has been introduced in version 0.24. Starting with version 0.25, the annotation's
Annotation#delete method can also be used to delete an annotation.

erase_cellview
Signature: void erase_cellview (unsigned int index)

Description: Erases the cellview with the given index

For more details visit
https://www.klayout.org

Page 1944 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

This closes the given cellview and unloads the layout associated with it, unless referred to by
another cellview.

erase_image
Signature: void erase_image (unsigned long id)

Description: Erase the given image

id: The id of the object to erase

Erases the image with the given Id. The Id can be obtained with if "id" method of the image object.

This method has been introduced in version 0.20.

With version 0.25, Image#delete can be used to achieve the same results.

(1) Signature: void expand_layer_properties

Description: Expands the layer properties for all tabs

This method will expand all wildcard specifications in the layer properties by iterating over the
specified objects (i.e. layers, cellviews) and by replacing default colors and stipples by the ones
specified with the palettes.

This method was introduced in version 0.21.

expand_layer_properties

(2) Signature: void expand_layer_properties (unsigned int index)

Description: Expands the layer properties for the given tab

This method will expand all wildcard specifications in the layer properties by iterating over the
specified objects (i.e. layers, cellviews) and by replacing default colors and stipples by the ones
specified with the palettes.

This method was introduced in version 0.21.

get_config
Signature: [const] string get_config (string name)

Description: Gets the value of a local configuration parameter

name: The name of the configuration parameter whose value shall be
obtained (a string)

Returns: The value of the parameter

See set_config for a description of the local configuration parameters.

get_config_names
Signature: string[] get_config_names

Description: Gets the configuration parameter names

Returns: A list of configuration parameter names

This method returns the names of all known configuration parameters. These names can be used
to get and set configuration parameter values.

This method was introduced in version 0.25.

get_current_cell_path
Signature: [const] unsigned int[] get_current_cell_path (int cv_index)

Description: Gets the cell path of the current cell

cv_index: The cellview index for which to get the current path from
(usually this will be the active cellview index)

Use of this method is deprecated

For more details visit
https://www.klayout.org

Page 1945 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

The current cell is the one highlighted in the browser with the focus rectangle. The current path is
returned for the cellview given by cv_index. The cell path is a list of cell indices from the top cell to
the current cell.

This method is was deprecated in version 0.25 since from then, the CellView object can be used to
obtain an manipulate the selected cell.

get_image
Signature: QImage get_image (unsigned int width, unsigned int height)

Description: Gets the layout image as a QImage

width: The width of the image to render in pixel.

height: The height of the image to render in pixel.

The image contains the current scene (layout, annotations etc.). The image is drawn
synchronously with the given width and height. Drawing may take some time.

get_image_with_options
Signature: QImage get_image_with_options (unsigned int width, unsigned int height, int
linewidth, int oversampling, double resolution, const DBox target, bool monochrome)

Description: Gets the layout image as a QImage (with options)

width: The width of the image to render in pixel.

height: The height of the image to render in pixel.

linewidth: The width of a line in pixels (usually 1) or 0 for default.

oversampling: The oversampling factor (1..3) or 0 for default.

resolution: The resolution (pixel size compared to a screen pixel size,
i.e 1/oversampling) or 0 for default.

target_box: The box to draw or an empty box for default.

monochrome: If true, monochrome images will be produced.

The image contains the current scene (layout, annotations etc.). The image is written as a PNG file
to the given file. The image is drawn synchronously with the given width and height. Drawing may
take some time. Monochrome images don't have background or annotation objects currently.

This method has been introduced in 0.23.10.

get_line_style
Signature: string get_line_style (unsigned int index)

Description: Gets the line style string for the style with the given index

This method will return the line style string for the style with the given index. The format of the
string is the same than the string accepted by add_line_style. An empty string corresponds to
'solid line'.

This method has been introduced in version 0.25.

get_screenshot
Signature: QImage get_screenshot

Description: Gets a screenshot as a QImage

Getting the image requires the drawing to be complete. Ideally, synchronous mode is switched
on for the application to guarantee this condition. The image will have the size of the viewport
showing the current layout.

get_stipple
Signature: string get_stipple (unsigned int index)

Description: Gets the stipple pattern string for the pattern with the given index

This method will return the stipple pattern string for the pattern with the given index. The format of
the string is the same than the string accepted by add_stipple.

For more details visit
https://www.klayout.org

Page 1946 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

This method has been introduced in version 0.25.

has_annotation_selection?
Signature: [const] bool has_annotation_selection?

Description: Returns true, if annotations (rulers) are selected in this view

This method was introduced in version 0.19.

has_image_selection?
Signature: [const] bool has_image_selection?

Description: Returns true, if images are selected in this view

This method was introduced in version 0.19.

has_object_selection?
Signature: [const] bool has_object_selection?

Description: Returns true, if geometrical objects (shapes or cell instances) are selected in this
view

has_selection?
Signature: bool has_selection?

Description: Indicates whether any objects are selected

This method has been introduced in version 0.27

has_transient_object_selection?
Signature: [const] bool has_transient_object_selection?

Description: Returns true, if geometrical objects (shapes or cell instances) are selected in this
view in the transient selection

The transient selection represents the objects selected when the mouse hovers over the layout
windows. This selection is not used for operations but rather to indicate which object would be
selected if the mouse is clicked.

This method was introduced in version 0.18.

hide_cell
Signature: void hide_cell (unsigned int cell_index, int cv_index)

Description: Hides the given cell for the given cellview

hierarchy_control_frame
Signature: QWidget ptr hierarchy_control_frame

Description: Gets the cell view (hierarchy view) side widget

For details about side widgets see layer_control_frame.

This method has been introduced in version 0.27

image
Signature: Image image (unsigned long id)

Description: Gets the image given by an ID

Returns a reference to the image given by the respective ID or an invalid image if the ID is not
valid. Use Image#is_valid? to determine whether the returned image is valid or not.

The returned image is a 'live' object and changing it will update the view.

This method has been introduced in version 0.25.

init_layer_properties
Signature: [const] void init_layer_properties (LayerProperties props)

Description: Fills the layer properties for a new layer

props: The layer properties object to initialize.

For more details visit
https://www.klayout.org

Page 1947 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

This method initializes a layer properties object's color and stipples according to the defaults for
the given layer source specification. The layer's source must be set already on the layer properties
object.

This method was introduced in version 0.19.

insert_annotation
Signature: void insert_annotation (Annotation ptr obj)

Description: Inserts an annotation object into the given view

Inserts a new annotation into the view. Existing annotation will remain. Use clear_annotations
to delete them before inserting new ones. Use replace_annotation to replace an existing one
with a new one. Starting with version 0.25 this method modifies self's ID to reflect the ID of the
ruler created. After an annotation is inserted into the view, it can be modified and the changes of
properties will become reflected immediately in the view.

insert_image
Signature: void insert_image (Image obj)

Description: Insert an image object into the given view

Insert the image object given by obj into the view.

With version 0.25, this method will attach the image object to the view and the image object will
become a 'live' object - i.e. changes to the object will change the appearance of the image on the
screen.

(1) Signature: LayerPropertiesNodeRef insert_layer (const LayerPropertiesIterator iter, const
LayerProperties node = LayerProperties())

Description: Inserts the given layer properties node into the list before the given position

This method inserts the new properties node before the position given by "iter" and returns a
const reference to the element created. The iterator that specified the position will remain valid
after the node was inserted and will point to the newly created node. It can be used to add further
nodes. To add children to the node inserted, use iter.last_child as insertion point for the next insert
operations.

Since version 0.22, this method accepts LayerProperties and LayerPropertiesNode objects. A
LayerPropertiesNode object can contain a hierarchy of further nodes. Since version 0.26 the node
parameter is optional and the reference returned by this method can be used to set the properties
of the new node.

insert_layer

(2) Signature: LayerPropertiesNodeRef insert_layer (unsigned int index, const
LayerPropertiesIterator iter, const LayerProperties node = LayerProperties())

Description: Inserts the given layer properties node into the list before the given position

This version addresses a specific list in a multi-tab layer properties arrangement with the "index"
parameter. This method inserts the new properties node before the position given by "iter" and
returns a const reference to the element created. The iterator that specified the position will remain
valid after the node was inserted and will point to the newly created node. It can be used to add
further nodes. This method has been introduced in version 0.21. Since version 0.22, this method
accepts LayerProperties and LayerPropertiesNode objects. A LayerPropertiesNode object can
contain a hierarchy of further nodes. Since version 0.26 the node parameter is optional and the
reference returned by this method can be used to set the properties of the new node.

insert_layer_list
Signature: void insert_layer_list (unsigned int index)

Description: Inserts a new layer properties list at the given index

This method inserts a new tab at the given position. The current layer properties list will be
changed to the new list. This method has been introduced in version 0.21.

For more details visit
https://www.klayout.org

Page 1948 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

is_cell_hidden?
Signature: [const] bool is_cell_hidden? (unsigned int cell_index, int cv_index)

Description: Returns true, if the cell is hidden

Returns: True, if the cell with "cell_index" is hidden for the cellview
"cv_index"

is_editable?
Signature: [const] bool is_editable?

Description: Returns true if the view is in editable mode

This read-only attribute has been added in version 0.27.5.

is_transacting?
Signature: bool is_transacting?

Description: Indicates if a transaction is ongoing

See transaction for a detailed description of transactions. This method was introduced in version
0.16.

l2ndb
Signature: LayoutToNetlist ptr l2ndb (int index)

Description: Gets the netlist database with the given index

Returns: The LayoutToNetlist object or nil if the index is not valid

This method has been added in version 0.26.

layer_control_frame
Signature: QWidget ptr layer_control_frame

Description: Gets the layer control side widget

A 'side widget' is a widget attached to the view. It does not have a parent, so you can embed it into
a different context. Please note that with embedding through 'setParent' it will be destroyed when
your parent widget gets destroyed. It will be lost then to the view.

The side widget can be configured through the views configuration interface.

This method has been introduced in version 0.27

libraries_frame
Signature: QWidget ptr libraries_frame

Description: Gets the library view side widget

For details about side widgets see layer_control_frame.

This method has been introduced in version 0.27

(1) Signature: void load_layer_props (string fn)

Description: Loads the layer properties

fn: The file name of the .lyp file to load

Load the layer properties from the file given in "fn"

load_layer_props

(2) Signature: void load_layer_props (string fn, bool add_default)

Description: Loads the layer properties with options

fn: The file name of the .lyp file to load

add_default: If true, default layers will be added for each other layer in the
layout

For more details visit
https://www.klayout.org

Page 1949 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

Load the layer properties from the file given in "fn". This version allows one to specify whether
defaults should be used for all other layers by setting "add_default" to true.

This variant has been added on version 0.21.

(3) Signature: void load_layer_props (string fn, int cv_index, bool add_default)

Description: Loads the layer properties with options

fn: The file name of the .lyp file to load

cv_index: See description text

add_default: If true, default layers will be added for each other layer in
the layout

Load the layer properties from the file given in "fn". This version allows one to specify whether
defaults should be used for all other layers by setting "add_default" to true. It can be used to load
the layer properties for a specific cellview by setting "cv_index" to the index for which the layer
properties file should be applied. All present definitions for this layout will be removed before the
properties file is loaded. "cv_index" can be set to -1. In that case, the layer properties file is applied
to each of the layouts individually.

Note that this version will override all cellview index definitions in the layer properties file.

This variant has been added on version 0.21.

(1) Signature: unsigned int load_layout (string filename, const LoadLayoutOptions options,
string technology, bool add_cellview)

Description: Loads a (new) file into the layout view with the given technology

Returns: The index of the cellview loaded.

Loads the file given by the "filename" parameter and associates it with the given technology. The
options specify various options for reading the file. The add_cellview param controls whether to
create a new cellview (true) or clear all cellviews before (false).

This version has been introduced in version 0.22.

(2) Signature: unsigned int load_layout (string filename, const LoadLayoutOptions options, bool
add_cellview)

Description: Loads a (new) file into the layout view

Returns: The index of the cellview loaded.

Loads the file given by the "filename" parameter. The options specify various options for reading
the file. The add_cellview param controls whether to create a new cellview (true) or clear all
cellviews before (false).

This method has been introduced in version 0.18.

(3) Signature: unsigned int load_layout (string filename, string technology, bool add_cellview)

Description: Loads a (new) file into the layout view with the given technology

Returns: The index of the cellview loaded.

Loads the file given by the "filename" parameter and associates it with the given technology. The
add_cellview param controls whether to create a new cellview (true) or clear all cellviews before
(false).

This version has been introduced in version 0.22.

load_layout

(4) Signature: unsigned int load_layout (string filename, bool add_cellview)

Description: Loads a (new) file into the layout view

For more details visit
https://www.klayout.org

Page 1950 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

Returns: The index of the cellview loaded.

Loads the file given by the "filename" parameter. The add_cellview param controls whether to
create a new cellview (true) or clear all cellviews before (false).

lvsdb
Signature: LayoutVsSchematic ptr lvsdb (unsigned int index)

Description: Gets the netlist database with the given index

Returns: The LayoutVsSchematic object or nil if the index is not valid

This method has been added in version 0.26.

max_hier
Signature: void max_hier

Description: Selects all hierarchy levels available

Show the layout in full depth down to the deepest level of hierarchy. This method may cause a
redraw.

max_hier_levels
Signature: [const] int max_hier_levels

Description: Returns the maximum hierarchy level up to which to display geometries

Returns: The maximum level up to which to display geometries

Python specific notes:
The object exposes a readable attribute 'max_hier_levels'. This is the getter.

max_hier_levels=
Signature: void max_hier_levels= (int level)

Description: Sets the maximum hierarchy level up to which to display geometries

level: The maximum level below which to display something

This methods allows setting the maximum hierarchy below which to display geometries.This
method may cause a redraw if required.

Python specific notes:
The object exposes a writable attribute 'max_hier_levels'. This is the setter.

menu_symbols
Signature: [static] string[] menu_symbols

Description: Gets all available menu symbols (see call_menu).

NOTE: currently this method delivers a superset of all available symbols. Depending on the
context, no all symbols may trigger actual functionality.

This method has been introduced in version 0.27.

min_hier_levels
Signature: [const] int min_hier_levels

Description: Returns the minimum hierarchy level at which to display geometries

Returns: The minimum level at which to display geometries

Python specific notes:
The object exposes a readable attribute 'min_hier_levels'. This is the getter.

min_hier_levels=
Signature: void min_hier_levels= (int level)

Description: Sets the minimum hierarchy level at which to display geometries

level: The minimum level above which to display something

For more details visit
https://www.klayout.org

Page 1951 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

This methods allows setting the minimum hierarchy level above which to display geometries.This
method may cause a redraw if required.

Python specific notes:
The object exposes a writable attribute 'min_hier_levels'. This is the setter.

netlist_browser
Signature: NetlistBrowserDialog ptr netlist_browser

Description: Gets the netlist browser object for the given layout view

This method has been added in version 0.27.

(1) Signature: [static] new LayoutView ptr new (QWidget ptr parent, bool editable = false,
Manager ptr manager = nil, unsigned int options = 0)

Description: Creates a standalone view

parent: The parent widget in which to embed the view

editable: True to make the view editable

manager: The Manager object to enable undo/redo

options: A combination of the values in the LV_... constants

This constructor is for special purposes only. To create a view in the context of a main window,
use MainWindow#create_view and related methods.

This constructor has been introduced in version 0.25. It has been enhanced with the arguments in
version 0.27.

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new LayoutView ptr new (bool editable = false, Manager ptr manager = nil,
unsigned int options = 0)

Description: Creates a standalone view

editable: True to make the view editable

manager: The Manager object to enable undo/redo

options: A combination of the values in the LV_... constants

This constructor is for special purposes only. To create a view in the context of a main window,
use MainWindow#create_view and related methods.

This constructor has been introduced in version 0.25. It has been enhanced with the arguments in
version 0.27.

Python specific notes:
This method is the default initializer of the object

num_l2ndbs
Signature: [const] unsigned int num_l2ndbs

Description: Gets the number of netlist databases loaded into this view

Returns: The number of LayoutToNetlist objects present in this view

This method has been added in version 0.26.

num_layer_lists
Signature: [const] unsigned int num_layer_lists

Description: Gets the number of layer properties tabs present

This method has been introduced in version 0.23.

For more details visit
https://www.klayout.org

Page 1952 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

num_rdbs
Signature: [const] unsigned int num_rdbs

Description: Gets the number of report databases loaded into this view

Returns: The number of ReportDatabase objects present in this view

object_selection
Signature: [const] ObjectInstPath[] object_selection

Description: Returns a list of selected objects

This method will deliver an array of ObjectInstPath objects listing the selected geometrical objects.
Other selected objects such as annotations and images will not be contained in that list.

The list returned is an array of copies of ObjectInstPath objects. They can be modified, but they
will become a new selection only after re-introducing them into the view through object_selection=
or select_object.

Another way of obtaining the selected objects is each_object_selected.

This method has been introduced in version 0.24.

Python specific notes:
The object exposes a readable attribute 'object_selection'. This is the getter.

object_selection=
Signature: [const] void object_selection= (ObjectInstPath[] sel)

Description: Sets the list of selected objects

This method will set the selection of geometrical objects such as shapes and instances. It is the
setter which complements the object_selection method.

Another way of setting the selection is through clear_object_selection and select_object.

This method has been introduced in version 0.24.

Python specific notes:
The object exposes a writable attribute 'object_selection'. This is the setter.

on_active_cellview_changed
Signature: [signal] void on_active_cellview_changed

Description: An event indicating that the active cellview has changed

If the active cellview is changed by selecting a new one from the drop-down list, this event is
triggered. When this event is triggered, the cellview has already been changed. Before version
0.25 this event was based on the observer pattern obsolete now. The corresponding methods
(add_active_cellview_changed/remove_active_cellview_changed) have been removed in 0.25.

Python specific notes:
The object exposes a readable attribute 'on_active_cellview_changed'. This is the getter. The
object exposes a writable attribute 'on_active_cellview_changed'. This is the setter.

on_annotation_changed
Signature: [signal] void on_annotation_changed (int id)

Description: A event indicating that an annotation has been modified

The argument of the event is the ID of the annotation that was changed. This event has been
added in version 0.25.

Python specific notes:
The object exposes a readable attribute 'on_annotation_changed'. This is the getter. The object
exposes a writable attribute 'on_annotation_changed'. This is the setter.

on_annotation_selection_changed
Signature: [signal] void on_annotation_selection_changed

Description: A event indicating that the annotation selection has changed

This event has been added in version 0.25.

For more details visit
https://www.klayout.org

Page 1953 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

Python specific notes:
The object exposes a readable attribute 'on_annotation_selection_changed'. This is the getter.
The object exposes a writable attribute 'on_annotation_selection_changed'. This is the setter.

on_annotations_changed
Signature: [signal] void on_annotations_changed

Description: A event indicating that annotations have been added or removed

This event has been added in version 0.25.

Python specific notes:
The object exposes a readable attribute 'on_annotations_changed'. This is the getter. The object
exposes a writable attribute 'on_annotations_changed'. This is the setter.

on_cell_visibility_changed
Signature: [signal] void on_cell_visibility_changed

Description: An event indicating that the visibility of one or more cells has changed

This event is triggered after the visibility of one or more cells has changed.

Before version 0.25 this event was based on the observer pattern obsolete now. The
corresponding methods (add_cell_visibility_observer/remove_cell_visibility_observer) have been
removed in 0.25.

Python specific notes:
The object exposes a readable attribute 'on_cell_visibility_changed'. This is the getter. The object
exposes a writable attribute 'on_cell_visibility_changed'. This is the setter.

on_cellview_changed
Signature: [signal] void on_cellview_changed (int cellview_index)

Description: An event indicating that a cellview has changed

If a cellview is modified, this event is triggered. When this event is triggered, the cellview have
already been changed. The integer parameter of this event will indicate the cellview that has
changed.

Before version 0.25 this event was based on the observer pattern obsolete now. The
corresponding methods (add_cellview_observer/remove_cellview_observer) have been removed
in 0.25.

Python specific notes:
The object exposes a readable attribute 'on_cellview_changed'. This is the getter. The object
exposes a writable attribute 'on_cellview_changed'. This is the setter.

on_cellviews_changed
Signature: [signal] void on_cellviews_changed

Description: An event indicating that the cellview collection has changed

If new cellviews are added or cellviews are removed, this event is triggered. When this event is
triggered, the cellviews have already been changed. Before version 0.25 this event was based
on the observer pattern obsolete now. The corresponding methods (add_cellview_list_observer/
remove_cellview_list_observer) have been removed in 0.25.

Python specific notes:
The object exposes a readable attribute 'on_cellviews_changed'. This is the getter. The object
exposes a writable attribute 'on_cellviews_changed'. This is the setter.

on_close
Signature: [signal] void on_close

Description: A event indicating that the view is about to close

This event is triggered when the view is going to be closed entirely.

It has been added in version 0.25.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1954 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

The object exposes a readable attribute 'on_close'. This is the getter. The object exposes a
writable attribute 'on_close'. This is the setter.

on_current_layer_list_changed
Signature: [signal] void on_current_layer_list_changed (int index)

Description: An event indicating the current layer list (the selected tab) has changed

index: The index of the new current layer list

This event is triggered after the current layer list was changed - i.e. a new tab was selected.

This event was introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'on_current_layer_list_changed'. This is the getter. The
object exposes a writable attribute 'on_current_layer_list_changed'. This is the setter.

on_file_open
Signature: [signal] void on_file_open

Description: An event indicating that a file was opened

If a file is loaded, this event is triggered. When this event is triggered, the file was already loaded
and the new file is the new active cellview. Despite it's name, this event is also triggered if a layout
object is loaded into the view.

Before version 0.25 this event was based on the observer pattern obsolete now. The
corresponding methods (add_file_open_observer/remove_file_open_observer) have been
removed in 0.25.

Python specific notes:
The object exposes a readable attribute 'on_file_open'. This is the getter. The object exposes a
writable attribute 'on_file_open'. This is the setter.

on_hide
Signature: [signal] void on_hide

Description: A event indicating that the view is going to become invisible

It has been added in version 0.25.

Python specific notes:
The object exposes a readable attribute 'on_hide'. This is the getter. The object exposes a writable
attribute 'on_hide'. This is the setter.

on_image_changed
Signature: [signal] void on_image_changed (int id)

Description: A event indicating that an image has been modified

The argument of the event is the ID of the image that was changed. This event has been added in
version 0.25.

Python specific notes:
The object exposes a readable attribute 'on_image_changed'. This is the getter. The object
exposes a writable attribute 'on_image_changed'. This is the setter.

on_image_selection_changed
Signature: [signal] void on_image_selection_changed

Description: A event indicating that the image selection has changed

This event has been added in version 0.25.

Python specific notes:
The object exposes a readable attribute 'on_image_selection_changed'. This is the getter. The
object exposes a writable attribute 'on_image_selection_changed'. This is the setter.

For more details visit
https://www.klayout.org

Page 1955 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

on_images_changed
Signature: [signal] void on_images_changed

Description: A event indicating that images have been added or removed

This event has been added in version 0.25.

Python specific notes:
The object exposes a readable attribute 'on_images_changed'. This is the getter. The object
exposes a writable attribute 'on_images_changed'. This is the setter.

on_l2ndb_list_changed
Signature: [signal] void on_l2ndb_list_changed

Description: An event that is triggered the list of netlist databases is changed

If a netlist database is added or removed, this event is triggered.

This method has been added in version 0.26.

Python specific notes:
The object exposes a readable attribute 'on_l2ndb_list_changed'. This is the getter. The object
exposes a writable attribute 'on_l2ndb_list_changed'. This is the setter.

on_layer_list_changed
Signature: [signal] void on_layer_list_changed (int flags)

Description: An event indicating that the layer list has changed

This event is triggered after the layer list has changed it's configuration. The integer argument
gives a hint about the nature of the changed: Bit 0 is set, if the properties (visibility, color etc.) of
one or more layers have changed. Bit 1 is set if the hierarchy has changed. Bit 2 is set, if layer
names have changed. Before version 0.25 this event was based on the observer pattern obsolete
now. The corresponding methods (add_layer_list_observer/remove_layer_list_observer) have
been removed in 0.25.

Python specific notes:
The object exposes a readable attribute 'on_layer_list_changed'. This is the getter. The object
exposes a writable attribute 'on_layer_list_changed'. This is the setter.

on_layer_list_deleted
Signature: [signal] void on_layer_list_deleted (int index)

Description: An event indicating that a layer list (a tab) has been removed

index: The index of the layer list that was removed

This event is triggered after the layer list has been removed - i.e. a tab was deleted.

This event was introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'on_layer_list_deleted'. This is the getter. The object
exposes a writable attribute 'on_layer_list_deleted'. This is the setter.

on_layer_list_inserted
Signature: [signal] void on_layer_list_inserted (int index)

Description: An event indicating that a layer list (a tab) has been inserted

index: The index of the layer list that was inserted

This event is triggered after the layer list has been inserted - i.e. a new tab was created.

This event was introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'on_layer_list_inserted'. This is the getter. The object
exposes a writable attribute 'on_layer_list_inserted'. This is the setter.

For more details visit
https://www.klayout.org

Page 1956 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

on_rdb_list_changed
Signature: [signal] void on_rdb_list_changed

Description: An event that is triggered the list of report databases is changed

If a report database is added or removed, this event is triggered.

This event was translated from the Observer pattern to an event in version 0.25.

Python specific notes:
The object exposes a readable attribute 'on_rdb_list_changed'. This is the getter. The object
exposes a writable attribute 'on_rdb_list_changed'. This is the setter.

on_selection_changed
Signature: [signal] void on_selection_changed

Description: An event that is triggered if the selection is changed

If the selection changed, this event is triggered.

This event was translated from the Observer pattern to an event in version 0.25.

Python specific notes:
The object exposes a readable attribute 'on_selection_changed'. This is the getter. The object
exposes a writable attribute 'on_selection_changed'. This is the setter.

on_show
Signature: [signal] void on_show

Description: A event indicating that the view is going to become visible

It has been added in version 0.25.

Python specific notes:
The object exposes a readable attribute 'on_show'. This is the getter. The object exposes a
writable attribute 'on_show'. This is the setter.

on_transient_selection_changed
Signature: [signal] void on_transient_selection_changed

Description: An event that is triggered if the transient selection is changed

If the transient selection is changed, this event is triggered. The transient selection is the
highlighted selection when the mouse hovers over some object(s). This event was translated from
the Observer pattern to an event in version 0.25.

Python specific notes:
The object exposes a readable attribute 'on_transient_selection_changed'. This is the getter. The
object exposes a writable attribute 'on_transient_selection_changed'. This is the setter.

on_viewport_changed
Signature: [signal] void on_viewport_changed

Description: An event indicating that the viewport (the visible rectangle) has changed

This event is triggered after a new display rectangle was chosen - for example, because the user
zoomed into the layout.

Before version 0.25 this event was based on the observer pattern obsolete now. The
corresponding methods (add_viewport_changed_observer/remove_viewport_changed_observer)
have been removed in 0.25.

Python specific notes:
The object exposes a readable attribute 'on_viewport_changed'. This is the getter. The object
exposes a writable attribute 'on_viewport_changed'. This is the setter.

open_d25_view
Signature: D25View ptr open_d25_view

Description: Opens the 2.5d view window and returns a reference to the D25View object.

For more details visit
https://www.klayout.org

Page 1957 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

This method has been introduced in version 0.28.

pan_center
Signature: void pan_center (const DPoint p)

Description: Pans to the given point

The window is positioned such that "p" becomes the new center

pan_down
Signature: void pan_down

Description: Pans down

pan_left
Signature: void pan_left

Description: Pans to the left

pan_right
Signature: void pan_right

Description: Pans to the right

pan_up
Signature: void pan_up

Description: Pans upward

rdb
Signature: ReportDatabase ptr rdb (int index)

Description: Gets the report database with the given index

Returns: The ReportDatabase object or nil if the index is not valid

reload_layout
Signature: void reload_layout (unsigned int cv)

Description: Reloads the given cellview

cv: The index of the cellview to reload

remove_l2ndb
Signature: void remove_l2ndb (unsigned int index)

Description: Removes a netlist database with the given index

The: index of the netlist database to remove from this view

This method has been added in version 0.26.

remove_line_style
Signature: void remove_line_style (unsigned int index)

Description: Removes the line style with the given index

The line styles with an index less than the first custom style. If a style is removed that is still used,
the results are undefined.

This method has been introduced in version 0.25.

remove_rdb
Signature: void remove_rdb (unsigned int index)

Description: Removes a report database with the given index

The: index of the report database to remove from this view

remove_stipple
Signature: void remove_stipple (unsigned int index)

Description: Removes the stipple pattern with the given index

For more details visit
https://www.klayout.org

Page 1958 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

The pattern with an index less than the first custom pattern cannot be removed. If a stipple pattern
is removed that is still used, the results are undefined.

remove_unused_layers
Signature: void remove_unused_layers

Description: Removes unused layers from layer list

This method was introduced in version 0.19.

rename_cellview
Signature: void rename_cellview (string name, int index)

Description: Renames the cellview with the given index

If the name is not unique, a unique name will be constructed from the name given. The name may
be different from the filename but is associated with the layout object. If a layout is shared between
multiple cellviews (which may happen due to a clone of the layout view for example), all cellviews
are renamed.

rename_layer_list
Signature: void rename_layer_list (unsigned int index, string name)

Description: Sets the title of the given layer properties tab

This method has been introduced in version 0.21.

replace_annotation
Signature: void replace_annotation (int id, const Annotation obj)

Description: Replaces the annotation given by the id with the new one

Replaces an existing annotation given by the id parameter with the new one. The id of an
annotation can be obtained through Annotation#id.

This method has been introduced in version 0.24.

replace_image
Signature: void replace_image (unsigned long id, Image new_obj)

Description: Replace an image object with the new image

id: The id of the object to replace

new_obj: The new object to replace the old one

Replaces the image with the given Id with the new object. The Id can be obtained with if "id"
method of the image object.

This method has been introduced in version 0.20.

replace_l2ndb
Signature: unsigned int replace_l2ndb (unsigned int db_index, LayoutToNetlist ptr db)

Description: Replaces the netlist database with the given index

Returns: The index of the database within the view (see lvsdb)

If the index is not valid, the database will be added to the view (see add_lvsdb).

This method has been added in version 0.26.

(1) Signature: void replace_layer_node (const LayerPropertiesIterator iter, const
LayerProperties node)

Description: Replaces the layer node at the position given by "iter" with a new one

Since version 0.22, this method accepts LayerProperties and LayerPropertiesNode objects. A
LayerPropertiesNode object can contain a hierarchy of further nodes.

replace_layer_node

For more details visit
https://www.klayout.org

Page 1959 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

(2) Signature: void replace_layer_node (unsigned int index, const LayerPropertiesIterator iter,
const LayerProperties node)

Description: Replaces the layer node at the position given by "iter" with a new one

This version addresses a specific list in a multi-tab layer properties arrangement with the "index"
parameter. This method has been introduced in version 0.21. Since version 0.22, this method
accepts LayerProperties and LayerPropertiesNode objects. A LayerPropertiesNode object can
contain a hierarchy of further nodes.

replace_lvsdb
Signature: unsigned int replace_lvsdb (unsigned int db_index, LayoutVsSchematic ptr db)

Description: Replaces the database with the given index

Returns: The index of the database within the view (see lvsdb)

If the index is not valid, the database will be added to the view (see add_lvsdb).

This method has been added in version 0.26.

replace_rdb
Signature: unsigned int replace_rdb (unsigned int db_index, ReportDatabase ptr db)

Description: Replaces the report database with the given index

Returns: The index of the database within the view (see rdb)

If the index is not valid, the database will be added to the view (see add_rdb).

This method has been added in version 0.26.

reset_title
Signature: void reset_title

Description: Resets the title to the standard title

See set_title and title for a description about how titles are handled.

(1) Signature: void save_as (unsigned int index, string filename, bool gzip, const
SaveLayoutOptions options)

Description: Saves a layout to the given stream file

index: The cellview index of the layout to save.

filename: The file to write.

gzip: Ignored.

options: Writer options.

Use of this method is deprecated

The layout with the given index is written to the stream file with the given options. 'options' is a
SaveLayoutOptions object that specifies which format to write and further options such as scaling
factor etc. Calling this method is equivalent to calling 'write' on the respective layout object.

This method is deprecated starting from version 0.23. The compression mode is determined from
the file name automatically and the gzip parameter is ignored.

save_as

(2) Signature: void save_as (unsigned int index, string filename, const SaveLayoutOptions
options)

Description: Saves a layout to the given stream file

index: The cellview index of the layout to save.

filename: The file to write.

options: Writer options.

For more details visit
https://www.klayout.org

Page 1960 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

The layout with the given index is written to the stream file with the given options. 'options' is a
SaveLayoutOptions object that specifies which format to write and further options such as scaling
factor etc. Calling this method is equivalent to calling 'write' on the respective layout object.

If the file name ends with a suffix ".gz" or ".gzip", the file is compressed with the zlib algorithm.

save_image
Signature: void save_image (string filename, unsigned int width, unsigned int height)

Description: Saves the layout as an image to the given file

filename: The file to which to write the screenshot to.

width: The width of the image to render in pixel.

height: The height of the image to render in pixel.

The image contains the current scene (layout, annotations etc.). The image is written as a PNG file
to the given file. The image is drawn synchronously with the given width and height. Drawing may
take some time.

save_image_with_options
Signature: void save_image_with_options (string filename, unsigned int width, unsigned int
height, int linewidth, int oversampling, double resolution, const DBox target, bool monochrome)

Description: Saves the layout as an image to the given file (with options)

filename: The file to which to write the screenshot to.

width: The width of the image to render in pixel.

height: The height of the image to render in pixel.

linewidth: The width of a line in pixels (usually 1) or 0 for default.

oversampling: The oversampling factor (1..3) or 0 for default.

resolution: The resolution (pixel size compared to a screen pixel, i.e
1/oversampling) or 0 for default.

target_box: The box to draw or an empty box for default.

monochrome: If true, monochrome images will be produced.

The image contains the current scene (layout, annotations etc.). The image is written as a PNG file
to the given file. The image is drawn synchronously with the given width and height. Drawing may
take some time. Monochrome images don't have background or annotation objects currently.

This method has been introduced in 0.23.10.

save_layer_props
Signature: void save_layer_props (string fn)

Description: Saves the layer properties

Save the layer properties to the file given in "fn"

save_screenshot
Signature: void save_screenshot (string filename)

Description: Saves a screenshot to the given file

filename: The file to which to write the screenshot to.

The screenshot is written as a PNG file to the given file. This requires the drawing to be complete.
Ideally, synchronous mode is switched on for the application to guarantee this condition. The
image will have the size of the viewport showing the current layout.

select_all
Signature: void select_all

Description: Selects all objects from the view

For more details visit
https://www.klayout.org

Page 1961 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

This method has been introduced in version 0.27

select_cell
Signature: void select_cell (unsigned int cell_index, int cv_index)

Description: Selects a cell by index for a certain cell view

Use of this method is deprecated

Select the current (top) cell by specifying a path (a list of cell indices from top to the actual cell)
and the cellview index for which this cell should become the currently shown one. This method
selects the cell to be drawn. In constrast, the set_current_cell_path method selects the cell that is
highlighted in the cell tree (but not necessarily drawn). This method is was deprecated in version
0.25 since from then, the CellView object can be used to obtain an manipulate the selected cell.

select_cell_path
Signature: void select_cell_path (unsigned int[] cell_index, int cv_index)

Description: Selects a cell by cell index for a certain cell view

Use of this method is deprecated

Select the current (top) cell by specifying a cell indexand the cellview index for which this
cell should become the currently shown one. The path to the cell is constructed by selecting
one that leads to a top cell. This method selects the cell to be drawn. In constrast, the
set_current_cell_path method selects the cell that is highlighted in the cell tree (but not necessarily
drawn). This method is was deprecated in version 0.25 since from then, the CellView object can
be used to obtain an manipulate the selected cell.

(1) Signature: void select_from (const DPoint point, LayoutView::SelectionMode mode =
Replace)

Description: Selects the objects from a given point

The mode indicates whether to add to the selection, replace the selection, remove from selection
or invert the selected status of the objects found around the given point.

This method has been introduced in version 0.27

select_from

(2) Signature: void select_from (const DBox box, LayoutView::SelectionMode mode = Replace)

Description: Selects the objects from a given box

The mode indicates whether to add to the selection, replace the selection, remove from selection
or invert the selected status of the objects found inside the given box.

This method has been introduced in version 0.27

select_object
Signature: [const] void select_object (const ObjectInstPath obj)

Description: Adds the given selection to the list of selected objects

The selection provided by the ObjectInstPath descriptor is added to the list of selected objects. To
clear the previous selection, use clear_object_selection.

The selection of other objects (such as annotations and images) will not be affected.

Another way of selecting objects is object_selection=.

This method has been introduced in version 0.24

selected_cells_paths
Signature: [const] unsigned int[][] selected_cells_paths (int cv_index)

Description: Gets the paths of the selected cells

For more details visit
https://www.klayout.org

Page 1962 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

Gets a list of cell paths to the cells selected in the cellview given by cv_index. The "selected cells"
are the ones selected in the cell list or cell tree. This is not the "current cell" which is the one that is
shown in the layout window.

The cell paths are arrays of cell indexes where the last element is the actual cell selected.

This method has be introduced in version 0.25.

selected_layers
Signature: [const] LayerPropertiesIterator[] selected_layers

Description: Gets the selected layers

Returns an array of LayerPropertiesIterator objects pointing to the currently selected layers. If no
layer view is selected currently, an empty array is returned.

selection_bbox
Signature: DBox selection_bbox

Description: Returns the bounding box of the current selection

This method has been introduced in version 0.26.2

selection_size
Signature: unsigned long selection_size

Description: Returns the number of selected objects

This method has been introduced in version 0.27

set_active_cellview_index
Signature: void set_active_cellview_index (int index)

Description: Makes the cellview with the given index the active one (shown in hierarchy browser)

Use of this method is deprecated. Use active_setview_index= instead

See active_cellview_index.

This method has been renamed from set_active_cellview_index to active_cellview_index= in
version 0.25. The original name is still available, but is deprecated.

Python specific notes:
The object exposes a writable attribute 'active_setview_index'. This is the setter.

set_config
Signature: void set_config (string name, string value)

Description: Sets a local configuration parameter with the given name to the given value

name: The name of the configuration parameter to set

value: The value to which to set the configuration parameter

This method sets a local configuration parameter with the given name to the given value. Values
can only be strings. Numerical values have to be converted into strings first. Local configuration
parameters override global configurations for this specific view. This allows for example to override
global settings of background colors. Any local settings are not written to the configuration file.

set_current_cell_path
Signature: void set_current_cell_path (int cv_index, unsigned int[] cell_path)

Description: Sets the path to the current cell

cv_index: The cellview index for which to set the current path for
(usually this will be the active cellview index)

path: The path to the current cell

Use of this method is deprecated

For more details visit
https://www.klayout.org

Page 1963 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

The current cell is the one highlighted in the browser with the focus rectangle. The cell given by
the path is highlighted and scrolled into view. To select the cell to be drawn, use the select_cell or
select_cell_path method.

This method is was deprecated in version 0.25 since from then, the CellView object can be used to
obtain an manipulate the selected cell.

set_current_layer_list
Signature: void set_current_layer_list (unsigned int index)

Description: Sets the index of the currently selected layer properties tab

Use of this method is deprecated. Use current_layer_list= instead

This method has been introduced in version 0.21.

Python specific notes:
The object exposes a writable attribute 'current_layer_list'. This is the setter.

(1) Signature: void set_layer_properties (const LayerPropertiesIterator iter, const
LayerProperties props)

Description: Sets the layer properties of the layer pointed to by the iterator

This method replaces the layer properties of the element pointed to by "iter" by the properties
given by "props". It will not change the hierarchy but just the properties of the given node.

set_layer_properties

(2) Signature: void set_layer_properties (unsigned int index, const LayerPropertiesIterator iter,
const LayerProperties props)

Description: Sets the layer properties of the layer pointed to by the iterator

This method replaces the layer properties of the element pointed to by "iter" by the properties
given by "props" in the tab given by "index". It will not change the hierarchy but just the properties
of the given node.This version addresses a specific list in a multi-tab layer properties arrangement
with the "index" parameter. This method has been introduced in version 0.21.

set_title
Signature: void set_title (string title)

Description: Sets the title of the view

title: The title string to use

Use of this method is deprecated. Use title= instead

Override the standard title of the view indicating the file names loaded by the specified title string.
The title string can be reset with reset_title to the standard title again.

Python specific notes:
The object exposes a writable attribute 'title'. This is the setter.

(1) Signature: void show_all_cells

Description: Makes all cells shown (cancel effects of hide_cell)show_all_cells

(2) Signature: void show_all_cells (int cv_index)

Description: Makes all cells shown (cancel effects of hide_cell) for the specified cell view

Unlike show_all_cells, this method will only clear the hidden flag on the cell view selected by
cv_index.

This variant has been added in version 0.25.

show_cell
Signature: void show_cell (unsigned int cell_index, int cv_index)

For more details visit
https://www.klayout.org

Page 1964 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

Description: Shows the given cell for the given cellview (cancel effect of hide_cell)

show_image
Signature: void show_image (unsigned long id, bool visible)

Description: Shows or hides the given image

id: The id of the object to show or hide

visible: True, if the image should be shown

Sets the visibility of the image with the given Id. The Id can be obtained with if "id" method of the
image object.

This method has been introduced in version 0.20.

With version 0.25, Image#visible= can be used to achieve the same results.

show_l2ndb
Signature: void show_l2ndb (int l2ndb_index, int cv_index)

Description: Shows a netlist database in the marker browser on a certain layout

The netlist browser is opened showing the netlist database with the index given by "l2ndb_index".
It will be attached (i.e. navigate to) the layout with the given cellview index in "cv_index".

This method has been added in version 0.26.

(1) Signature: unsigned int show_layout (Layout ptr layout, bool add_cellview)

Description: Shows an existing layout in the view

Returns: The index of the cellview created.

Shows the given layout in the view. If add_cellview is true, the new layout is added to the list of
cellviews in the view.

Note: once a layout is passed to the view with show_layout, it is owned by the view and must not
be destroyed with the 'destroy' method.

This method has been introduced in version 0.22.

(2) Signature: unsigned int show_layout (Layout ptr layout, string tech, bool add_cellview)

Description: Shows an existing layout in the view

Returns: The index of the cellview created.

Shows the given layout in the view. If add_cellview is true, the new layout is added to the list of
cellviews in the view. The technology to use for that layout can be specified as well with the 'tech'
parameter. Depending on the definition of the technology, layer properties may be loaded for
example. The technology string can be empty for the default technology.

Note: once a layout is passed to the view with show_layout, it is owned by the view and must not
be destroyed with the 'destroy' method.

This method has been introduced in version 0.22.

show_layout

(3) Signature: unsigned int show_layout (Layout ptr layout, string tech, bool add_cellview, bool
init_layers)

Description: Shows an existing layout in the view

Returns: The index of the cellview created.

Shows the given layout in the view. If add_cellview is true, the new layout is added to the list of
cellviews in the view. The technology to use for that layout can be specified as well with the 'tech'
parameter. Depending on the definition of the technology, layer properties may be loaded for
example. The technology string can be empty for the default technology. This variant also allows

For more details visit
https://www.klayout.org

Page 1965 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

one to control whether the layer properties are initialized (init_layers = true) or not (init_layers =
false).

Note: once a layout is passed to the view with show_layout, it is owned by the view and must not
be destroyed with the 'destroy' method.

This method has been introduced in version 0.22.

show_lvsdb
Signature: void show_lvsdb (int lvsdb_index, int cv_index)

Description: Shows a netlist database in the marker browser on a certain layout

The netlist browser is opened showing the netlist database with the index given by "lvsdb_index".
It will be attached (i.e. navigate to) the layout with the given cellview index in "cv_index".

This method has been added in version 0.26.

show_rdb
Signature: void show_rdb (int rdb_index, int cv_index)

Description: Shows a report database in the marker browser on a certain layout

The marker browser is opened showing the report database with the index given by "rdb_index". It
will be attached (i.e. navigate to) the layout with the given cellview index in "cv_index".

stop
Signature: void stop

Description: Stops redraw thread and close any browsers

This method usually does not need to be called explicitly. The redraw thread is stopped
automatically.

stop_redraw
Signature: void stop_redraw

Description: Stops the redraw thread

It is very important to stop the redraw thread before applying changes to the layout or the cell
views and the LayoutView configuration. This is usually done automatically. For rare cases, where
this is not the case, this method is provided.

title
Signature: [const] string title

Description: Returns the view's title string

Returns: The title string

The title string is either a string composed of the file names loaded (in some "readable" manner) or
a customized title string set by set_title.

Python specific notes:
The object exposes a readable attribute 'title'. This is the getter.

title=
Signature: void title= (string title)

Description: Sets the title of the view

title: The title string to use

Override the standard title of the view indicating the file names loaded by the specified title string.
The title string can be reset with reset_title to the standard title again.

Python specific notes:
The object exposes a writable attribute 'title'. This is the setter.

transaction
Signature: void transaction (string description)

Description: Begins a transaction

For more details visit
https://www.klayout.org

Page 1966 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

description: A text that appears in the 'undo' description

A transaction brackets a sequence of database modifications that appear as a single undo action.
Only modifications that are wrapped inside a transaction..commit call pair can be undone. Each
transaction must be terminated with a commit method call, even if some error occurred. It is
advisable therefore to catch errors and issue a commit call in this case.

This method was introduced in version 0.16.

transient_to_selection
Signature: void transient_to_selection

Description: Turns the transient selection into the actual selection

The current selection is cleared before. All highlighted objects under the mouse will become
selected. This applies to all types of objects (rulers, shapes, images ...).

This method has been introduced in version 0.26.2

unselect_object
Signature: [const] void unselect_object (const ObjectInstPath obj)

Description: Removes the given selection from the list of selected objects

The selection provided by the ObjectInstPath descriptor is removed from the list of selected
objects. If the given object was not part of the selection, nothing will be changed. The selection of
other objects (such as annotations and images) will not be affected.

This method has been introduced in version 0.24

update_content
Signature: void update_content

Description: Updates the layout view to the current state

This method triggers an update of the hierarchy tree and layer view tree. Usually, this method
does not need to be called. The widgets are updated automatically in most cases.

Currently, this method should be called however, after the layer view tree has been changed by
the insert_layer, replace_layer_node or delete_layer methods.

viewport_height
Signature: [const] int viewport_height

Description: Return the viewport height in pixels

This method was introduced in version 0.18.

viewport_trans
Signature: [const] DCplxTrans viewport_trans

Description: Returns the transformation that converts micron coordinates to pixels

Hint: the transformation returned will convert any point in micron coordinate space into a pixel
coordinate. Contrary to usual convention, the y pixel coordinate is given in a mathematically
oriented space - which means the bottom coordinate is 0. This method was introduced in version
0.18.

viewport_width
Signature: [const] int viewport_width

Description: Returns the viewport width in pixels

This method was introduced in version 0.18.

zoom_box
Signature: void zoom_box (const DBox box)

Description: Sets the viewport to the given box

box: The box to which to set the view in micron coordinates

For more details visit
https://www.klayout.org

Page 1967 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.185. API reference - Class LayoutView

zoom_fit
Signature: void zoom_fit

Description: Fits the contents of the current view into the window

zoom_fit_sel
Signature: void zoom_fit_sel

Description: Fits the contents of the current selection into the window

This method has been introduced in version 0.25.

zoom_in
Signature: void zoom_in

Description: Zooms in somewhat

zoom_out
Signature: void zoom_out

Description: Zooms out somewhat

For more details visit
https://www.klayout.org

Page 1968 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.186. API reference - Class LayoutView::SelectionMode

4.186. API reference - Class LayoutView::SelectionMode
Notation used in Ruby API documentation

Module: lay

Description: Specifies how selected objects interact with already selected ones.

This class is equivalent to the class LayoutView::SelectionMode

This enum was introduced in version 0.27.

Public constructors

new LayoutView::SelectionMode ptr new (int i) Creates an enum from an integer value

new LayoutView::SelectionMode ptr new (string s) Creates an enum from a string value

Public methods

[const] bool != (const
LayoutView::SelectionMode
other)

Compares two enums for inequality

[const] bool < (const
LayoutView::SelectionMode
other)

Returns true if the first enum is less (in the
enum symbol order) than the second

[const] bool == (const
LayoutView::SelectionMode
other)

Compares two enums

[const] string inspect Converts an enum to a visual string

[const] int to_i Gets the integer value from the enum

[const] string to_s Gets the symbolic string from an enum

Public static methods and constants

[static,const] LayoutView::SelectionMode Add Adds to any existing selection

[static,const] LayoutView::SelectionMode Invert Adds to any existing selection, if it's not
there yet or removes it from the selection
if it's already selected

[static,const] LayoutView::SelectionMode Replace Replaces the existing selection

[static,const] LayoutView::SelectionMode Reset Removes from any existing selection

Detailed description

!=
Signature: [const] bool != (const LayoutView::SelectionMode other)

Description: Compares two enums for inequality

For more details visit
https://www.klayout.org

Page 1969 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.186. API reference - Class LayoutView::SelectionMode

<
Signature: [const] bool < (const LayoutView::SelectionMode other)

Description: Returns true if the first enum is less (in the enum symbol order) than the second

==
Signature: [const] bool == (const LayoutView::SelectionMode other)

Description: Compares two enums

Add
Signature: [static,const] LayoutView::SelectionMode Add

Description: Adds to any existing selection

Invert
Signature: [static,const] LayoutView::SelectionMode Invert

Description: Adds to any existing selection, if it's not there yet or removes it from the selection if it's
already selected

Replace
Signature: [static,const] LayoutView::SelectionMode Replace

Description: Replaces the existing selection

Reset
Signature: [static,const] LayoutView::SelectionMode Reset

Description: Removes from any existing selection

inspect
Signature: [const] string inspect

Description: Converts an enum to a visual string

Python specific notes:
This method is also available as 'repr(object)'

(1) Signature: [static] new LayoutView::SelectionMode ptr new (int i)

Description: Creates an enum from an integer value

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new LayoutView::SelectionMode ptr new (string s)

Description: Creates an enum from a string value

Python specific notes:
This method is the default initializer of the object

to_i
Signature: [const] int to_i

Description: Gets the integer value from the enum

to_s
Signature: [const] string to_s

Description: Gets the symbolic string from an enum

Python specific notes:
This method is also available as 'str(object)'

For more details visit
https://www.klayout.org

Page 1970 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.187. API reference - Class CellView

4.187. API reference - Class CellView
Notation used in Ruby API documentation

Module: lay

Description: A class describing what is shown inside a layout view

The cell view points to a specific cell within a certain layout and a hierarchical context. For that, first of all a layout pointer is provided. The
cell itself is addressed by an cell_index or a cell object reference. The layout pointer can be nil, indicating that the cell view is invalid.

The cell is not only identified by it's index or object but also by the path leading to that cell. This path indicates how to find the cell in the
hierarchical context of it's parent cells.

The path is in fact composed of two parts: first in an unspecific fashion, just describing which parent cells are used. The target of this path
is called the "context cell". It is accessible by the ctx_cell_index or ctx_cell methods. In the viewer, the unspecific part of the path is the
location of the cell in the cell tree.

Additionally the path's second part may further identify a specific instance of a certain subcell in the context cell. This is done through a
set of InstElement objects. The target of this specific path is the actual cell addressed by the cellview. This target cell is accessible by the
cell_index or cell methods. In the viewer, the target cell is shown in the context of the context cell. The hierarchy levels are counted from
the context cell, which is on level 0. If the context path is empty, the context cell is identical with the target cell.

Starting with version 0.25, the cellview can be modified directly. This will have an immediate effect on the display. For example, the
following code will select a different cell:

cv = RBA::CellView::active
cv.cell_name = "TOP2"

See The Application API for more details about the cellview objects.

Public constructors

new CellView ptr new Creates a new object of this class

Public methods

[const] bool == (const
CellView
other)

Equality: indicates whether the cellviews refer to
the same one

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void ascend Ascends upwards in the hierarchy.

For more details visit
https://www.klayout.org

Page 1971 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.187. API reference - Class CellView

void assign (const
CellView
other)

Assigns another object to self

[const] Cell ptr cell Gets the reference to the target cell currently
addressed

void cell= (Cell ptr cell) Sets the cell by reference to a Cell object

[const] unsigned int cell_index Gets the target cell's index

void cell_index= (unsigned int
cell_index)

Sets the path to the given cell

[const] string cell_name Gets the name of the target cell currently
addressed

void cell_name= (string
cell_name)

Sets the cell by name

void close Closes this cell view

[const] DCplxTrans context_dtrans Gets the accumulated transformation of the
context path in micron unit space

[const] InstElement[] context_path Gets the cell's context path

void context_path= (InstElement[]
path)

Sets the context path explicitly

[const] ICplxTrans context_trans Gets the accumulated transformation of the
context path

[const] Cell ptr ctx_cell Gets the reference to the context cell currently
addressed

[const] unsigned int ctx_cell_index Gets the context cell's index

void descend (InstElement[]
path)

Descends further into the hierarchy.

[const] new CellView ptr dup Creates a copy of self

[const] string filename Gets filename associated with the layout behind
the cellview

void hide_cell (const Cell ptr
cell)

Hides the given cell

[const] int index Gets the index of this cellview in the layout view

bool is_cell_hidden? (const Cell ptr
cell)

Returns true, if the given cell is hidden

[const] bool is_dirty? Gets a flag indicating whether the layout needs
saving

[const] bool is_valid? Returns true, if the cellview is valid

For more details visit
https://www.klayout.org

Page 1972 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.187. API reference - Class CellView

[const] Layout ptr layout Gets the reference to the layout object
addressed by this view

[const] string name Gets the unique name associated with the layout
behind the cellview

void name= (string name) sets the unique name associated with the layout
behind the cellview

[signal] void on_technology_changed An event indicating that the technology has
changed

[const] unsigned int[] path Gets the cell's unspecific part of the path leading
to the context cell

void path= (unsigned int[]
path)

Sets the unspecific part of the path explicitly

void reset_cell Resets the cell

void set_cell (unsigned int
cell_index)

Sets the path to the given cell

void set_cell_name (string
cell_name)

Sets the cell by name

void set_context_path (InstElement[]
path)

Sets the context path explicitly

void set_path (unsigned int[]
path)

Sets the unspecific part of the path explicitly

void show_all_cells Makes all cells shown (cancel effects of
hide_cell) for the specified cell view

void show_cell (const Cell ptr
cell)

Shows the given cell (cancels the effect of
hide_cell)

[const] string technology Returns the technology name for the layout
behind the given cell view

[const] void technology= (string
tech_name)

Sets the technology for the layout behind the
given cell view

LayoutView ptr view Gets the view the cellview resides in

Public static methods and constants

CellView active Gets the active CellView

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

For more details visit
https://www.klayout.org

Page 1973 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.187. API reference - Class CellView

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

==
Signature: [const] bool == (const CellView other)

Description: Equality: indicates whether the cellviews refer to the same one

In version 0.25, the definition of the equality operator has been changed to reflect identity of the
cellview. Before that version, identity of the cell shown was implied.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the

For more details visit
https://www.klayout.org

Page 1974 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.187. API reference - Class CellView

reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

active
Signature: [static] CellView active

Description: Gets the active CellView

The active CellView is the one that is selected in the current layout view. This method is equivalent
to

RBA::LayoutView::current.active_cellview

If no CellView is active, this method returns nil.

This method has been introduced in version 0.23.

ascend
Signature: void ascend

Description: Ascends upwards in the hierarchy.

Removes one element from the specific path of the cellview with the given index. Returns the
element removed. This method has been added in version 0.25.

assign
Signature: void assign (const CellView other)

Description: Assigns another object to self

cell
Signature: [const] Cell ptr cell

Description: Gets the reference to the target cell currently addressed

Python specific notes:
The object exposes a readable attribute 'cell'. This is the getter.

cell=
Signature: void cell= (Cell ptr cell)

Description: Sets the cell by reference to a Cell object

Setting the cell reference to nil invalidates the cellview. This method will construct any path to this
cell, not a particular one. It will clear the context path and update the context and target cell.

Python specific notes:
The object exposes a writable attribute 'cell'. This is the setter.

cell_index
Signature: [const] unsigned int cell_index

Description: Gets the target cell's index

Python specific notes:
The object exposes a readable attribute 'cell_index'. This is the getter.

cell_index=
Signature: void cell_index= (unsigned int cell_index)

Description: Sets the path to the given cell

This method will construct any path to this cell, not a particular one. It will clear the context path and
update the context and target cell. Note that the cell is specified by it's index.

Python specific notes:
The object exposes a writable attribute 'cell_index'. This is the setter.

For more details visit
https://www.klayout.org

Page 1975 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.187. API reference - Class CellView

cell_name
Signature: [const] string cell_name

Description: Gets the name of the target cell currently addressed

Python specific notes:
The object exposes a readable attribute 'cell_name'. This is the getter.

cell_name=
Signature: void cell_name= (string cell_name)

Description: Sets the cell by name

If the name is not a valid one, the cellview will become invalid. This method will construct any path to
this cell, not a particular one. It will clear the context path and update the context and target cell.

Python specific notes:
The object exposes a writable attribute 'cell_name'. This is the setter.

close
Signature: void close

Description: Closes this cell view

This method will close the cellview - remove it from the layout view. After this method was called, the
cellview will become invalid (see is_valid?).

This method was introduced in version 0.25.

context_dtrans
Signature: [const] DCplxTrans context_dtrans

Description: Gets the accumulated transformation of the context path in micron unit space

This is the transformation applied to the target cell before it is shown in the context cell Technically
this is the product of all transformations over the context path. See context_trans for a version
delivering an integer-unit space transformation.

This method has been introduced in version 0.27.3.

context_path
Signature: [const] InstElement[] context_path

Description: Gets the cell's context path

The context path leads from the context cell to the target cell in a specific fashion, i.e. describing
each instance in detail, not just by cell indexes. If the context and target cell are identical, the
context path is empty.

Python specific notes:
The object exposes a readable attribute 'context_path'. This is the getter.

context_path=
Signature: void context_path= (InstElement[] path)

Description: Sets the context path explicitly

This method assumes that the unspecific part of the path is established already and that the context
path starts from the context cell.

Python specific notes:
The object exposes a writable attribute 'context_path'. This is the setter.

context_trans
Signature: [const] ICplxTrans context_trans

Description: Gets the accumulated transformation of the context path

This is the transformation applied to the target cell before it is shown in the context cell Technically
this is the product of all transformations over the context path. See context_dtrans for a version
delivering a micron-unit space transformation.

For more details visit
https://www.klayout.org

Page 1976 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.187. API reference - Class CellView

This method has been introduced in version 0.27.3.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

ctx_cell
Signature: [const] Cell ptr ctx_cell

Description: Gets the reference to the context cell currently addressed

ctx_cell_index
Signature: [const] unsigned int ctx_cell_index

Description: Gets the context cell's index

descend
Signature: void descend (InstElement[] path)

Description: Descends further into the hierarchy.

Adds the given path (given as an array of InstElement objects) to the specific path of the cellview
with the given index. In effect, the cell addressed by the terminal of the new path components can
be shown in the context of the upper cells, if the minimum hierarchy level is set to a negative value.
The path is assumed to originate from the current cell and contain specific instances sorted from top
to bottom. This method has been added in version 0.25.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new CellView ptr dup

Description: Creates a copy of self

filename
Signature: [const] string filename

Description: Gets filename associated with the layout behind the cellview

hide_cell
Signature: void hide_cell (const Cell ptr cell)

Description: Hides the given cell

This method has been added in version 0.25.

For more details visit
https://www.klayout.org

Page 1977 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.187. API reference - Class CellView

index
Signature: [const] int index

Description: Gets the index of this cellview in the layout view

The index will be negative if the cellview is not a valid one. This method has been added in version
0.25.

is_cell_hidden?
Signature: bool is_cell_hidden? (const Cell ptr cell)

Description: Returns true, if the given cell is hidden

This method has been added in version 0.25.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_dirty?
Signature: [const] bool is_dirty?

Description: Gets a flag indicating whether the layout needs saving

A layout is 'dirty' if it is modified and needs saving. This method returns true in this case.

This method has been introduced in version 0.24.10.

is_valid?
Signature: [const] bool is_valid?

Description: Returns true, if the cellview is valid

A cellview may become invalid if the corresponding tab is closed for example.

layout
Signature: [const] Layout ptr layout

Description: Gets the reference to the layout object addressed by this view

name
Signature: [const] string name

Description: Gets the unique name associated with the layout behind the cellview

Python specific notes:
The object exposes a readable attribute 'name'. This is the getter.

name=
Signature: void name= (string name)

Description: sets the unique name associated with the layout behind the cellview

this method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'name'. This is the setter.

new
Signature: [static] new CellView ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 1978 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.187. API reference - Class CellView

on_technology_changed
Signature: [signal] void on_technology_changed

Description: An event indicating that the technology has changed

This event is triggered when the CellView is attached to a different technology.

This event has been introduced in version 0.27.

Python specific notes:
The object exposes a readable attribute 'on_technology_changed'. This is the getter. The object
exposes a writable attribute 'on_technology_changed'. This is the setter.

path
Signature: [const] unsigned int[] path

Description: Gets the cell's unspecific part of the path leading to the context cell

Python specific notes:
The object exposes a readable attribute 'path'. This is the getter.

path=
Signature: void path= (unsigned int[] path)

Description: Sets the unspecific part of the path explicitly

Setting the unspecific part of the path will clear the context path component and update the context
and target cell.

Python specific notes:
The object exposes a writable attribute 'path'. This is the setter.

reset_cell
Signature: void reset_cell

Description: Resets the cell

The cellview will become invalid. The layout object will still be attached to the cellview, but no cell
will be selected.

set_cell
Signature: void set_cell (unsigned int cell_index)

Description: Sets the path to the given cell

This method will construct any path to this cell, not a particular one. It will clear the context path and
update the context and target cell. Note that the cell is specified by it's index.

Python specific notes:
The object exposes a writable attribute 'cell_index'. This is the setter.

set_cell_name
Signature: void set_cell_name (string cell_name)

Description: Sets the cell by name

If the name is not a valid one, the cellview will become invalid. This method will construct any path to
this cell, not a particular one. It will clear the context path and update the context and target cell.

Python specific notes:
The object exposes a writable attribute 'cell_name'. This is the setter.

set_context_path
Signature: void set_context_path (InstElement[] path)

Description: Sets the context path explicitly

This method assumes that the unspecific part of the path is established already and that the context
path starts from the context cell.

Python specific notes:
The object exposes a writable attribute 'context_path'. This is the setter.

For more details visit
https://www.klayout.org

Page 1979 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.187. API reference - Class CellView

set_path
Signature: void set_path (unsigned int[] path)

Description: Sets the unspecific part of the path explicitly

Setting the unspecific part of the path will clear the context path component and update the context
and target cell.

Python specific notes:
The object exposes a writable attribute 'path'. This is the setter.

show_all_cells
Signature: void show_all_cells

Description: Makes all cells shown (cancel effects of hide_cell) for the specified cell view

This method has been added in version 0.25.

show_cell
Signature: void show_cell (const Cell ptr cell)

Description: Shows the given cell (cancels the effect of hide_cell)

This method has been added in version 0.25.

technology
Signature: [const] string technology

Description: Returns the technology name for the layout behind the given cell view

This method has been added in version 0.23.

Python specific notes:
The object exposes a readable attribute 'technology'. This is the getter.

technology=
Signature: [const] void technology= (string tech_name)

Description: Sets the technology for the layout behind the given cell view

According to the specification of the technology, new layer properties may be loaded or the net
tracer may be reconfigured. If the layout is shown in multiple views, the technology is updated for all
views. This method has been added in version 0.22.

Python specific notes:
The object exposes a writable attribute 'technology'. This is the setter.

view
Signature: LayoutView ptr view

Description: Gets the view the cellview resides in

This reference will be nil if the cellview is not a valid one. This method has been added in version
0.25.

For more details visit
https://www.klayout.org

Page 1980 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.188. API reference - Class Marker

4.188. API reference - Class Marker
Notation used in Ruby API documentation

Module: lay

Description: The floating-point coordinate marker object

The marker is a visual object that "marks" (highlights) a certain area of the layout, given by a database object. This object accepts database
objects with floating-point coordinates in micron values.

Public constructors

new Marker ptr new (LayoutView ptr view) Creates a marker

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] unsigned int color Gets the color of the marker

void color= (unsigned int
color)

Sets the color of the marker

void dismissable= (bool flag) Sets a value indicating whether the marker can
be hidden

[const] bool dismissable? Gets a value indicating whether the marker can
be hidden

[const] int dither_pattern Gets the stipple pattern index

void dither_pattern= (int index) Sets the stipple pattern index

[const] unsigned int frame_color Gets the frame color of the marker

void frame_color= (unsigned int
color)

Sets the frame color of the marker

[const] int halo Gets the halo flag

void halo= (int halo) Sets the halo flag

[const] bool has_color? Returns a value indicating whether the marker
has a specific color

For more details visit
https://www.klayout.org

Page 1981 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.188. API reference - Class Marker

[const] bool has_frame_color? Returns a value indicating whether the marker
has a specific frame color

[const] int line_style Get the line style

void line_style= (int index) Sets the line style

[const] int line_width Gets the line width of the marker

void line_width= (int width) Sets the line width of the marker

void reset_color Resets the color of the marker

void reset_frame_color Resets the frame color of the marker

void set (const DBox box) Sets the box the marker is to display

void set (const DText text) Sets the text the marker is to display

void set (const DEdge
edge)

Sets the edge the marker is to display

void set (const DPath
path)

Sets the path the marker is to display

void set (const DPolygon
polygon)

Sets the polygon the marker is to display

void set_box (const DBox box) Sets the box the marker is to display

void set_edge (const DEdge
edge)

Sets the edge the marker is to display

void set_path (const DPath
path)

Sets the path the marker is to display

void set_polygon (const DPolygon
polygon)

Sets the polygon the marker is to display

void set_text (const DText text) Sets the text the marker is to display

[const] int vertex_size Gets the vertex size of the marker

void vertex_size= (int size) Sets the vertex size of the marker

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

For more details visit
https://www.klayout.org

Page 1982 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.188. API reference - Class Marker

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

color
Signature: [const] unsigned int color

Description: Gets the color of the marker

This value is valid only if has_color? is true.

Python specific notes:
The object exposes a readable attribute 'color'. This is the getter.

For more details visit
https://www.klayout.org

Page 1983 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.188. API reference - Class Marker

color=
Signature: void color= (unsigned int color)

Description: Sets the color of the marker

The color is a 32bit unsigned integer encoding the RGB values in the lower 3 bytes (blue in
the lowest significant byte). The color can be reset with reset_color, in which case, the default
foreground color is used.

Python specific notes:
The object exposes a writable attribute 'color'. This is the setter.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dismissable=
Signature: void dismissable= (bool flag)

Description: Sets a value indicating whether the marker can be hidden

Dismissable markers can be hidden setting "View/Show Markers" to "off". The default setting is
"false" meaning the marker can't be hidden.

This attribute has been introduced in version 0.25.4.

Python specific notes:
The object exposes a writable attribute 'dismissable'. This is the setter.

dismissable?
Signature: [const] bool dismissable?

Description: Gets a value indicating whether the marker can be hidden

See dismissable= for a description of this predicate.

Python specific notes:
The object exposes a readable attribute 'dismissable'. This is the getter.

dither_pattern
Signature: [const] int dither_pattern

Description: Gets the stipple pattern index

See dither_pattern= for a description of the stipple pattern index.

Python specific notes:

For more details visit
https://www.klayout.org

Page 1984 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.188. API reference - Class Marker

The object exposes a readable attribute 'dither_pattern'. This is the getter.

dither_pattern=
Signature: void dither_pattern= (int index)

Description: Sets the stipple pattern index

A value of -1 or less than zero indicates that the marker is not filled. Otherwise, the value indicates
which pattern to use for filling the marker.

Python specific notes:
The object exposes a writable attribute 'dither_pattern'. This is the setter.

frame_color
Signature: [const] unsigned int frame_color

Description: Gets the frame color of the marker

This value is valid only if has_frame_color? is true.The set method has been added in version 0.20.

Python specific notes:
The object exposes a readable attribute 'frame_color'. This is the getter.

frame_color=
Signature: void frame_color= (unsigned int color)

Description: Sets the frame color of the marker

The color is a 32bit unsigned integer encoding the RGB values in the lower 3 bytes (blue in the
lowest significant byte). The color can be reset with reset_frame_color, in which case the fill color is
used. The set method has been added in version 0.20.

Python specific notes:
The object exposes a writable attribute 'frame_color'. This is the setter.

halo
Signature: [const] int halo

Description: Gets the halo flag

See halo= for a description of the halo flag.

Python specific notes:
The object exposes a readable attribute 'halo'. This is the getter.

halo=
Signature: void halo= (int halo)

Description: Sets the halo flag

The halo flag is either -1 (for taking the default), 0 to disable the halo or 1 to enable it. If the halo
is enabled, a pixel border with the background color is drawn around the marker, the vertices and
texts.

Python specific notes:
The object exposes a writable attribute 'halo'. This is the setter.

has_color?
Signature: [const] bool has_color?

Description: Returns a value indicating whether the marker has a specific color

has_frame_color?
Signature: [const] bool has_frame_color?

Description: Returns a value indicating whether the marker has a specific frame color

The set method has been added in version 0.20.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

For more details visit
https://www.klayout.org

Page 1985 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.188. API reference - Class Marker

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

line_style
Signature: [const] int line_style

Description: Get the line style

See line_style= for a description of the line style index. This method has been introduced in version
0.25.

Python specific notes:
The object exposes a readable attribute 'line_style'. This is the getter.

line_style=
Signature: void line_style= (int index)

Description: Sets the line style

The line style is given by an index. 0 is solid, 1 is dashed and so forth.

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'line_style'. This is the setter.

line_width
Signature: [const] int line_width

Description: Gets the line width of the marker

See line_width= for a description of the line width.

Python specific notes:
The object exposes a readable attribute 'line_width'. This is the getter.

line_width=
Signature: void line_width= (int width)

Description: Sets the line width of the marker

This is the width of the line drawn for the outline of the marker.

Python specific notes:
The object exposes a writable attribute 'line_width'. This is the setter.

new
Signature: [static] new Marker ptr new (LayoutView ptr view)

Description: Creates a marker

A marker is always associated with a view, in which it is shown. The view this marker is associated
with must be passed to the constructor.

Python specific notes:
This method is the default initializer of the object

reset_color
Signature: void reset_color

Description: Resets the color of the marker

See set_color for a description of the color property of the marker.

reset_frame_color
Signature: void reset_frame_color

Description: Resets the frame color of the marker

See set_frame_color for a description of the frame color property of the marker.The set method has
been added in version 0.20.

For more details visit
https://www.klayout.org

Page 1986 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.188. API reference - Class Marker

(1) Signature: void set (const DBox box)

Description: Sets the box the marker is to display

Makes the marker show a box. The box must be given in micron units. If the box is empty, no
marker is drawn. The set method has been added in version 0.20.

(2) Signature: void set (const DText text)

Description: Sets the text the marker is to display

Makes the marker show a text. The text must be given in micron units. The set method has been
added in version 0.20.

(3) Signature: void set (const DEdge edge)

Description: Sets the edge the marker is to display

Makes the marker show a edge. The edge must be given in micron units. The set method has been
added in version 0.20.

(4) Signature: void set (const DPath path)

Description: Sets the path the marker is to display

Makes the marker show a path. The path must be given in micron units. The set method has been
added in version 0.20.

set

(5) Signature: void set (const DPolygon polygon)

Description: Sets the polygon the marker is to display

Makes the marker show a polygon. The polygon must be given in micron units. The set method has
been added in version 0.20.

set_box
Signature: void set_box (const DBox box)

Description: Sets the box the marker is to display

Makes the marker show a box. The box must be given in micron units. If the box is empty, no
marker is drawn. The set method has been added in version 0.20.

set_edge
Signature: void set_edge (const DEdge edge)

Description: Sets the edge the marker is to display

Makes the marker show a edge. The edge must be given in micron units. The set method has been
added in version 0.20.

set_path
Signature: void set_path (const DPath path)

Description: Sets the path the marker is to display

Makes the marker show a path. The path must be given in micron units. The set method has been
added in version 0.20.

set_polygon
Signature: void set_polygon (const DPolygon polygon)

Description: Sets the polygon the marker is to display

For more details visit
https://www.klayout.org

Page 1987 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.188. API reference - Class Marker

Makes the marker show a polygon. The polygon must be given in micron units. The set method has
been added in version 0.20.

set_text
Signature: void set_text (const DText text)

Description: Sets the text the marker is to display

Makes the marker show a text. The text must be given in micron units. The set method has been
added in version 0.20.

vertex_size
Signature: [const] int vertex_size

Description: Gets the vertex size of the marker

See vertex_size= for a description.

Python specific notes:
The object exposes a readable attribute 'vertex_size'. This is the getter.

vertex_size=
Signature: void vertex_size= (int size)

Description: Sets the vertex size of the marker

This is the size of the rectangles drawn for the vertices object.

Python specific notes:
The object exposes a writable attribute 'vertex_size'. This is the setter.

For more details visit
https://www.klayout.org

Page 1988 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.189. API reference - Class AbstractMenu

4.189. API reference - Class AbstractMenu
Notation used in Ruby API documentation

Module: lay

Description: An abstraction for the application menus

The abstract menu is a class that stores a main menu and several popup menus in a generic form such that they can be manipulated and
converted into GUI objects.

Each item can be associated with a Action, which delivers a title, enabled/disable state etc. The Action is either provided when new entries
are inserted or created upon initialisation.

The abstract menu class provides methods to manipulate the menu structure (the state of the menu items, their title and shortcut key is
provided and manipulated through the Action object).

Menu items and submenus are referred to by a "path". The path is a string with this interpretation:

"" is the root

"[<path>.]<name>" is an element of the submenu given by <path>. If <path> is omitted, this refers
to an element in the root

"[<path>.]end" refers to the item past the last item of the submenu given by <path> or root

"[<path>.]begin" refers to the first item of the submenu given by <path> or root

"[<path>.]#<n>" refers to the nth item of the submenu given by <path> or root (n is an integer
number)

Menu items can be put into groups. The path strings of each group can be obtained with the "group" method. An item is put into a group by
appending ":<group-name>" to the item's name. This specification can be used several times.

Detached menus (i.e. for use in context menus) can be created as virtual top-level submenus with a name of the form "@<name>". A
special detached menu is "@toolbar" which represents the tool bar of the main window. Menus are closely related to the Action class.
Actions are used to represent selectable items inside menus, provide the title and other configuration settings. Actions also link the menu
items with code. See the Action class description for further details.

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

Action ptr action (string path) Gets the reference to a Action object
associated with the given path

void delete_item (string path) Deletes the item given by the path

[const] string[] group (string group) Gets the group members

For more details visit
https://www.klayout.org

Page 1989 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.189. API reference - Class AbstractMenu

void insert_item (string path,
string name,
const Action ptr
action)

Inserts a new item before the one given by the
path

void insert_menu (string path,
string name,
string title)

Inserts a new submenu before the item given
by the path

void insert_separator (string path,
string name)

Inserts a new separator before the item given
by the path

[const] bool is_menu? (string path) Returns true if the item is a menu

[const] bool is_separator? (string path) Returns true if the item is a separator

[const] bool is_valid? (string path) Returns true if the path is a valid one

[const] string[] items (string path) Gets the subitems for a given submenu

Public static methods and constants

string pack_key_binding (map<string,string>
path_to_keys)

Serializes a key binding definition into a
single string

string pack_menu_items_hidden (map<string,bool>
path_to_visibility)

Serializes a menu item visibility
definition into a single string

map<string,string> unpack_key_binding (string s) Deserializes a key binding definition

map<string,bool> unpack_menu_items_hidden(string s) Deserializes a menu item visibility
definition

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 1990 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.189. API reference - Class AbstractMenu

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

action
Signature: Action ptr action (string path)

Description: Gets the reference to a Action object associated with the given path

path: The path to the item.

Returns: A reference to a Action object associated with this path or nil if
the path is not valid

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 1991 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.189. API reference - Class AbstractMenu

delete_item
Signature: void delete_item (string path)

Description: Deletes the item given by the path

path: The path to the item to delete

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

group
Signature: [const] string[] group (string group)

Description: Gets the group members

group: The group name

A: vector of all members (by path) of the group

insert_item
Signature: void insert_item (string path, string name, const Action ptr action)

Description: Inserts a new item before the one given by the path

path: The path to the item before which to insert the new item

name: The name of the item to insert

action: The Action object to insert

The Action object passed as the third parameter references the handler which both implements the
action to perform and the menu item's appearance such as title, icon and keyboard shortcut.

insert_menu
Signature: void insert_menu (string path, string name, string title)

Description: Inserts a new submenu before the item given by the path

path: The path to the item before which to insert the submenu

name: The name of the submenu to insert

title: The title of the submenu to insert

The title string optionally encodes the key shortcut and icon resource in the form
<text>["("<shortcut>")"]["<"<icon-resource>">"].

insert_separator
Signature: void insert_separator (string path, string name)

Description: Inserts a new separator before the item given by the path

path: The path to the item before which to insert the separator

name: The name of the separator to insert

For more details visit
https://www.klayout.org

Page 1992 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.189. API reference - Class AbstractMenu

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

is_menu?
Signature: [const] bool is_menu? (string path)

Description: Returns true if the item is a menu

path: The path to the item

Returns: false if the path is not valid or is not a menu

is_separator?
Signature: [const] bool is_separator? (string path)

Description: Returns true if the item is a separator

path: The path to the item

Returns: false if the path is not valid or is not a separator

This method has been introduced in version 0.19.

is_valid?
Signature: [const] bool is_valid? (string path)

Description: Returns true if the path is a valid one

path: The path to check

Returns: false if the path is not a valid path to an item

items
Signature: [const] string[] items (string path)

Description: Gets the subitems for a given submenu

path: The path to the submenu

Returns: A vector or path strings for the child items or an empty vector if
the path is not valid or the item does not have children

pack_key_binding
Signature: [static] string pack_key_binding (map<string,string> path_to_keys)

Description: Serializes a key binding definition into a single string

The serialized format is used by the 'key-bindings' config key. This method will take an array of
path/key definitions (including the Action#NoKeyBound option) and convert it to a single string
suitable for assigning to the config key.

This method has been introduced in version 0.26.

pack_menu_items_hidden
Signature: [static] string pack_menu_items_hidden (map<string,bool> path_to_visibility)

Description: Serializes a menu item visibility definition into a single string

The serialized format is used by the 'menu-items-hidden' config key. This method will take an array
of path/visibility flag definitions and convert it to a single string suitable for assigning to the config
key.

This method has been introduced in version 0.26.

unpack_key_binding
Signature: [static] map<string,string> unpack_key_binding (string s)

Description: Deserializes a key binding definition

For more details visit
https://www.klayout.org

Page 1993 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.189. API reference - Class AbstractMenu

This method is the reverse of pack_key_binding.

This method has been introduced in version 0.26.

unpack_menu_items_hidden
Signature: [static] map<string,bool> unpack_menu_items_hidden (string s)

Description: Deserializes a menu item visibility definition

This method is the reverse of pack_menu_items_hidden.

This method has been introduced in version 0.26.

For more details visit
https://www.klayout.org

Page 1994 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.190. API reference - Class Action

4.190. API reference - Class Action
Notation used in Ruby API documentation

Module: lay

Description: The abstraction for an action (i.e. used inside menus)

Class hierarchy: Action

Actions act as a generalization of menu entries. The action provides the appearance of a menu entry such as title, key shortcut etc. and
dispatches the menu events. The action can be manipulated to change to appearance of a menu entry and can be attached an observer
that receives the events when the menu item is selected.

Multiple action objects can refer to the same action internally, in which case the information and event handler is copied between the
incarnations. This way, a single implementation can be provided for multiple places where an action appears, for example inside the toolbar
and in addition as a menu entry. Both actions will shared the same icon, text, shortcut etc.

Actions are mainly used for providing new menu items inside the AbstractMenu class. This is some sample Ruby code for that case:

a = RBA::Action.new
a.title = "Push Me!"
a.on_triggered do
 puts "I was pushed!"
end

app = RBA::Application.instance
mw = app.main_window

menu = mw.menu
menu.insert_separator("@toolbar.end", "name")
menu.insert_item("@toolbar.end", "my_action", a)

This code will register a custom action in the toolbar. When the toolbar button is pushed a message is printed. The toolbar is addressed by
a path starting with the pseudo root "@toolbar".

In Version 0.23, the Action class has been merged with the ActionBase class.

Public constructors

new Action ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

For more details visit
https://www.klayout.org

Page 1995 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.190. API reference - Class Action

void checkable= (bool
checkable)

Makes the item(s) checkable or not

void checked= (bool
checked)

Checks or unchecks the item

[const] string default_shortcut Gets the default keyboard shortcut

void default_shortcut= (string
shortcut)

Sets the default keyboard shortcut

[const] string effective_shortcut Gets the effective keyboard shortcut

void enabled= (bool
enabled)

Enables or disables the action

void hidden= (bool
hidden)

Sets a value that makes the item hidden
always

void icon= (string file) Sets the icon to the given image file

[const] string icon_text Gets the icon's text

void icon_text= (string
icon_text)

Sets the icon's text

[const] bool is_checkable? Gets a value indicating whether the item is
checkable

[const] bool is_checked? Gets a value indicating whether the item is
checked

[const] bool is_effective_visible? Gets a value indicating whether the item is
really visible

[const] bool is_enabled? Gets a value indicating whether the item is
enabled

[const] bool is_hidden? Gets a value indicating whether the item is
hidden

[const] bool is_separator? Gets a value indicating whether the item is a
separator

[const] bool is_visible? Gets a value indicating whether the item is
visible

[const] Macro ptr macro Gets the macro associated with the action

[signal] void on_triggered This event is called if the menu item is selected

void separator= (bool
separator)

Makes an item a separator or not

[const] string shortcut Gets the keyboard shortcut

void shortcut= (string
shortcut)

Sets the keyboard shortcut

For more details visit
https://www.klayout.org

Page 1996 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.190. API reference - Class Action

[const] string title Gets the title

void title= (string title) Sets the title

[const] string tool_tip Gets the tool tip text.

void tool_tip= (string text) Sets the tool tip text

void trigger Triggers the action programmatically

[virtual] void triggered This method is called if the menu item is
selected

void visible= (bool visible) Sets the item's visibility

Public static methods and constants

[static,const] string NoKeyBound Gets a shortcut value indicating that no shortcut
shall be assigned

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

NoKeyBound
Signature: [static,const] string NoKeyBound

Description: Gets a shortcut value indicating that no shortcut shall be assigned

This method has been introduced in version 0.26.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

For more details visit
https://www.klayout.org

Page 1997 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.190. API reference - Class Action

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

checkable=
Signature: void checkable= (bool checkable)

Description: Makes the item(s) checkable or not

checkable: true to make the item checkable

Python specific notes:
The object exposes a writable attribute 'checkable'. This is the setter.

checked=
Signature: void checked= (bool checked)

Description: Checks or unchecks the item

checked: true to make the item checked

Python specific notes:
The object exposes a writable attribute 'checked'. This is the setter.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 1998 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.190. API reference - Class Action

default_shortcut
Signature: [const] string default_shortcut

Description: Gets the default keyboard shortcut

Returns: The default keyboard shortcut as a string

This attribute has been introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'default_shortcut'. This is the getter.

default_shortcut=
Signature: void default_shortcut= (string shortcut)

Description: Sets the default keyboard shortcut

The default shortcut is used, if shortcut is empty.

This attribute has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'default_shortcut'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

effective_shortcut
Signature: [const] string effective_shortcut

Description: Gets the effective keyboard shortcut

Returns: The effective keyboard shortcut as a string

The effective shortcut is the one that is taken. It's either shortcut or default_shortcut.

This attribute has been introduced in version 0.25.

enabled=
Signature: void enabled= (bool enabled)

Description: Enables or disables the action

enabled: true to enable the item

Python specific notes:
The object exposes a writable attribute 'enabled'. This is the setter.

hidden=
Signature: void hidden= (bool hidden)

Description: Sets a value that makes the item hidden always

See is_hidden? for details.

This attribute has been introduced in version 0.25

Python specific notes:

For more details visit
https://www.klayout.org

Page 1999 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.190. API reference - Class Action

The object exposes a writable attribute 'hidden'. This is the setter.

icon=
Signature: void icon= (string file)

Description: Sets the icon to the given image file

file: The image file to load for the icon

Passing an empty string will reset the icon.

Python specific notes:
The object exposes a writable attribute 'icon'. This is the setter.

icon_text
Signature: [const] string icon_text

Description: Gets the icon's text

Python specific notes:
The object exposes a readable attribute 'icon_text'. This is the getter.

icon_text=
Signature: void icon_text= (string icon_text)

Description: Sets the icon's text

If an icon text is set, this will be used for the text below the icon. If no icon text is set, the normal
text will be used for the icon. Passing an empty string will reset the icon's text.

Python specific notes:
The object exposes a writable attribute 'icon_text'. This is the setter.

is_checkable?
Signature: [const] bool is_checkable?

Description: Gets a value indicating whether the item is checkable

is_checked?
Signature: [const] bool is_checked?

Description: Gets a value indicating whether the item is checked

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

is_effective_visible?
Signature: [const] bool is_effective_visible?

Description: Gets a value indicating whether the item is really visible

This is the combined visibility from is_visible? and is_hidden?. This attribute has been introduced in
version 0.25.

is_enabled?
Signature: [const] bool is_enabled?

Description: Gets a value indicating whether the item is enabled

is_hidden?
Signature: [const] bool is_hidden?

Description: Gets a value indicating whether the item is hidden

If an item is hidden, it's always hidden and is_visible? does not have an effect. This attribute has
been introduced in version 0.25.

For more details visit
https://www.klayout.org

Page 2000 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.190. API reference - Class Action

is_separator?
Signature: [const] bool is_separator?

Description: Gets a value indicating whether the item is a separator

This method has been introduced in version 0.25.

is_visible?
Signature: [const] bool is_visible?

Description: Gets a value indicating whether the item is visible

The visibility combines with is_hidden?. To get the true visiblity, use is_effective_visible?.

macro
Signature: [const] Macro ptr macro

Description: Gets the macro associated with the action

If the action is associated with a macro, this method returns a reference to the Macro object.
Otherwise, this method returns nil.

This method has been added in version 0.25.

new
Signature: [static] new Action ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

on_triggered
Signature: [signal] void on_triggered

Description: This event is called if the menu item is selected

This event has been introduced in version 0.21.

Python specific notes:
The object exposes a readable attribute 'on_triggered'. This is the getter. The object exposes a
writable attribute 'on_triggered'. This is the setter.

separator=
Signature: void separator= (bool separator)

Description: Makes an item a separator or not

separator: true to make the item a separator

This method has been introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'separator'. This is the setter.

shortcut
Signature: [const] string shortcut

Description: Gets the keyboard shortcut

Returns: The keyboard shortcut as a string

Python specific notes:
The object exposes a readable attribute 'shortcut'. This is the getter.

shortcut=
Signature: void shortcut= (string shortcut)

Description: Sets the keyboard shortcut

shortcut: The keyboard shortcut in Qt notation (i.e. "Ctrl+C")

If the shortcut string is empty, the default shortcut will be used. If the string is equal to
Action#NoKeyBound, no keyboard shortcut will be assigned.

The NoKeyBound option has been added in version 0.26.

For more details visit
https://www.klayout.org

Page 2001 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.190. API reference - Class Action

Python specific notes:
The object exposes a writable attribute 'shortcut'. This is the setter.

title
Signature: [const] string title

Description: Gets the title

Returns: The current title string

Python specific notes:
The object exposes a readable attribute 'title'. This is the getter.

title=
Signature: void title= (string title)

Description: Sets the title

title: The title string to set (just the title)

Python specific notes:
The object exposes a writable attribute 'title'. This is the setter.

tool_tip
Signature: [const] string tool_tip

Description: Gets the tool tip text.

This method has been added in version 0.22.

Python specific notes:
The object exposes a readable attribute 'tool_tip'. This is the getter.

tool_tip=
Signature: void tool_tip= (string text)

Description: Sets the tool tip text

The tool tip text is displayed in the tool tip window of the menu entry. This is in particular useful for
entries in the tool bar. This method has been added in version 0.22.

Python specific notes:
The object exposes a writable attribute 'tool_tip'. This is the setter.

trigger
Signature: void trigger

Description: Triggers the action programmatically

triggered
Signature: [virtual] void triggered

Description: This method is called if the menu item is selected

visible=
Signature: void visible= (bool visible)

Description: Sets the item's visibility

visible: true to make the item visible

Python specific notes:
The object exposes a writable attribute 'visible'. This is the setter.

For more details visit
https://www.klayout.org

Page 2002 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.191. API reference - Class PluginFactory

4.191. API reference - Class PluginFactory
Notation used in Ruby API documentation

Module: lay

Description: The plugin framework's plugin factory object

Plugins are components that extend KLayout's functionality in various aspects. Scripting support exists currently for providing mouse mode
handlers and general on-demand functionality connected with a menu entry.

Plugins are objects that implement the Plugin interface. Each layout view is associated with one instance of such an object. The
PluginFactory is a singleton which is responsible for creating Plugin objects and providing certain configuration information such as where
to put the menu items connected to this plugin and what configuration keys are used.

An implementation of PluginFactory must at least provide an implementation of create_plugin. This method must instantiate a new object of
the specific plugin.

After the factory has been created, it must be registered in the system using one of the register methods. It is therefore recommended to
put the call to register at the end of the "initialize" method. For the registration to work properly, the menu items must be defined before
register is called.

The following features can also be implemented:

• Reserve keys in the configuration file using add_option in the constructor

• Create menu items by using add_menu_entry in the constructor

• Set the title for the mode entry that appears in the tool bar using the register argument

• Provide global functionality (independent from the layout view) using configure or menu_activated

This is a simple example for a plugin in Ruby. It switches the mouse cursor to a 'cross' cursor when it is active:

class PluginTestFactory < RBA::PluginFactory

 # Constructor
 def initialize
 # registers the new plugin class at position 100000 (at the end), with name
 # "my_plugin_test" and title "My plugin test"
 register(100000, "my_plugin_test", "My plugin test")
 end

 # Create a new plugin instance of the custom type
 def create_plugin(manager, dispatcher, view)
 return PluginTest.new
 end

end

The plugin class
class PluginTest < RBA::Plugin
 def mouse_moved_event(p, buttons, prio)
 if prio
 # Set the cursor to cross if our plugin is active.
 set_cursor(RBA::Cursor::Cross)
 end
 # Returning false indicates that we don't want to consume the event.
 # This way for example the cursor position tracker still works.
 false
 end
 def mouse_click_event(p, buttons, prio)
 if prio
 puts "mouse button clicked."
 # This indicates we want to consume the event and others don't receive the mouse click
 # with prio = false.

For more details visit
https://www.klayout.org

Page 2003 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.191. API reference - Class PluginFactory

 return true
 end
 # don't consume the event if we are not active.
 false
 end
end

Instantiate the new plugin factory.
PluginTestFactory.new

This class has been introduced in version 0.22.

Public constructors

new PluginFactory ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the
script side.

void _unmanage Marks the object as no longer owned by
the script side.

void add_config_menu_item (string menu_name,
string insert_pos,
string title,
string cname,
string cvalue)

Adds a configuration menu item

void add_menu_entry (string menu_name,
string insert_pos)

Specifies a separator

void add_menu_entry (string symbol,
string menu_name,
string insert_pos,
string title)

Specifies a menu item

void add_menu_item_clone (string symbol,
string menu_name,
string insert_pos,
string copy_from)

Specifies a menu item as a clone of
another one

void add_option (string name,
string default_value)

Specifies configuration variables.

void add_submenu (string menu_name,
string insert_pos,

Specifies a menu item or sub-menu

For more details visit
https://www.klayout.org

Page 2004 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.191. API reference - Class PluginFactory

string title)

[virtual] void config_finalize Gets called after a set of configuration
events has been sent

[virtual] bool configure (string name,
string value)

Gets called for configuration events for
the plugin singleton

[virtual,const] new Plugin ptr create_plugin (Manager ptr manager,
Dispatcher ptr dispatcher,
LayoutView ptr view)

Creates the plugin

void has_tool_entry= (bool f) Enables or disables the tool bar entry

[virtual] void initialized (Dispatcher ptr dispatcher) Gets called when the plugin singleton is
initialized, i.e. when the application has
been started.

[virtual,const] bool menu_activated (string symbol) Gets called when a menu item is
selected

void register (int position,
string name,
string title)

Registers the plugin factory

void register (int position,
string name,
string title,
string icon)

Registers the plugin factory

[virtual] void uninitialized (Dispatcher ptr dispatcher) Gets called when the application shuts
down and the plugin is unregistered

Deprecated methods (protected, public, static, non-static and constructors)

void add_menu_entry (string symbol,
string
menu_name,
string
insert_pos,
string title,
bool
sub_menu)

Use of this method is deprecated

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

For more details visit
https://www.klayout.org

Page 2005 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.191. API reference - Class PluginFactory

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

add_config_menu_item
Signature: void add_config_menu_item (string menu_name, string insert_pos, string title, string
cname, string cvalue)

Description: Adds a configuration menu item

Menu items created this way will send a configuration request with 'cname' as the configuration
parameter name and 'cvalue' as the configuration parameter value.

For more details visit
https://www.klayout.org

Page 2006 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.191. API reference - Class PluginFactory

This method has been introduced in version 0.27.

(1) Signature: void add_menu_entry (string menu_name, string insert_pos)

Description: Specifies a separator

Call this method in the factory constructor to build the menu items that this plugin shall create. This
specific call inserts a separator at the given position (insert_pos). The position uses abstract menu
item paths and "menu_name" names the component that will be created. See AbstractMenu for a
description of the path.

(2) Signature: void add_menu_entry (string symbol, string menu_name, string insert_pos, string
title)

Description: Specifies a menu item

symbol: The string to send to the plugin if the menu is triggered

menu_name: The name of entry to create at the given position

insert_pos: The position where to create the entry

title: The title string for the item. The title can contain a keyboard
shortcut in round braces after the title text, i.e. "My Menu
Item(F12)"

Call this method in the factory constructor to build the menu items that this plugin shall create. This
specific call inserts a menu item at the specified position (insert_pos). The position uses abstract
menu item paths and "menu_name" names the component that will be created. See AbstractMenu
for a description of the path. When the menu item is selected "symbol" is the string that is sent to
the menu_activated callback (either the global one for the factory ot the one of the per-view plugin
instance).

add_menu_entry

(3) Signature: void add_menu_entry (string symbol, string menu_name, string insert_pos, string
title, bool sub_menu)

Description: Specifies a menu item or sub-menu

Use of this method is deprecated

Similar to the previous form of "add_menu_entry", but this version allows also to create sub-menus
by setting the last parameter to "true".

With version 0.27 it's more convenient to use add_submenu.

add_menu_item_clone
Signature: void add_menu_item_clone (string symbol, string menu_name, string insert_pos, string
copy_from)

Description: Specifies a menu item as a clone of another one

Using this method, a menu item can be made a clone of another entry (given as path by 'copy_from').
The new item will share the Action object with the original one, so manipulating the action will change
both the original entry and the new entry.

This method has been introduced in version 0.27.

add_option
Signature: void add_option (string name, string default_value)

Description: Specifies configuration variables.

Call this method in the factory constructor to add configuration key/value pairs to the configuration
repository. Without specifying configuration variables, the status of a plugin cannot be persisted.

Once the configuration variables are known, they can be retrieved on demand using "get_config"
from MainWindow or listening to configure callbacks (either in the factory or the plugin instance).
Configuration variables can be set using "set_config" from MainWindow. This scheme also works

For more details visit
https://www.klayout.org

Page 2007 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.191. API reference - Class PluginFactory

without registering the configuration options, but doing so has the advantage that it is guaranteed that
a variable with this keys exists and has the given default value initially.

add_submenu
Signature: void add_submenu (string menu_name, string insert_pos, string title)

Description: Specifies a menu item or sub-menu

This method has been introduced in version 0.27.

config_finalize
Signature: [virtual] void config_finalize

Description: Gets called after a set of configuration events has been sent

This method can be reimplemented and is called after a set of configuration events has been sent
to the plugin factory singleton with configure. It can be used to set up user interfaces properly for
example.

configure
Signature: [virtual] bool configure (string name, string value)

Description: Gets called for configuration events for the plugin singleton

name: The configuration key

value: The value of the configuration variable

Returns: True to stop further processing

This method can be reimplemented to receive configuration events for the plugin singleton. Before
a configuration can be received it must be registered by calling add_option in the plugin factories'
constructor.

The implementation of this method may return true indicating that the configuration request will not
be handled by further modules. It's more cooperative to return false which will make the system
distribute the configuration request to other receivers as well.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

create_plugin
Signature: [virtual,const] new Plugin ptr create_plugin (Manager ptr manager, Dispatcher ptr
dispatcher, LayoutView ptr view)

Description: Creates the plugin

manager: The database manager object responsible for handling
database transactions

dispatcher: The reference to the MainWindow object

view: The LayoutView that is plugin is created for

Returns: The new Plugin implementation object

This is the basic functionality that the factory must provide. This method must create a plugin of the
specific type.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

For more details visit
https://www.klayout.org

Page 2008 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.191. API reference - Class PluginFactory

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

has_tool_entry=
Signature: void has_tool_entry= (bool f)

Description: Enables or disables the tool bar entry

Initially this property is set to true. This means that the plugin will have a visible entry in the toolbar.
This property can be set to false to disable this feature. In that case, the title and icon given on
registration will be ignored.

Python specific notes:
The object exposes a writable attribute 'has_tool_entry'. This is the setter.

initialized
Signature: [virtual] void initialized (Dispatcher ptr dispatcher)

Description: Gets called when the plugin singleton is initialized, i.e. when the application has been
started.

dispatcher: The reference to the MainWindow object

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

menu_activated
Signature: [virtual,const] bool menu_activated (string symbol)

Description: Gets called when a menu item is selected

Usually, menu-triggered functionality is implemented in the per-view instance of the plugin. However,
using this method it is possible to implement functionality globally for all plugin instances. The symbol
is the string registered with the specific menu item in the add_menu_item call.

If this method was handling the menu event, it should return true. This indicates that the event will not
be propagated to other plugins hence avoiding duplicate calls.

new
Signature: [static] new PluginFactory ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

register
(1) Signature: void register (int position, string name, string title)

Description: Registers the plugin factory

position: An integer that determines the order in which the plugins are
created. The internal plugins use the values from 1000 to 50000.

For more details visit
https://www.klayout.org

Page 2009 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.191. API reference - Class PluginFactory

name: The plugin name. This is an arbitrary string which should be
unique. Hence it is recommended to use a unique prefix, i.e.
"myplugin::ThePluginClass".

title: The title string which is supposed to appear in the tool bar and menu
related to this plugin.

Registration of the plugin factory makes the object known to the system. Registration requires that
the menu items have been set already. Hence it is recommended to put the registration at the end of
the initialization method of the factory class.

(2) Signature: void register (int position, string name, string title, string icon)

Description: Registers the plugin factory

position: An integer that determines the order in which the plugins are
created. The internal plugins use the values from 1000 to 50000.

name: The plugin name. This is an arbitrary string which should be
unique. Hence it is recommended to use a unique prefix, i.e.
"myplugin::ThePluginClass".

title: The title string which is supposed to appear in the tool bar and menu
related to this plugin.

icon: The path to the icon that appears in the tool bar and menu related to
this plugin.

This version also allows registering an icon for the tool bar.

Registration of the plugin factory makes the object known to the system. Registration requires that
the menu items have been set already. Hence it is recommended to put the registration at the end of
the initialization method of the factory class.

uninitialized
Signature: [virtual] void uninitialized (Dispatcher ptr dispatcher)

Description: Gets called when the application shuts down and the plugin is unregistered

dispatcher: The reference to the MainWindow object

This event can be used to free resources allocated with this factory singleton.

For more details visit
https://www.klayout.org

Page 2010 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.192. API reference - Class Plugin

4.192. API reference - Class Plugin
Notation used in Ruby API documentation

Module: lay

Description: The plugin object

This class provides the actual plugin implementation. Each view gets it's own instance of the plugin class. The plugin factory PluginFactory
class must be specialized to provide a factory for new objects of the Plugin class. See the documentation there for details about the plugin
mechanism and the basic concepts.

This class has been introduced in version 0.22.

Public constructors

new Plugin ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by
the script side.

[virtual] void activated Gets called when the plugin is activated
(selected in the tool bar)

[virtual] void config_finalize Sends the post-configuration request to
the plugin

[virtual] bool configure (string name,
string value)

Sends configuration requests to the plugin

[virtual] void deactivated Gets called when the plugin is deactivated
and another plugin is activated

[virtual] void drag_cancel Gets called on various occasions when a
drag operation should be canceled

[virtual] bool enter_event (bool prio) Handles the enter event (mouse enters
canvas area of view)

void grab_mouse Redirects mouse events to this plugin,
even if the plugin is not active.

For more details visit
https://www.klayout.org

Page 2011 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.192. API reference - Class Plugin

[virtual,const] bool has_tracking_position Gets a value indicating whether the plugin
provides a tracking position

[virtual] bool key_event (unsigned int key,
unsigned int
buttons)

Handles the key pressed event

[virtual] bool leave_event (bool prio) Handles the leave event (mouse leaves
canvas area of view)

[virtual] void menu_activated (string symbol) Gets called when a custom menu item is
selected

[virtual] bool mouse_button_pressed_event(DPoint p,
unsigned int
buttons,
bool prio)

Handles the mouse button pressed event

[virtual] bool mouse_button_released_event(DPoint p,
unsigned int
buttons,
bool prio)

Handles the mouse button release event

[virtual] bool mouse_click_event (DPoint p,
unsigned int
buttons,
bool prio)

Handles the mouse button click event
(after the button has been released)

[virtual] bool mouse_double_click_event(DPoint p,
unsigned int
buttons,
bool prio)

Handles the mouse button double-click
event

[virtual] bool mouse_moved_event (DPoint p,
unsigned int
buttons,
bool prio)

Handles the mouse move event

void set_cursor (int cursor_type) Sets the cursor in the view area to the
given type

[virtual,const] DPoint tracking_position Gets the tracking position

void ungrab_mouse Removes a mouse grab registered with
grab_mouse.

[virtual] void update Gets called when the view has changed

[virtual] bool wheel_event (int delta,
bool horizontal,
DPoint p,
unsigned int
buttons,
bool prio)

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

For more details visit
https://www.klayout.org

Page 2012 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.192. API reference - Class Plugin

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 2013 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.192. API reference - Class Plugin

activated
Signature: [virtual] void activated

Description: Gets called when the plugin is activated (selected in the tool bar)

config_finalize
Signature: [virtual] void config_finalize

Description: Sends the post-configuration request to the plugin

After all configuration parameters have been sent, 'config_finalize' is called to given the plugin a
chance to update it's internal state according to the new configuration.

configure
Signature: [virtual] bool configure (string name, string value)

Description: Sends configuration requests to the plugin

name: The name of the configuration variable as registered in the
plugin factory

value: The value of the configuration variable

When a configuration variable is changed, the new value is reported to the plugin by calling the
'configure' method.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

deactivated
Signature: [virtual] void deactivated

Description: Gets called when the plugin is deactivated and another plugin is activated

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

drag_cancel
Signature: [virtual] void drag_cancel

Description: Gets called on various occasions when a drag operation should be canceled

If the plugin implements some press-and-drag or a click-and-drag operation, this callback should
cancel this operation and return in some state waiting for a new mouse event.

enter_event
Signature: [virtual] bool enter_event (bool prio)

For more details visit
https://www.klayout.org

Page 2014 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.192. API reference - Class Plugin

Description: Handles the enter event (mouse enters canvas area of view)

The behaviour of this callback is the same than for mouse_press_event, except that it is called
when the mouse enters the canvas area. This method does not have a position nor button flags.

grab_mouse
Signature: void grab_mouse

Description: Redirects mouse events to this plugin, even if the plugin is not active.

has_tracking_position
Signature: [virtual,const] bool has_tracking_position

Description: Gets a value indicating whether the plugin provides a tracking position

The tracking position is shown in the lower-left corner of the layout window to indicate the current
position. If this method returns true for the active service, the application will fetch the position by
calling tracking_position rather than displaying the original mouse position.

This method has been added in version 0.27.6.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

key_event
Signature: [virtual] bool key_event (unsigned int key, unsigned int buttons)

Description: Handles the key pressed event

key: The Qt key code of the key that was pressed

buttons: A combination of the constants in the ButtonState class which
codes both the mouse buttons and the key modifiers (.e.
ShiftButton etc).

Returns: True to terminate dispatcher

This method will called by the view on the active plugin when a button is pressed on the mouse.

If the plugin handles the event, it should return true to indicate that the event should not be
processed further.

leave_event
Signature: [virtual] bool leave_event (bool prio)

Description: Handles the leave event (mouse leaves canvas area of view)

The behaviour of this callback is the same than for mouse_press_event, except that it is called
when the mouse leaves the canvas area. This method does not have a position nor button flags.

menu_activated
Signature: [virtual] void menu_activated (string symbol)

Description: Gets called when a custom menu item is selected

When a menu item is clicked which was registered with the plugin factory, the plugin's
'menu_activated' method is called for the current view. The symbol registered for the menu item is
passed in the 'symbol' argument.

mouse_button_pressed_event
Signature: [virtual] bool mouse_button_pressed_event (DPoint p, unsigned int buttons, bool
prio)

Description: Handles the mouse button pressed event

p: The point at which the button was pressed

For more details visit
https://www.klayout.org

Page 2015 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.192. API reference - Class Plugin

buttons: A combination of the constants in the ButtonState class which
codes both the mouse buttons and the key modifiers (.e.
LeftButton, ShiftButton etc).

Returns: True to terminate dispatcher

This method will called by the view when a button is pressed on the mouse.

First, the plugins that grabbed the mouse with grab_mouse will receive this event with 'prio' set
to true in the reverse order the plugins grabbed the mouse. The loop will terminate if one of the
mouse event handlers returns true.

If that is not the case or no plugin has grabbed the mouse, the active plugin receives the mouse
event with 'prio' set to true.

If no receiver accepted the mouse event by returning true, it is sent again to all plugins with 'prio'
set to false. Again, the loop terminates if one of the receivers returns true. The second pass gives
inactive plugins a chance to monitor the mouse and implement specific actions - i.e. displaying the
current position.

This event is not sent immediately when the mouse button is pressed but when a signification
movement for the mouse cursor away from the original position is detected. If the mouse button is
released before that, a mouse_clicked_event is sent rather than a press-move-release sequence.

mouse_button_released_event
Signature: [virtual] bool mouse_button_released_event (DPoint p, unsigned int buttons, bool
prio)

Description: Handles the mouse button release event

The behaviour of this callback is the same than for mouse_press_event, except that it is called
when the mouse button is released.

mouse_click_event
Signature: [virtual] bool mouse_click_event (DPoint p, unsigned int buttons, bool prio)

Description: Handles the mouse button click event (after the button has been released)

The behaviour of this callback is the same than for mouse_press_event, except that it is called
when the mouse button has been released without moving it.

mouse_double_click_event
Signature: [virtual] bool mouse_double_click_event (DPoint p, unsigned int buttons, bool prio)

Description: Handles the mouse button double-click event

The behaviour of this callback is the same than for mouse_press_event, except that it is called
when the mouse button has been double-clicked.

mouse_moved_event
Signature: [virtual] bool mouse_moved_event (DPoint p, unsigned int buttons, bool prio)

Description: Handles the mouse move event

The behaviour of this callback is the same than for mouse_press_event, except that it is called
when the mouse is moved in the canvas area.

new
Signature: [static] new Plugin ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

set_cursor
Signature: void set_cursor (int cursor_type)

Description: Sets the cursor in the view area to the given type

Setting the cursor has an effect only inside event handlers, i.e. mouse_press_event. The cursor is
not set permanently. Is is reset in the mouse move handler unless a button is pressed or the cursor
is explicitly set again in the mouse_move_event.

For more details visit
https://www.klayout.org

Page 2016 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.192. API reference - Class Plugin

The cursor type is one of the cursor constants in the Cursor class, i.e. 'CursorArrow' for the normal
cursor.

tracking_position
Signature: [virtual,const] DPoint tracking_position

Description: Gets the tracking position

See has_tracking_position for details.

This method has been added in version 0.27.6.

ungrab_mouse
Signature: void ungrab_mouse

Description: Removes a mouse grab registered with grab_mouse.

update
Signature: [virtual] void update

Description: Gets called when the view has changed

This method is called in particular if the view has changed the visible rectangle, i.e. after zooming
in or out or panning. This callback can be used to update any internal states that depend on the
view's state.

wheel_event
Signature: [virtual] bool wheel_event (int delta, bool horizontal, DPoint p, unsigned int buttons,
bool prio)

Description:

The behaviour of this callback is the same than for mouse_press_event, except that it is called
when the mouse wheel is rotated. Additional parameters for this event are 'delta' (the rotation angle
in units of 1/8th degree) and 'horizontal' which is true when the horizontal wheel was rotated and
false if the vertical wheel was rotated.

For more details visit
https://www.klayout.org

Page 2017 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.193. API reference - Class Cursor

4.193. API reference - Class Cursor
Notation used in Ruby API documentation

Module: lay

Description: The namespace for the cursor constants

This class defines the constants for the cursor setting (for example for class Plugin, method set_cursor). This class has been introduced in
version 0.22.

Public constructors

new Cursor ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
Cursor
other)

Assigns another object to self

[const] new Cursor ptr dup Creates a copy of self

Public static methods and constants

int Arrow 'Arrow cursor' constant

int Blank 'Blank cursor' constant

int Busy 'Busy state cursor' constant

int ClosedHand 'Closed hand cursor' constant

int Cross 'Cross cursor' constant

int Forbidden 'Forbidden area cursor' constant

int IBeam 'I beam (text insert) cursor' constant

int None 'No cursor (default)' constant for set_cursor (resets cursor to
default)

For more details visit
https://www.klayout.org

Page 2018 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.193. API reference - Class Cursor

int OpenHand 'Open hand cursor' constant

int PointingHand 'Pointing hand cursor' constant

int SizeAll 'Size all directions cursor' constant

int SizeBDiag 'Backward diagonal resize cursor' constant

int SizeFDiag 'Forward diagonal resize cursor' constant

int SizeHor 'Horizontal resize cursor' constant

int SizeVer 'Vertical resize cursor' constant

int SplitH 'split_horizontal cursor' constant

int SplitV 'Split vertical cursor' constant

int UpArrow 'Upward arrow cursor' constant

int Wait 'Waiting cursor' constant

int WhatsThis 'Question mark cursor' constant

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

Arrow
Signature: [static] int Arrow

Description: 'Arrow cursor' constant

Blank
Signature: [static] int Blank

Description: 'Blank cursor' constant

Busy
Signature: [static] int Busy

Description: 'Busy state cursor' constant

ClosedHand
Signature: [static] int ClosedHand

Description: 'Closed hand cursor' constant

Cross
Signature: [static] int Cross

For more details visit
https://www.klayout.org

Page 2019 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.193. API reference - Class Cursor

Description: 'Cross cursor' constant

Forbidden
Signature: [static] int Forbidden

Description: 'Forbidden area cursor' constant

IBeam
Signature: [static] int IBeam

Description: 'I beam (text insert) cursor' constant

None
Signature: [static] int None

Description: 'No cursor (default)' constant for set_cursor (resets cursor to default)

Python specific notes:
This attribute is available as 'None_' in Python

OpenHand
Signature: [static] int OpenHand

Description: 'Open hand cursor' constant

PointingHand
Signature: [static] int PointingHand

Description: 'Pointing hand cursor' constant

SizeAll
Signature: [static] int SizeAll

Description: 'Size all directions cursor' constant

SizeBDiag
Signature: [static] int SizeBDiag

Description: 'Backward diagonal resize cursor' constant

SizeFDiag
Signature: [static] int SizeFDiag

Description: 'Forward diagonal resize cursor' constant

SizeHor
Signature: [static] int SizeHor

Description: 'Horizontal resize cursor' constant

SizeVer
Signature: [static] int SizeVer

Description: 'Vertical resize cursor' constant

SplitH
Signature: [static] int SplitH

Description: 'split_horizontal cursor' constant

SplitV
Signature: [static] int SplitV

Description: 'Split vertical cursor' constant

UpArrow
Signature: [static] int UpArrow

Description: 'Upward arrow cursor' constant

For more details visit
https://www.klayout.org

Page 2020 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.193. API reference - Class Cursor

Wait
Signature: [static] int Wait

Description: 'Waiting cursor' constant

WhatsThis
Signature: [static] int WhatsThis

Description: 'Question mark cursor' constant

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of
the object. This method may be called if an object is returned from a C++ function and the object
is known not to be owned by any C++ instance. If necessary, the script side may delete the object
if the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 2021 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.193. API reference - Class Cursor

assign
Signature: void assign (const Cursor other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new Cursor ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

new
Signature: [static] new Cursor ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 2022 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.194. API reference - Class ButtonState

4.194. API reference - Class ButtonState
Notation used in Ruby API documentation

Module: lay

Description: The namespace for the button state flags in the mouse events of the Plugin class.

This class defines the constants for the button state. In the event handler, the button state is indicated by a bitwise combination of these
constants. See Plugin for further details. This class has been introduced in version 0.22.

Public constructors

new ButtonState ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
ButtonState
other)

Assigns another object to self

[const] new ButtonState ptr dup Creates a copy of self

Public static methods and constants

int AltKey Indicates that the Alt key is pressed

int ControlKey Indicates that the Control key is pressed

int LeftButton Indicates that the left mouse button is pressed

int MidButton Indicates that the middle mouse button is pressed

int RightButton Indicates that the right mouse button is pressed

int ShiftKey Indicates that the Shift key is pressed

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

For more details visit
https://www.klayout.org

Page 2023 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.194. API reference - Class ButtonState

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

AltKey
Signature: [static] int AltKey

Description: Indicates that the Alt key is pressed

This constant is combined with other constants within ButtonState

ControlKey
Signature: [static] int ControlKey

Description: Indicates that the Control key is pressed

This constant is combined with other constants within ButtonState

LeftButton
Signature: [static] int LeftButton

Description: Indicates that the left mouse button is pressed

This constant is combined with other constants within ButtonState

MidButton
Signature: [static] int MidButton

Description: Indicates that the middle mouse button is pressed

This constant is combined with other constants within ButtonState

RightButton
Signature: [static] int RightButton

Description: Indicates that the right mouse button is pressed

This constant is combined with other constants within ButtonState

ShiftKey
Signature: [static] int ShiftKey

Description: Indicates that the Shift key is pressed

This constant is combined with other constants within ButtonState

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

For more details visit
https://www.klayout.org

Page 2024 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.194. API reference - Class ButtonState

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const ButtonState other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

For more details visit
https://www.klayout.org

Page 2025 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.194. API reference - Class ButtonState

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new ButtonState ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new ButtonState ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 2026 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.195. API reference - Class Dispatcher

4.195. API reference - Class Dispatcher
Notation used in Ruby API documentation

Module: lay

Description: Root of the configuration space in the plugin context and menu dispatcher

This class provides access to the root configuration space in the context of plugin programming. You can use this class to obtain
configuration parameters from the configuration tree during plugin initialization. However, the preferred way of plugin configuration is
through Plugin#configure.

Currently, the application object provides an identical entry point for configuration modification. For example,
"Application::instance.set_config" is identical to "Dispatcher::instance.set_config". Hence there is little motivation for the Dispatcher class
currently and this interface may be modified or removed in the future. This class has been introduced in version 0.25 as 'PluginRoot'. It is
renamed and enhanced as 'Dispatcher' in 0.27.

Public constructors

new Dispatcher ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void clear_config Clears the configuration parameters

void commit_config Commits the configuration settings

variant get_config (string name) Gets the value of a local configuration parameter

string[] get_config_names Gets the configuration parameter names

bool read_config (string
file_name)

Reads the configuration from a file

void set_config (string name,
string value)

Set a local configuration parameter with the given
name to the given value

bool write_config (string
file_name)

Writes configuration to a file

For more details visit
https://www.klayout.org

Page 2027 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.195. API reference - Class Dispatcher

Public static methods and constants

Dispatcher ptr instance Gets the singleton instance of the Dispatcher object

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 2028 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.195. API reference - Class Dispatcher

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

clear_config
Signature: void clear_config

Description: Clears the configuration parameters

commit_config
Signature: void commit_config

Description: Commits the configuration settings

Some configuration options are queued for performance reasons and become active only after
'commit_config' has been called. After a sequence of set_config calls, this method should be called
to activate the settings made by these calls.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

get_config
Signature: variant get_config (string name)

Description: Gets the value of a local configuration parameter

name: The name of the configuration parameter whose value shall be
obtained (a string)

Returns: The value of the parameter or nil if there is no such parameter

For more details visit
https://www.klayout.org

Page 2029 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.195. API reference - Class Dispatcher

get_config_names
Signature: string[] get_config_names

Description: Gets the configuration parameter names

Returns: A list of configuration parameter names

This method returns the names of all known configuration parameters. These names can be used to
get and set configuration parameter values.

instance
Signature: [static] Dispatcher ptr instance

Description: Gets the singleton instance of the Dispatcher object

Returns: The instance

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new Dispatcher ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

read_config
Signature: bool read_config (string file_name)

Description: Reads the configuration from a file

Returns: A value indicating whether the operation was successful

This method silently does nothing, if the config file does not exist. If it does and an error occurred,
the error message is printed on stderr. In both cases, false is returned.

set_config
Signature: void set_config (string name, string value)

Description: Set a local configuration parameter with the given name to the given value

name: The name of the configuration parameter to set

value: The value to which to set the configuration parameter

This method sets a configuration parameter with the given name to the given value. Values can only
be strings. Numerical values have to be converted into strings first. Local configuration parameters
override global configurations for this specific view. This allows for example to override global
settings of background colors. Any local settings are not written to the configuration file.

write_config
Signature: bool write_config (string file_name)

Description: Writes configuration to a file

Returns: A value indicating whether the operation was successful

If the configuration file cannot be written, false is returned but no exception is thrown.

For more details visit
https://www.klayout.org

Page 2030 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.196. API reference - Class NetlistObjectPath

4.196. API reference - Class NetlistObjectPath
Notation used in Ruby API documentation

Module: lay

Description: An object describing the instantiation of a netlist object.

This class describes the instantiation of a net or a device or a circuit in terms of a root circuit and a subcircuit chain leading to the indicated
object.

See net= or device= for the indicated object, path= for the subcircuit chain.

This class has been introduced in version 0.27.

Public constructors

new NetlistObjectPath ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
NetlistObjectPath
other)

Assigns another object to self

[const] Device ptr device Gets the device the path points to.

void device= (Device ptr
device)

Sets the device the path points to.

[const] new NetlistObjectPath
ptr

dup Creates a copy of self

[const] bool is_null? Returns a value indicating whether the path is
an empty one.

[const] Net ptr net Gets the net the path points to.

void net= (Net ptr net) Sets the net the path points to.

[const] SubCircuit ptr[] path Gets the path.

For more details visit
https://www.klayout.org

Page 2031 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.196. API reference - Class NetlistObjectPath

void path= (SubCircuit
ptr[] path)

Sets the path.

[const] Circuit ptr root Gets the root circuit of the path.

void root= (Circuit ptr
root)

Sets the root circuit of the path.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

For more details visit
https://www.klayout.org

Page 2032 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.196. API reference - Class NetlistObjectPath

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const NetlistObjectPath other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

device
Signature: [const] Device ptr device

Description: Gets the device the path points to.

Python specific notes:
The object exposes a readable attribute 'device'. This is the getter.

device=
Signature: void device= (Device ptr device)

Description: Sets the device the path points to.

If the path describes the location of a device, this member will indicate it. The other way to describe
a final object is net=. If neither a device nor net is given, the path describes a circuit and how it is
referenced from the root.

Python specific notes:
The object exposes a writable attribute 'device'. This is the setter.

For more details visit
https://www.klayout.org

Page 2033 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.196. API reference - Class NetlistObjectPath

dup
Signature: [const] new NetlistObjectPath ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_null?
Signature: [const] bool is_null?

Description: Returns a value indicating whether the path is an empty one.

net
Signature: [const] Net ptr net

Description: Gets the net the path points to.

Python specific notes:
The object exposes a readable attribute 'net'. This is the getter.

net=
Signature: void net= (Net ptr net)

Description: Sets the net the path points to.

If the path describes the location of a net, this member will indicate it. The other way to describe a
final object is device=. If neither a device nor net is given, the path describes a circuit and how it is
referenced from the root.

Python specific notes:
The object exposes a writable attribute 'net'. This is the setter.

new
Signature: [static] new NetlistObjectPath ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

path
Signature: [const] SubCircuit ptr[] path

Description: Gets the path.

Python specific notes:
The object exposes a readable attribute 'path'. This is the getter.

path=
Signature: void path= (SubCircuit ptr[] path)

Description: Sets the path.

The path is a list of subcircuits leading from the root to the final object. The final (net, device) object is
located in the circuit called by the last subcircuit of the subcircuit chain. If the subcircuit list is empty,
the final object is located inside the root object.

Python specific notes:
The object exposes a writable attribute 'path'. This is the setter.

root
Signature: [const] Circuit ptr root

Description: Gets the root circuit of the path.

Python specific notes:

For more details visit
https://www.klayout.org

Page 2034 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.196. API reference - Class NetlistObjectPath

The object exposes a readable attribute 'root'. This is the getter.

root=
Signature: void root= (Circuit ptr root)

Description: Sets the root circuit of the path.

The root circuit is the circuit from which the path starts.

Python specific notes:
The object exposes a writable attribute 'root'. This is the setter.

For more details visit
https://www.klayout.org

Page 2035 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.197. API reference - Class NetlistObjectsPath

4.197. API reference - Class NetlistObjectsPath
Notation used in Ruby API documentation

Module: lay

Description: An object describing the instantiation of a single netlist object or a pair of those.

This class is basically a pair of netlist object paths (see NetlistObjectPath). When derived from a single netlist view, only the first path is
valid and will point to the selected object (a net, a device or a circuit). The second path is null.

If the path is derived from a paired netlist view (a LVS report view), the first path corresponds to the object in the layout netlist, the second
one to the object in the schematic netlist. If the selected object isn't a matched one, either the first or second path may be a null or a partial
path without a final net or device object or a partial path.

This class has been introduced in version 0.27.

Public constructors

new NetlistObjectsPath ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
NetlistObjectsPath
other)

Assigns another object to self

[const] new NetlistObjectsPath
ptr

dup Creates a copy of self

[const] NetlistObjectPath first Gets the first object's path.

[const] NetlistObjectPath second Gets the second object's path.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

For more details visit
https://www.klayout.org

Page 2036 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.197. API reference - Class NetlistObjectsPath

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const NetlistObjectsPath other)

Description: Assigns another object to self

For more details visit
https://www.klayout.org

Page 2037 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.197. API reference - Class NetlistObjectsPath

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new NetlistObjectsPath ptr dup

Description: Creates a copy of self

first
Signature: [const] NetlistObjectPath first

Description: Gets the first object's path.

In cases of paired netlists (LVS database), the first path points to the layout netlist object. For the
single netlist, the first path is the only path supplied.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new NetlistObjectsPath ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

second
Signature: [const] NetlistObjectPath second

Description: Gets the second object's path.

In cases of paired netlists (LVS database), the first path points to the schematic netlist object. For the
single netlist, the second path is always a null path.

For more details visit
https://www.klayout.org

Page 2038 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.198. API reference - Class NetlistBrowserDialog

4.198. API reference - Class NetlistBrowserDialog
Notation used in Ruby API documentation

Module: lay

Description: Represents the netlist browser dialog.

This dialog is a part of the LayoutView class and can be obtained through LayoutView#netlist_browser. This interface allows to interact with
the browser - mainly to get information about state changes.

This class has been introduced in version 0.27.

Public constructors

new NetlistBrowserDialog ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

[const] NetlistObjectsPath current_path Gets the path of the current object as a path pair
(combines layout and schematic object paths in case
of a LVS database view).

NetlistObjectPath current_path_first Gets the path of the current object on the first (layout
in case of LVS database) side.

NetlistObjectPath current_path_second Gets the path of the current object on the second
(schematic in case of LVS database) side.

LayoutToNetlist ptr db Gets the database the browser is connected to.

[signal] void on_current_db_changed This event is triggered when the current database is
changed.

[signal] void on_probe (NetlistObjectPath
first_path,
NetlistObjectPath
second_path)

This event is triggered when a net is probed.

[signal] void on_selection_changed This event is triggered when the selection changed.

[const] NetlistObjectsPath[] selected_paths Gets the nets currently selected objects (paths) in
the netlist database browser.

For more details visit
https://www.klayout.org

Page 2039 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.198. API reference - Class NetlistBrowserDialog

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method

For more details visit
https://www.klayout.org

Page 2040 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.198. API reference - Class NetlistBrowserDialog

will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

current_path
Signature: [const] NetlistObjectsPath current_path

Description: Gets the path of the current object as a path pair (combines layout and schematic
object paths in case of a LVS database view).

current_path_first
Signature: NetlistObjectPath current_path_first

Description: Gets the path of the current object on the first (layout in case of LVS database) side.

current_path_second
Signature: NetlistObjectPath current_path_second

Description: Gets the path of the current object on the second (schematic in case of LVS database)
side.

db
Signature: LayoutToNetlist ptr db

Description: Gets the database the browser is connected to.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new NetlistBrowserDialog ptr new

Description: Creates a new object of this class

For more details visit
https://www.klayout.org

Page 2041 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.198. API reference - Class NetlistBrowserDialog

Python specific notes:
This method is the default initializer of the object

on_current_db_changed
Signature: [signal] void on_current_db_changed

Description: This event is triggered when the current database is changed.

The current database can be obtained with db.

Python specific notes:
The object exposes a readable attribute 'on_current_db_changed'. This is the getter. The object
exposes a writable attribute 'on_current_db_changed'. This is the setter.

on_probe
Signature: [signal] void on_probe (NetlistObjectPath first_path, NetlistObjectPath second_path)

Description: This event is triggered when a net is probed.

The first path will indicate the location of the probed net in terms of two paths: one describing
the instantiation of the net in layout space and one in schematic space. Both objects are
NetlistObjectPath objects which hold the root circuit, the chain of subcircuits leading to the circuit
containing the net and the net itself.

Python specific notes:
The object exposes a readable attribute 'on_probe'. This is the getter. The object exposes a writable
attribute 'on_probe'. This is the setter.

on_selection_changed
Signature: [signal] void on_selection_changed

Description: This event is triggered when the selection changed.

The selection can be obtained with current_path_first, current_path_second, selected_nets,
selected_devices, selected_subcircuits and selected_circuits.

Python specific notes:
The object exposes a readable attribute 'on_selection_changed'. This is the getter. The object
exposes a writable attribute 'on_selection_changed'. This is the setter.

selected_paths
Signature: [const] NetlistObjectsPath[] selected_paths

Description: Gets the nets currently selected objects (paths) in the netlist database browser.

The result is an array of path pairs. See NetlistObjectsPath for details about these pairs.

For more details visit
https://www.klayout.org

Page 2042 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.199. API reference - Class ObjectInstPath

4.199. API reference - Class ObjectInstPath
Notation used in Ruby API documentation

Module: lay

Description: A class describing a selected shape or instance

A shape or instance is addressed by a path which describes all instances leading to the specified object. These instances are described
through InstElement objects, which specify the instance and, in case of array instances, the specific array member. For shapes, additionally
the layer and the shape itself is specified. The ObjectInstPath objects encapsulates both forms, which can be distinguished with the
is_cell_inst? predicate.

An instantiation path leads from a top cell down to the container cell which either holds the shape or the instance. The top cell can be
obtained through the top attribute, the container cell through the source attribute. Both are cell indexes which can be converted to Cell
objects through the Layout#cell. In case of objects located in the top cell, top and source refer to the same cell. The first element of the
instantiation path is the instance located within the top cell leading to the first child cell. The second element leads to the next child cell and
so forth. path_nth can be used to obtain a specific element of the path.

The cv_index attribute specifies the cellview the selection applies to. Use LayoutView#cellview to obtain the CellView object from the index.

The shape or instance the selection refers to can be obtained with shape and inst respectively. Use is_cell_inst? to decide whether the
selection refers to an instance or not.

The ObjectInstPath class plays a role when retrieving and modifying the selection of shapes and instances through
LayoutView#object_selection, LayoutView#object_selection=, LayoutView#select_object and LayoutView#unselect_object. ObjectInstPath
objects can be modified to reflect a new selection, but the new selection becomes active only after it is installed in the view. The following
sample demonstrates that. It implements a function to convert all shapes to polygons:

mw = RBA::Application::instance::main_window
view = mw.current_view

begin

 view.transaction("Convert selected shapes to polygons")

 sel = view.object_selection

 sel.each do |s|
 if !s.is_cell_inst? && !s.shape.is_text?
 ly = view.cellview(s.cv_index).layout
 # convert to polygon
 s.shape.polygon = s.shape.polygon
 end
 end

 view.object_selection = sel

ensure
 view.commit
end

Note, that without resetting the selection in the above example, the application might raise errors because after modifying the selected
objects, the current selection will no longer be valid. Establishing a new valid selection in the way shown above will help avoiding this issue.

Public constructors

new ObjectInstPath ptr new (const RecursiveShapeIterator si,
int cv_index)

Creates a new path object from a
RecursiveShapeIterator

For more details visit
https://www.klayout.org

Page 2043 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.199. API reference - Class ObjectInstPath

Public methods

[const] bool != (const
ObjectInstPath
b)

Inequality of two ObjectInstPath objects

[const] bool < (const
ObjectInstPath
b)

Provides an order criterion for two ObjectInstPath
objects

[const] bool == (const
ObjectInstPath
b)

Equality of two ObjectInstPath objects

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void append_path (const
InstElement
element)

Appends an element to the instantiation path

void assign (const
ObjectInstPath
other)

Assigns another object to self

[const] unsigned int cell_index Gets the cell index of the cell that the selection
applies to.

void clear_path Clears the instantiation path

[const] unsigned int cv_index Gets the cellview index that describes which cell
view the shape or instance is located in

void cv_index= (unsigned int
index)

Sets the cellview index that describes which cell
view the shape or instance is located in

[const] DCplxTrans dtrans Gets the transformation applicable for the shape
in micron space.

[const] new ObjectInstPath
ptr

dup Creates a copy of self

[const,iter] InstElement each_inst Yields the instantiation path

[const] Instance inst Deliver the instance represented by this selection

For more details visit
https://www.klayout.org

Page 2044 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.199. API reference - Class ObjectInstPath

[const] bool is_cell_inst? True, if this selection represents a cell instance

[const] variant layer Gets the layer index that describes which layer
the selected shape is on

void layer= (unsigned int
layer_index)

Sets to the layer index that describes which layer
the selected shape is on

[const] Layout ptr layout Gets the Layout object the selected object lives
in.

[const] InstElement[] path Gets the instantiation path

void path= (InstElement[]
p)

Sets the instantiation path

[const] unsigned int path_length Returns the length of the path (number of
elements delivered by each_inst)

[const] InstElement path_nth (unsigned int
n)

Returns the nth element of the path (similar to
each_inst but with direct access through the
index)

[const] unsigned long seq Gets the sequence number

void seq= (unsigned
long n)

Sets the sequence number

[const] variant shape Gets the selected shape

void shape= (const Shape
shape)

Sets the shape object that describes the selected
shape geometrically

[const] unsigned int source Returns to the cell index of the cell that the
selected element resides inside.

[const] DCplxTrans source_dtrans Gets the transformation applicable for an instance
and shape in micron space.

[const] ICplxTrans source_trans Gets the transformation applicable for an instance
and shape.

[const] unsigned int top Gets the cell index of the top cell the selection
applies to

void top= (unsigned int
cell_index)

Sets the cell index of the top cell the selection
applies to

[const] ICplxTrans trans Gets the transformation applicable for the shape.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

For more details visit
https://www.klayout.org

Page 2045 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.199. API reference - Class ObjectInstPath

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

!=
Signature: [const] bool != (const ObjectInstPath b)

Description: Inequality of two ObjectInstPath objects

See the comments on the == operator.

This method has been introduced with version 0.24.

<
Signature: [const] bool < (const ObjectInstPath b)

Description: Provides an order criterion for two ObjectInstPath objects

Note: this operator is just provided to establish any order, not a particular one.

This method has been introduced with version 0.24.

==
Signature: [const] bool == (const ObjectInstPath b)

Description: Equality of two ObjectInstPath objects

Note: this operator returns true if both instance paths refer to the same object, not just identical ones.

This method has been introduced with version 0.24.

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called on
self.

For more details visit
https://www.klayout.org

Page 2046 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.199. API reference - Class ObjectInstPath

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is known
not to be owned by any C++ instance. If necessary, the script side may delete the object if the script's
reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

append_path
Signature: void append_path (const InstElement element)

Description: Appends an element to the instantiation path

This method allows building of an instantiation path pointing to the selected object. For an instance
selection, the last component added is the instance which is selected. For a shape selection, the path
points to the cell containing the selected shape.

This method was introduced in version 0.24.

assign
Signature: void assign (const ObjectInstPath other)

Description: Assigns another object to self

cell_index
Signature: [const] unsigned int cell_index

Description: Gets the cell index of the cell that the selection applies to.

This method returns the cell index that describes which cell the selected shape is located in or the cell
whose instance is selected if is_cell_inst? is true. This property is set implicitly by setting the top cell
and adding elements to the instantiation path. To obtain the index of the container cell, use source.

clear_path
Signature: void clear_path

Description: Clears the instantiation path

This method was introduced in version 0.24.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

cv_index
Signature: [const] unsigned int cv_index

Description: Gets the cellview index that describes which cell view the shape or instance is located in

For more details visit
https://www.klayout.org

Page 2047 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.199. API reference - Class ObjectInstPath

Python specific notes:
The object exposes a readable attribute 'cv_index'. This is the getter.

cv_index=
Signature: void cv_index= (unsigned int index)

Description: Sets the cellview index that describes which cell view the shape or instance is located in

This method has been introduced in version 0.24.

Python specific notes:
The object exposes a writable attribute 'cv_index'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dtrans
Signature: [const] DCplxTrans dtrans

Description: Gets the transformation applicable for the shape in micron space.

This method returns the same transformation than trans, but applicable to objects in micrometer units:

renders the micrometer-unit polygon in top cell coordinates:
dpolygon_in_top = sel.dtrans * sel.shape.dpolygon

This method is not applicable to instance selections. A more generic attribute is source_dtrans.

The method has been introduced in version 0.25.

dup
Signature: [const] new ObjectInstPath ptr dup

Description: Creates a copy of self

each_inst
Signature: [const,iter] InstElement each_inst

Description: Yields the instantiation path

The instantiation path describes by an sequence of InstElement objects the path by which the cell
containing the selected shape is found from the cell view's current cell. If this object represents an
instance, the path will contain the selected instance as the last element. The elements are delivered
top down.

inst
Signature: [const] Instance inst

Description: Deliver the instance represented by this selection

For more details visit
https://www.klayout.org

Page 2048 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.199. API reference - Class ObjectInstPath

This method delivers valid results only if is_cell_inst? is true. It returns the instance reference (an
Instance object) that this selection represents.

This property is set implicitly by adding instance elements to the instantiation path.

This method has been added in version 0.16.

is_cell_inst?
Signature: [const] bool is_cell_inst?

Description: True, if this selection represents a cell instance

If this attribute is true, the shape reference and layer are not valid.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called on
self.

layer
Signature: [const] variant layer

Description: Gets the layer index that describes which layer the selected shape is on

Starting with version 0.27, this method returns nil for this property if is_cell_inst? is false - i.e. the
selection does not represent a shape.

Python specific notes:
The object exposes a readable attribute 'layer'. This is the getter.

layer=
Signature: void layer= (unsigned int layer_index)

Description: Sets to the layer index that describes which layer the selected shape is on

Setting the layer property to a valid layer index makes the path a shape selection path. Setting the
layer property to a negative layer index makes the selection an instance selection.

This method has been introduced in version 0.24.

Python specific notes:
The object exposes a writable attribute 'layer'. This is the setter.

layout
Signature: [const] Layout ptr layout

Description: Gets the Layout object the selected object lives in.

This method returns the Layout object that the selected object lives in. This method may return nil, if
the selection does not point to a valid object.

This method has been introduced in version 0.25.

new
Signature: [static] new ObjectInstPath ptr new (const RecursiveShapeIterator si, int cv_index)

Description: Creates a new path object from a RecursiveShapeIterator

Use this constructor to quickly turn a recursive shape iterator delivery into a shape selection.

Python specific notes:
This method is the default initializer of the object

path
Signature: [const] InstElement[] path

Description: Gets the instantiation path

The path is a sequence of InstElement objects leading to the target object.

For more details visit
https://www.klayout.org

Page 2049 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.199. API reference - Class ObjectInstPath

This method was introduced in version 0.26.

Python specific notes:
The object exposes a readable attribute 'path'. This is the getter.

path=
Signature: void path= (InstElement[] p)

Description: Sets the instantiation path

This method was introduced in version 0.26.

Python specific notes:
The object exposes a writable attribute 'path'. This is the setter.

path_length
Signature: [const] unsigned int path_length

Description: Returns the length of the path (number of elements delivered by each_inst)

This method has been added in version 0.16.

path_nth
Signature: [const] InstElement path_nth (unsigned int n)

Description: Returns the nth element of the path (similar to each_inst but with direct access through
the index)

n: The index of the element to retrieve (0..path_length-1)

This method has been added in version 0.16.

seq
Signature: [const] unsigned long seq

Description: Gets the sequence number

The sequence number describes when the item was selected. A sequence number of 0 indicates that
the item was selected in the first selection action (without 'Shift' pressed).

Python specific notes:
The object exposes a readable attribute 'seq'. This is the getter.

seq=
Signature: void seq= (unsigned long n)

Description: Sets the sequence number

See seq for a description of this property.

This method was introduced in version 0.24.

Python specific notes:
The object exposes a writable attribute 'seq'. This is the setter.

shape
Signature: [const] variant shape

Description: Gets the selected shape

The shape object may be modified. This does not have an immediate effect on the selection.
Instead, the selection must be set in the view using LayoutView#object_selection= or
LayoutView#select_object.

This method delivers valid results only for object selections that represent shapes. Starting with version
0.27, this method returns nil for this property if is_cell_inst? is false.

Python specific notes:
The object exposes a readable attribute 'shape'. This is the getter.

For more details visit
https://www.klayout.org

Page 2050 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.199. API reference - Class ObjectInstPath

shape=
Signature: void shape= (const Shape shape)

Description: Sets the shape object that describes the selected shape geometrically

When using this setter, the layer index must be set to a valid layout layer (see layer=). Setting both
properties makes the selection a shape selection.

This method has been introduced in version 0.24.

Python specific notes:
The object exposes a writable attribute 'shape'. This is the setter.

source
Signature: [const] unsigned int source

Description: Returns to the cell index of the cell that the selected element resides inside.

If this reference represents a cell instance, this method delivers the index of the cell in which the cell
instance resides. Otherwise, this method returns the same value than cell_index.

This property is set implicitly by setting the top cell and adding elements to the instantiation path.

This method has been added in version 0.16.

source_dtrans
Signature: [const] DCplxTrans source_dtrans

Description: Gets the transformation applicable for an instance and shape in micron space.

This method returns the same transformation than source_trans, but applicable to objects in
micrometer units:

renders the cell instance as seen from top level:
dcell_inst_in_top = sel.source_dtrans * sel.inst.dcell_inst

The method has been introduced in version 0.25.

source_trans
Signature: [const] ICplxTrans source_trans

Description: Gets the transformation applicable for an instance and shape.

If this object represents a shape, this transformation describes how the selected shape is transformed
into the current cell of the cell view. If this object represents an instance, this transformation describes
how the selected instance is transformed into the current cell of the cell view. This method is similar to
trans, except that the resulting transformation does not include the instance transformation if the object
represents an instance.

This property is set implicitly by setting the top cell and adding elements to the instantiation path.

This method has been added in version 0.16.

top
Signature: [const] unsigned int top

Description: Gets the cell index of the top cell the selection applies to

The top cell is identical to the current cell provided by the cell view. It is the cell from which is
instantiation path originates and the container cell if not instantiation path is set.

This method has been introduced in version 0.24.

Python specific notes:
The object exposes a readable attribute 'top'. This is the getter.

top=
Signature: void top= (unsigned int cell_index)

Description: Sets the cell index of the top cell the selection applies to

For more details visit
https://www.klayout.org

Page 2051 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.199. API reference - Class ObjectInstPath

See top_cell for a description of this property.

This method has been introduced in version 0.24.

Python specific notes:
The object exposes a writable attribute 'top'. This is the setter.

trans
Signature: [const] ICplxTrans trans

Description: Gets the transformation applicable for the shape.

If this object represents a shape, this transformation describes how the selected shape is transformed
into the current cell of the cell view. Basically, this transformation is the accumulated transformation
over the instantiation path. If the ObjectInstPath represents a cell instance, this includes the
transformation of the selected instance as well.

This property is set implicitly by setting the top cell and adding elements to the instantiation path. This
method is not applicable for instance selections. A more generic attribute is source_trans.

For more details visit
https://www.klayout.org

Page 2052 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.200. API reference - Class ImageDataMapping

4.200. API reference - Class ImageDataMapping
Notation used in Ruby API documentation

Module: lay

Description: A structure describing the data mapping of an image object

Data mapping is the process of transforming the data into RGB pixel values. This implementation provides four adjustment steps: first, in
the case of monochrome data, the data is converted to a RGB triplet using the color map. The default color map will copy the value to all
channels rendering a gray scale. After having normalized the data to 0..1 cooresponding to the min_value and max_value settings of the
image, a color channel-independent brightness and contrast adjustment is applied. Then, a per-channel multiplier (red_gain, green_gain,
blue_gain) is applied. Finally, the gamma function is applied and the result converted into a 0..255 pixel value range and clipped.

Public constructors

new ImageDataMapping ptr new Create a new data mapping object with default settings

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the
script side.

void _unmanage Marks the object as no longer owned by
the script side.

void add_colormap_entry (double value,
unsigned int color)

Add a colormap entry for this data
mapping object.

void add_colormap_entry (double value,
unsigned int
lcolor,
unsigned int
rcolor)

Add a colormap entry for this data
mapping object.

void assign (const
ImageDataMapping
other)

Assigns another object to self

[const] double blue_gain The blue channel gain

void blue_gain= (double
blue_gain)

Set the blue_gain

[const] double brightness The brightness value

void brightness= (double
brightness)

Set the brightness

For more details visit
https://www.klayout.org

Page 2053 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.200. API reference - Class ImageDataMapping

void clear_colormap The the color map of this data mapping
object.

[const] unsigned int colormap_color (unsigned long n) Returns the color for a given color map
entry.

[const] unsigned int colormap_lcolor (unsigned long n) Returns the left-side color for a given
color map entry.

[const] unsigned int colormap_rcolor (unsigned long n) Returns the right-side color for a given
color map entry.

[const] double colormap_value (unsigned long n) Returns the value for a given color map
entry.

[const] double contrast The contrast value

void contrast= (double contrast) Set the contrast

[const] new
ImageDataMapping
ptr

dup Creates a copy of self

[const] double gamma The gamma value

void gamma= (double gamma) Set the gamma

[const] double green_gain The green channel gain

void green_gain= (double
green_gain)

Set the green_gain

[const] unsigned long num_colormap_entries Returns the current number of color map
entries.

[const] double red_gain The red channel gain

void red_gain= (double red_gain) Set the red_gain

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

For more details visit
https://www.klayout.org

Page 2054 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.200. API reference - Class ImageDataMapping

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

(1) Signature: void add_colormap_entry (double value, unsigned int color)

Description: Add a colormap entry for this data mapping object.

value: The value at which the given color should be applied.

color: The color to apply (a 32 bit RGB value).

This settings establishes a color mapping for a given value in the monochrome channel. The color
must be given as a 32 bit integer, where the lowest order byte describes the blue component (0 to
255), the second byte the green component and the third byte the red component, i.e. 0xff0000 is
red and 0x0000ff is blue.

add_colormap_entry

(2) Signature: void add_colormap_entry (double value, unsigned int lcolor, unsigned int rcolor)

For more details visit
https://www.klayout.org

Page 2055 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.200. API reference - Class ImageDataMapping

Description: Add a colormap entry for this data mapping object.

value: The value at which the given color should be applied.

lcolor: The color to apply left of the value (a 32 bit RGB value).

rcolor: The color to apply right of the value (a 32 bit RGB value).

This settings establishes a color mapping for a given value in the monochrome channel. The colors
must be given as a 32 bit integer, where the lowest order byte describes the blue component (0 to
255), the second byte the green component and the third byte the red component, i.e. 0xff0000 is
red and 0x0000ff is blue.

In contrast to the version with one color, this version allows specifying a color left and right of the
value - i.e. a discontinuous step.

This variant has been introduced in version 0.27.

assign
Signature: void assign (const ImageDataMapping other)

Description: Assigns another object to self

blue_gain
Signature: [const] double blue_gain

Description: The blue channel gain

This value is the multiplier by which the blue channel is scaled after applying false color
transformation and contrast/brightness/gamma.

1.0 is a neutral value. The gain should be >=0.0.

Python specific notes:
The object exposes a readable attribute 'blue_gain'. This is the getter.

blue_gain=
Signature: void blue_gain= (double blue_gain)

Description: Set the blue_gain

See blue_gain for a description of this property.

Python specific notes:
The object exposes a writable attribute 'blue_gain'. This is the setter.

brightness
Signature: [const] double brightness

Description: The brightness value

The brightness is a double value between roughly -1.0 and 1.0. Neutral (original) brightness is 0.0.

Python specific notes:
The object exposes a readable attribute 'brightness'. This is the getter.

brightness=
Signature: void brightness= (double brightness)

Description: Set the brightness

See brightness for a description of this property.

Python specific notes:
The object exposes a writable attribute 'brightness'. This is the setter.

clear_colormap
Signature: void clear_colormap

Description: The the color map of this data mapping object.

For more details visit
https://www.klayout.org

Page 2056 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.200. API reference - Class ImageDataMapping

colormap_color
Signature: [const] unsigned int colormap_color (unsigned long n)

Description: Returns the color for a given color map entry.

n: The index of the entry (0..num_colormap_entries-1)

Returns: The color (see add_colormap_entry for a description).

NOTE: this version is deprecated and provided for backward compatibility. For discontinuous nodes
this method delivers the left-sided color.

colormap_lcolor
Signature: [const] unsigned int colormap_lcolor (unsigned long n)

Description: Returns the left-side color for a given color map entry.

n: The index of the entry (0..num_colormap_entries-1)

Returns: The color (see add_colormap_entry for a description).

This method has been introduced in version 0.27.

colormap_rcolor
Signature: [const] unsigned int colormap_rcolor (unsigned long n)

Description: Returns the right-side color for a given color map entry.

n: The index of the entry (0..num_colormap_entries-1)

Returns: The color (see add_colormap_entry for a description).

This method has been introduced in version 0.27.

colormap_value
Signature: [const] double colormap_value (unsigned long n)

Description: Returns the value for a given color map entry.

n: The index of the entry (0..num_colormap_entries-1)

Returns: The value (see add_colormap_entry for a description).

contrast
Signature: [const] double contrast

Description: The contrast value

The contrast is a double value between roughly -1.0 and 1.0. Neutral (original) contrast is 0.0.

Python specific notes:
The object exposes a readable attribute 'contrast'. This is the getter.

contrast=
Signature: void contrast= (double contrast)

Description: Set the contrast

See contrast for a description of this property.

Python specific notes:
The object exposes a writable attribute 'contrast'. This is the setter.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

For more details visit
https://www.klayout.org

Page 2057 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.200. API reference - Class ImageDataMapping

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new ImageDataMapping ptr dup

Description: Creates a copy of self

gamma
Signature: [const] double gamma

Description: The gamma value

The gamma value allows one to adjust for non-linearities in the display chain and to enhance
contrast. A value for linear intensity reproduction on the screen is roughly 0.5. The exact value
depends on the monitor calibration. Values below 1.0 give a "softer" appearance while values above
1.0 give a "harder" appearance.

Python specific notes:
The object exposes a readable attribute 'gamma'. This is the getter.

gamma=
Signature: void gamma= (double gamma)

Description: Set the gamma

See gamma for a description of this property.

Python specific notes:
The object exposes a writable attribute 'gamma'. This is the setter.

green_gain
Signature: [const] double green_gain

Description: The green channel gain

This value is the multiplier by which the green channel is scaled after applying false color
transformation and contrast/brightness/gamma.

1.0 is a neutral value. The gain should be >=0.0.

Python specific notes:
The object exposes a readable attribute 'green_gain'. This is the getter.

green_gain=
Signature: void green_gain= (double green_gain)

Description: Set the green_gain

See green_gain for a description of this property.

Python specific notes:
The object exposes a writable attribute 'green_gain'. This is the setter.

For more details visit
https://www.klayout.org

Page 2058 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.200. API reference - Class ImageDataMapping

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new ImageDataMapping ptr new

Description: Create a new data mapping object with default settings

Python specific notes:
This method is the default initializer of the object

num_colormap_entries
Signature: [const] unsigned long num_colormap_entries

Description: Returns the current number of color map entries.

Returns: The number of entries.

red_gain
Signature: [const] double red_gain

Description: The red channel gain

This value is the multiplier by which the red channel is scaled after applying false color
transformation and contrast/brightness/gamma.

1.0 is a neutral value. The gain should be >=0.0.

Python specific notes:
The object exposes a readable attribute 'red_gain'. This is the getter.

red_gain=
Signature: void red_gain= (double red_gain)

Description: Set the red_gain

See red_gain for a description of this property.

Python specific notes:
The object exposes a writable attribute 'red_gain'. This is the setter.

For more details visit
https://www.klayout.org

Page 2059 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.201. API reference - Class Image

4.201. API reference - Class Image
Notation used in Ruby API documentation

Module: lay

Description: An image to be stored as a layout annotation

Class hierarchy: Image

Images can be put onto the layout canvas as annotations, along with rulers and markers. Images can be monochrome (represent scalar
data) as well as color (represent color images). The display of images can be adjusted in various ways, i.e. color mapping (translation
of scalar values to colors), geometrical transformations (including rotation by arbitrary angles) and similar. Images are always based on
floating point data. The actual data range is not fixed and can be adjusted to the data set (i.e. 0..255 or -1..1). This gives a great flexibility
when displaying data which is the result of some measurement or calculation for example. The basic parameters of an image are the width
and height of the data set, the width and height of one pixel, the geometrical transformation to be applied, the data range (min_value to
max_value) and the data mapping which is described by an own class, ImageDataMapping.

Starting with version 0.22, the basic transformation is a 3x3 matrix rather than the simple affine transformation. This matrix includes the
pixel dimensions as well. One consequence of that is that the magnification part of the matrix and the pixel dimensions are no longer
separated. That has certain consequences, i.e. setting an affine transformation with a magnification scales the pixel sizes as before but an
affine transformation returned will no longer contain the pixel dimensions as magnification because it only supports isotropic scaling. For
backward compatibility, the rotation center for the affine transformations while the default center and the center for matrix transformations is
the image center.

As with version 0.25, images become 'live' objects. Changes to image properties will be reflected in the view automatically once the
image object has been inserted into a view. Note that changes are not immediately reflected in the view, but are delayed until the view
is refreshed. Hence, iterating the view's images will not render the same results than the image objects attached to the view. To ensure
synchronization, call Image#update.

Public constructors

new Image ptr new Create a new image with the default
attributes

new Image ptr new (string filename) Constructor from a image file

new Image ptr new (string filename,
const DCplxTrans trans)

Constructor from a image file

new Image ptr new (unsigned long w,
unsigned long h,
double[] data)

Constructor for a monochrome image with
the given pixel values

new Image ptr new (unsigned long w,
unsigned long h,
const DCplxTrans trans,
double[] data)

Constructor for a monochrome image with
the given pixel values

new Image ptr new (unsigned long w,
unsigned long h,
double[] red,
double[] green,
double[] blue)

Constructor for a color image with the given
pixel values

new Image ptr new (unsigned long w,
unsigned long h,
const DCplxTrans trans,
double[] red,
double[] green,
double[] blue)

Constructor for a color image with the given
pixel values

For more details visit
https://www.klayout.org

Page 2060 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.201. API reference - Class Image

Public methods

void _assign (const Image
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] new Image ptr _dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const Image
other)

Assigns another object to self

[const] DBox box Gets the bounding box of the image

void clear Clears the image data (sets to 0 or black).

double[] data (int channel = 0) Gets the data array for a specific color
channel

[const] ImageDataMapping data_mapping Gets the data mapping

void data_mapping= (const
ImageDataMapping
data_mapping)

Sets the data mapping object

void delete Deletes this image from the view

void detach Detaches the image object from the view

[const] new Image ptr dup Creates a copy of self

[const] string filename Gets the name of the file loaded of an empty
string if not file is loaded

[const] double get_pixel (unsigned long x,
unsigned long y)

Gets one pixel (monochrome only)

[const] double get_pixel (unsigned long x,
unsigned long y,
unsigned int
component)

Gets one pixel (monochrome and color)

[const] unsigned long height Gets the height of the image in pixels

For more details visit
https://www.klayout.org

Page 2061 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.201. API reference - Class Image

[const] unsigned long id Gets the Id

[const] bool is_color? Returns true, if the image is a color image

[const] bool is_empty? Returns true, if the image does not contain
any data (i.e. is default constructed)

[const] bool is_valid? Returns a value indicating whether the object
is a valid reference.

[const] bool is_visible? Gets a flag indicating whether the image
object is visible

[const] bool mask (unsigned long x,
unsigned long y)

Gets the mask for one pixel

bool[] mask_data Gets the mask from a array of boolean
values

void mask_data= (bool[]
mask_data)

Sets the mask from a array of boolean
values

[const] Matrix3d matrix Returns the pixel-to-micron transformation
matrix

void matrix= (const Matrix3d t) Sets the transformation matrix

[const] double max_value Sets the maximum value

void max_value= (double v) Gets the upper limit of the values in the data
set

[const] double min_value Gets the upper limit of the values in the data
set

void min_value= (double v) Sets the minimum value

[const] double pixel_height Gets the pixel height

void pixel_height= (double h) Sets the pixel height

[const] double pixel_width Gets the pixel width

void pixel_width= (double w) Sets the pixel width

void set_data (unsigned long w,
unsigned long h,
double[] d)

Writes the image data field (monochrome)

void set_data (unsigned long w,
unsigned long h,
double[] r,
double[] g,
double[] b)

Writes the image data field (color)

void set_mask (unsigned long x,
unsigned long y,
bool m)

Sets the mask for a pixel

For more details visit
https://www.klayout.org

Page 2062 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.201. API reference - Class Image

void set_pixel (unsigned long x,
unsigned long y,
double v)

Sets one pixel (monochrome)

void set_pixel (unsigned long x,
unsigned long y,
double r,
double g,
double b)

Sets one pixel (color)

[const] string to_s Converts the image to a string

[const] DCplxTrans trans Returns the pixel-to-micron transformation

void trans= (const
DCplxTrans t)

Sets the transformation

[const] Image transformed (const DTrans t) Transforms the image with the given simple
transformation

[const] Image transformed (const Matrix3d t) Transforms the image with the given matrix
transformation

[const] Image transformed (const
DCplxTrans t)

Transforms the image with the given
complex transformation

void update Forces an update of the view

void visible= (bool v) Sets the visibility

[const] unsigned long width Gets the width of the image in pixels

[const] void write (string path) Saves the image to KLayout's image format
(.lyimg)

[const] int z_position Gets the z position of the image

void z_position= (int z) Sets the z position of the image

Public static methods and constants

new Image ptr from_s (string s) Creates an image from the string returned by
to_s.

new Image ptr read (string path) Loads the image from the given path.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use
_destroyed? instead

For more details visit
https://www.klayout.org

Page 2063 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.201. API reference - Class Image

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[const] Image transformed_cplx (const
DCplxTrans
t)

Use of this method is deprecated. Use
transformed instead

[const] Image transformed_matrix (const
Matrix3d t)

Use of this method is deprecated. Use
transformed instead

Detailed description

_assign
Signature: void _assign (const Image other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new Image ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 2064 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.201. API reference - Class Image

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const Image other)

Description: Assigns another object to self

box
Signature: [const] DBox box

Description: Gets the bounding box of the image

Returns: The bounding box

clear
Signature: void clear

Description: Clears the image data (sets to 0 or black).

This method has been introduced in version 0.27.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

data
Signature: double[] data (int channel = 0)

Description: Gets the data array for a specific color channel

Returns an array of pixel values for the given channel. For a color image, channel 0 is green, channel
1 is red and channel 2 is blue. For a monochrome image, the channel is ignored.

For the format of the data see the constructor description.

This method has been introduced in version 0.27.

data_mapping
Signature: [const] ImageDataMapping data_mapping

Description: Gets the data mapping

Returns: The data mapping object

The data mapping describes the transformation of a pixel value (any double value) into pixel data
which can be sent to the graphics cards for display. See ImageDataMapping for a more detailed
description.

Python specific notes:
The object exposes a readable attribute 'data_mapping'. This is the getter.

data_mapping=
Signature: void data_mapping= (const ImageDataMapping data_mapping)

Description: Sets the data mapping object

For more details visit
https://www.klayout.org

Page 2065 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.201. API reference - Class Image

The data mapping describes the transformation of a pixel value (any double value) into pixel data
which can be sent to the graphics cards for display. See ImageDataMapping for a more detailed
description.

Python specific notes:
The object exposes a writable attribute 'data_mapping'. This is the setter.

delete
Signature: void delete

Description: Deletes this image from the view

If the image is an "active" one, this method will remove it from the view. This object will become
detached and can still be manipulated, but without having an effect on the view. This method has
been introduced in version 0.25.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

detach
Signature: void detach

Description: Detaches the image object from the view

If the image object was inserted into the view, property changes will be reflected in the view. To
disable this feature, 'detach'' can be called after which the image object becomes inactive and
changes will no longer be reflected in the view.

This method has been introduced in version 0.25.

dup
Signature: [const] new Image ptr dup

Description: Creates a copy of self

filename
Signature: [const] string filename

Description: Gets the name of the file loaded of an empty string if not file is loaded

Returns: The file name (path)

from_s
Signature: [static] new Image ptr from_s (string s)

Description: Creates an image from the string returned by to_s.

This method has been introduced in version 0.27.

get_pixel
(1) Signature: [const] double get_pixel (unsigned long x, unsigned long y)

Description: Gets one pixel (monochrome only)

x: The x coordinate of the pixel (0..width()-1)

For more details visit
https://www.klayout.org

Page 2066 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.201. API reference - Class Image

y: The y coordinate of the pixel (mathematical order: 0 is the lowest,
0..height()-1)

If x or y value exceeds the image bounds, this method returns 0.0. This method is valid for
monochrome images only. For color images it will return 0.0 always. Use is_color? to decide whether
the image is a color image or monochrome one.

(2) Signature: [const] double get_pixel (unsigned long x, unsigned long y, unsigned int component)

Description: Gets one pixel (monochrome and color)

x: The x coordinate of the pixel (0..width()-1)

y: The y coordinate of the pixel (mathematical order: 0 is the lowest,
0..height()-1)

component: 0 for red, 1 for green, 2 for blue.

If the component index, x or y value exceeds the image bounds, this method returns 0.0. For
monochrome images, the component index is ignored.

height
Signature: [const] unsigned long height

Description: Gets the height of the image in pixels

Returns: The height in pixels

id
Signature: [const] unsigned long id

Description: Gets the Id

The Id is an arbitrary integer that can be used to track the evolution of an image object. The Id is not
changed when the object is edited. On initialization, a unique Id is given to the object. The Id cannot
be changed. This behaviour has been modified in version 0.20.

is_color?
Signature: [const] bool is_color?

Description: Returns true, if the image is a color image

Returns: True, if the image is a color image

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

is_empty?
Signature: [const] bool is_empty?

Description: Returns true, if the image does not contain any data (i.e. is default constructed)

Returns: True, if the image is empty

is_valid?
Signature: [const] bool is_valid?

Description: Returns a value indicating whether the object is a valid reference.

If this value is true, the object represents an image on the screen. Otherwise, the object is a
'detached' image which does not have a representation on the screen.

This method was introduced in version 0.25.

For more details visit
https://www.klayout.org

Page 2067 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.201. API reference - Class Image

is_visible?
Signature: [const] bool is_visible?

Description: Gets a flag indicating whether the image object is visible

An image object can be made invisible by setting the visible property to false.

This method has been introduced in version 0.20.

mask
Signature: [const] bool mask (unsigned long x, unsigned long y)

Description: Gets the mask for one pixel

x: The x coordinate of the pixel (0..width()-1)

y: The y coordinate of the pixel (mathematical order: 0 is the lowest,
0..height()-1)

Returns: false if the pixel is not drawn.

See set_mask for details about the mask.

This method has been introduced in version 0.23.

mask_data
Signature: bool[] mask_data

Description: Gets the mask from a array of boolean values

See set_mask_data for a description of the data field.

This method has been introduced in version 0.27.

Python specific notes:
The object exposes a readable attribute 'mask_data'. This is the getter.

mask_data=
Signature: void mask_data= (bool[] mask_data)

Description: Sets the mask from a array of boolean values

The order of the boolean values is line first, from bottom to top and left to right and is the same as the
order in the data array.

This method has been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'mask_data'. This is the setter.

matrix
Signature: [const] Matrix3d matrix

Description: Returns the pixel-to-micron transformation matrix

This transformation matrix converts pixel coordinates (0,0 being the center and each pixel having the
dimension of pixel_width and pixel_height) to micron coordinates. The coordinate of the pixel is the
lower left corner of the pixel.

The matrix is more general than the transformation used before and supports shear and perspective
transformation. This property replaces the trans property which is still functional, but deprecated.

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a readable attribute 'matrix'. This is the getter.

matrix=
Signature: void matrix= (const Matrix3d t)

Description: Sets the transformation matrix

This transformation matrix converts pixel coordinates (0,0 being the center and each pixel having the
dimension of pixel_width and pixel_height) to micron coordinates. The coordinate of the pixel is the
lower left corner of the pixel.

For more details visit
https://www.klayout.org

Page 2068 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.201. API reference - Class Image

The matrix is more general than the transformation used before and supports shear and perspective
transformation. This property replaces the trans property which is still functional, but deprecated.

This method has been introduced in version 0.22.

Python specific notes:
The object exposes a writable attribute 'matrix'. This is the setter.

max_value
Signature: [const] double max_value

Description: Sets the maximum value

See the max_value method for the description of the maximum value property.

Python specific notes:
The object exposes a readable attribute 'max_value'. This is the getter.

max_value=
Signature: void max_value= (double v)

Description: Gets the upper limit of the values in the data set

This value determines the upper end of the data mapping (i.e. white value etc.). It does not
necessarily correspond to the maximum value of the data set but it must be larger than that.

Python specific notes:
The object exposes a writable attribute 'max_value'. This is the setter.

min_value
Signature: [const] double min_value

Description: Gets the upper limit of the values in the data set

This value determines the upper end of the data mapping (i.e. white value etc.). It does not
necessarily correspond to the minimum value of the data set but it must be larger than that.

Python specific notes:
The object exposes a readable attribute 'min_value'. This is the getter.

min_value=
Signature: void min_value= (double v)

Description: Sets the minimum value

See min_value for the description of the minimum value property.

Python specific notes:
The object exposes a writable attribute 'min_value'. This is the setter.

(1) Signature: [static] new Image ptr new

Description: Create a new image with the default attributes

This will create an empty image without data and no particular pixel width or related. Use the
read_file or set_data methods to set image properties and pixel values.

Python specific notes:
This method is the default initializer of the object

new

(2) Signature: [static] new Image ptr new (string filename)

Description: Constructor from a image file

filename: The path to the image file to load.

This constructor creates an image object from a file (which can have any format supported by Qt) and
a unit transformation. The image will originally be put to position 0,0 (lower left corner) and each pixel
will have a size of 1 (micron).

Python specific notes:

For more details visit
https://www.klayout.org

Page 2069 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.201. API reference - Class Image

This method is the default initializer of the object

(3) Signature: [static] new Image ptr new (string filename, const DCplxTrans trans)

Description: Constructor from a image file

filename: The path to the image file to load.

trans: The transformation to apply to the image when displaying it.

This constructor creates an image object from a file (which can have any format supported by Qt) and
a transformation. The image will originally be put to position 0,0 (lower left corner) and each pixel will
have a size of 1. The transformation describes how to transform this image into micron space.

Python specific notes:
This method is the default initializer of the object

(4) Signature: [static] new Image ptr new (unsigned long w, unsigned long h, double[] data)

Description: Constructor for a monochrome image with the given pixel values

w: The width of the image

h: The height of the image

d: The data (see method description)

This constructor creates an image from the given pixel values. The values have to be organized line
by line. Each line must consist of "w" values where the first value is the leftmost pixel. Note, that
the rows are oriented in the mathematical sense (first one is the lowest) contrary to the common
convention for image data. Initially the pixel width and height will be 1 micron and the data range
will be 0 to 1.0 (black to white level). To adjust the data range use the min_value and max_value
properties.

Python specific notes:
This method is the default initializer of the object

(5) Signature: [static] new Image ptr new (unsigned long w, unsigned long h, const DCplxTrans
trans, double[] data)

Description: Constructor for a monochrome image with the given pixel values

w: The width of the image

h: The height of the image

trans: The transformation from pixel space to micron space

d: The data (see method description)

This constructor creates an image from the given pixel values. The values have to be organized line
by line. Each line must consist of "w" values where the first value is the leftmost pixel. Note, that
the rows are oriented in the mathematical sense (first one is the lowest) contrary to the common
convention for image data. Initially the pixel width and height will be 1 micron and the data range
will be 0 to 1.0 (black to white level). To adjust the data range use the min_value and max_value
properties.

Python specific notes:
This method is the default initializer of the object

(6) Signature: [static] new Image ptr new (unsigned long w, unsigned long h, double[] red, double[]
green, double[] blue)

Description: Constructor for a color image with the given pixel values

w: The width of the image

h: The height of the image

For more details visit
https://www.klayout.org

Page 2070 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.201. API reference - Class Image

red: The red channel data set which will become owned by the image

green: The green channel data set which will become owned by the
image

blue: The blue channel data set which will become owned by the image

This constructor creates an image from the given pixel values. The values have to be organized line
by line and separated by color channel. Each line must consist of "w" values where the first value is
the leftmost pixel. Note, that the rows are oriented in the mathematical sense (first one is the lowest)
contrary to the common convention for image data. Initially the pixel width and height will be 1 micron
and the data range will be 0 to 1.0 (black to white level). To adjust the data range use the min_value
and max_value properties.

Python specific notes:
This method is the default initializer of the object

(7) Signature: [static] new Image ptr new (unsigned long w, unsigned long h, const DCplxTrans
trans, double[] red, double[] green, double[] blue)

Description: Constructor for a color image with the given pixel values

w: The width of the image

h: The height of the image

trans: The transformation from pixel space to micron space

red: The red channel data set which will become owned by the image

green: The green channel data set which will become owned by the
image

blue: The blue channel data set which will become owned by the image

This constructor creates an image from the given pixel values. The values have to be organized line
by line and separated by color channel. Each line must consist of "w" values where the first value is
the leftmost pixel. Note, that the rows are oriented in the mathematical sense (first one is the lowest)
contrary to the common convention for image data. Initially the pixel width and height will be 1 micron
and the data range will be 0 to 1.0 (black to white level). To adjust the data range use the min_value
and max_value properties.

Python specific notes:
This method is the default initializer of the object

pixel_height
Signature: [const] double pixel_height

Description: Gets the pixel height

See pixel_height= for a description of that property.

Starting with version 0.22, this property is incorporated into the transformation matrix. This property is
provided for convenience only.

Python specific notes:
The object exposes a readable attribute 'pixel_height'. This is the getter.

pixel_height=
Signature: void pixel_height= (double h)

Description: Sets the pixel height

The pixel height determines the height of on pixel in the original space which is transformed to micron
space with the transformation.

Starting with version 0.22, this property is incorporated into the transformation matrix. This property is
provided for convenience only.

Python specific notes:
The object exposes a writable attribute 'pixel_height'. This is the setter.

For more details visit
https://www.klayout.org

Page 2071 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.201. API reference - Class Image

pixel_width
Signature: [const] double pixel_width

Description: Gets the pixel width

See pixel_width= for a description of that property.

Starting with version 0.22, this property is incorporated into the transformation matrix. This property is
provided for convenience only.

Python specific notes:
The object exposes a readable attribute 'pixel_width'. This is the getter.

pixel_width=
Signature: void pixel_width= (double w)

Description: Sets the pixel width

The pixel width determines the width of on pixel in the original space which is transformed to micron
space with the transformation.

Starting with version 0.22, this property is incorporated into the transformation matrix. This property is
provided for convenience only.

Python specific notes:
The object exposes a writable attribute 'pixel_width'. This is the setter.

read
Signature: [static] new Image ptr read (string path)

Description: Loads the image from the given path.

This method expects the image file as a KLayout image format file (.lyimg). This is a XML-based
format containing the image data plus placement and transformation information for the image
placement. In addition, image manipulation parameters for false color display and color channel
enhancement are embedded.

This method has been introduced in version 0.27.

(1) Signature: void set_data (unsigned long w, unsigned long h, double[] d)

Description: Writes the image data field (monochrome)

w: The width of the new data

h: The height of the new data

d: The (monochrome) data to load into the image

See the constructor description for the data organisation in that field.

set_data

(2) Signature: void set_data (unsigned long w, unsigned long h, double[] r, double[] g, double[] b)

Description: Writes the image data field (color)

w: The width of the new data

h: The height of the new data

r: The red channel data to load into the image

g: The green channel data to load into the image

b: The blue channel data to load into the image

See the constructor description for the data organisation in that field.

set_mask
Signature: void set_mask (unsigned long x, unsigned long y, bool m)

Description: Sets the mask for a pixel

x: The x coordinate of the pixel (0..width()-1)

For more details visit
https://www.klayout.org

Page 2072 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.201. API reference - Class Image

y: The y coordinate of the pixel (mathematical order: 0 is the lowest,
0..height()-1)

m: The mask

If the mask of a pixel is set to false, the pixel is not drawn. The default is true for all pixels.

This method has been introduced in version 0.23.

(1) Signature: void set_pixel (unsigned long x, unsigned long y, double v)

Description: Sets one pixel (monochrome)

x: The x coordinate of the pixel (0..width()-1)

y: The y coordinate of the pixel (mathematical order: 0 is the lowest,
0..height()-1)

v: The value

If the component index, x or y value exceeds the image bounds of the image is a color image, this
method does nothing.

set_pixel

(2) Signature: void set_pixel (unsigned long x, unsigned long y, double r, double g, double b)

Description: Sets one pixel (color)

x: The x coordinate of the pixel (0..width()-1)

y: The y coordinate of the pixel (mathematical order: 0 is the lowest,
0..height()-1)

red: The red component

green: The green component

blue: The blue component

If the component index, x or y value exceeds the image bounds of the image is not a color image, this
method does nothing.

to_s
Signature: [const] string to_s

Description: Converts the image to a string

Returns: The string

The string returned can be used to create an image object using from_s.

Python specific notes:
This method is also available as 'str(object)'

trans
Signature: [const] DCplxTrans trans

Description: Returns the pixel-to-micron transformation

This transformation converts pixel coordinates (0,0 being the lower left corner and each pixel having
the dimension of pixel_width and pixel_height) to micron coordinates. The coordinate of the pixel is
the lower left corner of the pixel.

The general property is matrix which also allows perspective and shear transformation. This property
will only work, if the transformation does not include perspective or shear components. Therefore this
property is deprecated. Please note that for backward compatibility, the rotation center is pixel 0,0
(lowest left one), while it is the image center for the matrix transformation.

Python specific notes:
The object exposes a readable attribute 'trans'. This is the getter.

For more details visit
https://www.klayout.org

Page 2073 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.201. API reference - Class Image

trans=
Signature: void trans= (const DCplxTrans t)

Description: Sets the transformation

This transformation converts pixel coordinates (0,0 being the lower left corner and each pixel having
the dimension of pixel_width and pixel_height) to micron coordinates. The coordinate of the pixel is
the lower left corner of the pixel.

The general property is matrix which also allows perspective and shear transformation. Please note
that for backward compatibility, the rotation center is pixel 0,0 (lowest left one), while it is the image
center for the matrix transformation.

Python specific notes:
The object exposes a writable attribute 'trans'. This is the setter.

(1) Signature: [const] Image transformed (const DTrans t)

Description: Transforms the image with the given simple transformation

t: The transformation to apply

Returns: The transformed object

(2) Signature: [const] Image transformed (const Matrix3d t)

Description: Transforms the image with the given matrix transformation

t: The transformation to apply (a matrix)

Returns: The transformed object

This method has been introduced in version 0.22.

transformed

(3) Signature: [const] Image transformed (const DCplxTrans t)

Description: Transforms the image with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed object

transformed_cplx
Signature: [const] Image transformed_cplx (const DCplxTrans t)

Description: Transforms the image with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed object

Use of this method is deprecated. Use transformed instead

transformed_matrix
Signature: [const] Image transformed_matrix (const Matrix3d t)

Description: Transforms the image with the given matrix transformation

t: The transformation to apply (a matrix)

Returns: The transformed object

Use of this method is deprecated. Use transformed instead

This method has been introduced in version 0.22.

update
Signature: void update

Description: Forces an update of the view

For more details visit
https://www.klayout.org

Page 2074 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.201. API reference - Class Image

Usually it is not required to call this method. The image object is automatically synchronized with
the view's image objects. For performance reasons this update is delayed to collect multiple update
requests. Calling 'update' will ensure immediate updates.

This method has been introduced in version 0.25.

visible=
Signature: void visible= (bool v)

Description: Sets the visibility

See the is_visible? method for a description of this property.

This method has been introduced in version 0.20.

Python specific notes:
The object exposes a writable attribute 'visible'. This is the setter.

width
Signature: [const] unsigned long width

Description: Gets the width of the image in pixels

Returns: The width in pixels

write
Signature: [const] void write (string path)

Description: Saves the image to KLayout's image format (.lyimg)

This method has been introduced in version 0.27.

z_position
Signature: [const] int z_position

Description: Gets the z position of the image

Images with a higher z position are painted in front of images with lower z position. The z value is an
integer that controls the position relative to other images.

This method was introduced in version 0.25.

Python specific notes:
The object exposes a readable attribute 'z_position'. This is the getter.

z_position=
Signature: void z_position= (int z)

Description: Sets the z position of the image

See z_position for details about the z position attribute.

This method was introduced in version 0.25.

Python specific notes:
The object exposes a writable attribute 'z_position'. This is the setter.

For more details visit
https://www.klayout.org

Page 2075 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

4.202. API reference - Class Annotation
Notation used in Ruby API documentation

Module: lay

Description: A layout annotation (i.e. ruler)

Class hierarchy: Annotation

Annotation objects provide a way to attach measurements or descriptive information to a layout view. Annotation objects can appear as
rulers for example. Annotation objects can be configured in different ways using the styles provided. By configuring an annotation object
properly, it can appear as a rectangle or a plain line for example. See Ruler properties for more details about the appearance options.

Annotations are inserted into a layout view using LayoutView#insert_annotation. Here is some sample code in Ruby:

app = RBA::Application.instance
mw = app.main_window
view = mw.current_view

ant = RBA::Annotation::new
ant.p1 = RBA::DPoint::new(0, 0)
ant.p2 = RBA::DPoint::new(100, 0)
ant.style = RBA::Annotation::StyleRuler
view.insert_annotation(ant)

Annotations can be retrieved from a view with LayoutView#each_annotation and all annotations can be cleared with
LayoutView#clear_annotations.

Starting with version 0.25, annotations are 'live' objects once they are inserted into the view. Changing properties of annotations will
automatically update the view (however, that is not true the other way round).

Here is some sample code of changing the style of all rulers to two-sided arrows:

view = RBA::LayoutView::current

begin

 view.transaction("Restyle annotations")

 view.each_annotation do |a|
 a.style = RBA::Annotation::StyleArrowBoth
 end

ensure
 view.commit
end

Public constructors

new Annotation ptr new Creates a new object of this class

Public methods

[const] bool != (const
Annotation
other)

Inequality operator

For more details visit
https://www.klayout.org

Page 2076 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

[const] bool == (const
Annotation
other)

Equality operator

void _assign (const
Annotation
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] new Annotation
ptr

_dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

[const] int angle_constraint Returns the angle constraint attribute

void angle_constraint= (int flag) Sets the angle constraint attribute

void assign (const
Annotation
other)

Assigns another object to self

[const] DBox box Gets the bounding box of the object (not including
text)

[const] string category Gets the category string

void category= (string cat) Sets the category string of the annotation

void delete Deletes this annotation from the view

void detach Detaches the annotation object from the view

[const] new Annotation
ptr

dup Creates a copy of self

[const] string fmt Returns the format used for the label

void fmt= (string format) Sets the format used for the label

[const] string fmt_x Returns the format used for the x-axis label

void fmt_x= (string format) Sets the format used for the x-axis label

[const] string fmt_y Returns the format used for the y-axis label

For more details visit
https://www.klayout.org

Page 2077 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

void fmt_y= (string format) Sets the format used for the y-axis label

[const] int id Returns the annotation's ID

[const] bool is_valid? Returns a value indicating whether the object is a
valid reference.

[const] int main_position Gets the position of the main label

void main_position= (int pos) Sets the position of the main label

[const] int main_xalign Gets the horizontal alignment type of the main
label

void main_xalign= (int align) Sets the horizontal alignment type of the main
label

[const] int main_yalign Gets the vertical alignment type of the main label

void main_yalign= (int align) Sets the vertical alignment type of the main label

[const] int outline Returns the outline style of the annotation object

void outline= (int outline) Sets the outline style used for drawing the
annotation object

[const] DPoint p1 Gets the first point of the ruler or marker

void p1= (const DPoint
point)

Sets the first point of the ruler or marker

[const] DPoint p2 Gets the second point of the ruler or marker

void p2= (const DPoint
point)

Sets the second point of the ruler or marker

void snap= (bool flag) Sets the 'snap to objects' attribute

[const] bool snap? Returns the 'snap to objects' attribute

[const] int style Returns the style of the annotation object

void style= (int style) Sets the style used for drawing the annotation
object

[const] string text Returns the formatted text for the main label

[const] string text_x Returns the formatted text for the x-axis label

[const] string text_y Returns the formatted text for the y-axis label

[const] string to_s Returns the string representation of the ruler

[const] Annotation transformed (const DTrans
t)

Transforms the ruler or marker with the given
simple transformation

[const] Annotation transformed (const
DCplxTrans t)

Transforms the ruler or marker with the given
complex transformation

For more details visit
https://www.klayout.org

Page 2078 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

[const] Annotation transformed (const
ICplxTrans t)

Transforms the ruler or marker with the given
complex transformation

[const] int xlabel_xalign Gets the horizontal alignment type of the x axis
label

void xlabel_xalign= (int align) Sets the horizontal alignment type of the x axis
label

[const] int xlabel_yalign Gets the vertical alignment type of the x axis label

void xlabel_yalign= (int align) Sets the vertical alignment type of the x axis label

[const] int ylabel_xalign Gets the horizontal alignment type of the y axis
label

void ylabel_xalign= (int align) Sets the horizontal alignment type of the y axis
label

[const] int ylabel_yalign Gets the vertical alignment type of the y axis label

void ylabel_yalign= (int align) Sets the vertical alignment type of the y axis label

Public static methods and constants

int AlignAuto This code indicates automatic alignment.

int AlignBottom This code indicates bottom alignment.

int AlignCenter This code indicates automatic alignment.

int AlignDown This code indicates left or bottom alignment, depending on the
context.

int AlignLeft This code indicates left alignment.

int AlignRight This code indicates right alignment.

int AlignTop This code indicates top alignment.

int AlignUp This code indicates right or top alignment, depending on the
context.

int AngleAny Gets the any angle code for use with the angle_constraint
method

int AngleDiagonal Gets the diagonal angle code for use with the angle_constraint
method

int AngleGlobal Gets the global angle code for use with the angle_constraint
method.

int AngleHorizontal Gets the horizontal angle code for use with the angle_constraint
method

int AngleOrtho Gets the ortho angle code for use with the angle_constraint
method

For more details visit
https://www.klayout.org

Page 2079 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

int AngleVertical Gets the vertical angle code for use with the angle_constraint
method

int OutlineBox Gets the box outline code for use with the outline method

int OutlineDiag Gets the diagonal output code for use with the outline method

int OutlineDiagXY outline_xy code used by the outline method

int OutlineDiagYX Gets the yx plus diagonal outline code for use with the outline
method

int OutlineEllipse Gets the ellipse outline code for use with the outline method

int OutlineXY Gets the xy outline code for use with the outline method

int OutlineYX Gets the yx outline code for use with the outline method

int PositionAuto This code indicates automatic positioning.

int PositionCenter This code indicates positioning of the main label at the mid point
between p1 and p2.

int PositionP1 This code indicates positioning of the main label at p1.

int PositionP2 This code indicates positioning of the main label at p2.

int RulerModeAutoMetric Specifies auto-metric ruler mode for the register_template
method

int RulerModeNormal Specifies normal ruler mode for the register_template method

int RulerModeSingleClick Specifies single-click ruler mode for the register_template
method

int StyleArrowBoth Gets the both arrow ends style code for use the style method

int StyleArrowEnd Gets the end arrow style code for use the style method

int StyleArrowStart Gets the start arrow style code for use the style method

int StyleCrossBoth Gets the line style code for use with the style method

int StyleCrossEnd Gets the line style code for use with the style method

int StyleCrossStart Gets the line style code for use with the style method

int StyleLine Gets the line style code for use with the style method

int StyleRuler Gets the ruler style code for use the style method

void register_template (const
Annotation
annotation,
string
title,
int
mode

Registers the given annotation as a template

For more details visit
https://www.klayout.org

Page 2080 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

=
RulerModeNormal)

Deprecated methods (protected, public, static, non-static and constructors)

[static] int angle_any Use of this method is deprecated. Use AngleAny
instead

[static] int angle_diagonal Use of this method is deprecated. Use AngleDiagonal
instead

[static] int angle_global Use of this method is deprecated. Use AngleGlobal
instead

[static] int angle_horizontal Use of this method is deprecated. Use
AngleHorizontal instead

[static] int angle_ortho Use of this method is deprecated. Use AngleOrtho
instead

[static] int angle_vertical Use of this method is deprecated. Use AngleVertical
instead

void create Use of this method is deprecated. Use _create
instead

void destroy Use of this method is deprecated. Use _destroy
instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use
_is_const_object? instead

[static] int outline_box Use of this method is deprecated. Use OutlineBox
instead

[static] int outline_diag Use of this method is deprecated. Use OutlineDiag
instead

[static] int outline_diag_xy Use of this method is deprecated. Use OutlineDiagXY
instead

[static] int outline_diag_yx Use of this method is deprecated. Use OutlineDiagYX
instead

[static] int outline_ellipse Use of this method is deprecated. Use OutlineEllipse
instead

[static] int outline_xy Use of this method is deprecated. Use OutlineXY
instead

[static] int outline_yx Use of this method is deprecated. Use OutlineYX
instead

[static] int style_arrow_both Use of this method is deprecated. Use
StyleArrowBoth instead

For more details visit
https://www.klayout.org

Page 2081 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

[static] int style_arrow_end Use of this method is deprecated. Use
StyleArrowEnd instead

[static] int style_arrow_start Use of this method is deprecated. Use
StyleArrowStart instead

[static] int style_cross_both Use of this method is deprecated. Use
StyleCrossBoth instead

[static] int style_cross_end Use of this method is deprecated. Use
StyleCrossEnd instead

[static] int style_cross_start Use of this method is deprecated. Use
StyleCrossStart instead

[static] int style_line Use of this method is deprecated. Use StyleLine
instead

[static] int style_ruler Use of this method is deprecated. Use StyleRuler
instead

[const] Annotation transformed_cplx (const
DCplxTrans
t)

Use of this method is deprecated. Use transformed
instead

[const] Annotation transformed_cplx (const
ICplxTrans
t)

Use of this method is deprecated. Use transformed
instead

Detailed description

!=
Signature: [const] bool != (const Annotation other)

Description: Inequality operator

==
Signature: [const] bool == (const Annotation other)

Description: Equality operator

AlignAuto
Signature: [static] int AlignAuto

Description: This code indicates automatic alignment.

This code makes the annotation align the label the way it thinks is best.

This constant has been introduced in version 0.25.

AlignBottom
Signature: [static] int AlignBottom

Description: This code indicates bottom alignment.

If used in a vertical context, this alignment code makes the label aligned at the bottom side - i.e. it
will appear top of the reference point.

This constant has been introduced in version 0.25.

AlignCenter
Signature: [static] int AlignCenter

Description: This code indicates automatic alignment.

For more details visit
https://www.klayout.org

Page 2082 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

This code makes the annotation align the label centered. When used in a horizontal context,
centering is in horizontal direction. If used in a vertical context, centering is in vertical direction.

This constant has been introduced in version 0.25.

AlignDown
Signature: [static] int AlignDown

Description: This code indicates left or bottom alignment, depending on the context.

This code is equivalent to AlignLeft and AlignBottom.

This constant has been introduced in version 0.25.

AlignLeft
Signature: [static] int AlignLeft

Description: This code indicates left alignment.

If used in a horizontal context, this alignment code makes the label aligned at the left side - i.e. it
will appear right of the reference point.

This constant has been introduced in version 0.25.

AlignRight
Signature: [static] int AlignRight

Description: This code indicates right alignment.

If used in a horizontal context, this alignment code makes the label aligned at the right side - i.e. it
will appear left of the reference point.

This constant has been introduced in version 0.25.

AlignTop
Signature: [static] int AlignTop

Description: This code indicates top alignment.

If used in a vertical context, this alignment code makes the label aligned at the top side - i.e. it will
appear bottom of the reference point.

This constant has been introduced in version 0.25.

AlignUp
Signature: [static] int AlignUp

Description: This code indicates right or top alignment, depending on the context.

This code is equivalent to AlignRight and AlignTop.

This constant has been introduced in version 0.25.

AngleAny
Signature: [static] int AngleAny

Description: Gets the any angle code for use with the angle_constraint method

If this value is specified for the angle constraint, all angles will be allowed.

AngleDiagonal
Signature: [static] int AngleDiagonal

Description: Gets the diagonal angle code for use with the angle_constraint method

If this value is specified for the angle constraint, only multiples of 45 degree are allowed.

AngleGlobal
Signature: [static] int AngleGlobal

Description: Gets the global angle code for use with the angle_constraint method.

This code will tell the ruler or marker to use the angle constraint defined globally.

For more details visit
https://www.klayout.org

Page 2083 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

AngleHorizontal
Signature: [static] int AngleHorizontal

Description: Gets the horizontal angle code for use with the angle_constraint method

If this value is specified for the angle constraint, only horizontal rulers are allowed.

AngleOrtho
Signature: [static] int AngleOrtho

Description: Gets the ortho angle code for use with the angle_constraint method

If this value is specified for the angle constraint, only multiples of 90 degree are allowed.

AngleVertical
Signature: [static] int AngleVertical

Description: Gets the vertical angle code for use with the angle_constraint method

If this value is specified for the angle constraint, only vertical rulers are allowed.

OutlineBox
Signature: [static] int OutlineBox

Description: Gets the box outline code for use with the outline method

When this outline style is specified, a box is drawn with the corners specified by the start and end
point. All box edges are drawn in the style specified with the style attribute.

OutlineDiag
Signature: [static] int OutlineDiag

Description: Gets the diagonal output code for use with the outline method

When this outline style is specified, a line connecting start and end points in the given style (ruler,
arrow or plain line) is drawn.

OutlineDiagXY
Signature: [static] int OutlineDiagXY

Description: outline_xy code used by the outline method

When this outline style is specified, three lines are drawn: one horizontal from left to right and
attached to the end of that a line from the bottom to the top. Another line is drawn connecting the
start and end points directly. The lines are drawn in the specified style (see style method).

OutlineDiagYX
Signature: [static] int OutlineDiagYX

Description: Gets the yx plus diagonal outline code for use with the outline method

When this outline style is specified, three lines are drawn: one vertical from bottom to top and
attached to the end of that a line from the left to the right. Another line is drawn connecting the start
and end points directly. The lines are drawn in the specified style (see style method).

OutlineEllipse
Signature: [static] int OutlineEllipse

Description: Gets the ellipse outline code for use with the outline method

When this outline style is specified, an ellipse is drawn with the extensions specified by the start
and end point. The contour drawn as a line.

This constant has been introduced in version 0.26.

OutlineXY
Signature: [static] int OutlineXY

Description: Gets the xy outline code for use with the outline method

When this outline style is specified, two lines are drawn: one horizontal from left to right and
attached to the end of that a line from the bottom to the top. The lines are drawn in the specified
style (see style method).

For more details visit
https://www.klayout.org

Page 2084 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

OutlineYX
Signature: [static] int OutlineYX

Description: Gets the yx outline code for use with the outline method

When this outline style is specified, two lines are drawn: one vertical from bottom to top and
attached to the end of that a line from the left to the right. The lines are drawn in the specified style
(see style method).

PositionAuto
Signature: [static] int PositionAuto

Description: This code indicates automatic positioning.

The main label will be put either to p1 or p2, whichever the annotation considers best.

This constant has been introduced in version 0.25.

PositionCenter
Signature: [static] int PositionCenter

Description: This code indicates positioning of the main label at the mid point between p1 and p2.

The main label will be put to the center point.

This constant has been introduced in version 0.25.

PositionP1
Signature: [static] int PositionP1

Description: This code indicates positioning of the main label at p1.

The main label will be put to p1.

This constant has been introduced in version 0.25.

PositionP2
Signature: [static] int PositionP2

Description: This code indicates positioning of the main label at p2.

The main label will be put to p2.

This constant has been introduced in version 0.25.

RulerModeAutoMetric
Signature: [static] int RulerModeAutoMetric

Description: Specifies auto-metric ruler mode for the register_template method

In auto-metric mode, a ruler can be placed with a single click and p1/p2 will be determined from the
neighborhood. This constant has been introduced in version 0.25

RulerModeNormal
Signature: [static] int RulerModeNormal

Description: Specifies normal ruler mode for the register_template method

This constant has been introduced in version 0.25

RulerModeSingleClick
Signature: [static] int RulerModeSingleClick

Description: Specifies single-click ruler mode for the register_template method

In single click-mode, a ruler can be placed with a single click and p1 will be == p2. This constant
has been introduced in version 0.25

StyleArrowBoth
Signature: [static] int StyleArrowBoth

Description: Gets the both arrow ends style code for use the style method

When this style is specified, a two-headed arrow is drawn.

For more details visit
https://www.klayout.org

Page 2085 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

StyleArrowEnd
Signature: [static] int StyleArrowEnd

Description: Gets the end arrow style code for use the style method

When this style is specified, an arrow is drawn pointing from the start to the end point.

StyleArrowStart
Signature: [static] int StyleArrowStart

Description: Gets the start arrow style code for use the style method

When this style is specified, an arrow is drawn pointing from the end to the start point.

StyleCrossBoth
Signature: [static] int StyleCrossBoth

Description: Gets the line style code for use with the style method

When this style is specified, a cross is drawn at both points.

This constant has been added in version 0.26.

StyleCrossEnd
Signature: [static] int StyleCrossEnd

Description: Gets the line style code for use with the style method

When this style is specified, a cross is drawn at the end point.

This constant has been added in version 0.26.

StyleCrossStart
Signature: [static] int StyleCrossStart

Description: Gets the line style code for use with the style method

When this style is specified, a cross is drawn at the start point.

This constant has been added in version 0.26.

StyleLine
Signature: [static] int StyleLine

Description: Gets the line style code for use with the style method

When this style is specified, a plain line is drawn.

StyleRuler
Signature: [static] int StyleRuler

Description: Gets the ruler style code for use the style method

When this style is specified, the annotation will show a ruler with some ticks at distances indicating
a decade of units and a suitable subdivision into minor ticks at intervals of 1, 2 or 5 units.

_assign
Signature: void _assign (const Annotation other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 2086 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new Annotation ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

angle_any
Signature: [static] int angle_any

Description: Gets the any angle code for use with the angle_constraint method

Use of this method is deprecated. Use AngleAny instead

If this value is specified for the angle constraint, all angles will be allowed.

angle_constraint
Signature: [const] int angle_constraint

Description: Returns the angle constraint attribute

See angle_constraint= for a more detailed description.

Python specific notes:
The object exposes a readable attribute 'angle_constraint'. This is the getter.

angle_constraint=
Signature: void angle_constraint= (int flag)

For more details visit
https://www.klayout.org

Page 2087 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

Description: Sets the angle constraint attribute

This attribute controls if an angle constraint is applied when moving one of the ruler's points. The
Angle... values can be used for this purpose.

Python specific notes:
The object exposes a writable attribute 'angle_constraint'. This is the setter.

angle_diagonal
Signature: [static] int angle_diagonal

Description: Gets the diagonal angle code for use with the angle_constraint method

Use of this method is deprecated. Use AngleDiagonal instead

If this value is specified for the angle constraint, only multiples of 45 degree are allowed.

angle_global
Signature: [static] int angle_global

Description: Gets the global angle code for use with the angle_constraint method.

Use of this method is deprecated. Use AngleGlobal instead

This code will tell the ruler or marker to use the angle constraint defined globally.

angle_horizontal
Signature: [static] int angle_horizontal

Description: Gets the horizontal angle code for use with the angle_constraint method

Use of this method is deprecated. Use AngleHorizontal instead

If this value is specified for the angle constraint, only horizontal rulers are allowed.

angle_ortho
Signature: [static] int angle_ortho

Description: Gets the ortho angle code for use with the angle_constraint method

Use of this method is deprecated. Use AngleOrtho instead

If this value is specified for the angle constraint, only multiples of 90 degree are allowed.

angle_vertical
Signature: [static] int angle_vertical

Description: Gets the vertical angle code for use with the angle_constraint method

Use of this method is deprecated. Use AngleVertical instead

If this value is specified for the angle constraint, only vertical rulers are allowed.

assign
Signature: void assign (const Annotation other)

Description: Assigns another object to self

box
Signature: [const] DBox box

Description: Gets the bounding box of the object (not including text)

Returns: The bounding box

category
Signature: [const] string category

Description: Gets the category string

See category= for details.

This method has been introduced in version 0.25

Python specific notes:
The object exposes a readable attribute 'category'. This is the getter.

For more details visit
https://www.klayout.org

Page 2088 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

category=
Signature: void category= (string cat)

Description: Sets the category string of the annotation

The category string is an arbitrary string that can be used by various consumers or generators to
mark 'their' annotation.

This method has been introduced in version 0.25

Python specific notes:
The object exposes a writable attribute 'category'. This is the setter.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

delete
Signature: void delete

Description: Deletes this annotation from the view

If the annotation is an "active" one, this method will remove it from the view. This object will become
detached and can still be manipulated, but without having an effect on the view. This method has
been introduced in version 0.25.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

detach
Signature: void detach

Description: Detaches the annotation object from the view

If the annotation object was inserted into the view, property changes will be reflected in the view. To
disable this feature, 'detach' can be called after which the annotation object becomes inactive and
changes will no longer be reflected in the view.

This method has been introduced in version 0.25.

dup
Signature: [const] new Annotation ptr dup

Description: Creates a copy of self

fmt
Signature: [const] string fmt

Description: Returns the format used for the label

For more details visit
https://www.klayout.org

Page 2089 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

Returns: The format string

Format strings can contain placeholders for values and formulas for computing derived values. See
Ruler properties for more details.

Python specific notes:
The object exposes a readable attribute 'fmt'. This is the getter.

fmt=
Signature: void fmt= (string format)

Description: Sets the format used for the label

format: The format string

Format strings can contain placeholders for values and formulas for computing derived values. See
Ruler properties for more details.

Python specific notes:
The object exposes a writable attribute 'fmt'. This is the setter.

fmt_x
Signature: [const] string fmt_x

Description: Returns the format used for the x-axis label

Returns: The format string

Format strings can contain placeholders for values and formulas for computing derived values. See
Ruler properties for more details.

Python specific notes:
The object exposes a readable attribute 'fmt_x'. This is the getter.

fmt_x=
Signature: void fmt_x= (string format)

Description: Sets the format used for the x-axis label

format: The format string

X-axis labels are only used for styles that have a horizontal component. Format strings can contain
placeholders for values and formulas for computing derived values. See Ruler properties for more
details.

Python specific notes:
The object exposes a writable attribute 'fmt_x'. This is the setter.

fmt_y
Signature: [const] string fmt_y

Description: Returns the format used for the y-axis label

Returns: The format string

Format strings can contain placeholders for values and formulas for computing derived values. See
Ruler properties for more details.

Python specific notes:
The object exposes a readable attribute 'fmt_y'. This is the getter.

fmt_y=
Signature: void fmt_y= (string format)

Description: Sets the format used for the y-axis label

format: The format string

Y-axis labels are only used for styles that have a vertical component. Format strings can contain
placeholders for values and formulas for computing derived values. See Ruler properties for more
details.

Python specific notes:

For more details visit
https://www.klayout.org

Page 2090 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

The object exposes a writable attribute 'fmt_y'. This is the setter.

id
Signature: [const] int id

Description: Returns the annotation's ID

The annotation ID is an integer that uniquely identifies an annotation inside a view. The ID is used
for replacing an annotation (see LayoutView#replace_annotation).

This method was introduced in version 0.24.

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

is_valid?
Signature: [const] bool is_valid?

Description: Returns a value indicating whether the object is a valid reference.

If this value is true, the object represents an annotation on the screen. Otherwise, the object is a
'detached' annotation which does not have a representation on the screen.

This method was introduced in version 0.25.

main_position
Signature: [const] int main_position

Description: Gets the position of the main label

See main_position= for details.

This method has been introduced in version 0.25

Python specific notes:
The object exposes a readable attribute 'main_position'. This is the getter.

main_position=
Signature: void main_position= (int pos)

Description: Sets the position of the main label

This method accepts one of the Position... constants.

This method has been introduced in version 0.25

Python specific notes:
The object exposes a writable attribute 'main_position'. This is the setter.

main_xalign
Signature: [const] int main_xalign

Description: Gets the horizontal alignment type of the main label

See main_xalign= for details.

This method has been introduced in version 0.25

Python specific notes:
The object exposes a readable attribute 'main_xalign'. This is the getter.

main_xalign=
Signature: void main_xalign= (int align)

Description: Sets the horizontal alignment type of the main label

This method accepts one of the Align... constants.

This method has been introduced in version 0.25

Python specific notes:

For more details visit
https://www.klayout.org

Page 2091 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

The object exposes a writable attribute 'main_xalign'. This is the setter.

main_yalign
Signature: [const] int main_yalign

Description: Gets the vertical alignment type of the main label

See main_yalign= for details.

This method has been introduced in version 0.25

Python specific notes:
The object exposes a readable attribute 'main_yalign'. This is the getter.

main_yalign=
Signature: void main_yalign= (int align)

Description: Sets the vertical alignment type of the main label

This method accepts one of the Align... constants.

This method has been introduced in version 0.25

Python specific notes:
The object exposes a writable attribute 'main_yalign'. This is the setter.

new
Signature: [static] new Annotation ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

outline
Signature: [const] int outline

Description: Returns the outline style of the annotation object

Python specific notes:
The object exposes a readable attribute 'outline'. This is the getter.

outline=
Signature: void outline= (int outline)

Description: Sets the outline style used for drawing the annotation object

The Outline... values can be used for defining the annotation object's outline. The outline style
determines what components are drawn.

Python specific notes:
The object exposes a writable attribute 'outline'. This is the setter.

outline_box
Signature: [static] int outline_box

Description: Gets the box outline code for use with the outline method

Use of this method is deprecated. Use OutlineBox instead

When this outline style is specified, a box is drawn with the corners specified by the start and end
point. All box edges are drawn in the style specified with the style attribute.

outline_diag
Signature: [static] int outline_diag

Description: Gets the diagonal output code for use with the outline method

Use of this method is deprecated. Use OutlineDiag instead

When this outline style is specified, a line connecting start and end points in the given style (ruler,
arrow or plain line) is drawn.

For more details visit
https://www.klayout.org

Page 2092 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

outline_diag_xy
Signature: [static] int outline_diag_xy

Description: outline_xy code used by the outline method

Use of this method is deprecated. Use OutlineDiagXY instead

When this outline style is specified, three lines are drawn: one horizontal from left to right and
attached to the end of that a line from the bottom to the top. Another line is drawn connecting the
start and end points directly. The lines are drawn in the specified style (see style method).

outline_diag_yx
Signature: [static] int outline_diag_yx

Description: Gets the yx plus diagonal outline code for use with the outline method

Use of this method is deprecated. Use OutlineDiagYX instead

When this outline style is specified, three lines are drawn: one vertical from bottom to top and
attached to the end of that a line from the left to the right. Another line is drawn connecting the start
and end points directly. The lines are drawn in the specified style (see style method).

outline_ellipse
Signature: [static] int outline_ellipse

Description: Gets the ellipse outline code for use with the outline method

Use of this method is deprecated. Use OutlineEllipse instead

When this outline style is specified, an ellipse is drawn with the extensions specified by the start
and end point. The contour drawn as a line.

This constant has been introduced in version 0.26.

outline_xy
Signature: [static] int outline_xy

Description: Gets the xy outline code for use with the outline method

Use of this method is deprecated. Use OutlineXY instead

When this outline style is specified, two lines are drawn: one horizontal from left to right and
attached to the end of that a line from the bottom to the top. The lines are drawn in the specified
style (see style method).

outline_yx
Signature: [static] int outline_yx

Description: Gets the yx outline code for use with the outline method

Use of this method is deprecated. Use OutlineYX instead

When this outline style is specified, two lines are drawn: one vertical from bottom to top and
attached to the end of that a line from the left to the right. The lines are drawn in the specified style
(see style method).

p1
Signature: [const] DPoint p1

Description: Gets the first point of the ruler or marker

Returns: The first point

The points of the ruler or marker are always given in micron units in floating-point coordinates.

Python specific notes:
The object exposes a readable attribute 'p1'. This is the getter.

p1=
Signature: void p1= (const DPoint point)

Description: Sets the first point of the ruler or marker

The points of the ruler or marker are always given in micron units in floating-point coordinates.

Python specific notes:

For more details visit
https://www.klayout.org

Page 2093 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

The object exposes a writable attribute 'p1'. This is the setter.

p2
Signature: [const] DPoint p2

Description: Gets the second point of the ruler or marker

Returns: The second point

The points of the ruler or marker are always given in micron units in floating-point coordinates.

Python specific notes:
The object exposes a readable attribute 'p2'. This is the getter.

p2=
Signature: void p2= (const DPoint point)

Description: Sets the second point of the ruler or marker

The points of the ruler or marker are always given in micron units in floating-point coordinates.

Python specific notes:
The object exposes a writable attribute 'p2'. This is the setter.

register_template
Signature: [static] void register_template (const Annotation annotation, string title, int mode =
RulerModeNormal)

Description: Registers the given annotation as a template

title: The title to use for the ruler template

mode: The mode the ruler will be created in (see Ruler... constants)

In order to register a system template, the category string of the annotation should be a unique
and non-empty string. The annotation is added to the list of annotation templates and becomes
available as a new template in the ruler drop-down menu.

This method has been added in version 0.25.

snap=
Signature: void snap= (bool flag)

Description: Sets the 'snap to objects' attribute

If this attribute is set to true, the ruler or marker snaps to other objects when moved.

Python specific notes:
The object exposes a writable attribute 'snap'. This is the setter.

snap?
Signature: [const] bool snap?

Description: Returns the 'snap to objects' attribute

Python specific notes:
The object exposes a readable attribute 'snap'. This is the getter.

style
Signature: [const] int style

Description: Returns the style of the annotation object

Python specific notes:
The object exposes a readable attribute 'style'. This is the getter.

style=
Signature: void style= (int style)

Description: Sets the style used for drawing the annotation object

The Style... values can be used for defining the annotation object's style. The style determines if
ticks or arrows are drawn.

Python specific notes:

For more details visit
https://www.klayout.org

Page 2094 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

The object exposes a writable attribute 'style'. This is the setter.

style_arrow_both
Signature: [static] int style_arrow_both

Description: Gets the both arrow ends style code for use the style method

Use of this method is deprecated. Use StyleArrowBoth instead

When this style is specified, a two-headed arrow is drawn.

style_arrow_end
Signature: [static] int style_arrow_end

Description: Gets the end arrow style code for use the style method

Use of this method is deprecated. Use StyleArrowEnd instead

When this style is specified, an arrow is drawn pointing from the start to the end point.

style_arrow_start
Signature: [static] int style_arrow_start

Description: Gets the start arrow style code for use the style method

Use of this method is deprecated. Use StyleArrowStart instead

When this style is specified, an arrow is drawn pointing from the end to the start point.

style_cross_both
Signature: [static] int style_cross_both

Description: Gets the line style code for use with the style method

Use of this method is deprecated. Use StyleCrossBoth instead

When this style is specified, a cross is drawn at both points.

This constant has been added in version 0.26.

style_cross_end
Signature: [static] int style_cross_end

Description: Gets the line style code for use with the style method

Use of this method is deprecated. Use StyleCrossEnd instead

When this style is specified, a cross is drawn at the end point.

This constant has been added in version 0.26.

style_cross_start
Signature: [static] int style_cross_start

Description: Gets the line style code for use with the style method

Use of this method is deprecated. Use StyleCrossStart instead

When this style is specified, a cross is drawn at the start point.

This constant has been added in version 0.26.

style_line
Signature: [static] int style_line

Description: Gets the line style code for use with the style method

Use of this method is deprecated. Use StyleLine instead

When this style is specified, a plain line is drawn.

style_ruler
Signature: [static] int style_ruler

Description: Gets the ruler style code for use the style method

Use of this method is deprecated. Use StyleRuler instead

For more details visit
https://www.klayout.org

Page 2095 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

When this style is specified, the annotation will show a ruler with some ticks at distances indicating
a decade of units and a suitable subdivision into minor ticks at intervals of 1, 2 or 5 units.

text
Signature: [const] string text

Description: Returns the formatted text for the main label

text_x
Signature: [const] string text_x

Description: Returns the formatted text for the x-axis label

text_y
Signature: [const] string text_y

Description: Returns the formatted text for the y-axis label

to_s
Signature: [const] string to_s

Description: Returns the string representation of the ruler

This method was introduced in version 0.19.

Python specific notes:
This method is also available as 'str(object)'

(1) Signature: [const] Annotation transformed (const DTrans t)

Description: Transforms the ruler or marker with the given simple transformation

t: The transformation to apply

Returns: The transformed object

(2) Signature: [const] Annotation transformed (const DCplxTrans t)

Description: Transforms the ruler or marker with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed object

Starting with version 0.25, all overloads all available as 'transform'.

transformed

(3) Signature: [const] Annotation transformed (const ICplxTrans t)

Description: Transforms the ruler or marker with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed object (in this case an integer coordinate object)

This method has been introduced in version 0.18.

Starting with version 0.25, all overloads all available as 'transform'.

(1) Signature: [const] Annotation transformed_cplx (const DCplxTrans t)

Description: Transforms the ruler or marker with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed object

Use of this method is deprecated. Use transformed instead

Starting with version 0.25, all overloads all available as 'transform'.

transformed_cplx

For more details visit
https://www.klayout.org

Page 2096 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

(2) Signature: [const] Annotation transformed_cplx (const ICplxTrans t)

Description: Transforms the ruler or marker with the given complex transformation

t: The magnifying transformation to apply

Returns: The transformed object (in this case an integer coordinate object)

Use of this method is deprecated. Use transformed instead

This method has been introduced in version 0.18.

Starting with version 0.25, all overloads all available as 'transform'.

xlabel_xalign
Signature: [const] int xlabel_xalign

Description: Gets the horizontal alignment type of the x axis label

See xlabel_xalign= for details.

This method has been introduced in version 0.25

Python specific notes:
The object exposes a readable attribute 'xlabel_xalign'. This is the getter.

xlabel_xalign=
Signature: void xlabel_xalign= (int align)

Description: Sets the horizontal alignment type of the x axis label

This method accepts one of the Align... constants.

This method has been introduced in version 0.25

Python specific notes:
The object exposes a writable attribute 'xlabel_xalign'. This is the setter.

xlabel_yalign
Signature: [const] int xlabel_yalign

Description: Gets the vertical alignment type of the x axis label

See xlabel_yalign= for details.

This method has been introduced in version 0.25

Python specific notes:
The object exposes a readable attribute 'xlabel_yalign'. This is the getter.

xlabel_yalign=
Signature: void xlabel_yalign= (int align)

Description: Sets the vertical alignment type of the x axis label

This method accepts one of the Align... constants.

This method has been introduced in version 0.25

Python specific notes:
The object exposes a writable attribute 'xlabel_yalign'. This is the setter.

ylabel_xalign
Signature: [const] int ylabel_xalign

Description: Gets the horizontal alignment type of the y axis label

See ylabel_xalign= for details.

This method has been introduced in version 0.25

Python specific notes:
The object exposes a readable attribute 'ylabel_xalign'. This is the getter.

ylabel_xalign=
Signature: void ylabel_xalign= (int align)

Description: Sets the horizontal alignment type of the y axis label

For more details visit
https://www.klayout.org

Page 2097 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.202. API reference - Class Annotation

This method accepts one of the Align... constants.

This method has been introduced in version 0.25

Python specific notes:
The object exposes a writable attribute 'ylabel_xalign'. This is the setter.

ylabel_yalign
Signature: [const] int ylabel_yalign

Description: Gets the vertical alignment type of the y axis label

See ylabel_yalign= for details.

This method has been introduced in version 0.25

Python specific notes:
The object exposes a readable attribute 'ylabel_yalign'. This is the getter.

ylabel_yalign=
Signature: void ylabel_yalign= (int align)

Description: Sets the vertical alignment type of the y axis label

This method accepts one of the Align... constants.

This method has been introduced in version 0.25

Python specific notes:
The object exposes a writable attribute 'ylabel_yalign'. This is the setter.

For more details visit
https://www.klayout.org

Page 2098 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.203. API reference - Class HelpDialog

4.203. API reference - Class HelpDialog
Notation used in Ruby API documentation

Module: lay

Description: The help dialog

Class hierarchy: HelpDialog » QDialog » QWidget » QObject

This class makes the help dialog available as an individual object.

This class has been added in version 0.25.

Public constructors

HelpDialog ptr new (bool modal) Creates a new help dialog

HelpDialog ptr new (QWidget ptr parent,
bool modal)

Creates a new help dialog

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void load (string
url)

Loads the specified URL

void search (string
topic)

Issues a search on the specified topic

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

For more details visit
https://www.klayout.org

Page 2099 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.203. API reference - Class HelpDialog

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

load
Signature: void load (string url)

Description: Loads the specified URL

This method will call the page with the given URL.

(1) Signature: [static] HelpDialog ptr new (bool modal)

Description: Creates a new help dialog

If the modal flag is true, the dialog will be shown as a modal window.

new

(2) Signature: [static] HelpDialog ptr new (QWidget ptr parent, bool modal)

Description: Creates a new help dialog

If the modal flag is true, the dialog will be shown as a modal window.

search
Signature: void search (string topic)

Description: Issues a search on the specified topic

This method will call the search page with the given topic.

For more details visit
https://www.klayout.org

Page 2100 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.204. API reference - Class HelpSource

4.204. API reference - Class HelpSource
Notation used in Ruby API documentation

Module: lay

Description: A BrowserSource implementation delivering the help text for the help dialog

Class hierarchy: HelpSource » BrowserSource

This class can be used together with a BrowserPanel or BrowserDialog object to implement custom help systems.

The basic URL's served by this class are: "int:/index.xml" for the index page and "int:/search.xml?string=..." for the search topic retrieval.

This class has been added in version 0.25.

Public methods

void _assign (const
HelpSource
other)

Assigns another object to self

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] new HelpSource ptr _dup Creates a copy of self

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

QDomDocument get_dom (string path) Reserved for internal use

[const] variant get_option (string key) Reserved for internal use

string parent_of (string path) Reserved internal use

void scan Reserved internal use

void set_option (string key,
variant value)

Reserved for internal use

string title_for (string path) Reserved internal use

string[] urls Reserved for internal use

Public static methods and constants

void create_index_file (string path) Reserved internal use

new HelpSource ptr plain Reserved for internal use

For more details visit
https://www.klayout.org

Page 2101 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.204. API reference - Class HelpSource

Detailed description

_assign
Signature: void _assign (const HelpSource other)

Description: Assigns another object to self

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script
object is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

_dup
Signature: [const] new HelpSource ptr _dup

Description: Creates a copy of self

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management
of the object. This method may be called if an object is returned from a C++ function and the
object is known not to be owned by any C++ instance. If necessary, the script side may delete
the object if the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called
if it is known that some C++ object holds and manages this object. Technically speaking, this
method will turn the script's reference into a weak reference. After the script engine decides
to delete the reference, the object itself will still exist. If the object is not managed otherwise,
memory leaks will occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 2102 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.204. API reference - Class HelpSource

create_index_file
Signature: [static] void create_index_file (string path)

Description: Reserved internal use

get_dom
Signature: QDomDocument get_dom (string path)

Description: Reserved for internal use

get_option
Signature: [const] variant get_option (string key)

Description: Reserved for internal use

parent_of
Signature: string parent_of (string path)

Description: Reserved internal use

plain
Signature: [static] new HelpSource ptr plain

Description: Reserved for internal use

scan
Signature: void scan

Description: Reserved internal use

set_option
Signature: void set_option (string key, variant value)

Description: Reserved for internal use

title_for
Signature: string title_for (string path)

Description: Reserved internal use

urls
Signature: string[] urls

Description: Reserved for internal use

For more details visit
https://www.klayout.org

Page 2103 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

4.205. API reference - Class MainWindow
Notation used in Ruby API documentation

Module: lay

Description: The main application window and central controller object

Class hierarchy: MainWindow » QMainWindow » QWidget » QObject

This object first is the main window but also the main controller. The main controller is the port by which access can be gained to all the
data objects, view and other aspects of the program.

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void call_menu (string symbol) Calls the menu item with the provided symbol.

void cancel Cancels current editing operations

void clear_config Clears the configuration parameters

void clone_current_view Clones the current view and make it current

void close_all Closes all views

void close_current_view Closes the current view

void commit_config Commits the configuration settings

CellView create_layout (int mode) Creates a new, empty layout

CellView create_layout (string tech,
int mode)

Creates a new, empty layout with the given
technology

int create_view Creates a new, empty view

LayoutView ptr current_view Returns a reference to the current view's
object

[const] int current_view_index Returns the current view's index

void current_view_index= (int index) Selects the view with the given index

For more details visit
https://www.klayout.org

Page 2104 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

[const] Dispatcher ptr dispatcher Gets the dispatcher interface (the plugin root
configuration space)

void exit Schedules an exit for the application

variant get_config (string name) Gets the value of a local configuration
parameter

string[] get_config_names Gets the configuration parameter names

map<string,string> get_default_key_bindings Gets the default key bindings

map<string,bool> get_default_menu_items_hidden Gets the flags indicating whether menu items
are hidden by default

map<string,string> get_key_bindings Gets the current key bindings

map<string,bool> get_menu_items_hidden Gets the flags indicating whether menu items
are hidden

[const] double grid_micron Gets the global grid in micron

[const] int index_of (const
LayoutView ptr
view)

Gets the index of the given view

string initial_technology Gets the technology used for creating or
loading layouts (unless explicitly specified)

void initial_technology= (string tech) Sets the technology used for creating or
loading layouts (unless explicitly specified)

CellView load_layout (string filename,
int mode)

Loads a new layout

CellView load_layout (string filename,
string tech,
int mode)

Loads a new layout and associate it with the
given technology

CellView load_layout (string filename,
const
LoadLayoutOptions
options,
int mode)

Loads a new layout with the given options

CellView load_layout (string filename,
const
LoadLayoutOptions
options,
string tech,
int mode)

Loads a new layout with the given options and
associate it with the given technology

Manager manager Gets the Manager object of this window

AbstractMenu ptr menu Returns a reference to the abstract menu

void message (string message,
int time)

Displays a message in the status bar

For more details visit
https://www.klayout.org

Page 2105 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

[signal] void on_current_view_changed An event indicating that the current view has
changed

[signal] void on_view_closed (int index) An event indicating that a view was closed

[signal] void on_view_created (int index) An event indicating that a new view was
created

bool read_config (string file_name) Reads the configuration from a file

void redraw Redraws the current view

void resize (int width,
int height)

Resizes the window

void restore_session (string fn) Restores a session from the given file

void save_session (string fn) Saves the session to the given file

void set_config (string name,
string value)

Set a local configuration parameter with the
given name to the given value

void set_key_bindings (map<string,string>
bindings)

Sets key bindings.

void set_menu_items_hidden (map<string,bool>
arg1)

sets the flags indicating whether menu items
are hidden

void show_macro_editor (string cat = ,
bool add = false)

Shows the macro editor

void synchronous= (bool
sync_mode)

Puts the main window into synchronous mode

LayoutView ptr view (int n) Returns a reference to a view object by index

[const] unsigned int views Returns the number of views

bool write_config (string file_name) Writes configuration to a file

Public static methods and constants

MainWindow ptr instance Gets application's main window instance

string[] menu_symbols Gets all available menu symbols (see call_menu).

Deprecated methods (protected, public, static, non-static and constructors)

void cm_adjust_origin Use of this method is deprecated

void cm_bookmark_view Use of this method is deprecated

void cm_cancel Use of this method is deprecated

void cm_cell_copy Use of this method is deprecated

For more details visit
https://www.klayout.org

Page 2106 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

void cm_cell_cut Use of this method is deprecated

void cm_cell_delete Use of this method is deprecated

void cm_cell_flatten Use of this method is deprecated

void cm_cell_hide Use of this method is deprecated

void cm_cell_paste Use of this method is deprecated

void cm_cell_rename Use of this method is deprecated

void cm_cell_select Use of this method is deprecated

void cm_cell_show Use of this method is deprecated

void cm_cell_show_all Use of this method is deprecated

void cm_clear_layer Use of this method is deprecated

void cm_clone Use of this method is deprecated

void cm_close Use of this method is deprecated

void cm_close_all Use of this method is deprecated

void cm_copy Use of this method is deprecated

void cm_copy_layer Use of this method is deprecated

void cm_cut Use of this method is deprecated

void cm_dec_max_hier Use of this method is deprecated

void cm_delete Use of this method is deprecated

void cm_delete_layer Use of this method is deprecated

void cm_edit_layer Use of this method is deprecated

void cm_exit Use of this method is deprecated

void cm_goto_position Use of this method is deprecated

void cm_help_about Use of this method is deprecated

void cm_inc_max_hier Use of this method is deprecated

void cm_last_display_state Use of this method is deprecated

void cm_layout_props Use of this method is deprecated

void cm_load_bookmarks Use of this method is deprecated

void cm_load_layer_props Use of this method is deprecated

void cm_lv_add_missing Use of this method is deprecated

For more details visit
https://www.klayout.org

Page 2107 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

void cm_lv_delete Use of this method is deprecated

void cm_lv_expand_all Use of this method is deprecated

void cm_lv_group Use of this method is deprecated

void cm_lv_hide Use of this method is deprecated

void cm_lv_hide_all Use of this method is deprecated

void cm_lv_insert Use of this method is deprecated

void cm_lv_new_tab Use of this method is deprecated

void cm_lv_regroup_by_datatype Use of this method is deprecated

void cm_lv_regroup_by_index Use of this method is deprecated

void cm_lv_regroup_by_layer Use of this method is deprecated

void cm_lv_regroup_flatten Use of this method is deprecated

void cm_lv_remove_tab Use of this method is deprecated

void cm_lv_remove_unused Use of this method is deprecated

void cm_lv_rename Use of this method is deprecated

void cm_lv_rename_tab Use of this method is deprecated

void cm_lv_select_all Use of this method is deprecated

void cm_lv_show Use of this method is deprecated

void cm_lv_show_all Use of this method is deprecated

void cm_lv_show_only Use of this method is deprecated

void cm_lv_sort_by_dli Use of this method is deprecated

void cm_lv_sort_by_idl Use of this method is deprecated

void cm_lv_sort_by_ild Use of this method is deprecated

void cm_lv_sort_by_ldi Use of this method is deprecated

void cm_lv_sort_by_name Use of this method is deprecated

void cm_lv_source Use of this method is deprecated

void cm_lv_ungroup Use of this method is deprecated

void cm_macro_editor Use of this method is deprecated

void cm_manage_bookmarks Use of this method is deprecated

void cm_max_hier Use of this method is deprecated

For more details visit
https://www.klayout.org

Page 2108 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

void cm_max_hier_0 Use of this method is deprecated

void cm_max_hier_1 Use of this method is deprecated

void cm_navigator_close Use of this method is deprecated

void cm_navigator_freeze Use of this method is deprecated

void cm_new_cell Use of this method is deprecated

void cm_new_layer Use of this method is deprecated

void cm_new_layout Use of this method is deprecated

void cm_new_panel Use of this method is deprecated

void cm_next_display_state Use of this method is deprecated

void cm_open Use of this method is deprecated

void cm_open_current_cell Use of this method is deprecated

void cm_open_new_view Use of this method is deprecated

void cm_open_too Use of this method is deprecated

void cm_packages Use of this method is deprecated

void cm_pan_down Use of this method is deprecated

void cm_pan_left Use of this method is deprecated

void cm_pan_right Use of this method is deprecated

void cm_pan_up Use of this method is deprecated

void cm_paste Use of this method is deprecated

void cm_prev_display_state Use of this method is deprecated

void cm_print Use of this method is deprecated

void cm_pull_in Use of this method is deprecated

void cm_reader_options Use of this method is deprecated

void cm_redo Use of this method is deprecated

void cm_redraw Use of this method is deprecated

void cm_reload Use of this method is deprecated

void cm_reset_window_state Use of this method is deprecated

void cm_restore_session Use of this method is deprecated

void cm_save Use of this method is deprecated

For more details visit
https://www.klayout.org

Page 2109 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

void cm_save_all Use of this method is deprecated

void cm_save_as Use of this method is deprecated

void cm_save_bookmarks Use of this method is deprecated

void cm_save_current_cell_as Use of this method is deprecated

void cm_save_layer_props Use of this method is deprecated

void cm_save_session Use of this method is deprecated

void cm_screenshot Use of this method is deprecated

void cm_sel_flip_x Use of this method is deprecated

void cm_sel_flip_y Use of this method is deprecated

void cm_sel_free_rot Use of this method is deprecated

void cm_sel_move Use of this method is deprecated

void cm_sel_move_to Use of this method is deprecated

void cm_sel_rot_ccw Use of this method is deprecated

void cm_sel_rot_cw Use of this method is deprecated

void cm_sel_scale Use of this method is deprecated

void cm_select_all Use of this method is deprecated

void cm_select_cell Use of this method is deprecated

void cm_select_current_cell Use of this method is deprecated

void cm_setup Use of this method is deprecated

void cm_show_properties Use of this method is deprecated

void cm_technologies Use of this method is deprecated

void cm_undo Use of this method is deprecated

void cm_unselect_all Use of this method is deprecated

void cm_view_log Use of this method is deprecated

void cm_zoom_fit Use of this method is deprecated

void cm_zoom_fit_sel Use of this method is deprecated

void cm_zoom_in Use of this method is deprecated

void cm_zoom_out Use of this method is deprecated

void enable_edits (bool
enable)

Use of this method is deprecated

For more details visit
https://www.klayout.org

Page 2110 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

void select_view (int
index)

Use of this method is deprecated. Use
current_view_index= instead

void synchronous (bool
sync_mode)

Use of this method is deprecated. Use
synchronous= instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script
object is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management
of the object. This method may be called if an object is returned from a C++ function and the
object is known not to be owned by any C++ instance. If necessary, the script side may delete
the object if the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called
if it is known that some C++ object holds and manages this object. Technically speaking, this
method will turn the script's reference into a weak reference. After the script engine decides
to delete the reference, the object itself will still exist. If the object is not managed otherwise,
memory leaks will occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 2111 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

call_menu
Signature: void call_menu (string symbol)

Description: Calls the menu item with the provided symbol.

To obtain all symbols, use menu_symbols.

This method has been introduced in version 0.27 and replaces the previous cm_... methods.
Instead of calling a specific cm_... method, use LayoutView#call_menu with 'cm_...' as the
symbol.

cancel
Signature: void cancel

Description: Cancels current editing operations

This method call cancels all current editing operations and restores normal mouse mode.

clear_config
Signature: void clear_config

Description: Clears the configuration parameters

This method is provided for using MainWindow without an Application object. It's a convience
method which is equivalent to 'dispatcher().clear_config()'. See Dispatcher#clear_config for
details.

This method has been introduced in version 0.27.

clone_current_view
Signature: void clone_current_view

Description: Clones the current view and make it current

close_all
Signature: void close_all

Description: Closes all views

This method unconditionally closes all views. No dialog will be opened if unsaved edits exist.

This method was added in version 0.18.

close_current_view
Signature: void close_current_view

Description: Closes the current view

This method does not open a dialog to ask which cell view to close if multiple cells are opened in
the view, but rather closes all cells.

cm_adjust_origin
Signature: void cm_adjust_origin

Description: 'cm_adjust_origin' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_adjust_origin')" instead.

cm_bookmark_view
Signature: void cm_bookmark_view

Description: 'cm_bookmark_view' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_bookmark_view')" instead.

cm_cancel
Signature: void cm_cancel

Description: 'cm_cancel' action.

Use of this method is deprecated

For more details visit
https://www.klayout.org

Page 2112 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

This method is deprecated in version 0.27. Use "call_menu('cm_cancel')" instead.

cm_cell_copy
Signature: void cm_cell_copy

Description: 'cm_cell_copy' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_cell_copy')" instead.

cm_cell_cut
Signature: void cm_cell_cut

Description: 'cm_cell_cut' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_cell_cut')" instead.

cm_cell_delete
Signature: void cm_cell_delete

Description: 'cm_cell_delete' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_cell_delete')" instead.

cm_cell_flatten
Signature: void cm_cell_flatten

Description: 'cm_cell_flatten' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_cell_flatten')" instead.

cm_cell_hide
Signature: void cm_cell_hide

Description: 'cm_cell_hide' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_cell_hide')" instead.

cm_cell_paste
Signature: void cm_cell_paste

Description: 'cm_cell_paste' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_cell_paste')" instead.

cm_cell_rename
Signature: void cm_cell_rename

Description: 'cm_cell_rename' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_cell_rename')" instead.

cm_cell_select
Signature: void cm_cell_select

Description: 'cm_cell_select' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_cell_select')" instead.

cm_cell_show
Signature: void cm_cell_show

Description: 'cm_cell_show' action.

For more details visit
https://www.klayout.org

Page 2113 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_cell_show')" instead.

cm_cell_show_all
Signature: void cm_cell_show_all

Description: 'cm_cell_show_all' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_cell_show_all')" instead.

cm_clear_layer
Signature: void cm_clear_layer

Description: 'cm_clear_layer' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_clear_layer')" instead.

cm_clone
Signature: void cm_clone

Description: 'cm_clone' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_clone')" instead.

cm_close
Signature: void cm_close

Description: 'cm_close' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_close')" instead.

cm_close_all
Signature: void cm_close_all

Description: 'cm_close_all' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_close_all')" instead.

cm_copy
Signature: void cm_copy

Description: 'cm_copy' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_copy')" instead.

cm_copy_layer
Signature: void cm_copy_layer

Description: 'cm_copy_layer' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_copy_layer')" instead.

cm_cut
Signature: void cm_cut

Description: 'cm_cut' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_cut')" instead.

For more details visit
https://www.klayout.org

Page 2114 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

cm_dec_max_hier
Signature: void cm_dec_max_hier

Description: 'cm_dec_max_hier' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_dec_max_hier')" instead.

cm_delete
Signature: void cm_delete

Description: 'cm_delete' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_delete')" instead.

cm_delete_layer
Signature: void cm_delete_layer

Description: 'cm_delete_layer' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_delete_layer')" instead.

cm_edit_layer
Signature: void cm_edit_layer

Description: 'cm_edit_layer' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_edit_layer')" instead.

cm_exit
Signature: void cm_exit

Description: 'cm_exit' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_exit')" instead.

cm_goto_position
Signature: void cm_goto_position

Description: 'cm_goto_position' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_goto_position')" instead.

cm_help_about
Signature: void cm_help_about

Description: 'cm_help_about' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_help_about')" instead.

cm_inc_max_hier
Signature: void cm_inc_max_hier

Description: 'cm_inc_max_hier' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_inc_max_hier')" instead.

cm_last_display_state
Signature: void cm_last_display_state

Description: 'cm_prev_display_state|#cm_last_display_state' action.

Use of this method is deprecated

For more details visit
https://www.klayout.org

Page 2115 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

This method is deprecated in version 0.27. Use "call_menu('cm_prev_display_state|
#cm_last_display_state')" instead.

cm_layout_props
Signature: void cm_layout_props

Description: 'cm_layout_props' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_layout_props')" instead.

cm_load_bookmarks
Signature: void cm_load_bookmarks

Description: 'cm_load_bookmarks' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_load_bookmarks')" instead.

cm_load_layer_props
Signature: void cm_load_layer_props

Description: 'cm_load_layer_props' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_load_layer_props')" instead.

cm_lv_add_missing
Signature: void cm_lv_add_missing

Description: 'cm_lv_add_missing' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_add_missing')" instead.

cm_lv_delete
Signature: void cm_lv_delete

Description: 'cm_lv_delete' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_delete')" instead.

cm_lv_expand_all
Signature: void cm_lv_expand_all

Description: 'cm_lv_expand_all' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_expand_all')" instead.

cm_lv_group
Signature: void cm_lv_group

Description: 'cm_lv_group' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_group')" instead.

cm_lv_hide
Signature: void cm_lv_hide

Description: 'cm_lv_hide' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_hide')" instead.

For more details visit
https://www.klayout.org

Page 2116 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

cm_lv_hide_all
Signature: void cm_lv_hide_all

Description: 'cm_lv_hide_all' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_hide_all')" instead.

cm_lv_insert
Signature: void cm_lv_insert

Description: 'cm_lv_insert' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_insert')" instead.

cm_lv_new_tab
Signature: void cm_lv_new_tab

Description: 'cm_lv_new_tab' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_new_tab')" instead.

cm_lv_regroup_by_datatype
Signature: void cm_lv_regroup_by_datatype

Description: 'cm_lv_regroup_by_datatype' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_regroup_by_datatype')"
instead.

cm_lv_regroup_by_index
Signature: void cm_lv_regroup_by_index

Description: 'cm_lv_regroup_by_index' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_regroup_by_index')" instead.

cm_lv_regroup_by_layer
Signature: void cm_lv_regroup_by_layer

Description: 'cm_lv_regroup_by_layer' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_regroup_by_layer')" instead.

cm_lv_regroup_flatten
Signature: void cm_lv_regroup_flatten

Description: 'cm_lv_regroup_flatten' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_regroup_flatten')" instead.

cm_lv_remove_tab
Signature: void cm_lv_remove_tab

Description: 'cm_lv_remove_tab' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_remove_tab')" instead.

cm_lv_remove_unused
Signature: void cm_lv_remove_unused

Description: 'cm_lv_remove_unused' action.

For more details visit
https://www.klayout.org

Page 2117 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_remove_unused')" instead.

cm_lv_rename
Signature: void cm_lv_rename

Description: 'cm_lv_rename' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_rename')" instead.

cm_lv_rename_tab
Signature: void cm_lv_rename_tab

Description: 'cm_lv_rename_tab' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_rename_tab')" instead.

cm_lv_select_all
Signature: void cm_lv_select_all

Description: 'cm_lv_select_all' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_select_all')" instead.

cm_lv_show
Signature: void cm_lv_show

Description: 'cm_lv_show' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_show')" instead.

cm_lv_show_all
Signature: void cm_lv_show_all

Description: 'cm_lv_show_all' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_show_all')" instead.

cm_lv_show_only
Signature: void cm_lv_show_only

Description: 'cm_lv_show_only' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_show_only')" instead.

cm_lv_sort_by_dli
Signature: void cm_lv_sort_by_dli

Description: 'cm_lv_sort_by_dli' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_sort_by_dli')" instead.

cm_lv_sort_by_idl
Signature: void cm_lv_sort_by_idl

Description: 'cm_lv_sort_by_idl' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_sort_by_idl')" instead.

For more details visit
https://www.klayout.org

Page 2118 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

cm_lv_sort_by_ild
Signature: void cm_lv_sort_by_ild

Description: 'cm_lv_sort_by_ild' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_sort_by_ild')" instead.

cm_lv_sort_by_ldi
Signature: void cm_lv_sort_by_ldi

Description: 'cm_lv_sort_by_ldi' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_sort_by_ldi')" instead.

cm_lv_sort_by_name
Signature: void cm_lv_sort_by_name

Description: 'cm_lv_sort_by_name' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_sort_by_name')" instead.

cm_lv_source
Signature: void cm_lv_source

Description: 'cm_lv_source' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_source')" instead.

cm_lv_ungroup
Signature: void cm_lv_ungroup

Description: 'cm_lv_ungroup' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_lv_ungroup')" instead.

cm_macro_editor
Signature: void cm_macro_editor

Description: 'cm_macro_editor' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_macro_editor')" instead.

cm_manage_bookmarks
Signature: void cm_manage_bookmarks

Description: 'cm_manage_bookmarks' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_manage_bookmarks')" instead.

cm_max_hier
Signature: void cm_max_hier

Description: 'cm_max_hier' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_max_hier')" instead.

cm_max_hier_0
Signature: void cm_max_hier_0

Description: 'cm_max_hier_0' action.

Use of this method is deprecated

For more details visit
https://www.klayout.org

Page 2119 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

This method is deprecated in version 0.27. Use "call_menu('cm_max_hier_0')" instead.

cm_max_hier_1
Signature: void cm_max_hier_1

Description: 'cm_max_hier_1' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_max_hier_1')" instead.

cm_navigator_close
Signature: void cm_navigator_close

Description: 'cm_navigator_close' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_navigator_close')" instead.

cm_navigator_freeze
Signature: void cm_navigator_freeze

Description: 'cm_navigator_freeze' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_navigator_freeze')" instead.

cm_new_cell
Signature: void cm_new_cell

Description: 'cm_new_cell' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_new_cell')" instead.

cm_new_layer
Signature: void cm_new_layer

Description: 'cm_new_layer' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_new_layer')" instead.

cm_new_layout
Signature: void cm_new_layout

Description: 'cm_new_layout' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_new_layout')" instead.

cm_new_panel
Signature: void cm_new_panel

Description: 'cm_new_panel' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_new_panel')" instead.

cm_next_display_state
Signature: void cm_next_display_state

Description: 'cm_next_display_state' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_next_display_state')" instead.

cm_open
Signature: void cm_open

Description: 'cm_open' action.

For more details visit
https://www.klayout.org

Page 2120 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_open')" instead.

cm_open_current_cell
Signature: void cm_open_current_cell

Description: 'cm_open_current_cell' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_open_current_cell')" instead.

cm_open_new_view
Signature: void cm_open_new_view

Description: 'cm_open_new_view' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_open_new_view')" instead.

cm_open_too
Signature: void cm_open_too

Description: 'cm_open_too' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_open_too')" instead.

cm_packages
Signature: void cm_packages

Description: 'cm_packages' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_packages')" instead.

cm_pan_down
Signature: void cm_pan_down

Description: 'cm_pan_down' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_pan_down')" instead.

cm_pan_left
Signature: void cm_pan_left

Description: 'cm_pan_left' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_pan_left')" instead.

cm_pan_right
Signature: void cm_pan_right

Description: 'cm_pan_right' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_pan_right')" instead.

cm_pan_up
Signature: void cm_pan_up

Description: 'cm_pan_up' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_pan_up')" instead.

For more details visit
https://www.klayout.org

Page 2121 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

cm_paste
Signature: void cm_paste

Description: 'cm_paste' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_paste')" instead.

cm_prev_display_state
Signature: void cm_prev_display_state

Description: 'cm_prev_display_state|#cm_last_display_state' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_prev_display_state|
#cm_last_display_state')" instead.

cm_print
Signature: void cm_print

Description: 'cm_print' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_print')" instead.

cm_pull_in
Signature: void cm_pull_in

Description: 'cm_pull_in' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_pull_in')" instead.

cm_reader_options
Signature: void cm_reader_options

Description: 'cm_reader_options' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_reader_options')" instead.

cm_redo
Signature: void cm_redo

Description: 'cm_redo' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_redo')" instead.

cm_redraw
Signature: void cm_redraw

Description: 'cm_redraw' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_redraw')" instead.

cm_reload
Signature: void cm_reload

Description: 'cm_reload' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_reload')" instead.

cm_reset_window_state
Signature: void cm_reset_window_state

Description: 'cm_reset_window_state' action.

For more details visit
https://www.klayout.org

Page 2122 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_reset_window_state')" instead.

cm_restore_session
Signature: void cm_restore_session

Description: 'cm_restore_session' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_restore_session')" instead.

cm_save
Signature: void cm_save

Description: 'cm_save' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_save')" instead.

cm_save_all
Signature: void cm_save_all

Description: 'cm_save_all' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_save_all')" instead.

cm_save_as
Signature: void cm_save_as

Description: 'cm_save_as' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_save_as')" instead.

cm_save_bookmarks
Signature: void cm_save_bookmarks

Description: 'cm_save_bookmarks' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_save_bookmarks')" instead.

cm_save_current_cell_as
Signature: void cm_save_current_cell_as

Description: 'cm_save_current_cell_as' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_save_current_cell_as')" instead.

cm_save_layer_props
Signature: void cm_save_layer_props

Description: 'cm_save_layer_props' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_save_layer_props')" instead.

cm_save_session
Signature: void cm_save_session

Description: 'cm_save_session' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_save_session')" instead.

For more details visit
https://www.klayout.org

Page 2123 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

cm_screenshot
Signature: void cm_screenshot

Description: 'cm_screenshot' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_screenshot')" instead.

cm_sel_flip_x
Signature: void cm_sel_flip_x

Description: 'cm_sel_flip_x' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_sel_flip_x')" instead.

cm_sel_flip_y
Signature: void cm_sel_flip_y

Description: 'cm_sel_flip_y' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_sel_flip_y')" instead.

cm_sel_free_rot
Signature: void cm_sel_free_rot

Description: 'cm_sel_free_rot' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_sel_free_rot')" instead.

cm_sel_move
Signature: void cm_sel_move

Description: 'cm_sel_move' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_sel_move')" instead.

cm_sel_move_to
Signature: void cm_sel_move_to

Description: 'cm_sel_move_to' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_sel_move_to')" instead.

cm_sel_rot_ccw
Signature: void cm_sel_rot_ccw

Description: 'cm_sel_rot_ccw' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_sel_rot_ccw')" instead.

cm_sel_rot_cw
Signature: void cm_sel_rot_cw

Description: 'cm_sel_rot_cw' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_sel_rot_cw')" instead.

cm_sel_scale
Signature: void cm_sel_scale

Description: 'cm_sel_scale' action.

Use of this method is deprecated

For more details visit
https://www.klayout.org

Page 2124 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

This method is deprecated in version 0.27. Use "call_menu('cm_sel_scale')" instead.

cm_select_all
Signature: void cm_select_all

Description: 'cm_select_all' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_select_all')" instead.

cm_select_cell
Signature: void cm_select_cell

Description: 'cm_select_cell' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_select_cell')" instead.

cm_select_current_cell
Signature: void cm_select_current_cell

Description: 'cm_select_current_cell' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_select_current_cell')" instead.

cm_setup
Signature: void cm_setup

Description: 'cm_setup' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_setup')" instead.

cm_show_properties
Signature: void cm_show_properties

Description: 'cm_show_properties' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_show_properties')" instead.

cm_technologies
Signature: void cm_technologies

Description: 'cm_technologies' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_technologies')" instead.

cm_undo
Signature: void cm_undo

Description: 'cm_undo' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_undo')" instead.

cm_unselect_all
Signature: void cm_unselect_all

Description: 'cm_unselect_all' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_unselect_all')" instead.

cm_view_log
Signature: void cm_view_log

Description: 'cm_view_log' action.

For more details visit
https://www.klayout.org

Page 2125 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_view_log')" instead.

cm_zoom_fit
Signature: void cm_zoom_fit

Description: 'cm_zoom_fit' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_zoom_fit')" instead.

cm_zoom_fit_sel
Signature: void cm_zoom_fit_sel

Description: 'cm_zoom_fit_sel' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_zoom_fit_sel')" instead.

cm_zoom_in
Signature: void cm_zoom_in

Description: 'cm_zoom_in' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_zoom_in')" instead.

cm_zoom_out
Signature: void cm_zoom_out

Description: 'cm_zoom_out' action.

Use of this method is deprecated

This method is deprecated in version 0.27. Use "call_menu('cm_zoom_out')" instead.

commit_config
Signature: void commit_config

Description: Commits the configuration settings

This method is provided for using MainWindow without an Application object. It's a convience
method which is equivalent to 'dispatcher().commit_config(...)'. See Dispatcher#commit_config
for details.

This method has been introduced in version 0.27.

(1) Signature: CellView create_layout (int mode)

Description: Creates a new, empty layout

mode: An integer value of 0, 1 or 2 that determines how the layout is
created

Returns: The cellview of the layout that was created

Create the layout in the current view, replacing the current layouts (mode 0), in a new view
(mode 1) or adding it to the current view (mode 2). In mode 1, the new view is made the current
one.

This version uses the initial technology and associates it with the new layout.

Starting with version 0.25, this method returns a cellview object that can be modified to configure
the cellview.

create_layout

(2) Signature: CellView create_layout (string tech, int mode)

Description: Creates a new, empty layout with the given technology

For more details visit
https://www.klayout.org

Page 2126 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

mode: An integer value of 0, 1 or 2 that determines how the layout is
created

tech: The name of the technology to use for that layout.

Returns: The cellview of the layout that was created

Create the layout in the current view, replacing the current layouts (mode 0), in a new view
(mode 1) or adding it to the current view (mode 2). In mode 1, the new view is made the current
one.

If the technology name is not a valid technology name, the default technology will be used.

This version was introduced in version 0.22. Starting with version 0.25, this method returns a
cellview object that can be modified to configure the cellview.

create_view
Signature: int create_view

Description: Creates a new, empty view

Returns: The index of the view that was created

Creates an empty view that can be filled with layouts using the load_layout and create_layout
methods on the view object. Use the view method to obtain the view object from the view index.
This method has been added in version 0.22.

current_view
Signature: LayoutView ptr current_view

Description: Returns a reference to the current view's object

Returns: A reference to a LayoutView object representing the current
view.

current_view_index
Signature: [const] int current_view_index

Description: Returns the current view's index

Returns: The index of the current view

This method will return the index of the current view.

Python specific notes:
The object exposes a readable attribute 'current_view_index'. This is the getter.

current_view_index=
Signature: void current_view_index= (int index)

Description: Selects the view with the given index

index: The index of the view to select (0 is the first)

This method will make the view with the given index the current (front) view.

This method was renamed from select_view to current_view_index= in version 0.25. The old
name is still available, but deprecated.

Python specific notes:
The object exposes a writable attribute 'current_view_index'. This is the setter.

dispatcher
Signature: [const] Dispatcher ptr dispatcher

Description: Gets the dispatcher interface (the plugin root configuration space)

This method has been introduced in version 0.27.

enable_edits
Signature: void enable_edits (bool enable)

Description: Enables or disables editing

For more details visit
https://www.klayout.org

Page 2127 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

enable: Enable edits if set to true

Use of this method is deprecated

Starting from version 0.25, this method enables/disables edits on the current view only. Use
LayoutView#enable_edits instead.

exit
Signature: void exit

Description: Schedules an exit for the application

This method does not immediately exit the application but sends an exit request to the
application which will cause a clean shutdown of the GUI.

get_config
Signature: variant get_config (string name)

Description: Gets the value of a local configuration parameter

This method is provided for using MainWindow without an Application object. It's a convience
method which is equivalent to 'dispatcher().get_config(...)'. See Dispatcher#get_config for
details.

This method has been introduced in version 0.27.

get_config_names
Signature: string[] get_config_names

Description: Gets the configuration parameter names

This method is provided for using MainWindow without an Application object. It's a
convience method which is equivalent to 'dispatcher().get_config_names(...)'. See
Dispatcher#get_config_names for details.

This method has been introduced in version 0.27.

get_default_key_bindings
Signature: map<string,string> get_default_key_bindings

Description: Gets the default key bindings

This method returns a hash with the default key binding vs. menu item path. You can use this
hash with set_key_bindings to reset all key bindings to the default ones.

This method has been introduced in version 0.27.

get_default_menu_items_hidden
Signature: map<string,bool> get_default_menu_items_hidden

Description: Gets the flags indicating whether menu items are hidden by default

You can use this hash with set_menu_items_hidden to restore the visibility of all menu items.

This method has been introduced in version 0.27.

get_key_bindings
Signature: map<string,string> get_key_bindings

Description: Gets the current key bindings

This method returns a hash with the key binding vs. menu item path.

This method has been introduced in version 0.27.

get_menu_items_hidden
Signature: map<string,bool> get_menu_items_hidden

Description: Gets the flags indicating whether menu items are hidden

This method returns a hash with the hidden flag vs. menu item path. You can use this hash with
set_menu_items_hidden.

This method has been introduced in version 0.27.

For more details visit
https://www.klayout.org

Page 2128 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

grid_micron
Signature: [const] double grid_micron

Description: Gets the global grid in micron

Returns: The global grid in micron

The global grid is used at various places, i.e. for ruler snapping, for grid display etc.

index_of
Signature: [const] int index_of (const LayoutView ptr view)

Description: Gets the index of the given view

Returns: The index of the view that was given

If the given view is not a view object within the main window, a negative value will be returned.

This method has been added in version 0.25.

initial_technology
Signature: string initial_technology

Description: Gets the technology used for creating or loading layouts (unless explicitly
specified)

Returns: The current initial technology

This method was added in version 0.22.

Python specific notes:
The object exposes a readable attribute 'initial_technology'. This is the getter.

initial_technology=
Signature: void initial_technology= (string tech)

Description: Sets the technology used for creating or loading layouts (unless explicitly
specified)

tech: The new initial technology

Setting the technology will have an effect on the next load_layout or create_layout operation
which does not explicitly specify the technology but might not be reflected correctly in the reader
options dialog and changes will be reset when the application is restarted.

This method was added in version 0.22.

Python specific notes:
The object exposes a writable attribute 'initial_technology'. This is the setter.

instance
Signature: [static] MainWindow ptr instance

Description: Gets application's main window instance

This method has been added in version 0.24.

load_layout
(1) Signature: CellView load_layout (string filename, int mode)

Description: Loads a new layout

filename: The name of the file to load

mode: An integer value of 0, 1 or 2 that determines how the file is
loaded

Returns: The cellview into which the layout was loaded

Loads the given file into the current view, replacing the current layouts (mode 0), into a new view
(mode 1) or adding the layout to the current view (mode 2). In mode 1, the new view is made the
current one.

For more details visit
https://www.klayout.org

Page 2129 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

This version will use the initial technology and the default reader options. Others versions are
provided which allow specification of technology and reader options explicitly.

Starting with version 0.25, this method returns a cellview object that can be modified to configure
the cellview.

(2) Signature: CellView load_layout (string filename, string tech, int mode)

Description: Loads a new layout and associate it with the given technology

filename: The name of the file to load

tech: The name of the technology to use for that layout.

mode: An integer value of 0, 1 or 2 that determines how the file is
loaded

Returns: The cellview into which the layout was loaded

Loads the given file into the current view, replacing the current layouts (mode 0), into a new view
(mode 1) or adding the layout to the current view (mode 2). In mode 1, the new view is made the
current one.

If the technology name is not a valid technology name, the default technology will be used.

This version was introduced in version 0.22. Starting with version 0.25, this method returns a
cellview object that can be modified to configure the cellview.

(3) Signature: CellView load_layout (string filename, const LoadLayoutOptions options, int
mode)

Description: Loads a new layout with the given options

filename: The name of the file to load

options: The reader options to use.

mode: An integer value of 0, 1 or 2 that determines how the file is
loaded

Returns: The cellview into which the layout was loaded

Loads the given file into the current view, replacing the current layouts (mode 0), into a new view
(mode 1) or adding the layout to the current view (mode 2). In mode 1, the new view is made the
current one.

This version was introduced in version 0.22. Starting with version 0.25, this method returns a
cellview object that can be modified to configure the cellview.

(4) Signature: CellView load_layout (string filename, const LoadLayoutOptions options, string
tech, int mode)

Description: Loads a new layout with the given options and associate it with the given
technology

filename: The name of the file to load

options: The reader options to use.

tech: The name of the technology to use for that layout.

mode: An integer value of 0, 1 or 2 that determines how the file is
loaded

Returns: The cellview into which the layout was loaded

Loads the given file into the current view, replacing the current layouts (mode 0), into a new view
(mode 1) or adding the layout to the current view (mode 2). In mode 1, the new view is made the
current one.

If the technology name is not a valid technology name, the default technology will be used.

For more details visit
https://www.klayout.org

Page 2130 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

This version was introduced in version 0.22. Starting with version 0.25, this method returns a
cellview object that can be modified to configure the cellview.

manager
Signature: Manager manager

Description: Gets the Manager object of this window

The manager object is responsible to managing the undo/redo stack. Usually this object
is not required. It's more convenient and safer to use the related methods provided by
LayoutView (LayoutView#transaction, LayoutView#commit) and MainWindow (such as
MainWindow#cm_undo and MainWindow#cm_redo).

This method has been added in version 0.24.

menu
Signature: AbstractMenu ptr menu

Description: Returns a reference to the abstract menu

Returns: A reference to an AbstractMenu object representing the menu
system

menu_symbols
Signature: [static] string[] menu_symbols

Description: Gets all available menu symbols (see call_menu).

NOTE: currently this method delivers a superset of all available symbols. Depending on the
context, no all symbols may trigger actual functionality.

This method has been introduced in version 0.27.

message
Signature: void message (string message, int time)

Description: Displays a message in the status bar

message: The message to display

time: The time how long to display the message in ms

This given message is shown in the status bar for the given time.

This method has been added in version 0.18.

on_current_view_changed
Signature: [signal] void on_current_view_changed

Description: An event indicating that the current view has changed

This event is triggered after the current view has changed. This happens, if the user switches the
layout tab.

Before version 0.25 this event was based on the observer pattern obsolete now. The
corresponding methods (add_current_view_observer/remove_current_view_observer) have
been removed in 0.25.

Python specific notes:
The object exposes a readable attribute 'on_current_view_changed'. This is the getter. The
object exposes a writable attribute 'on_current_view_changed'. This is the setter.

on_view_closed
Signature: [signal] void on_view_closed (int index)

Description: An event indicating that a view was closed

index: The index of the view that was closed

This event is triggered after a view was closed. For example, because the tab was closed.

This event has been added in version 0.25.

Python specific notes:

For more details visit
https://www.klayout.org

Page 2131 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

The object exposes a readable attribute 'on_view_closed'. This is the getter. The object exposes
a writable attribute 'on_view_closed'. This is the setter.

on_view_created
Signature: [signal] void on_view_created (int index)

Description: An event indicating that a new view was created

index: The index of the view that was created

This event is triggered after a new view was created. For example, if a layout is loaded into a
new panel.

Before version 0.25 this event was based on the observer pattern obsolete now. The
corresponding methods (add_new_view_observer/remove_new_view_observer) have been
removed in 0.25.

Python specific notes:
The object exposes a readable attribute 'on_view_created'. This is the getter. The object
exposes a writable attribute 'on_view_created'. This is the setter.

read_config
Signature: bool read_config (string file_name)

Description: Reads the configuration from a file

This method is provided for using MainWindow without an Application object. It's a convience
method which is equivalent to 'dispatcher().read_config(...)'. See Dispatcher#read_config for
details.

This method has been introduced in version 0.27.

redraw
Signature: void redraw

Description: Redraws the current view

Issues a redraw request to the current view. This usually happens automatically, so this method
does not need to be called in most relevant cases.

resize
Signature: void resize (int width, int height)

Description: Resizes the window

width: The new width of the window

height: The new width of the window

This method resizes the window to the given target size including decoration such as menu bar
and control panels

restore_session
Signature: void restore_session (string fn)

Description: Restores a session from the given file

fn: The path to the session file

The session stored in the given session file is restored. All existing views are closed and all
layout edits are discarded without notification.

This method was added in version 0.18.

save_session
Signature: void save_session (string fn)

Description: Saves the session to the given file

fn: The path to the session file

For more details visit
https://www.klayout.org

Page 2132 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

The session is saved to the given session file. Any existing layout edits are not automatically
saved together with the session. The session just holds display settings and annotation objects.
If layout edits exist, they have to be saved explicitly in a separate step.

This method was added in version 0.18.

select_view
Signature: void select_view (int index)

Description: Selects the view with the given index

index: The index of the view to select (0 is the first)

Use of this method is deprecated. Use current_view_index= instead

This method will make the view with the given index the current (front) view.

This method was renamed from select_view to current_view_index= in version 0.25. The old
name is still available, but deprecated.

Python specific notes:
The object exposes a writable attribute 'current_view_index'. This is the setter.

set_config
Signature: void set_config (string name, string value)

Description: Set a local configuration parameter with the given name to the given value

This method is provided for using MainWindow without an Application object. It's a convience
method which is equivalent to 'dispatcher().set_config(...)'. See Dispatcher#set_config for
details.

This method has been introduced in version 0.27.

set_key_bindings
Signature: void set_key_bindings (map<string,string> bindings)

Description: Sets key bindings.

Sets the given key bindings. Pass a hash listing the key bindings per menu item paths. Key
strings follow the usual notation, e.g. 'Ctrl+A', 'Shift+X' or just 'F2'. Use an empty value to
remove a key binding from a menu entry.

get_key_bindings will give you the current key bindings, get_default_key_bindings will give you
the default ones.

Examples:

reset all key bindings to default:
mw = RBA::MainWindow.instance()
mw.set_key_bindings(mw.get_default_key_bindings())

disable key binding for 'copy':
RBA::MainWindow.instance.set_key_bindings({ "edit_menu.copy" => "" })

configure 'copy' to use Shift+K and 'cut' to use Ctrl+K:
RBA::MainWindow.instance.set_key_bindings({ "edit_menu.copy" => "Shift+K",
 "edit_menu.cut" => "Ctrl+K" })

This method has been introduced in version 0.27.

set_menu_items_hidden
Signature: void set_menu_items_hidden (map<string,bool> arg1)

Description: sets the flags indicating whether menu items are hidden

This method allows hiding certain menu items. It takes a hash with hidden flags vs. menu item
paths. Examples:

For more details visit
https://www.klayout.org

Page 2133 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

show all menu items:
mw = RBA::MainWindow.instance()
mw.set_menu_items_hidden(mw.get_default_menu_items_hidden())

hide the 'copy' entry from the 'Edit' menu:
RBA::MainWindow.instance().set_menu_items_hidden({ "edit_menu.copy" =>
 true })

This method has been introduced in version 0.27.

show_macro_editor
Signature: void show_macro_editor (string cat = , bool add = false)

Description: Shows the macro editor

If 'cat' is given, this category will be selected in the category tab. If 'add' is true, the 'new macro'
dialog will be opened.

This method has been introduced in version 0.26.

synchronous
Signature: void synchronous (bool sync_mode)

Description: Puts the main window into synchronous mode

sync_mode: 'true' if the application should behave synchronously

Use of this method is deprecated. Use synchronous= instead

In synchronous mode, an application is allowed to block on redraw. While redrawing, no user
interactions are possible. Although this is not desirable for smooth operation, it can be beneficial
for test or automation purposes, i.e. if a screenshot needs to be produced once the application
has finished drawing.

Python specific notes:
The object exposes a writable attribute 'synchronous'. This is the setter. This attribute is
available as 'synchronous_' in Python

synchronous=
Signature: void synchronous= (bool sync_mode)

Description: Puts the main window into synchronous mode

sync_mode: 'true' if the application should behave synchronously

In synchronous mode, an application is allowed to block on redraw. While redrawing, no user
interactions are possible. Although this is not desirable for smooth operation, it can be beneficial
for test or automation purposes, i.e. if a screenshot needs to be produced once the application
has finished drawing.

Python specific notes:
The object exposes a writable attribute 'synchronous'. This is the setter. This attribute is
available as 'synchronous_' in Python

view
Signature: LayoutView ptr view (int n)

Description: Returns a reference to a view object by index

Returns: The view object's reference for the view with the given index.

views
Signature: [const] unsigned int views

Description: Returns the number of views

Returns: The number of views available so far.

For more details visit
https://www.klayout.org

Page 2134 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.205. API reference - Class MainWindow

write_config
Signature: bool write_config (string file_name)

Description: Writes configuration to a file

This method is provided for using MainWindow without an Application object. It's a convience
method which is equivalent to 'dispatcher().write_config(...)'. See Dispatcher#write_config for
details.

This method has been introduced in version 0.27.

For more details visit
https://www.klayout.org

Page 2135 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.206. API reference - Class Application

4.206. API reference - Class Application
Notation used in Ruby API documentation

Module: lay

Description: The application object

Class hierarchy: Application » QCoreApplication » QObject

The application object is the main port from which to access all the internals of the application, in particular the main window.

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void add_macro_category (string
name,
string
description,
string[]
folders)

Creates a new macro category

[const] string application_data_path Returns the application's data path (where the
configuration file is stored for example)

string arch Returns the architecture string

void commit_config Commits the configuration settings

int execute Executes the application's main loop

void exit (int result) Ends the application with the given exit status

[const] string get_config (string
name)

Gets the value for a configuration parameter

[const] string[] get_config_names Gets the configuration parameter names

[const] string inst_path Returns the application's installation path (where
the executable is located)

[const] bool is_editable? Returns true if the application is in editable mode

[const] string[] klayout_path Returns the KLayout path (search path for
KLayout components)

For more details visit
https://www.klayout.org

Page 2136 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.206. API reference - Class Application

[const] MainWindow ptr main_window Returns a reference to the main window

void process_events Processes pending events

bool read_config (string
file_name)

Reads the configuration from a file

void set_config (string
name,
string value)

Sets a configuration parameter with the given
name to the given value

string version Returns the application's version string

bool write_config (string
file_name)

Writes configuration to a file

Public static methods and constants

Application ptr instance Return the singleton instance of the application

Deprecated methods (protected, public, static, non-static and constructors)

int exec Use of this method is deprecated. Use execute instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

For more details visit
https://www.klayout.org

Page 2137 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.206. API reference - Class Application

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

add_macro_category
Signature: void add_macro_category (string name, string description, string[] folders)

Description: Creates a new macro category

Creating a new macro category is only possible during the autorun_early stage. The new macro
category must correspond to an interpreter registered at the same stage. This method has been
introduced in version 0.28.

application_data_path
Signature: [const] string application_data_path

Description: Returns the application's data path (where the configuration file is stored for example)

This method has been added in version 0.22.

arch
Signature: string arch

Description: Returns the architecture string

This method has been introduced in version 0.25.

commit_config
Signature: void commit_config

Description: Commits the configuration settings

Some configuration options are queued for performance reasons and become active only after
'commit_config' has been called. After a sequence of set_config calls, this method should be called
to activate the settings made by these calls.

This method has been introduced in version 0.25.

exec
Signature: int exec

Description: Executes the application's main loop

Use of this method is deprecated. Use execute instead

This method must be called in order to execute the application in the main script if a script is
provided.

Python specific notes:
This attribute is available as 'exec_' in Python

execute
Signature: int execute

Description: Executes the application's main loop

For more details visit
https://www.klayout.org

Page 2138 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.206. API reference - Class Application

This method must be called in order to execute the application in the main script if a script is
provided.

Python specific notes:
This attribute is available as 'exec_' in Python

exit
Signature: void exit (int result)

Description: Ends the application with the given exit status

This method should be called instead of simply shutting down the process. It performs some
important cleanup without which the process might crash. If the result code is 0 (success), the
configuration file will be updated unless that has been disabled by the -nc command line switch.
This method has been added in version 0.22.

get_config
Signature: [const] string get_config (string name)

Description: Gets the value for a configuration parameter

name: The name of the configuration parameter whose value shall be
obtained (a string)

Returns: The value of the parameter

This method returns the value of the given configuration parameter. If the parameter is not known,
an exception will be thrown. Use get_config_names to obtain a list of all configuration parameter
names available.

Configuration parameters are always stored as strings. The actual format of this string is specific to
the configuration parameter. The values delivered by this method correspond to the values stored
in the configuration file

get_config_names
Signature: [const] string[] get_config_names

Description: Gets the configuration parameter names

Returns: A list of configuration parameter names

This method returns the names of all known configuration parameters. These names can be used
to get and set configuration parameter values.

inst_path
Signature: [const] string inst_path

Description: Returns the application's installation path (where the executable is located)

This method has been added in version 0.18. Version 0.22 offers the method klayout_path which
delivers all components of the search path.

instance
Signature: [static] Application ptr instance

Description: Return the singleton instance of the application

There is exactly one instance of the application. This instance can be obtained with this method.

is_editable?
Signature: [const] bool is_editable?

Description: Returns true if the application is in editable mode

klayout_path
Signature: [const] string[] klayout_path

Description: Returns the KLayout path (search path for KLayout components)

The result is an array containing the components of the path.

For more details visit
https://www.klayout.org

Page 2139 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.206. API reference - Class Application

This method has been added in version 0.22.

main_window
Signature: [const] MainWindow ptr main_window

Description: Returns a reference to the main window

Returns: A object reference to the main window object.

process_events
Signature: void process_events

Description: Processes pending events

This method processes pending events and dispatches them internally. Calling this method
periodically during a long operation keeps the application 'alive'

read_config
Signature: bool read_config (string file_name)

Description: Reads the configuration from a file

Returns: A value indicating whether the operation was successful

This method silently does nothing, if the config file does not exist. If it does and an error occurred,
the error message is printed on stderr. In both cases, false is returned.

set_config
Signature: void set_config (string name, string value)

Description: Sets a configuration parameter with the given name to the given value

name: The name of the configuration parameter to set

value: The value to which to set the configuration parameter

This method sets the configuration parameter with the given name to the given value. Values can
only be strings. Numerical values have to be converted into strings first. The actual format of the
value depends on the configuration parameter. The name must be one of the names returned
by get_config_names. It is possible to write an arbitrary name/value pair into the configuration
database which then is written to the configuration file.

version
Signature: string version

Description: Returns the application's version string

write_config
Signature: bool write_config (string file_name)

Description: Writes configuration to a file

Returns: A value indicating whether the operation was successful

If the configuration file cannot be written, is returned but no exception is thrown.

For more details visit
https://www.klayout.org

Page 2140 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

4.207. API reference - Class LEFDEFReaderConfiguration
Notation used in Ruby API documentation

Module: db

Description: Detailed LEF/DEF reader options

This class is a aggregate belonging to the LoadLayoutOptions class. It provides options for the LEF/DEF reader. These options have been
placed into a separate class to account for their complexity. This class specifically handles layer mapping. This is the process of generating
layer names or GDS layer/datatypes from LEF/DEF layers and purpose combinations. There are basically two ways: to use a map file or to
use pattern-based production rules.

To use a layer map file, set the map_file attribute to the name of the layer map file. The layer map file lists the GDS layer and datatype
numbers to generate for the geometry.

The pattern-based approach will use the layer name and attach a purpose-dependent suffix to it. Use the ..._suffix attributes to specify this
suffix. For routing, the corresponding attribute is routing_suffix for example. A purpose can also be mapped to a specific GDS datatype
using the corresponding ..._datatype attributes. The decorated or undecorated names are looked up in a layer mapping table in the next
step. The layer mapping table is specified using the layer_map attribute. This table can be used to map layer names to specific GDS layers
by using entries of the form 'NAME: layer-number'.

If a layer map file is present, the pattern-based attributes are ignored.

Public constructors

new LEFDEFReaderConfiguration ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
LEFDEFReaderConfiguration
other)

Assigns another object to self

[const] int blockages_datatype Gets the blockage marker layer datatype
value.

void blockages_datatype= (int datatype) Sets the blockage marker layer datatype
value.

[const] string blockages_suffix Gets the blockage marker layer name suffix.

void blockages_suffix= (string suffix) Sets the blockage marker layer name suffix.

For more details visit
https://www.klayout.org

Page 2141 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

[const] string cell_outline_layer Gets the layer on which to produce the cell
outline (diearea).

void cell_outline_layer= (string spec) Sets the layer on which to produce the cell
outline (diearea).

void clear_fill_datatypes_per_mask Clears the fill layer datatypes per mask.

void clear_fills_suffixes_per_mask Clears the fill layer name suffix per mask.

void clear_lef_pins_datatypes_per_mask Clears the LEF pin layer datatypes per mask.

void clear_lef_pins_suffixes_per_mask Clears the LEF pin layer name suffix per mask.

void clear_pin_datatypes_per_mask Clears the pin layer datatypes per mask.

void clear_pins_suffixes_per_mask Clears the pin layer name suffix per mask.

void clear_routing_datatypes_per_mask Clears the routing layer datatypes per mask.

void clear_routing_suffixes_per_mask Clears the routing layer name suffix per mask.

void clear_special_routing_datatypes_per_mask Clears the special routing layer datatypes per
mask.

void clear_special_routing_suffixes_per_mask Clears the special routing layer name suffix
per mask.

void clear_via_geometry_datatypes_per_mask Clears the via geometry layer datatypes per
mask.

void clear_via_geometry_suffixes_per_mask Clears the via geometry layer name suffix per
mask.

[const] bool create_other_layers Gets a value indicating whether layers not
mapped in the layer map shall be created too

void create_other_layers= (bool f) Sets a value indicating whether layers not
mapped in the layer map shall be created too

[const] double dbu Gets the database unit to use for producing
the layout.

void dbu= (double dbu) Sets the database unit to use for producing the
layout.

[const] new
LEFDEFReaderConfiguration
ptr

dup Creates a copy of self

[const] int fills_datatype Gets the fill geometry layer datatype value.

[const] int fills_datatype (unsigned int
mask)

Gets the fill geometry layer datatype value per
mask.

void fills_datatype= (int datatype) Sets the fill geometry layer datatype value.

[const] string fills_suffix Gets the fill geometry layer name suffix.

For more details visit
https://www.klayout.org

Page 2142 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

void fills_suffix= (string suffix) Sets the fill geometry layer name suffix.

[const] string fills_suffix_per_mask (unsigned int
mask)

Gets the fill geometry layer name suffix per
mask.

[const] variant instance_property_name Gets a value indicating whether and how to
produce instance names as properties.

void instance_property_name= (variant name) Sets a value indicating whether and how to
produce instance names as properties.

[const] int labels_datatype Gets the labels layer datatype value.

void labels_datatype= (int datatype) Sets the labels layer datatype value.

[const] string labels_suffix Gets the label layer name suffix.

void labels_suffix= (string suffix) Sets the label layer name suffix.

LayerMap layer_map Gets the layer map to be used for the LEF/
DEF reader

void layer_map= (const
LayerMap m)

Sets the layer map to be used for the LEF/DEF
reader

[const] string[] lef_files Gets the list technology LEF files to
additionally import

void lef_files= (string[]
lef_file_paths)

Sets the list technology LEF files to
additionally import

[const] int lef_labels_datatype Gets the lef_labels layer datatype value.

void lef_labels_datatype= (int datatype) Sets the lef_labels layer datatype value.

[const] string lef_labels_suffix Gets the label layer name suffix.

void lef_labels_suffix= (string suffix) Sets the label layer name suffix.

[const] int lef_pins_datatype Gets the LEF pin geometry layer datatype
value.

[const] int lef_pins_datatype (unsigned int
mask)

Gets the LEF pin geometry layer datatype
value per mask.

void lef_pins_datatype= (int datatype) Sets the LEF pin geometry layer datatype
value.

[const] string lef_pins_suffix Gets the LEF pin geometry layer name suffix.

void lef_pins_suffix= (string suffix) Sets the LEF pin geometry layer name suffix.

[const] string lef_pins_suffix_per_mask (unsigned int
mask)

Gets the LEF pin geometry layer name suffix
per mask.

[const] string[] macro_layout_files Gets the list of layout files to read for
substituting macros in DEF

For more details visit
https://www.klayout.org

Page 2143 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

void macro_layout_files= (string[]
file_paths)

Sets the list of layout files to read for
substituting macros in DEF

[const] Layout ptr[] macro_layouts Gets the layout objects used for resolving LEF
macros in the DEF reader.

void macro_layouts= (Layout ptr[]
layouts)

Sets the layout objects used for resolving LEF
macros in the DEF reader.

[const] unsigned int macro_resolution_mode Gets the macro resolution mode (LEF macros
into DEF).

void macro_resolution_mode= (unsigned int
mode)

Sets the macro resolution mode (LEF macros
into DEF).

[const] string map_file Gets the layer map file to use.

void map_file= (string file) Sets the layer map file to use.

[const] variant net_property_name Gets a value indicating whether and how to
produce net names as properties.

void net_property_name= (variant name) Sets a value indicating whether and how to
produce net names as properties.

[const] int obstructions_datatype Gets the obstruction marker layer datatype
value.

void obstructions_datatype= (int datatype) Sets the obstruction marker layer datatype
value.

[const] string obstructions_suffix Gets the obstruction marker layer name suffix.

void obstructions_suffix= (string suffix) Sets the obstruction marker layer name suffix.

void paths_relative_to_cwd= (bool f) Sets a value indicating whether to use paths
relative to cwd (true) or DEF file (false) for map
or LEF files

[const] variant pin_property_name Gets a value indicating whether and how to
produce pin names as properties.

void pin_property_name= (variant name) Sets a value indicating whether and how to
produce pin names as properties.

[const] int pins_datatype Gets the pin geometry layer datatype value.

[const] int pins_datatype (unsigned int
mask)

Gets the pin geometry layer datatype value per
mask.

void pins_datatype= (int datatype) Sets the pin geometry layer datatype value.

[const] string pins_suffix Gets the pin geometry layer name suffix.

void pins_suffix= (string suffix) Sets the pin geometry layer name suffix.

[const] string pins_suffix_per_mask (unsigned int
mask)

Gets the pin geometry layer name suffix per
mask.

For more details visit
https://www.klayout.org

Page 2144 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

[const] string placement_blockage_layer Gets the layer on which to produce the
placement blockage.

void placement_blockage_layer= (string layer) Sets the layer on which to produce the
placement blockage.

[const] bool produce_blockages Gets a value indicating whether routing
blockage markers shall be produced.

void produce_blockages= (bool produce) Sets a value indicating whether routing
blockage markers shall be produced.

[const] bool produce_cell_outlines Gets a value indicating whether to produce cell
outlines (diearea).

void produce_cell_outlines= (bool produce) Sets a value indicating whether to produce cell
outlines (diearea).

[const] bool produce_fills Gets a value indicating whether fill geometries
shall be produced.

void produce_fills= (bool produce) Sets a value indicating whether fill geometries
shall be produced.

[const] bool produce_labels Gets a value indicating whether labels shall be
produced.

void produce_labels= (bool produce) Sets a value indicating whether labels shall be
produced.

[const] bool produce_lef_labels Gets a value indicating whether lef_labels shall
be produced.

void produce_lef_labels= (bool produce) Sets a value indicating whether lef_labels shall
be produced.

[const] bool produce_lef_pins Gets a value indicating whether LEF pin
geometries shall be produced.

void produce_lef_pins= (bool produce) Sets a value indicating whether LEF pin
geometries shall be produced.

[const] bool produce_obstructions Gets a value indicating whether obstruction
markers shall be produced.

void produce_obstructions= (bool produce) Sets a value indicating whether obstruction
markers shall be produced.

[const] bool produce_pins Gets a value indicating whether pin geometries
shall be produced.

void produce_pins= (bool produce) Sets a value indicating whether pin geometries
shall be produced.

[const] bool produce_placement_blockages Gets a value indicating whether to produce
placement blockage regions.

void produce_placement_blockages=(bool produce) Sets a value indicating whether to produce
placement blockage regions.

For more details visit
https://www.klayout.org

Page 2145 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

[const] bool produce_regions Gets a value indicating whether to produce
regions.

void produce_regions= (bool produce) Sets a value indicating whether to produce
regions.

[const] bool produce_routing Gets a value indicating whether routing
geometry shall be produced.

void produce_routing= (bool produce) Sets a value indicating whether routing
geometry shall be produced.

[const] bool produce_special_routing Gets a value indicating whether special routing
geometry shall be produced.

void produce_special_routing= (bool produce) Sets a value indicating whether special routing
geometry shall be produced.

[const] bool produce_via_geometry Sets a value indicating whether via geometries
shall be produced.

void produce_via_geometry= (bool produce) Sets a value indicating whether via geometries
shall be produced.

[const] bool read_lef_with_def Gets a value indicating whether to read all LEF
files in the same directory than the DEF file.

void read_lef_with_def= (bool flag) Sets a value indicating whether to read all LEF
files in the same directory than the DEF file.

[const] string region_layer Gets the layer on which to produce the
regions.

void region_layer= (string layer) Sets the layer on which to produce the
regions.

[const] int routing_datatype Gets the routing layer datatype value.

[const] int routing_datatype (unsigned int
mask)

Gets the routing geometry layer datatype value
per mask.

void routing_datatype= (int datatype) Sets the routing layer datatype value.

[const] string routing_suffix Gets the routing layer name suffix.

void routing_suffix= (string suffix) Sets the routing layer name suffix.

[const] string routing_suffix_per_mask (unsigned int
mask)

Gets the routing geometry layer name suffix
per mask.

[const] bool separate_groups Gets a value indicating whether to create
separate parent cells for individual groups.

void separate_groups= (bool flag) Sets a value indicating whether to create
separate parent cells for individual groups.

void set_fills_datatype_per_mask (unsigned int
mask,
int datatype)

Sets the fill geometry layer datatype value.

For more details visit
https://www.klayout.org

Page 2146 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

void set_fills_suffix_per_mask (unsigned int
mask,
string suffix)

Sets the fill geometry layer name suffix per
mask.

void set_lef_pins_datatype_per_mask(unsigned int
mask,
int datatype)

Sets the LEF pin geometry layer datatype
value.

void set_lef_pins_suffix_per_mask (unsigned int
mask,
string suffix)

Sets the LEF pin geometry layer name suffix
per mask.

void set_pins_datatype_per_mask (unsigned int
mask,
int datatype)

Sets the pin geometry layer datatype value.

void set_pins_suffix_per_mask (unsigned int
mask,
string suffix)

Sets the pin geometry layer name suffix per
mask.

void set_routing_datatype_per_mask(unsigned int
mask,
int datatype)

Sets the routing geometry layer datatype
value.

void set_routing_suffix_per_mask (unsigned int
mask,
string suffix)

Sets the routing geometry layer name suffix
per mask.

void set_special_routing_datatype_per_mask(unsigned int
mask,
int datatype)

Sets the special routing geometry layer
datatype value.

void set_special_routing_suffix_per_mask(unsigned int
mask,
string suffix)

Sets the special routing geometry layer name
suffix per mask.

void set_via_geometry_datatype_per_mask(unsigned int
mask,
int datatype)

Sets the via geometry layer datatype value.

void set_via_geometry_suffix_per_mask(unsigned int
mask,
string suffix)

Sets the via geometry layer name suffix per
mask.

[const] int special_routing_datatype Gets the special routing layer datatype value.

[const] int special_routing_datatype (unsigned int
mask)

Gets the special routing geometry layer
datatype value per mask.

void special_routing_datatype= (int datatype) Sets the special routing layer datatype value.

[const] string special_routing_suffix Gets the special routing layer name suffix.

void special_routing_suffix= (string suffix) Sets the special routing layer name suffix.

[const] string special_routing_suffix_per_mask(unsigned int
mask)

Gets the special routing geometry layer name
suffix per mask.

[const] string via_cellname_prefix Gets the via cellname prefix.

For more details visit
https://www.klayout.org

Page 2147 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

void via_cellname_prefix= (string prefix) Sets the via cellname prefix.

[const] int via_geometry_datatype Gets the via geometry layer datatype value.

[const] int via_geometry_datatype (unsigned int
mask)

Gets the via geometry layer datatype value per
mask.

void via_geometry_datatype= (int datatype) Sets the via geometry layer datatype value.

[const] string via_geometry_suffix Gets the via geometry layer name suffix.

void via_geometry_suffix= (string suffix) Sets the via geometry layer name suffix.

[const] string via_geometry_suffix_per_mask(unsigned int
mask)

Gets the via geometry layer name suffix per
mask.

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script
object is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

For more details visit
https://www.klayout.org

Page 2148 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management
of the object. This method may be called if an object is returned from a C++ function and the
object is known not to be owned by any C++ instance. If necessary, the script side may delete
the object if the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called
if it is known that some C++ object holds and manages this object. Technically speaking, this
method will turn the script's reference into a weak reference. After the script engine decides
to delete the reference, the object itself will still exist. If the object is not managed otherwise,
memory leaks will occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const LEFDEFReaderConfiguration other)

Description: Assigns another object to self

blockages_datatype
Signature: [const] int blockages_datatype

Description: Gets the blockage marker layer datatype value.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a readable attribute 'blockages_datatype'. This is the getter.

blockages_datatype=
Signature: void blockages_datatype= (int datatype)

Description: Sets the blockage marker layer datatype value.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a writable attribute 'blockages_datatype'. This is the setter.

blockages_suffix
Signature: [const] string blockages_suffix

Description: Gets the blockage marker layer name suffix.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a readable attribute 'blockages_suffix'. This is the getter.

blockages_suffix=
Signature: void blockages_suffix= (string suffix)

Description: Sets the blockage marker layer name suffix.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a writable attribute 'blockages_suffix'. This is the setter.

cell_outline_layer
Signature: [const] string cell_outline_layer

Description: Gets the layer on which to produce the cell outline (diearea).

For more details visit
https://www.klayout.org

Page 2149 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

This attribute is a string corresponding to the string representation of LayerInfo. This string can
be either a layer number, a layer/datatype pair, a name or a combination of both. See LayerInfo
for details. The setter for this attribute is cell_outline_layer=. See also produce_cell_outlines.

Python specific notes:
The object exposes a readable attribute 'cell_outline_layer'. This is the getter.

cell_outline_layer=
Signature: void cell_outline_layer= (string spec)

Description: Sets the layer on which to produce the cell outline (diearea).

See cell_outline_layer for details.

Python specific notes:
The object exposes a writable attribute 'cell_outline_layer'. This is the setter.

clear_fill_datatypes_per_mask
Signature: void clear_fill_datatypes_per_mask

Description: Clears the fill layer datatypes per mask.

See produce_via_geometry for details about this property.

Mask specific rules have been introduced in version 0.27.

clear_fills_suffixes_per_mask
Signature: void clear_fills_suffixes_per_mask

Description: Clears the fill layer name suffix per mask.

See produce_via_geometry for details about this property.

Mask specific rules have been introduced in version 0.27.

clear_lef_pins_datatypes_per_mask
Signature: void clear_lef_pins_datatypes_per_mask

Description: Clears the LEF pin layer datatypes per mask.

See produce_via_geometry for details about this property.

Mask specific rules have been introduced in version 0.27.

clear_lef_pins_suffixes_per_mask
Signature: void clear_lef_pins_suffixes_per_mask

Description: Clears the LEF pin layer name suffix per mask.

See produce_via_geometry for details about this property.

Mask specific rules have been introduced in version 0.27.

clear_pin_datatypes_per_mask
Signature: void clear_pin_datatypes_per_mask

Description: Clears the pin layer datatypes per mask.

See produce_via_geometry for details about this property.

Mask specific rules have been introduced in version 0.27.

clear_pins_suffixes_per_mask
Signature: void clear_pins_suffixes_per_mask

Description: Clears the pin layer name suffix per mask.

See produce_via_geometry for details about this property.

Mask specific rules have been introduced in version 0.27.

clear_routing_datatypes_per_mask
Signature: void clear_routing_datatypes_per_mask

Description: Clears the routing layer datatypes per mask.

See produce_via_geometry for details about this property.

For more details visit
https://www.klayout.org

Page 2150 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

Mask specific rules have been introduced in version 0.27.

clear_routing_suffixes_per_mask
Signature: void clear_routing_suffixes_per_mask

Description: Clears the routing layer name suffix per mask.

See produce_via_geometry for details about this property.

Mask specific rules have been introduced in version 0.27.

clear_special_routing_datatypes_per_mask
Signature: void clear_special_routing_datatypes_per_mask

Description: Clears the special routing layer datatypes per mask.

See produce_via_geometry for details about this property.

Mask specific rules have been introduced in version 0.27.

clear_special_routing_suffixes_per_mask
Signature: void clear_special_routing_suffixes_per_mask

Description: Clears the special routing layer name suffix per mask.

See produce_via_geometry for details about this property.

Mask specific rules have been introduced in version 0.27.

clear_via_geometry_datatypes_per_mask
Signature: void clear_via_geometry_datatypes_per_mask

Description: Clears the via geometry layer datatypes per mask.

See produce_via_geometry for details about this property.

Mask specific rules have been introduced in version 0.27.

clear_via_geometry_suffixes_per_mask
Signature: void clear_via_geometry_suffixes_per_mask

Description: Clears the via geometry layer name suffix per mask.

See produce_via_geometry for details about this property.

Mask specific rules have been introduced in version 0.27.

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script
object is created.

create_other_layers
Signature: [const] bool create_other_layers

Description: Gets a value indicating whether layers not mapped in the layer map shall be
created too

See layer_map for details.

Python specific notes:
The object exposes a readable attribute 'create_other_layers'. This is the getter.

create_other_layers=
Signature: void create_other_layers= (bool f)

Description: Sets a value indicating whether layers not mapped in the layer map shall be
created too

See layer_map for details.

For more details visit
https://www.klayout.org

Page 2151 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

Python specific notes:
The object exposes a writable attribute 'create_other_layers'. This is the setter.

dbu
Signature: [const] double dbu

Description: Gets the database unit to use for producing the layout.

This value specifies the database to be used for the layout that is read. When a DEF file is
specified with a different database unit, the layout is translated into this database unit.

Python specific notes:
The object exposes a readable attribute 'dbu'. This is the getter.

dbu=
Signature: void dbu= (double dbu)

Description: Sets the database unit to use for producing the layout.

See dbu for details.

Python specific notes:
The object exposes a writable attribute 'dbu'. This is the setter.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new LEFDEFReaderConfiguration ptr dup

Description: Creates a copy of self

(1) Signature: [const] int fills_datatype

Description: Gets the fill geometry layer datatype value.

See produce_via_geometry for details about the layer production rules.

Fill support has been introduced in version 0.27.

Python specific notes:
The object exposes a readable attribute 'fills_datatype'. This is the getter.

fills_datatype

(2) Signature: [const] int fills_datatype (unsigned int mask)

Description: Gets the fill geometry layer datatype value per mask.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

Python specific notes:
This attribute is available as 'fills_datatype_' in Python

For more details visit
https://www.klayout.org

Page 2152 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

fills_datatype=
Signature: void fills_datatype= (int datatype)

Description: Sets the fill geometry layer datatype value.

See produce_via_geometry for details about the layer production rules.

Fill support has been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'fills_datatype'. This is the setter.

fills_suffix
Signature: [const] string fills_suffix

Description: Gets the fill geometry layer name suffix.

See produce_via_geometry for details about the layer production rules.

Fill support has been introduced in version 0.27.

Python specific notes:
The object exposes a readable attribute 'fills_suffix'. This is the getter.

fills_suffix=
Signature: void fills_suffix= (string suffix)

Description: Sets the fill geometry layer name suffix.

See produce_via_geometry for details about the layer production rules.

Fill support has been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'fills_suffix'. This is the setter.

fills_suffix_per_mask
Signature: [const] string fills_suffix_per_mask (unsigned int mask)

Description: Gets the fill geometry layer name suffix per mask.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

instance_property_name
Signature: [const] variant instance_property_name

Description: Gets a value indicating whether and how to produce instance names as properties.

If set to a value not nil, instance names will be attached to the instances generated as user
properties. This attribute then specifies the user property name to be used for attaching the
instance names. If set to nil, no instance names will be produced.

The corresponding setter is instance_property_name=.

This method has been introduced in version 0.26.4.

Python specific notes:
The object exposes a readable attribute 'instance_property_name'. This is the getter.

instance_property_name=
Signature: void instance_property_name= (variant name)

Description: Sets a value indicating whether and how to produce instance names as properties.

See instance_property_name for details.

This method has been introduced in version 0.26.4.

Python specific notes:
The object exposes a writable attribute 'instance_property_name'. This is the setter.

is_const_object?
Signature: [const] bool is_const_object?

For more details visit
https://www.klayout.org

Page 2153 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

labels_datatype
Signature: [const] int labels_datatype

Description: Gets the labels layer datatype value.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a readable attribute 'labels_datatype'. This is the getter.

labels_datatype=
Signature: void labels_datatype= (int datatype)

Description: Sets the labels layer datatype value.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a writable attribute 'labels_datatype'. This is the setter.

labels_suffix
Signature: [const] string labels_suffix

Description: Gets the label layer name suffix.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a readable attribute 'labels_suffix'. This is the getter.

labels_suffix=
Signature: void labels_suffix= (string suffix)

Description: Sets the label layer name suffix.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a writable attribute 'labels_suffix'. This is the setter.

layer_map
Signature: LayerMap layer_map

Description: Gets the layer map to be used for the LEF/DEF reader

Returns: A reference to the layer map

Because LEF/DEF layer mapping is substantially different than for normal layout files, the LEF/
DEF reader employs a separate layer mapping table. The LEF/DEF specific layer mapping is
stored within the LEF/DEF reader's configuration and can be accessed with this attribute. The
layer mapping table of LoadLayoutOptions will be ignored for the LEF/DEF reader.

The setter is layer_map=. create_other_layers= is available to control whether layers not
specified in the layer mapping table shall be created automatically.

Python specific notes:
The object exposes a readable attribute 'layer_map'. This is the getter.

layer_map=
Signature: void layer_map= (const LayerMap m)

Description: Sets the layer map to be used for the LEF/DEF reader

See layer_map for details.

Python specific notes:
The object exposes a writable attribute 'layer_map'. This is the setter.

For more details visit
https://www.klayout.org

Page 2154 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

lef_files
Signature: [const] string[] lef_files

Description: Gets the list technology LEF files to additionally import

Returns a list of path names for technology LEF files to read in addition to the primary file.
Relative paths are resolved relative to the file to read or relative to the technology base path.

The setter for this property is lef_files=.

Python specific notes:
The object exposes a readable attribute 'lef_files'. This is the getter.

lef_files=
Signature: void lef_files= (string[] lef_file_paths)

Description: Sets the list technology LEF files to additionally import

See lef_files for details.

Python specific notes:
The object exposes a writable attribute 'lef_files'. This is the setter.

lef_labels_datatype
Signature: [const] int lef_labels_datatype

Description: Gets the lef_labels layer datatype value.

See produce_via_geometry for details about the layer production rules.

This method has been introduced in version 0.27.2

Python specific notes:
The object exposes a readable attribute 'lef_labels_datatype'. This is the getter.

lef_labels_datatype=
Signature: void lef_labels_datatype= (int datatype)

Description: Sets the lef_labels layer datatype value.

See produce_via_geometry for details about the layer production rules.

This method has been introduced in version 0.27.2

Python specific notes:
The object exposes a writable attribute 'lef_labels_datatype'. This is the setter.

lef_labels_suffix
Signature: [const] string lef_labels_suffix

Description: Gets the label layer name suffix.

See produce_via_geometry for details about the layer production rules.

This method has been introduced in version 0.27.2

Python specific notes:
The object exposes a readable attribute 'lef_labels_suffix'. This is the getter.

lef_labels_suffix=
Signature: void lef_labels_suffix= (string suffix)

Description: Sets the label layer name suffix.

See produce_via_geometry for details about the layer production rules.

This method has been introduced in version 0.27.2

Python specific notes:
The object exposes a writable attribute 'lef_labels_suffix'. This is the setter.

lef_pins_datatype
(1) Signature: [const] int lef_pins_datatype

Description: Gets the LEF pin geometry layer datatype value.

See produce_via_geometry for details about the layer production rules.

For more details visit
https://www.klayout.org

Page 2155 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

Python specific notes:
The object exposes a readable attribute 'lef_pins_datatype'. This is the getter.

(2) Signature: [const] int lef_pins_datatype (unsigned int mask)

Description: Gets the LEF pin geometry layer datatype value per mask.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

Python specific notes:
This attribute is available as 'lef_pins_datatype_' in Python

lef_pins_datatype=
Signature: void lef_pins_datatype= (int datatype)

Description: Sets the LEF pin geometry layer datatype value.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a writable attribute 'lef_pins_datatype'. This is the setter.

lef_pins_suffix
Signature: [const] string lef_pins_suffix

Description: Gets the LEF pin geometry layer name suffix.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a readable attribute 'lef_pins_suffix'. This is the getter.

lef_pins_suffix=
Signature: void lef_pins_suffix= (string suffix)

Description: Sets the LEF pin geometry layer name suffix.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a writable attribute 'lef_pins_suffix'. This is the setter.

lef_pins_suffix_per_mask
Signature: [const] string lef_pins_suffix_per_mask (unsigned int mask)

Description: Gets the LEF pin geometry layer name suffix per mask.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

macro_layout_files
Signature: [const] string[] macro_layout_files

Description: Gets the list of layout files to read for substituting macros in DEF

These files play the same role than the macro layouts (see macro_layouts), except that this
property specifies a list of file names. The given files are loaded automatically to resolve macro
layouts instead of LEF geometry. See macro_resolution_mode for details when this happens.
Relative paths are resolved relative to the DEF file to read or relative to the technology base
path. Macros in need for substitution are looked up in the layout files by searching for cells with
the same name. The files are scanned in the order they are given in the file list. The files from
macro_layout_files are scanned after the layout objects specified with macro_layouts.

The setter for this property is macro_layout_files=.

This property has been added in version 0.27.1.

Python specific notes:

For more details visit
https://www.klayout.org

Page 2156 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

The object exposes a readable attribute 'macro_layout_files'. This is the getter.

macro_layout_files=
Signature: void macro_layout_files= (string[] file_paths)

Description: Sets the list of layout files to read for substituting macros in DEF

See macro_layout_files for details.

This property has been added in version 0.27.1.

Python specific notes:
The object exposes a writable attribute 'macro_layout_files'. This is the setter.

macro_layouts
Signature: [const] Layout ptr[] macro_layouts

Description: Gets the layout objects used for resolving LEF macros in the DEF reader.

The DEF reader can either use LEF geometry or use a separate source of layouts for the LEF
macros. The macro_resolution_mode controls whether to use LEF geometry. If LEF geometry is
not used, the DEF reader will look up macro cells from the macro_layouts and pull cell layouts
from there.

The LEF cells are looked up as cells by name from the macro layouts in the order these are
given in this array.

macro_layout_files is another way of specifying such substitution layouts. This method accepts
file names instead of layout objects.

This property has been added in version 0.27.

Python specific notes:
The object exposes a readable attribute 'macro_layouts'. This is the getter.

macro_layouts=
Signature: void macro_layouts= (Layout ptr[] layouts)

Description: Sets the layout objects used for resolving LEF macros in the DEF reader.

See macro_layouts for more details about this property.

Layout objects specified in the array for this property are not owned by the
LEFDEFReaderConfiguration object. Be sure to keep some other reference to these Layout
objects if you are storing away the LEF/DEF reader configuration object.

This property has been added in version 0.27.

Python specific notes:
The object exposes a writable attribute 'macro_layouts'. This is the setter.

macro_resolution_mode
Signature: [const] unsigned int macro_resolution_mode

Description: Gets the macro resolution mode (LEF macros into DEF).

This property describes the way LEF macros are turned into layout cells when reading DEF.
There are three modes available:

• 0: produce LEF geometry unless a FOREIGN cell is specified

• 1: produce LEF geometry always and ignore FOREIGN

• 2: Never produce LEF geometry and assume FOREIGN always

If substitution layouts are specified with macro_layouts, these are used to provide macro layouts
in case no LEF geometry is taken.

This property has been added in version 0.27.

Python specific notes:
The object exposes a readable attribute 'macro_resolution_mode'. This is the getter.

For more details visit
https://www.klayout.org

Page 2157 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

macro_resolution_mode=
Signature: void macro_resolution_mode= (unsigned int mode)

Description: Sets the macro resolution mode (LEF macros into DEF).

See macro_resolution_mode for details about this property.

This property has been added in version 0.27.

Python specific notes:
The object exposes a writable attribute 'macro_resolution_mode'. This is the setter.

map_file
Signature: [const] string map_file

Description: Gets the layer map file to use.

If a layer map file is given, the reader will pull the layer mapping from this file. The layer mapping
rules specified in the reader options are ignored in this case. These are the name suffix rules
for vias, blockages, routing, special routing, pins etc. and the corresponding datatype rules. The
layer_map attribute will also be ignored. The layer map file path will be resolved relative to the
technology base path if the LEF/DEF reader options are used in the context of a technology.

This property has been added in version 0.27.

Python specific notes:
The object exposes a readable attribute 'map_file'. This is the getter.

map_file=
Signature: void map_file= (string file)

Description: Sets the layer map file to use.

See map_file for details about this property.

This property has been added in version 0.27.

Python specific notes:
The object exposes a writable attribute 'map_file'. This is the setter.

net_property_name
Signature: [const] variant net_property_name

Description: Gets a value indicating whether and how to produce net names as properties.

If set to a value not nil, net names will be attached to the net shapes generated as user
properties. This attribute then specifies the user property name to be used for attaching the net
names. If set to nil, no net names will be produced.

The corresponding setter is net_property_name=.

Python specific notes:
The object exposes a readable attribute 'net_property_name'. This is the getter.

net_property_name=
Signature: void net_property_name= (variant name)

Description: Sets a value indicating whether and how to produce net names as properties.

See net_property_name for details.

Python specific notes:
The object exposes a writable attribute 'net_property_name'. This is the setter.

new
Signature: [static] new LEFDEFReaderConfiguration ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

obstructions_datatype
Signature: [const] int obstructions_datatype

Description: Gets the obstruction marker layer datatype value.

For more details visit
https://www.klayout.org

Page 2158 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a readable attribute 'obstructions_datatype'. This is the getter.

obstructions_datatype=
Signature: void obstructions_datatype= (int datatype)

Description: Sets the obstruction marker layer datatype value.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a writable attribute 'obstructions_datatype'. This is the setter.

obstructions_suffix
Signature: [const] string obstructions_suffix

Description: Gets the obstruction marker layer name suffix.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a readable attribute 'obstructions_suffix'. This is the getter.

obstructions_suffix=
Signature: void obstructions_suffix= (string suffix)

Description: Sets the obstruction marker layer name suffix.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a writable attribute 'obstructions_suffix'. This is the setter.

paths_relative_to_cwd=
Signature: void paths_relative_to_cwd= (bool f)

Description: Sets a value indicating whether to use paths relative to cwd (true) or DEF file
(false) for map or LEF files

This write-only attribute has been introduced in version 0.27.9.

Python specific notes:
The object exposes a writable attribute 'paths_relative_to_cwd'. This is the setter.

pin_property_name
Signature: [const] variant pin_property_name

Description: Gets a value indicating whether and how to produce pin names as properties.

If set to a value not nil, pin names will be attached to the pin shapes generated as user
properties. This attribute then specifies the user property name to be used for attaching the pin
names. If set to nil, no pin names will be produced.

The corresponding setter is pin_property_name=.

This method has been introduced in version 0.26.4.

Python specific notes:
The object exposes a readable attribute 'pin_property_name'. This is the getter.

pin_property_name=
Signature: void pin_property_name= (variant name)

Description: Sets a value indicating whether and how to produce pin names as properties.

See pin_property_name for details.

This method has been introduced in version 0.26.4.

Python specific notes:
The object exposes a writable attribute 'pin_property_name'. This is the setter.

For more details visit
https://www.klayout.org

Page 2159 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

(1) Signature: [const] int pins_datatype

Description: Gets the pin geometry layer datatype value.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a readable attribute 'pins_datatype'. This is the getter.

pins_datatype

(2) Signature: [const] int pins_datatype (unsigned int mask)

Description: Gets the pin geometry layer datatype value per mask.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

Python specific notes:
This attribute is available as 'pins_datatype_' in Python

pins_datatype=
Signature: void pins_datatype= (int datatype)

Description: Sets the pin geometry layer datatype value.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a writable attribute 'pins_datatype'. This is the setter.

pins_suffix
Signature: [const] string pins_suffix

Description: Gets the pin geometry layer name suffix.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a readable attribute 'pins_suffix'. This is the getter.

pins_suffix=
Signature: void pins_suffix= (string suffix)

Description: Sets the pin geometry layer name suffix.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a writable attribute 'pins_suffix'. This is the setter.

pins_suffix_per_mask
Signature: [const] string pins_suffix_per_mask (unsigned int mask)

Description: Gets the pin geometry layer name suffix per mask.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

placement_blockage_layer
Signature: [const] string placement_blockage_layer

Description: Gets the layer on which to produce the placement blockage.

This attribute is a string corresponding to the string representation of LayerInfo. This string
can be either a layer number, a layer/datatype pair, a name or a combination of both. See
LayerInfo for details.The setter for this attribute is placement_blockage_layer=. See also
produce_placement_blockages.

Python specific notes:
The object exposes a readable attribute 'placement_blockage_layer'. This is the getter.

For more details visit
https://www.klayout.org

Page 2160 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

placement_blockage_layer=
Signature: void placement_blockage_layer= (string layer)

Description: Sets the layer on which to produce the placement blockage.

See placement_blockage_layer for details.

Python specific notes:
The object exposes a writable attribute 'placement_blockage_layer'. This is the setter.

produce_blockages
Signature: [const] bool produce_blockages

Description: Gets a value indicating whether routing blockage markers shall be produced.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a readable attribute 'produce_blockages'. This is the getter.

produce_blockages=
Signature: void produce_blockages= (bool produce)

Description: Sets a value indicating whether routing blockage markers shall be produced.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a writable attribute 'produce_blockages'. This is the setter.

produce_cell_outlines
Signature: [const] bool produce_cell_outlines

Description: Gets a value indicating whether to produce cell outlines (diearea).

If set to true, cell outlines will be produced on the layer given by cell_outline_layer.

Python specific notes:
The object exposes a readable attribute 'produce_cell_outlines'. This is the getter.

produce_cell_outlines=
Signature: void produce_cell_outlines= (bool produce)

Description: Sets a value indicating whether to produce cell outlines (diearea).

See produce_cell_outlines for details.

Python specific notes:
The object exposes a writable attribute 'produce_cell_outlines'. This is the setter.

produce_fills
Signature: [const] bool produce_fills

Description: Gets a value indicating whether fill geometries shall be produced.

See produce_via_geometry for details about the layer production rules.

Fill support has been introduced in version 0.27.

Python specific notes:
The object exposes a readable attribute 'produce_fills'. This is the getter.

produce_fills=
Signature: void produce_fills= (bool produce)

Description: Sets a value indicating whether fill geometries shall be produced.

See produce_via_geometry for details about the layer production rules.

Fill support has been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'produce_fills'. This is the setter.

For more details visit
https://www.klayout.org

Page 2161 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

produce_labels
Signature: [const] bool produce_labels

Description: Gets a value indicating whether labels shall be produced.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a readable attribute 'produce_labels'. This is the getter.

produce_labels=
Signature: void produce_labels= (bool produce)

Description: Sets a value indicating whether labels shall be produced.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a writable attribute 'produce_labels'. This is the setter.

produce_lef_labels
Signature: [const] bool produce_lef_labels

Description: Gets a value indicating whether lef_labels shall be produced.

See produce_via_geometry for details about the layer production rules.

This method has been introduced in version 0.27.2

Python specific notes:
The object exposes a readable attribute 'produce_lef_labels'. This is the getter.

produce_lef_labels=
Signature: void produce_lef_labels= (bool produce)

Description: Sets a value indicating whether lef_labels shall be produced.

See produce_via_geometry for details about the layer production rules.

This method has been introduced in version 0.27.2

Python specific notes:
The object exposes a writable attribute 'produce_lef_labels'. This is the setter.

produce_lef_pins
Signature: [const] bool produce_lef_pins

Description: Gets a value indicating whether LEF pin geometries shall be produced.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a readable attribute 'produce_lef_pins'. This is the getter.

produce_lef_pins=
Signature: void produce_lef_pins= (bool produce)

Description: Sets a value indicating whether LEF pin geometries shall be produced.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a writable attribute 'produce_lef_pins'. This is the setter.

produce_obstructions
Signature: [const] bool produce_obstructions

Description: Gets a value indicating whether obstruction markers shall be produced.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a readable attribute 'produce_obstructions'. This is the getter.

For more details visit
https://www.klayout.org

Page 2162 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

produce_obstructions=
Signature: void produce_obstructions= (bool produce)

Description: Sets a value indicating whether obstruction markers shall be produced.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a writable attribute 'produce_obstructions'. This is the setter.

produce_pins
Signature: [const] bool produce_pins

Description: Gets a value indicating whether pin geometries shall be produced.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a readable attribute 'produce_pins'. This is the getter.

produce_pins=
Signature: void produce_pins= (bool produce)

Description: Sets a value indicating whether pin geometries shall be produced.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a writable attribute 'produce_pins'. This is the setter.

produce_placement_blockages
Signature: [const] bool produce_placement_blockages

Description: Gets a value indicating whether to produce placement blockage regions.

If set to true, polygons will be produced representing the placement blockage region on the layer
given by placement_blockage_layer.

Python specific notes:
The object exposes a readable attribute 'produce_placement_blockages'. This is the getter.

produce_placement_blockages=
Signature: void produce_placement_blockages= (bool produce)

Description: Sets a value indicating whether to produce placement blockage regions.

See produce_placement_blockages for details.

Python specific notes:
The object exposes a writable attribute 'produce_placement_blockages'. This is the setter.

produce_regions
Signature: [const] bool produce_regions

Description: Gets a value indicating whether to produce regions.

If set to true, polygons will be produced representing the regions on the layer given by
region_layer.

The attribute has been introduced in version 0.27.

Python specific notes:
The object exposes a readable attribute 'produce_regions'. This is the getter.

produce_regions=
Signature: void produce_regions= (bool produce)

Description: Sets a value indicating whether to produce regions.

See produce_regions for details.

The attribute has been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'produce_regions'. This is the setter.

For more details visit
https://www.klayout.org

Page 2163 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

produce_routing
Signature: [const] bool produce_routing

Description: Gets a value indicating whether routing geometry shall be produced.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a readable attribute 'produce_routing'. This is the getter.

produce_routing=
Signature: void produce_routing= (bool produce)

Description: Sets a value indicating whether routing geometry shall be produced.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a writable attribute 'produce_routing'. This is the setter.

produce_special_routing
Signature: [const] bool produce_special_routing

Description: Gets a value indicating whether special routing geometry shall be produced.

See produce_via_geometry for details about the layer production rules.

The differentiation between special and normal routing has been introduced in version 0.27.

Python specific notes:
The object exposes a readable attribute 'produce_special_routing'. This is the getter.

produce_special_routing=
Signature: void produce_special_routing= (bool produce)

Description: Sets a value indicating whether special routing geometry shall be produced.

See produce_via_geometry for details about the layer production rules. The differentiation
between special and normal routing has been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'produce_special_routing'. This is the setter.

produce_via_geometry
Signature: [const] bool produce_via_geometry

Description: Sets a value indicating whether via geometries shall be produced.

If set to true, shapes will be produced for each via. The layer to be produced will be determined
from the via layer's name using the suffix provided by via_geometry_suffix. If there is a specific
mapping in the layer mapping table for the via layer including the suffix, the layer/datatype will
be taken from the layer mapping table. If there is a mapping to the undecorated via layer, the
datatype will be substituted with the via_geometry_datatype value. If no mapping is defined,
a unique number will be assigned to the layer number and the datatype will be taken from the
via_geometry_datatype value.

For example: the via layer is 'V1', via_geometry_suffix is 'GEO' and via_geometry_datatype is 1.
Then:

• If there is a mapping for 'V1.GEO', the layer and datatype will be taken from there.

• If there is a mapping for 'V1', the layer will be taken from there and the datatype will be
taken from via_geometry_datatype. The name of the produced layer will be 'V1.GEO'.

• If there is no mapping for both, the layer number will be a unique value, the datatype will
be taken from via_geometry_datatype and the layer name will be 'V1.GEO'.

Python specific notes:
The object exposes a readable attribute 'produce_via_geometry'. This is the getter.

For more details visit
https://www.klayout.org

Page 2164 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

produce_via_geometry=
Signature: void produce_via_geometry= (bool produce)

Description: Sets a value indicating whether via geometries shall be produced.

See produce_via_geometry for details.

Python specific notes:
The object exposes a writable attribute 'produce_via_geometry'. This is the setter.

read_lef_with_def
Signature: [const] bool read_lef_with_def

Description: Gets a value indicating whether to read all LEF files in the same directory than the
DEF file.

If this property is set to true (the default), the DEF reader will automatically consume all LEF files
next to the DEF file in addition to the LEF files specified with lef_files. If set to false, only the LEF
files specified with lef_files will be read.

This property has been added in version 0.27.

Python specific notes:
The object exposes a readable attribute 'read_lef_with_def'. This is the getter.

read_lef_with_def=
Signature: void read_lef_with_def= (bool flag)

Description: Sets a value indicating whether to read all LEF files in the same directory than the
DEF file.

See read_lef_with_def for details about this property.

This property has been added in version 0.27.

Python specific notes:
The object exposes a writable attribute 'read_lef_with_def'. This is the setter.

region_layer
Signature: [const] string region_layer

Description: Gets the layer on which to produce the regions.

This attribute is a string corresponding to the string representation of LayerInfo. This string can
be either a layer number, a layer/datatype pair, a name or a combination of both. See LayerInfo
for details.The setter for this attribute is region_layer=. See also produce_regions.

The attribute has been introduced in version 0.27.

Python specific notes:
The object exposes a readable attribute 'region_layer'. This is the getter.

region_layer=
Signature: void region_layer= (string layer)

Description: Sets the layer on which to produce the regions.

See region_layer for details.

The attribute has been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'region_layer'. This is the setter.

(1) Signature: [const] int routing_datatype

Description: Gets the routing layer datatype value.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a readable attribute 'routing_datatype'. This is the getter.

routing_datatype

(2) Signature: [const] int routing_datatype (unsigned int mask)

For more details visit
https://www.klayout.org

Page 2165 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

Description: Gets the routing geometry layer datatype value per mask.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

Python specific notes:
This attribute is available as 'routing_datatype_' in Python

routing_datatype=
Signature: void routing_datatype= (int datatype)

Description: Sets the routing layer datatype value.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a writable attribute 'routing_datatype'. This is the setter.

routing_suffix
Signature: [const] string routing_suffix

Description: Gets the routing layer name suffix.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a readable attribute 'routing_suffix'. This is the getter.

routing_suffix=
Signature: void routing_suffix= (string suffix)

Description: Sets the routing layer name suffix.

See produce_via_geometry for details about the layer production rules.

Python specific notes:
The object exposes a writable attribute 'routing_suffix'. This is the setter.

routing_suffix_per_mask
Signature: [const] string routing_suffix_per_mask (unsigned int mask)

Description: Gets the routing geometry layer name suffix per mask.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

separate_groups
Signature: [const] bool separate_groups

Description: Gets a value indicating whether to create separate parent cells for individual
groups.

If this property is set to true, instances belonging to different groups are separated by putting
them into individual parent cells. These parent cells are named after the groups and are put
into the master top cell. If this property is set to false (the default), no such group parents will be
formed. This property has been added in version 0.27.

Python specific notes:
The object exposes a readable attribute 'separate_groups'. This is the getter.

separate_groups=
Signature: void separate_groups= (bool flag)

Description: Sets a value indicating whether to create separate parent cells for individual
groups.

See separate_groups for details about this property.

This property has been added in version 0.27.

Python specific notes:

For more details visit
https://www.klayout.org

Page 2166 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

The object exposes a writable attribute 'separate_groups'. This is the setter.

set_fills_datatype_per_mask
Signature: void set_fills_datatype_per_mask (unsigned int mask, int datatype)

Description: Sets the fill geometry layer datatype value.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

set_fills_suffix_per_mask
Signature: void set_fills_suffix_per_mask (unsigned int mask, string suffix)

Description: Sets the fill geometry layer name suffix per mask.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

set_lef_pins_datatype_per_mask
Signature: void set_lef_pins_datatype_per_mask (unsigned int mask, int datatype)

Description: Sets the LEF pin geometry layer datatype value.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

set_lef_pins_suffix_per_mask
Signature: void set_lef_pins_suffix_per_mask (unsigned int mask, string suffix)

Description: Sets the LEF pin geometry layer name suffix per mask.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

set_pins_datatype_per_mask
Signature: void set_pins_datatype_per_mask (unsigned int mask, int datatype)

Description: Sets the pin geometry layer datatype value.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

set_pins_suffix_per_mask
Signature: void set_pins_suffix_per_mask (unsigned int mask, string suffix)

Description: Sets the pin geometry layer name suffix per mask.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

set_routing_datatype_per_mask
Signature: void set_routing_datatype_per_mask (unsigned int mask, int datatype)

Description: Sets the routing geometry layer datatype value.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

set_routing_suffix_per_mask
Signature: void set_routing_suffix_per_mask (unsigned int mask, string suffix)

Description: Sets the routing geometry layer name suffix per mask.

For more details visit
https://www.klayout.org

Page 2167 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

set_special_routing_datatype_per_mask
Signature: void set_special_routing_datatype_per_mask (unsigned int mask, int datatype)

Description: Sets the special routing geometry layer datatype value.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

set_special_routing_suffix_per_mask
Signature: void set_special_routing_suffix_per_mask (unsigned int mask, string suffix)

Description: Sets the special routing geometry layer name suffix per mask.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

set_via_geometry_datatype_per_mask
Signature: void set_via_geometry_datatype_per_mask (unsigned int mask, int datatype)

Description: Sets the via geometry layer datatype value.

See produce_via_geometry for details about this property. The mask number is a zero-based
mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

set_via_geometry_suffix_per_mask
Signature: void set_via_geometry_suffix_per_mask (unsigned int mask, string suffix)

Description: Sets the via geometry layer name suffix per mask.

See produce_via_geometry for details about this property. The mask number is a zero-based
mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

(1) Signature: [const] int special_routing_datatype

Description: Gets the special routing layer datatype value.

See produce_via_geometry for details about the layer production rules. The differentiation
between special and normal routing has been introduced in version 0.27.

Python specific notes:
The object exposes a readable attribute 'special_routing_datatype'. This is the getter.

special_routing_datatype

(2) Signature: [const] int special_routing_datatype (unsigned int mask)

Description: Gets the special routing geometry layer datatype value per mask.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

Python specific notes:
This attribute is available as 'special_routing_datatype_' in Python

special_routing_datatype=
Signature: void special_routing_datatype= (int datatype)

Description: Sets the special routing layer datatype value.

For more details visit
https://www.klayout.org

Page 2168 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

See produce_via_geometry for details about the layer production rules. The differentiation
between special and normal routing has been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'special_routing_datatype'. This is the setter.

special_routing_suffix
Signature: [const] string special_routing_suffix

Description: Gets the special routing layer name suffix.

See produce_via_geometry for details about the layer production rules. The differentiation
between special and normal routing has been introduced in version 0.27.

Python specific notes:
The object exposes a readable attribute 'special_routing_suffix'. This is the getter.

special_routing_suffix=
Signature: void special_routing_suffix= (string suffix)

Description: Sets the special routing layer name suffix.

See produce_via_geometry for details about the layer production rules. The differentiation
between special and normal routing has been introduced in version 0.27.

Python specific notes:
The object exposes a writable attribute 'special_routing_suffix'. This is the setter.

special_routing_suffix_per_mask
Signature: [const] string special_routing_suffix_per_mask (unsigned int mask)

Description: Gets the special routing geometry layer name suffix per mask.

See produce_via_geometry for details about the layer production rules.The mask number is a
zero-based mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

via_cellname_prefix
Signature: [const] string via_cellname_prefix

Description: Gets the via cellname prefix.

Vias are represented by cells. The cell name is formed by combining the via cell name prefix and
the via name.

This property has been added in version 0.27.

Python specific notes:
The object exposes a readable attribute 'via_cellname_prefix'. This is the getter.

via_cellname_prefix=
Signature: void via_cellname_prefix= (string prefix)

Description: Sets the via cellname prefix.

See via_cellname_prefix for details about this property.

This property has been added in version 0.27.

Python specific notes:
The object exposes a writable attribute 'via_cellname_prefix'. This is the setter.

(1) Signature: [const] int via_geometry_datatype

Description: Gets the via geometry layer datatype value.

See produce_via_geometry for details about this property.

Python specific notes:
The object exposes a readable attribute 'via_geometry_datatype'. This is the getter.

via_geometry_datatype

(2) Signature: [const] int via_geometry_datatype (unsigned int mask)

For more details visit
https://www.klayout.org

Page 2169 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.207. API reference - Class LEFDEFReaderConfiguration

Description: Gets the via geometry layer datatype value per mask.

See produce_via_geometry for details about this property. The mask number is a zero-based
mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

Python specific notes:
This attribute is available as 'via_geometry_datatype_' in Python

via_geometry_datatype=
Signature: void via_geometry_datatype= (int datatype)

Description: Sets the via geometry layer datatype value.

See produce_via_geometry for details about this property.

Python specific notes:
The object exposes a writable attribute 'via_geometry_datatype'. This is the setter.

via_geometry_suffix
Signature: [const] string via_geometry_suffix

Description: Gets the via geometry layer name suffix.

See produce_via_geometry for details about this property.

Python specific notes:
The object exposes a readable attribute 'via_geometry_suffix'. This is the getter.

via_geometry_suffix=
Signature: void via_geometry_suffix= (string suffix)

Description: Sets the via geometry layer name suffix.

See produce_via_geometry for details about this property.

Python specific notes:
The object exposes a writable attribute 'via_geometry_suffix'. This is the setter.

via_geometry_suffix_per_mask
Signature: [const] string via_geometry_suffix_per_mask (unsigned int mask)

Description: Gets the via geometry layer name suffix per mask.

See produce_via_geometry for details about this property. The mask number is a zero-based
mask index (0: MASK 1, 1: MASK 2 ...).

Mask specific rules have been introduced in version 0.27.

For more details visit
https://www.klayout.org

Page 2170 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.208. API reference - Class MEBESFracturedData

4.208. API reference - Class MEBESFracturedData
Notation used in Ruby API documentation

Module: mebes

Description: An opaque class that represents one tile of fractured data

This object is produced by MEBESWriter#fracture and can be passed to the MEBES writer from inside the tiling processor script. This
enables implementation of multithreaded fracture schemes.

This object can been introduced in version 0.25.

Public constructors

new MEBESFracturedData ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is
a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
MEBESFracturedData
other)

Assigns another object to self

[const] new
MEBESFracturedData
ptr

dup Creates a copy of self

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

For more details visit
https://www.klayout.org

Page 2171 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.208. API reference - Class MEBESFracturedData

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const MEBESFracturedData other)

Description: Assigns another object to self

create
Signature: void create

Description: Ensures the C++ object is created

For more details visit
https://www.klayout.org

Page 2172 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.208. API reference - Class MEBESFracturedData

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent access
to this object will throw an exception. If the object is not owned by the script, this method will do
nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new MEBESFracturedData ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

new
Signature: [static] new MEBESFracturedData ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

For more details visit
https://www.klayout.org

Page 2173 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.209. API reference - Class MEBESWriter

4.209. API reference - Class MEBESWriter
Notation used in Ruby API documentation

Module: mebes

Description: A MEBES writer implementation

Class hierarchy: MEBESWriter » TileOutputReceiver

This MEBES writer is both a file production class and a tile processor receiver. Here is some sample code how to use the MEBES writer:

au = 0.01 # fracture address unit

writer = RBA::MEBESWriter::new("OUT.MEB")
writer.address_unit = au

proc = RBA::TilingProcessor::new
proc.input("input", layout.top_cell, layer)
proc.output("writer", writer)
proc.dbu = au
proc.tile_size(32768*au, 65536*au)

proc.queue("_output(writer, _rec(writer).fracture(input, _tile.bbox, _dbu)")

proc.execute

This class has been introduced in version 0.25.

Public constructors

new MEBESWriter ptr new (string path) Creates a MEBES fracture engine instance

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

[const] double address_unit Gets the address unit of the output MEBES file
(in micron units)

void address_unit= (double au) Sets the address unit of the output MEBES file
(in micron units)

[const] unsigned int compression_level Gets the compression level of the writer

For more details visit
https://www.klayout.org

Page 2174 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.209. API reference - Class MEBESWriter

void compression_level= (unsigned int
level)

Sets the compression level of the writer

[const] string data (int n) Gets the nth data field of the output MEBES file

[const] MEBESFracturedData fracture (const Region
region,
const Box tile,
double dbu)

Produces fractured data for the tile

[const] bool fracture_caching Gets a value indicating fracture caching

void fracture_caching= (bool caching
enabled)

Sets a value enabling fracture caching

[const] string maskshop_info Gets the maskshop info data field of the output
MEBES file

void maskshop_info= (string info) Sets the maskshop info data field of the output
MEBES file

[const] string pattern_name Gets the pattern name data field of the output
MEBES file

void pattern_name= (string name) Sets the pattern name data field of the output
MEBES file

void set_data (int n,
string text)

Sets the nth data field of the output MEBES file

[const] bool smoothing Gets a value indicating integrated smoothing

void smoothing= (bool
smoothing_enabled)

Sets a value enabling integrated polygon
smoothing

[const] bool subresolution Gets a value indicating subresolution fracturing

void subresolution= (bool subres) Sets a value enabling subresolution fracturing

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

For more details visit
https://www.klayout.org

Page 2175 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.209. API reference - Class MEBESWriter

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The
latter may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of
the object. This method may be called if an object is returned from a C++ function and the object
is known not to be owned by any C++ instance. If necessary, the script side may delete the object
if the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

address_unit
Signature: [const] double address_unit

Description: Gets the address unit of the output MEBES file (in micron units)

Python specific notes:
The object exposes a readable attribute 'address_unit'. This is the getter.

address_unit=
Signature: void address_unit= (double au)

Description: Sets the address unit of the output MEBES file (in micron units)

Python specific notes:
The object exposes a writable attribute 'address_unit'. This is the setter.

compression_level
Signature: [const] unsigned int compression_level

Description: Gets the compression level of the writer

Python specific notes:
The object exposes a readable attribute 'compression_level'. This is the getter.

compression_level=
Signature: void compression_level= (unsigned int level)

Description: Sets the compression level of the writer

A level value of 0 means no compression. A level of 1 means weak compression. Higher levels
mean more effort for compression. A level of 2 is the recommended and default value.

Python specific notes:

For more details visit
https://www.klayout.org

Page 2176 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.209. API reference - Class MEBESWriter

The object exposes a writable attribute 'compression_level'. This is the setter.

data
Signature: [const] string data (int n)

Description: Gets the nth data field of the output MEBES file

fracture
Signature: [const] MEBESFracturedData fracture (const Region region, const Box tile, double
dbu)

Description: Produces fractured data for the tile

The fractured data can be output from the tiling processor's work script. It is then sent to the writer
and finally written to the MEBES file.

fracture_caching
Signature: [const] bool fracture_caching

Description: Gets a value indicating fracture caching

Python specific notes:
The object exposes a readable attribute 'fracture_caching'. This is the getter.

fracture_caching=
Signature: void fracture_caching= (bool caching enabled)

Description: Sets a value enabling fracture caching

Python specific notes:
The object exposes a writable attribute 'fracture_caching'. This is the setter.

maskshop_info
Signature: [const] string maskshop_info

Description: Gets the maskshop info data field of the output MEBES file

Python specific notes:
The object exposes a readable attribute 'maskshop_info'. This is the getter.

maskshop_info=
Signature: void maskshop_info= (string info)

Description: Sets the maskshop info data field of the output MEBES file

Python specific notes:
The object exposes a writable attribute 'maskshop_info'. This is the setter.

new
Signature: [static] new MEBESWriter ptr new (string path)

Description: Creates a MEBES fracture engine instance

path: The path to the output file to be written.

Python specific notes:
This method is the default initializer of the object

pattern_name
Signature: [const] string pattern_name

Description: Gets the pattern name data field of the output MEBES file

Python specific notes:
The object exposes a readable attribute 'pattern_name'. This is the getter.

pattern_name=
Signature: void pattern_name= (string name)

Description: Sets the pattern name data field of the output MEBES file

Python specific notes:
The object exposes a writable attribute 'pattern_name'. This is the setter.

For more details visit
https://www.klayout.org

Page 2177 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.209. API reference - Class MEBESWriter

set_data
Signature: void set_data (int n, string text)

Description: Sets the nth data field of the output MEBES file

smoothing
Signature: [const] bool smoothing

Description: Gets a value indicating integrated smoothing

Python specific notes:
The object exposes a readable attribute 'smoothing'. This is the getter.

smoothing=
Signature: void smoothing= (bool smoothing_enabled)

Description: Sets a value enabling integrated polygon smoothing

Python specific notes:
The object exposes a writable attribute 'smoothing'. This is the setter.

subresolution
Signature: [const] bool subresolution

Description: Gets a value indicating subresolution fracturing

Python specific notes:
The object exposes a readable attribute 'subresolution'. This is the getter.

subresolution=
Signature: void subresolution= (bool subres)

Description: Sets a value enabling subresolution fracturing

Python specific notes:
The object exposes a writable attribute 'subresolution'. This is the setter.

For more details visit
https://www.klayout.org

Page 2178 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.210. API reference - Class NetTracerTechnology

4.210. API reference - Class NetTracerTechnology
Notation used in Ruby API documentation

Module: db

Description: A technology description for the net tracer

Class hierarchy: NetTracerTechnology » TechnologyComponent

This object represents the technology description for the net tracer (represented by the NetTracer class). A technology description basically
consists of connection declarations. A connection is given by either two or three expressions describing two conductive materials. With two
expressions, the connection describes a transition from one material to another one. With three expressions, the connection describes a
transition from one material to another through a connection (a "via").

The conductive material is derived from original layers either directly or through boolean expressions. These expressions can include
symbols which are defined through the symbol method.

For details about the expressions see the description of the net tracer feature.

This class has been introduced in version 0.25.

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object
was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const
NetTracerTechnology
other)

Assigns another object to self

void connection (string a,
string b)

Defines a connection between two materials

void connection (string a,
string via,
string b)

Defines a connection between materials through
a via

[const] new
NetTracerTechnology
ptr

dup Creates a copy of self

void symbol (string name,
string expr)

Defines a symbol for use in the material
expressions.

For more details visit
https://www.klayout.org

Page 2179 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.210. API reference - Class NetTracerTechnology

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const NetTracerTechnology other)

Description: Assigns another object to self

connection
(1) Signature: void connection (string a, string b)

Description: Defines a connection between two materials

For more details visit
https://www.klayout.org

Page 2180 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.210. API reference - Class NetTracerTechnology

See the class description for details about this method.

(2) Signature: void connection (string a, string via, string b)

Description: Defines a connection between materials through a via

See the class description for details about this method.

dup
Signature: [const] new NetTracerTechnology ptr dup

Description: Creates a copy of self

symbol
Signature: void symbol (string name, string expr)

Description: Defines a symbol for use in the material expressions.

Defines a sub-expression to be used in further symbols or material expressions. For the detailed
notation of the expression see the description of the net tracer feature.

For more details visit
https://www.klayout.org

Page 2181 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.211. API reference - Class NetElement

4.211. API reference - Class NetElement
Notation used in Ruby API documentation

Module: db

Description: A net element for the NetTracer net tracing facility

This object represents a piece of a net extracted by the net tracer. See the description of NetTracer for more details about the net tracer
feature.

The NetTracer object represents one shape of the net. The shape can be an original shape or a shape derived in a boolean operation. In
the first case, the shape refers to a shape within a cell or a subcell of the original top cell. In the latter case, the shape is a synthesized one
and outside the original layout hierarchy.

In any case, the shape method will deliver the shape and trans the transformation of the shape into the original top cell. To obtain a flat
representation of the net, the shapes need to be transformed by this transformation.

layer will give the layer the shape is located at, cell_index will denote the cell that contains the shape.

This class has been introduced in version 0.25.

Public constructors

new NetElement ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference is a
const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void assign (const
NetElement
other)

Assigns another object to self

[const] Box bbox Delivers the bounding box of the shape as seen from
the original top cell

[const] unsigned int cell_index Gets the index of the cell the shape is inside

[const] new NetElement ptr dup Creates a copy of self

[const] unsigned int layer Gets the index of the layer the shape is on

[const] Shape shape Gets the shape that makes up this net element

[const] ICplxTrans trans Gets the transformation to apply for rendering the
shape in the original top cell

For more details visit
https://www.klayout.org

Page 2182 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.211. API reference - Class NetElement

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method

For more details visit
https://www.klayout.org

Page 2183 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.211. API reference - Class NetElement

will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const NetElement other)

Description: Assigns another object to self

bbox
Signature: [const] Box bbox

Description: Delivers the bounding box of the shape as seen from the original top cell

cell_index
Signature: [const] unsigned int cell_index

Description: Gets the index of the cell the shape is inside

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new NetElement ptr dup

Description: Creates a copy of self

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

layer
Signature: [const] unsigned int layer

Description: Gets the index of the layer the shape is on

For more details visit
https://www.klayout.org

Page 2184 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.211. API reference - Class NetElement

new
Signature: [static] new NetElement ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

shape
Signature: [const] Shape shape

Description: Gets the shape that makes up this net element

See the class description for more details about this attribute.

trans
Signature: [const] ICplxTrans trans

Description: Gets the transformation to apply for rendering the shape in the original top cell

See the class description for more details about this attribute.

For more details visit
https://www.klayout.org

Page 2185 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.212. API reference - Class NetTracer

4.212. API reference - Class NetTracer
Notation used in Ruby API documentation

Module: db

Description: The net tracer feature

The net tracer class provides an interface to the net tracer feature. It is accompanied by the NetElement and NetTracerTechnology classes.
The latter will provide the technology definition for the net tracer while the NetElement objects represent a piece of the net after it has been
extracted.

The technology definition is optional. The net tracer can be used with a predefined technology as well. The basic scheme of using the
net tracer is to instantiate a net tracer object and run the extraction through the NetTracer#trace method. After this method was executed
successfully, the resulting net can be obtained from the net tracer object by iterating over the NetElement objects of the net tracer.

Here is some sample code:

ly = RBA::CellView::active.layout

tracer = RBA::NetTracer::new

tech = RBA::NetTracerTechnology::new
tech.connection("1/0", "2/0", "3/0")

tracer.trace(tech, ly, ly.top_cell, RBA::Point::new(7000, 1500), ly.find_layer(1, 0))

tracer.each_element do |e|
 puts e.shape.polygon.transformed(e.trans)
end

This class has been introduced in version 0.25.

Public constructors

new NetTracer ptr new Creates a new object of this class

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the
object was already destroyed

[const] bool _is_const_object? Returns a value indicating whether the
reference is a const reference

void _manage Marks the object as managed by the script
side.

void _unmanage Marks the object as no longer owned by the
script side.

void assign (const NetTracer
other)

Assigns another object to self

void clear Clears the data from the last extraction

For more details visit
https://www.klayout.org

Page 2186 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.212. API reference - Class NetTracer

[const] new NetTracer ptr dup Creates a copy of self

[const,iter] NetElement each_element Iterates over the elements found during
extraction

[const] bool incomplete? Returns a value indicating whether the net is
incomplete

[const] string name Returns the name of the net found during
extraction

[const] unsigned long num_elements Returns the number of elements found
during extraction

void trace (const
NetTracerTechnology
tech,
const Layout layout,
const Cell cell,
const Point
start_point,
unsigned int
start_layer)

Runs a net extraction

void trace (const
NetTracerTechnology
tech,
const Layout layout,
const Cell cell,
const Point
start_point,
unsigned int
start_layer,
const Point
stop_point,
unsigned int
stop_layer)

Runs a path extraction

void trace (string tech,
const Layout layout,
const Cell cell,
const Point
start_point,
unsigned int
start_layer)

Runs a net extraction taking a predefined
technology

void trace (string tech,
const Layout layout,
const Cell cell,
const Point
start_point,
unsigned int
start_layer,
const Point
stop_point,
unsigned int
stop_layer)

Runs a path extraction taking a predefined
technology

[const] unsigned long trace_depth gets the trace depth

For more details visit
https://www.klayout.org

Page 2187 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.212. API reference - Class NetTracer

void trace_depth= (unsigned long n) Sets the trace depth (shape limit)

Deprecated methods (protected, public, static, non-static and constructors)

void create Use of this method is deprecated. Use _create instead

void destroy Use of this method is deprecated. Use _destroy instead

[const] bool destroyed? Use of this method is deprecated. Use _destroyed?
instead

[const] bool is_const_object? Use of this method is deprecated. Use _is_const_object?
instead

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if the
script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

For more details visit
https://www.klayout.org

Page 2188 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.212. API reference - Class NetTracer

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

assign
Signature: void assign (const NetTracer other)

Description: Assigns another object to self

clear
Signature: void clear

Description: Clears the data from the last extraction

create
Signature: void create

Description: Ensures the C++ object is created

Use of this method is deprecated. Use _create instead

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object is
created.

destroy
Signature: void destroy

Description: Explicitly destroys the object

Use of this method is deprecated. Use _destroy instead

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method will
do nothing.

destroyed?
Signature: [const] bool destroyed?

Description: Returns a value indicating whether the object was already destroyed

Use of this method is deprecated. Use _destroyed? instead

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

dup
Signature: [const] new NetTracer ptr dup

Description: Creates a copy of self

each_element
Signature: [const,iter] NetElement each_element

Description: Iterates over the elements found during extraction

The elements are available only after the extraction has been performed.

incomplete?
Signature: [const] bool incomplete?

Description: Returns a value indicating whether the net is incomplete

A net may be incomplete if the extraction has been stopped by the user for example. This attribute is
useful only after the extraction has been performed.

For more details visit
https://www.klayout.org

Page 2189 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.212. API reference - Class NetTracer

is_const_object?
Signature: [const] bool is_const_object?

Description: Returns a value indicating whether the reference is a const reference

Use of this method is deprecated. Use _is_const_object? instead

This method returns true, if self is a const reference. In that case, only const methods may be called
on self.

name
Signature: [const] string name

Description: Returns the name of the net found during extraction

The net name is extracted from labels found during the extraction. This attribute is useful only after
the extraction has been performed.

new
Signature: [static] new NetTracer ptr new

Description: Creates a new object of this class

Python specific notes:
This method is the default initializer of the object

num_elements
Signature: [const] unsigned long num_elements

Description: Returns the number of elements found during extraction

This attribute is useful only after the extraction has been performed.

(1) Signature: void trace (const NetTracerTechnology tech, const Layout layout, const Cell cell,
const Point start_point, unsigned int start_layer)

Description: Runs a net extraction

tech: The technology definition

layout: The layout on which to run the extraction

cell: The cell on which to run the extraction (child cells will be
included)

start_point: The start point from which to start extraction of the net

start_layer: The layer from which to start extraction

This method runs an extraction with the given parameters. To make the extraction successful, a
shape must be present at the given start point on the start layer. The start layer must be a valid layer
mentioned within the technology specification.

This version runs a single extraction - i.e. it will extract all elements connected to the given seed
point. A path extraction version is provided as well which will extract one (the presumably shortest)
path between two points.

trace

(2) Signature: void trace (const NetTracerTechnology tech, const Layout layout, const Cell cell,
const Point start_point, unsigned int start_layer, const Point stop_point, unsigned int stop_layer)

Description: Runs a path extraction

tech: The technology definition

layout: The layout on which to run the extraction

cell: The cell on which to run the extraction (child cells will be
included)

start_point: The start point from which to start extraction of the net

start_layer: The layer from which to start extraction

stop_point: The stop point at which to stop extraction of the net

For more details visit
https://www.klayout.org

Page 2190 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.212. API reference - Class NetTracer

stop_layer: The layer at which to stop extraction

This method runs an path extraction with the given parameters. To make the extraction successful,
a shape must be present at the given start point on the start layer and at the given stop point at the
given stop layer. The start and stop layers must be a valid layers mentioned within the technology
specification.

This version runs a path extraction and will deliver elements forming one path leading from the start
to the end point.

(3) Signature: void trace (string tech, const Layout layout, const Cell cell, const Point start_point,
unsigned int start_layer)

Description: Runs a net extraction taking a predefined technology

This method behaves identical as the version with a technology object, except that it will look for a
technology with the given name to obtain the extraction setup.

(4) Signature: void trace (string tech, const Layout layout, const Cell cell, const Point start_point,
unsigned int start_layer, const Point stop_point, unsigned int stop_layer)

Description: Runs a path extraction taking a predefined technology

This method behaves identical as the version with a technology object, except that it will look for a
technology with the given name to obtain the extraction setup.

trace_depth
Signature: [const] unsigned long trace_depth

Description: gets the trace depth

See trace_depth= for a description of this property.

This method has been introduced in version 0.26.4.

Python specific notes:
The object exposes a readable attribute 'trace_depth'. This is the getter.

trace_depth=
Signature: void trace_depth= (unsigned long n)

Description: Sets the trace depth (shape limit)

Set this value to limit the maximum number of shapes delivered. Upon reaching this count, the tracer
will stop and report the net as 'incomplete' (see incomplete?). Setting a trace depth if 0 is equivalent
to 'unlimited'. The actual number of shapes delivered may be a little less than the depth because of
internal marker shapes which are taken into account, but are not delivered.

This method has been introduced in version 0.26.4.

Python specific notes:
The object exposes a writable attribute 'trace_depth'. This is the setter.

For more details visit
https://www.klayout.org

Page 2191 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.213. API reference - Class D25View

4.213. API reference - Class D25View
Notation used in Ruby API documentation

Module: lay

Description: The 2.5d View Dialog

Class hierarchy: D25View » QDialog » QWidget » QObject

This class is used internally to implement the 2.5d feature.

This class has been introduced in version 0.28.

Public methods

void _create Ensures the C++ object is created

void _destroy Explicitly destroys the object

[const] bool _destroyed? Returns a value indicating whether the object was
already destroyed

[const] bool _is_const_object? Returns a value indicating whether the reference
is a const reference

void _manage Marks the object as managed by the script side.

void _unmanage Marks the object as no longer owned by the script
side.

void begin (string generator) Initiates delivery of display groups

void clear Clears all display entries in the view

void close Closes the view

void close_display Finishes the display group

void entry (const Region data,
double dbu,
double zstart,
double zstop)

Creates a new display entry in the group opened
with open_display

void entry (const Edges data,
double dbu,
double zstart,
double zstop)

Creates a new display entry in the group opened
with open_display

void entry (const EdgePairs
data,
double dbu,
double zstart,
double zstop)

Creates a new display entry in the group opened
with open_display

void finish Finishes the view - call this after the display
groups have been created

void open_display (unsigned int ptr
frame_color,

Creates a new display group

For more details visit
https://www.klayout.org

Page 2192 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.213. API reference - Class D25View

unsigned int ptr
fill_color,
const LayerInfo ptr
like,
string ptr name)

Detailed description

_create
Signature: void _create

Description: Ensures the C++ object is created

Use this method to ensure the C++ object is created, for example to ensure that resources are
allocated. Usually C++ objects are created on demand and not necessarily when the script object
is created.

_destroy
Signature: void _destroy

Description: Explicitly destroys the object

Explicitly destroys the object on C++ side if it was owned by the script interpreter. Subsequent
access to this object will throw an exception. If the object is not owned by the script, this method
will do nothing.

_destroyed?
Signature: [const] bool _destroyed?

Description: Returns a value indicating whether the object was already destroyed

This method returns true, if the object was destroyed, either explicitly or by the C++ side. The latter
may happen, if the object is owned by a C++ object which got destroyed itself.

_is_const_object?
Signature: [const] bool _is_const_object?

Description: Returns a value indicating whether the reference is a const reference

This method returns true, if self is a const reference. In that case, only const methods may be
called on self.

_manage
Signature: void _manage

Description: Marks the object as managed by the script side.

After calling this method on an object, the script side will be responsible for the management of the
object. This method may be called if an object is returned from a C++ function and the object is
known not to be owned by any C++ instance. If necessary, the script side may delete the object if
the script's reference is no longer required.

Usually it's not required to call this method. It has been introduced in version 0.24.

_unmanage
Signature: void _unmanage

Description: Marks the object as no longer owned by the script side.

Calling this method will make this object no longer owned by the script's memory management.
Instead, the object must be managed in some other way. Usually this method may be called if it
is known that some C++ object holds and manages this object. Technically speaking, this method
will turn the script's reference into a weak reference. After the script engine decides to delete the
reference, the object itself will still exist. If the object is not managed otherwise, memory leaks will
occur.

Usually it's not required to call this method. It has been introduced in version 0.24.

For more details visit
https://www.klayout.org

Page 2193 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.213. API reference - Class D25View

begin
Signature: void begin (string generator)

Description: Initiates delivery of display groups

clear
Signature: void clear

Description: Clears all display entries in the view

close
Signature: void close

Description: Closes the view

close_display
Signature: void close_display

Description: Finishes the display group

(1) Signature: void entry (const Region data, double dbu, double zstart, double zstop)

Description: Creates a new display entry in the group opened with open_display

(2) Signature: void entry (const Edges data, double dbu, double zstart, double zstop)

Description: Creates a new display entry in the group opened with open_display

entry

(3) Signature: void entry (const EdgePairs data, double dbu, double zstart, double zstop)

Description: Creates a new display entry in the group opened with open_display

finish
Signature: void finish

Description: Finishes the view - call this after the display groups have been created

open_display
Signature: void open_display (unsigned int ptr frame_color, unsigned int ptr fill_color, const
LayerInfo ptr like, string ptr name)

Description: Creates a new display group

For more details visit
https://www.klayout.org

Page 2194 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.214. API reference - Class PCellDeclarationHelper

4.214. API reference - Class PCellDeclarationHelper
Notation used in Ruby API documentation

Module: db

Description: A helper class to simplify the declaration of a PCell (Ruby version)

Class hierarchy: PCellDeclarationHelper » PCellDeclaration

This class provides adds some convenience to the PCell declaration based on PCellDeclaration. PCellDeclaration is a C++ object which
is less convenient to use than a Ruby-based approach. In particular this class simplifies the declaration and use of parameters through
accessor methods that are created automatically from the declaration of the parameters.

The basic usage of this class is the following:

Derive your PCell from PCellDeclarationHelper
class MyPCell < RBA::PCellDeclarationHelper

 # initalize
 def initialize
 super
 # your initialization: add parameters with name, type, description and
 # optional other values
 param :p, TypeInt, "The parameter", :default => 1
 param :l, TypeLayer, "The layer", :default => RBA::LayerInfo::new(1, 0)
 # add other parameters ..
 end

 # reimplement display_text_impl
 def display_text_impl
 # implement the method here
 end

 # reimplement produce_impl
 def produce_impl
 # implement the method here
 end

 # optionally reimplement coerce_parameters_impl
 def coerce_parameters_impl
 # implement the method here
 end

end

An implementation of display_text_impl could look like this:

 def display_text_impl
 "We have p=#{p}"
 end

Because in the sample declaration above we have declared parameter "p" we can access the value of p inside the implementation simply
by using the "p" method.

Similarily the produce_impl implementation could use code like the following. Please note that layout and cell are available to get the layout
and cell. Also because we have declared a layer parameter "l", we can access the layer index with the "l_layer" method:

 def produce_impl
 cell.shapes(l_layer).insert(RBA::Box.new(0, 0, p*100, p*200))

For more details visit
https://www.klayout.org

Page 2195 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.214. API reference - Class PCellDeclarationHelper

 end

Again in this sample, we used "p" to access the parameter "p".

The implementation of coerce_parameter_impl can make use of the parameter setters. In the case of the "p" parameter, the setter is
"set_p":

 def coerce_parameter_impl
 p < 10 || set_p(10)
 end

Public methods

can_create_from_shape_impl Returns true if the PCell can be created from the given shape

cell Gets the reference to the current cell within produce_impl

coerce_parameters_impl Coerces the parameters

display_text_impl Delivers the display text

initialize Initializes this instance

layer Gets the reference to the current layer index within
can_create_from_shape_impl, parameters_from_shape_impl and
transformation_from_shape_impl

layout Gets the reference to the current layout within produce_impl,
can_create_from_shape_impl, parameters_from_shape_impl and
transformation_from_shape_impl

param (name,
type,
description,
...)

Declares a parameter with the given name, type and description and
optional attributes.

parameters_from_shape_impl Sets the parameters from a shape

produce_impl Produces the layout

shape Gets the reference to the current shape within
can_create_from_shape_impl, parameters_from_shape_impl and
transformation_from_shape_impl

transformation_from_shape_impl Gets the initial PCell instance transformation when creating from a
shape

Detailed description

can_create_from_shape_impl
Signature: can_create_from_shape_impl

Description: Returns true if the PCell can be created from the given shape

This method can be reimplemented in a PCell class. If the PCell can be created from the shape
available through the shape accessor (a Shape object), this method is supposed to return true.
The layout the shape lives in can be accessed with layout and the layer with layer.

For more details visit
https://www.klayout.org

Page 2196 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.214. API reference - Class PCellDeclarationHelper

The default implementation returns false.

cell
Signature: cell

Description: Gets the reference to the current cell within produce_impl

coerce_parameters_impl
Signature: coerce_parameters_impl

Description: Coerces the parameters

This method can be reimplemented in a PCell class. It is supposed to adjust parameters to render
a consistent parameter set and to fix parameter range errors. This method is called for example
inside the PCell user interface to compute the actual parameters when "Apply" is pressed.

display_text_impl
Signature: display_text_impl

Description: Delivers the display text

This method must be reimplemented in a PCell class to identify the PCell in human-readable form.
This text is shown in the cell tree for the PCell for example.

initialize
Signature: initialize

Description: Initializes this instance

layer
Signature: layer

Description: Gets the reference to the current layer index within can_create_from_shape_impl,
parameters_from_shape_impl and transformation_from_shape_impl

The object returned is the layer index within the Layout object of the shape which will be
converted.

layout
Signature: layout

Description: Gets the reference to the current layout within produce_impl,
can_create_from_shape_impl, parameters_from_shape_impl and
transformation_from_shape_impl

The object returned is the Layout object of the shape which will be converted.

param
Signature: param (name, type, description, ...)

Description: Declares a parameter with the given name, type and description and optional
attributes.

name: The name of the parameter. Must be a simple word.

type: The type. One of the Type... constants, that this class
borrowed from PCellParameterDeclaration.

description: The description text for this parameter

Optional, named parameters are

• :hidden: (boolean) true, if the parameter is not shown in the dialog

• :readonly: (boolean) true, if the parameter cannot be edited

• :unit: the unit string

• :default: the default value

For more details visit
https://www.klayout.org

Page 2197 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.214. API reference - Class PCellDeclarationHelper

• :choices: ([[d, v], ...]) choice descriptions/value for choice type

":choices" must be an array of two-element arrays (description text, value) which specify one
choice each for parameters with a choice of values. Such parameters are represented by a drop-
down box.

This declaration will create accessor methods "x" and "set_x", where "x" is the name of the
parameter. If the type is TypeLayer, an accessor "x_layer" delivering the layer index inside
produce_impl is created as well.

parameters_from_shape_impl
Signature: parameters_from_shape_impl

Description: Sets the parameters from a shape

This method can be reimplemented in a PCell class. If can_create_from_shape_impl returns true,
this method is called to set the parameters from the given shape (see shape, layout and layer).
Note, that for setting a layer parameter you need to create the LayerInfo object, i.e. like this:

 set_l layout.get_info(layer)

The default implementation does nothing. All parameters not set in this method will receive their
default value.

If you use a parameter called "layer" for example, the parameter getter will hide the "layer"
argument. Use "_layer" for the argument in this case (same for "layout", "shape" or "cell):

 set_layer layout.get_info(_layer)

produce_impl
Signature: produce_impl

Description: Produces the layout

This method must be reimplemented in a PCell class. Using the parameter values provided by
the parameter accessor methods and the layout and cell through layout and cell, this method is
supposed to produce the final layout inside the given cell.

shape
Signature: shape

Description: Gets the reference to the current shape within can_create_from_shape_impl,
parameters_from_shape_impl and transformation_from_shape_impl

The object returned is the Shape object of the shape which will be converted.

transformation_from_shape_impl
Signature: transformation_from_shape_impl

Description: Gets the initial PCell instance transformation when creating from a shape

This method can be reimplemented in a PCell class. If can_create_from_shape_impl returns true,
this method is called to get the initial transformation from the given shape (see shape, layout and
layer).

This method must return a Trans object. The default implementation returns a unit transformation
(no displacement, no rotation).

For more details visit
https://www.klayout.org

Page 2198 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.215. Class Index for Module db

4.215. Class Index for Module db

KLayout classes

Box A box class with integer coordinates

Cell A cell

CellInstArray A single or array cell instance

CellMapping A cell mapping (source to target layout)

Circuit Circuits are the basic building blocks of the netlist

CompoundRegionOperationNode A base class for compound DRC operations

CompoundRegionOperationNode::GeometricalOp This class represents the CompoundRegionOperationNode::GeometricalOp
enum

CompoundRegionOperationNode::LogicalOp This class represents the CompoundRegionOperationNode::LogicalOp enum

CompoundRegionOperationNode::ParameterType This class represents the parameter type enum used in
\CompoundRegionOperationNode#new_bbox_filter

CompoundRegionOperationNode::RatioParameterType This class represents the parameter type enum used in
\CompoundRegionOperationNode#new_ratio_filter

CompoundRegionOperationNode::ResultType This class represents the CompoundRegionOperationNode::ResultType
enum

Connectivity This class specifies connections between different layers.

CplxTrans A complex transformation

DBox A box class with floating-point coordinates

DCellInstArray A single or array cell instance in micrometer units

DCplxTrans A complex transformation

DEdge An edge class

DEdgePair An edge pair (a pair of two edges)

DPath A path class

DPoint A point class with double (floating-point) coordinates

DPolygon A polygon class

DSimplePolygon A simple polygon class

DText A text object

DTrans A simple transformation

For more details visit
https://www.klayout.org

Page 2199 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.215. Class Index for Module db

DVector A vector class with double (floating-point) coordinates

DeepShapeStore An opaque layout heap for the deep region processor

Device A device inside a circuit.

DeviceAbstract A geometrical device abstract

DeviceAbstractRef Describes an additional device abstract reference for combined devices.

DeviceClass A class describing a specific type of device.

DeviceClassBJT3Transistor A device class for a bipolar transistor.

DeviceClassBJT4Transistor A device class for a 4-terminal bipolar transistor.

DeviceClassCapacitor A device class for a capacitor.

DeviceClassCapacitorWithBulk A device class for a capacitor with a bulk terminal (substrate, well).

DeviceClassDiode A device class for a diode.

DeviceClassFactory A factory for creating specific device classes for the standard device
extractors

DeviceClassInductor A device class for an inductor.

DeviceClassMOS3Transistor A device class for a 3-terminal MOS transistor.

DeviceClassMOS4Transistor A device class for a 4-terminal MOS transistor.

DeviceClassResistor A device class for a resistor.

DeviceClassResistorWithBulk A device class for a resistor with a bulk terminal (substrate, well).

DeviceExtractorBJT3Transistor A device extractor for a bipolar transistor (BJT)

DeviceExtractorBJT4Transistor A device extractor for a four-terminal bipolar transistor (BJT)

DeviceExtractorBase The base class for all device extractors.

DeviceExtractorCapacitor A device extractor for a two-terminal capacitor

DeviceExtractorCapacitorWithBulk A device extractor for a capacitor with a bulk terminal

DeviceExtractorDiode A device extractor for a planar diode

DeviceExtractorMOS3Transistor A device extractor for a three-terminal MOS transistor

DeviceExtractorMOS4Transistor A device extractor for a four-terminal MOS transistor

DeviceExtractorResistor A device extractor for a two-terminal resistor

DeviceExtractorResistorWithBulk A device extractor for a resistor with a bulk terminal

DeviceParameterDefinition A parameter descriptor

DeviceReconnectedTerminal Describes a terminal rerouting in combined devices.

For more details visit
https://www.klayout.org

Page 2200 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.215. Class Index for Module db

DeviceTerminalDefinition A terminal descriptor

Edge An edge class

EdgePair An edge pair (a pair of two edges)

EdgePairs EdgePairs (a collection of edge pairs)

EdgeProcessor The edge processor (boolean, sizing, merge)

Edges A collection of edges (Not necessarily describing closed contours)

EqualDeviceParameters A device parameter equality comparer.

GenericDeviceCombiner A class implementing the combination of two devices (parallel or serial
mode).

GenericDeviceExtractor The basic class for implementing custom device extractors.

GenericDeviceParameterCompare A class implementing the comparison of device parameters.

GenericNetlistCompareLogger An event receiver for the netlist compare feature.

HAlign This class represents the horizontal alignment modes.

ICplxTrans A complex transformation

IMatrix2d A 2d matrix object used mainly for representing rotation and shear
transformations (integer coordinate version).

IMatrix3d A 3d matrix object used mainly for representing rotation, shear, displacement
and perspective transformations (integer coordinate version).

InstElement An element in an instantiation path

Instance An instance proxy

LEFDEFReaderConfiguration Detailed LEF/DEF reader options

LayerInfo A structure encapsulating the layer properties

LayerMap An object representing an arbitrary mapping of physical layers to logical
layers

LayerMapping A layer mapping (source to target layout)

Layout The layout object

LayoutDiff The layout compare tool

LayoutMetaInfo A piece of layout meta information

LayoutQuery A layout query

LayoutQueryIterator Provides the results of the query

LayoutToNetlist A generic framework for extracting netlists from layouts

For more details visit
https://www.klayout.org

Page 2201 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.215. Class Index for Module db

LayoutToNetlist::BuildNetHierarchyMode This class represents the LayoutToNetlist::BuildNetHierarchyMode enum

LayoutVsSchematic A generic framework for doing LVS (layout vs. schematic)

Library A Library

LoadLayoutOptions Layout reader options

LoadLayoutOptions::CellConflictResolution This enum specifies how cell conflicts are handled if a layout read into
another layout and a cell name conflict arises.

Manager A transaction manager class

Matrix2d A 2d matrix object used mainly for representing rotation and shear
transformations.

Matrix3d A 3d matrix object used mainly for representing rotation, shear, displacement
and perspective transformations.

Net A single net.

NetElement A net element for the NetTracer net tracing facility

NetPinRef A connection to an outgoing pin of the circuit.

NetSubcircuitPinRef A connection to a pin of a subcircuit.

NetTerminalRef A connection to a terminal of a device.

NetTracer The net tracer feature

NetTracerTechnology A technology description for the net tracer

Netlist The netlist top-level class

NetlistCompareLogger A base class for netlist comparer event receivers

NetlistComparer Compares two netlists

NetlistCrossReference Represents the identity mapping between the objects of two netlists.

NetlistCrossReference::CircuitPairData A circuit match entry.

NetlistCrossReference::DevicePairData A device match entry.

NetlistCrossReference::NetPairData A net match entry.

NetlistCrossReference::NetPinRefPair A match entry for a net pin pair.

NetlistCrossReference::NetSubcircuitPinRefPair A match entry for a net subcircuit pin pair.

NetlistCrossReference::NetTerminalRefPair A match entry for a net terminal pair.

NetlistCrossReference::PinPairData A pin match entry.

NetlistCrossReference::Status This class represents the NetlistCrossReference::Status enum

NetlistCrossReference::SubCircuitPairData A subcircuit match entry.

For more details visit
https://www.klayout.org

Page 2202 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.215. Class Index for Module db

NetlistDeviceExtractorError An error that occurred during device extraction

NetlistDeviceExtractorLayerDefinition Describes a layer used in the device extraction

NetlistObject The base class for some netlist objects.

NetlistReader Base class for netlist readers

NetlistSpiceReader Implements a netlist Reader for the SPICE format.

NetlistSpiceReaderDelegate Provides a delegate for the SPICE reader for translating device statements

NetlistSpiceWriter Implements a netlist writer for the SPICE format.

NetlistSpiceWriterDelegate Provides a delegate for the SPICE writer for doing special formatting for
devices

NetlistWriter Base class for netlist writers

PCellDeclaration A PCell declaration providing the parameters and code to produce the PCell

PCellDeclarationHelper A helper class to simplify the declaration of a PCell (Python version)

PCellDeclarationHelper A helper class to simplify the declaration of a PCell (Ruby version)

PCellParameterDeclaration A PCell parameter declaration

ParentInstArray A parent instance

ParseElementComponentsData Supplies the return value for
\NetlistSpiceReaderDelegate#parse_element_components.

ParseElementData Supplies the return value for \NetlistSpiceReaderDelegate#parse_element.

Path A path class

Pin A pin of a circuit.

Point An integer point class

Polygon A polygon class

PreferredOrientation This class represents the PreferredOrientation enum used within polygon
decomposition

RecursiveInstanceIterator An iterator delivering instances recursively

RecursiveShapeIterator An iterator delivering shapes recursively

Region A region (a potentially complex area consisting of multiple polygons)

Region::Metrics This class represents the metrics type for \Region#width and related checks.

Region::OppositeFilter This class represents the opposite error filter mode for \Region#separation
and related checks.

Region::RectFilter This class represents the error filter mode on rectangles for
\Region#separation and related checks.

For more details visit
https://www.klayout.org

Page 2203 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.215. Class Index for Module db

SaveLayoutOptions Options for saving layouts

Shape An object representing a shape in the layout database

ShapeCollection A base class for the shape collections (\Region, \Edges, \EdgePairs and
\Texts)

ShapeProcessor The shape processor (boolean, sizing, merge on shapes)

Shapes A collection of shapes

SimplePolygon A simple polygon class

SubCircuit A subcircuit inside a circuit.

Technology Represents a technology

TechnologyComponent A part of a technology definition

Text A text object

TextGenerator A text generator class

Texts Texts (a collection of texts)

TileOutputReceiver A receiver abstraction for the tiling processor.

TilingProcessor A processor for layout which distributes tasks over tiles

Trans A simple transformation

TrapezoidDecompositionMode This class represents the TrapezoidDecompositionMode enum used within
trapezoid decomposition

Utils This namespace provides a collection of utility functions

VAlign This class represents the vertical alignment modes.

VCplxTrans A complex transformation

Vector A integer vector class

For more details visit
https://www.klayout.org

Page 2204 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.216. Class Index for Module lay

4.216. Class Index for Module lay

KLayout classes

AbstractMenu An abstraction for the application menus

Action The abstraction for an action (i.e. used inside menus)

Annotation A layout annotation (i.e. ruler)

Application The application object

BrowserDialog A HTML display and browser dialog

BrowserPanel A HTML display and browser widget

BrowserSource The BrowserDialog's source for "int" URL's

ButtonState The namespace for the button state flags in the mouse events of the Plugin
class.

CellView A class describing what is shown inside a layout view

Cursor The namespace for the cursor constants

D25View The 2.5d View Dialog

Dispatcher Root of the configuration space in the plugin context and menu dispatcher

FileDialog Various methods to request a file name

HelpDialog The help dialog

HelpSource A BrowserSource implementation delivering the help text for the help dialog

Image An image to be stored as a layout annotation

ImageDataMapping A structure describing the data mapping of an image object

InputDialog Various methods to open a dialog requesting data entry

LayerProperties The layer properties structure

LayerPropertiesIterator Layer properties iterator

LayerPropertiesNode A layer properties node structure

LayerPropertiesNodeRef A class representing a reference to a layer properties node

LayoutView The view object presenting one or more layout objects

LayoutView::SelectionMode Specifies how selected objects interact with already selected ones.

Macro A macro class

Macro::Format Specifies the format of a macro

For more details visit
https://www.klayout.org

Page 2205 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.216. Class Index for Module lay

Macro::Interpreter Specifies the interpreter used for executing a macro

MacroExecutionContext Support for various debugger features

MacroInterpreter A custom interpreter for a DSL (domain specific language)

MainWindow The main application window and central controller object

Marker The floating-point coordinate marker object

MessageBox Various methods to display message boxes

NetlistBrowserDialog Represents the netlist browser dialog.

NetlistObjectPath An object describing the instantiation of a netlist object.

NetlistObjectsPath An object describing the instantiation of a single netlist object or a pair of those.

ObjectInstPath A class describing a selected shape or instance

Plugin The plugin object

PluginFactory The plugin framework's plugin factory object

For more details visit
https://www.klayout.org

Page 2206 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.217. Class Index for Module mebes

4.217. Class Index for Module mebes

KLayout classes

MEBESFracturedData An opaque class that represents one tile of fractured data

MEBESWriter A MEBES writer implementation

For more details visit
https://www.klayout.org

Page 2207 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.218. Class Index for Module rdb

4.218. Class Index for Module rdb

KLayout classes

RdbCategory A category inside the report database

RdbCell A cell inside the report database

RdbItem An item inside the report database

RdbItemValue A value object inside the report database

RdbReference A cell reference inside the report database

ReportDatabase The report database object

For more details visit
https://www.klayout.org

Page 2208 KLayout 0.28 2022-03-28

https://www.klayout.org

KLayout 0.28 4.219. Class Index for Module tl

4.219. Class Index for Module tl

KLayout classes

AbsoluteProgress A progress reporter counting progress in absolute units

AbstractProgress The abstract progress reporter

EmptyClass

Executable A generic executable object

Expression Evaluation of Expressions

ExpressionContext Represents the context of an expression evaluation

GlobPattern A glob pattern matcher

Interpreter A generalization of script interpreters

Logger A logger

Progress A progress reporter

Recipe A facility for providing reproducible recipes

RelativeProgress A progress reporter counting progress in relative units

Timer A timer (stop watch)

Value Encapsulates a value (preferably a plain data type) in an object

For more details visit
https://www.klayout.org

Page 2209 KLayout 0.28 2022-03-28

https://www.klayout.org

